
ORIGINAL PAPER

Nonlinear interaction of parametric excitation and self-
excited vibration in a 4 DoF discontinuous system

Godwin Sani . Bipin Balaram . Jan Awrejcewicz

Received: 9 February 2022 / Accepted: 6 September 2022 / Published online: 26 October 2022

� The Author(s) 2022

Abstract Interaction between parametric excitation

and self-excited vibration has been subjected to

numerous investigations in continuous systems. The

ability of parametric excitation to quench self-excited

vibrations in such systems has also been well docu-

mented. But such effects in discontinuous systems do

not seem to have received comparable attention. In

this article, we investigate the interaction between

parametric excitation and self-excited vibration in a

four degree of freedom discontinuous mechanical

system. Unlike majority of studies in which oscillatory

nature of stiffness accounts for parametric excitation,

we consider a much more practical case in which

parametric excitation is provided by a massless rotor

of rectangular cross section with a cylinder-like mass

concentrated at the center. The rotor arrangement is

placed on a friction-induced self-excited support in the

form of a frame placed on a belt moving with constant

velocity. This frame is connected to a supplementary

mass. A Stribeck friction model is considered for the

mass in contact with the belt. The frictional force

between the mass and the belt is oscillatory in nature

because of the variation of normal force due to

parametric excitation from the rotor. Our investiga-

tions reveal mutual synchronization of parametric

excitation and self-excited vibration in the system for

specific parameter values. The existence of a

stable limit cycle with constant synchronized funda-

mental frequency, for a range of parametric excitation

frequencies, is established numerically. Investigation

based on frequency spectra and Lissajous curves

reveals complex synchronization patterns owing to the

presence of higher harmonics. The system is also

shown to exhibit Neimark–Sacker bifurcations under

the variation of belt velocity. Furthermore, variation in

belt velocity and coupling stiffness is seen to cause a

breakup of quasi-periodic torus with small-amplitude

oscillations to form large amplitude chaotic orbits.

This points toward the possibility of vibration sup-

pression in the system by tuning the parameters for

stabilizing the small-amplitude quasi-periodic

response. An example of co-existence of different

attractors in the system is also presented.
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1 Introduction

Interaction between different excitation mechanisms

can lead to interesting dynamic phenomena in various

engineering systems. One such significant interaction

is one between self-excited vibration and parametric

excitation. Such interactions and their practical effects

have been subject to many studies in the past. Initial

studies focused mainly on the synchronization of self-

excited vibration and parametric excitation [1, 2]. Ales

Tondl [3], while investigating such synchronization

behavior, discovered the phenomenon of quenching

self-excited vibrations by means of parametric exci-

tation in single degree of freedom systems. Subse-

quently, Tondl and his coworkers demonstrated the

possibility of full suppression of self-excited vibration

under some conditions and in the appropriate fre-

quency interval of parametric excitation [4–6]. Such

quenching has been called parametric anti-resonance

[7]. Tondl and Nabergoj [8] have also studied

parametric anti-resonance in multi-degree of freedom

systems. Since then, experimental studies have been

successful in demonstrating the quenching of self-

excited vibrations using parametric excitations [9, 10].

Mode interactions between self-excitation and

parametric excitation in one degree of freedom

systems were initially studied by Yano [11, 12].

Amplitude-dependent self- and parametric excitations

and their reciprocal interactions were also investigated

by Yano [12]. Interaction of parametric and self-

excited vibrations in the presence of external inertial

excitation was studied by Szabelski and Warminski

[13]. An inertial excitation with half the frequency of

parametric excitation was considered, and synchro-

nization and stability were studied analytically. The

same authors have studied the occurrence of these

three types of excitations in two degree of freedom

systems [14]. Warminski et al. [15] have further

examined the case of two van der Pol oscillators

coupled by a periodically varying Mathieu type

stiffness using multiple scales. Synchronization

regions and possibility of occurrence of hyper-chaos

were analyzed.Warminski et al. [16] have also studied

synchronization and parametric resonance due to the

interaction between non-ideal parametric excitation

and self-excited vibration. More recently, Warminski

[17] has reported the dynamics of a single degree of

freedom system acted upon by self-, parametric and

external excitations along with a time-delayed input.

The possibility of controlling the system response

using the time delay was investigated in this work.

Recent investigations have focused on the effect of

such interactions in practical engineering systems. The

effect of wind-induced parametric, external, and self-

excitations on a two-tower system was investigated in

[18], with steady part of the wind responsible for self-

excitation and the turbulent part causing parametric

and external excitations. Use of parametric anti-

resonance in tuning the transient dynamics of mecha-

tronic systems was demonstrated in [19]. This was

accomplished by tuned energy transfer between

vibration modes. Nino and Luongo [20] have inves-

tigated the interaction between wind-induced para-

metric and self-excited vibrations in a continuous

model of a base-isolated tower and in a planar

prismatic visco-elastic structure [21].

Parametric excitation has emerged as an efficient

semi-active control strategy, especially in self-excited

systems, because of its quenching properties, well

documented in works cited above. Dohnal [22] has

reported damping properties of anti-parametric reso-

nance in systems with an arbitrary number of degrees

of freedom subjected to parametric and self-excita-

tions. Dohnal and Tondl [23] studied the suppression

of flow-induced vibration of a slender structure using

open-loop parametric inertia excitation. Suppression

of machining chatter, another important type of self-

excited vibration, using parametric excitation was

experimentally demonstrated by Yao et al. [24]. Self-

excited vibration suppression in drive trains by the use

of parametric excitation induced via speed control of

the electrical drive was shown by Ecker and

Pumhössel [25]. Much more recently, reduction in

self-excited drill string vibrations using parametric

excitation [26] and design of a novel aero-elastic

energy harvester using parametric variations [27] have

been proposed.

The interaction between parametric and self-exci-

tations in discontinuous systems, unfortunately, does

not seem to have received the same amount of interest.

Initial studies were conducted by Yano [28] on the

self-excited vibrations of a system with dry friction

under parametric excitation. But in this study, the self-

induced vibrations were not due to friction. Awre-

jcewicz [29, 30] was the first to study the effect of

parametric excitation on friction-induced self-excited

vibrations. Analytical investigation on zones of insta-

bility in such systems was carried out by Awrejcewicz
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et al. [31]. A parametric absorber to suppress friction-

induced self-excited vibrations was proposed by Ecker

[32]. Promising cues in these works do not seem to

have been taken up by subsequent research.

The present work attempts to study the interaction

of parametric excitation and self-excited vibration in

discontinuous systems. Friction-induced self-excita-

tion is considered here, while parametric excitation

comes from a rotor with rectangular cross section and

a cylinder-like mass concentrated at the center. The

model considered is a generalization of the model

studied by Awrejcewicz et al. [31]. The novel aspects

of the present work are summarized as follows.

1. We investigate the interaction effects between

parametric excitation arising due to the rotation of

a rectangular rotor and friction-induced self-

excited vibration in a 4 DoF mechanical system.

2. Thus, the self-parametric interaction in the system

is bi-directional and is shown to cause mutual

synchronization.

3. Complex synchronization patterns between para-

metric and self-excitations and the possibility of

vibration suppression in the system are demon-

strated. Power flow analysis is used to quantify

this suppression.

4. Different bifurcation scenarios including Nei-

mark–Sacker (secondary Hopf) bifurcations and

quasi-periodic transition to chaos are illustrated in

the system.

2 Model description

Consider the 4 DoF system shown in Fig. 1, which

consists of a frame ofM1 placed on a belt moving with

a constant velocity v0. This frame houses a weightless

shaft with rectangular cross section, with a cylinder-

like mass m1 concentrated at the center. Thus, this part

of the model consists of a rotor placed on a self-excited

support. The frame M1 is connected to another mass

m4, placed on a frictionless surface, using a linear

spring of stiffness kc. The stiffness and damping of the

frame M1 and mass m4 are, respectively, given by

k0; c0 and k4; c4. Horizontal displacements ofM1 and

m4 are denoted by x1 and x4. The concentrated massm1

at the center of the rotor is assumed to have two DoF,

with x2 and x3 denoting the horizontal and vertical

displacements, respectively. The rotor has a constant

angular velocity of x.
The friction br between the frame and the belt

makes the model discontinuous. The frameM1 placed

on the belt undergoes friction-induced self-excited

oscillation. The variable cross section of the rotor

leads to parametric vibrations, which change the

normal force holding the frame to the belt in the

vertical direction. This makes the frictional force in

the model time-dependent. It is assumed that the frame

maintains contact with the belt always. Majority of

studies consider parametric excitation of the stiffness

type in which an oscillation in stiffness is externally

imposed. This restricts the interaction between para-

metric and self-excitations unidirectional; self-excited

vibrations do not act back on parametric excitations in

such models. In the present system considered, the

self-excited motion of the support can interact with the

Fig. 1 Model of rotor with parametric excitation placed on friction-induced self-excited support, connected to a supplementary degree

of freedom
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horizontal motion of the rotor mass, thus making the

interaction mutual.

This model is the generalization of the one consid-

ered in [31], in which the stability regions of the sub-

system involving the rotor placed on the self-excited

support were analyzed analytically. But, in most of the

practically occurring mechanical systems, such sys-

tems are connected to a rigid support using a mass-

stiffness element. The present model includes massm4

to include such effects. This generalization equips the

model to represent mechanical systems like disc

brakes with the belt modeling the disk and the frame

M1 modeling the brake pad. The sub-systemwith mass

m4 models the caliper mass and stiffness, with

parametric excitation provided by unbalanced rotating

parts of the vehicle. In such contexts, the main

objective is to quantify the effects of parametric

excitation on the self-excited system consisting of the

frame and the supplementary mass m4.

3 The governing equations of the model

The different coordinate systems used and the free-

body diagram are presented in Figs. 2 and 3, respec-

tively. The coordinate of the center of mass of m1 is

denoted ðxc; ycÞ and the mass moment of inertial of

mass m1 in connection to the axis z00 of the defined

coordinate ðO00; x00; z00Þ moving with translatory

motion in relation to ðO; x; y; zÞ is given by Iz00 . The

coordinates of the point of puncture by the shaft in the

coordinate system ðO0
; �; rÞ is ð�w; rwÞ. ðO

0
; �; rÞ is the

coordinate system whose axes are parallel to the main

central inertial axes of the cross section of the shaft. k�
and kr are the rotor shaft rigidities in the direction of

the axes � and r, respectively. The driving torqueMq is

reduced by resistance torques. The eccentricity a and

the parameter /0 show the center of mass of m1 in

relation to the point of puncture by the shaft. Hence the

governing equations for mass m1 are given by

m1 €xc ¼ ��wk� cos/� rwkr sin/

m1 €yc ¼ �rwkr cos/þ �wk� sin/þ m1g

Iz00 €/ ¼ �Mq þ a ��wk� cos/0 þ rwkr sin/0ð Þ
ð1a� cÞ

In addition, the following geometric relations can

be obtained from Fig. 2

Fig. 2 Coordinate space

representation of the mass

m1

Fig. 3 Free body diagram of the coupled oscillators
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�w ¼ xw � xmð Þ cos/� yw sin/

rw ¼ xw � xmð Þ sin/þ yw cos/

yc ¼ yw þ a cos /þ /0ð Þ
xc ¼ xw þ a sin /þ /0ð Þ

ð2a� dÞ

Assuming that the torque is negligibly small near

steady state and introducing inertial radius ri such that

Iz00 ¼ m1r
2
i ð3aÞ

Equation (1c) thus takes the form:

€/ ¼ a

m1r
2
i

��wk� cos/0 þ rwkr sin/0ð Þ ð3bÞ

The eccentricity a and the shaft deflections �w and

rw are small compared to ri, and hence

€/ ¼ 0; _/ ¼ x; / ¼ xt ð3cÞ

For the motion of the frame of mass M1, the

dynamic reactions at the points of support obey the

relations

X1 þ X2 þ �wk� cosxt þ rwkr sinxt ¼ 0 ð4aÞ

Y1 þ Y2 � �wk� sinxt þ rwkr cosxt ¼ 0 ð4bÞ

The rotor reactions on the support are thus

Rsx ¼ �X1 � X2 ð5aÞ

Rsy ¼ �Y1 � Y2 ð5bÞ

Now, the governing equations for the frameM1 and

the mass m4 connected (Fig. 3) to it are given by

M1 €xm ¼ �c0 _xm � k0 þ kcð Þxm þ kcx4 þ Rsx

þ Rsy þM1g
� �

� brðvrÞ ð6aÞ

m4 €x4 ¼ kcxm � kc þ k4ð Þx4 � c4 _x4 ð6bÞ

where the frictional interaction is modeled using

Stribeck model given by

br vrð Þ ¼ q0 � sgn vrð Þ � q1vr þ q2v
3
r ð7Þ

Here, vr ¼ v0 � _xm is the relative velocity between

the frame and the belt, and

sgn vrð Þ ¼ 1 for v0 [ _xm
�1 for v0\ _xm

�
ð8Þ

q0; q1; q2 are coefficients of the Stribeck friction

curve. We first use the conditions (3c) to reduce

Eq. (2). The rotor reactions in (5) are then calculated

using (4). These reactions are substituted in (6a). If we

define new variables as follows:

xm ¼ x1; xw ¼ x2; and yw ¼ x3

Then, the governing equations in these variables

become:

€x1 ¼� x1 X2 þ X2
c þ X2

� þ X2
r

� �
þ X2

� � X2
r

� �
cos 2Xtð Þ

� �

þ x2 X2
� þ X2

r

� �
þ X2

� � X2
r

� �
cos 2xtð Þ

� �

� x3 X2
� � X2

r

� �
sin 2xtð Þ

� �
þ x4X

2
c � _x1H1

þ x1 X2
� � X2

r

� �
sin 2xtð Þ

� ��

�x2 X2
� � X2

r

� �
sin 2xtð Þ

� �

þx3 X2
� þ X2

r

� �
� X2

� � X2
r

� �
cos 2xtð Þ

� �
þ g�br

ð9Þ

€x2 ¼ x1ðx2
� þ x2

r þ x2
� � x2

r

� �
cos 2xtð ÞÞ � x2ðx2

�

þ x2
r þ x2

� � x2
r

� �
cos 2xtð ÞÞ

þ x3 x2
� � x2

r

� �
sin 2xtð Þ

� �
þ ax2sinðxt þ /0Þ

ð10Þ

€x3 ¼ �x1 x2
� � x2

r

� �
sin 2xtð Þ

� �

þ x2 x2
� � x2

r

� �
sin 2xtð Þ

� �

� x3 x2
� þ x2

r

� �
� x2

� � x2
r

� �
cos 2xtð Þ

� �

þ ax2cos xt þ /0ð Þ þ g ð11Þ

€x4 ¼ x1x
2
c � x4 x2

c þ x2
4

� �
� _x4H4 ð12Þ

where the parameters are defined as follows:

X2 ¼ k0
M1

;X2
ε ¼

k�
2M1

;X2
r ¼ kr

2M1

;X2
c ¼

kc
M1

;H1

¼ c0
M1

; br

¼ e0 � sgn v0 � _x1ð Þ � a0 v0 � _x1ð Þ
þ b0 v0 � _x1ð Þ3;x2

�

¼ k�
2m1

;x2
r ¼ kr

2m1

;x2
c ¼

kc
m4

;x2
4 ¼

k4
m4

;H4

¼ c4
m4

:

We now put t ¼ tss and xi ¼ XsXi, where ts and Xs

are given by

ts ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c þ x2
4

p and Xs ¼
gc2

x2

Then, dnxi
dtn ¼ Xs

tns

dnXi

dsn and the governing Eqs. (9–12)

can be written in terms of the nondimensional time s
and displacements Xi as
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€X1 ¼� X1 Ac2 þ A1c
2 þ A2c

2cos 2csð Þ
� �

þ X2 A1c
2 þ A2c

2cos 2csð Þ
� �

� X3 A2c
2sin 2csð Þ

� �
þ X4Dc

2 � _X1h1c

þ X1 A2c
2sin 2csð Þ

� �
� X2 A2c

2sin 2csð Þ
� ��

þX3 A1c
2 � A2c

2cos 2csð Þ
� �

þ 1�br
ð13Þ

€X2 ¼ X1ðb1c2 þ b2c
2cos 2csð ÞÞ � X2ðb1c2

þ b2c
2cos 2csð ÞÞ þ X3 b2c

2sin 2csð Þ
� �

þ jc2sinðcsþ /0Þ ð14Þ

€X3 ¼ �X1 b2c
2sin 2csð Þ

� �
þ X2 b2c

2sin 2csð Þ
� �

� X3 b1c
2 � b2c

2cos 2csð Þ
� �

þ jc2cos csþ /0ð Þ
þ 1

ð15Þ

€X4 ¼ X1dc
2 � X4 � _X4h4c ð16Þ

where
gt2s
Xs

¼ 1; c ¼ xffiffiffiffiffiffiffiffiffiffiffi
x2

cþx2
4

p , A ¼ X2þX2
c

x2 , A1 ¼ X2
�þX2

r
x2 ,

A2 ¼ X2
��X2

r
x2 , D ¼ X2

c

x2, h1 ¼ H1

x , G ¼ g
x2Xs

, b1 ¼ x2
�þx2

r
x2 ,

b2 ¼ x2
��x2

r
x2 , j ¼ a

Xs
, d ¼ x2

c

x2, h4 ¼ H4

x , v ¼
v0ts
Xs
, e ¼ e0Xs

ts
,

a ¼ a0Xs

ts
; b ¼ b0

Xs

ts

� �3

.

To simplify the equations, let g1 ¼ m1

M1
and g2 ¼ m4

M1
.

It follows that

X2
c

x2
c

¼ m4

M1

¼ g2; ) X2
c ¼ g2x

2
c : ð17Þ

X2
� þ X2

r

X2
� þ x2

r

¼ m1

M1

¼ g1; ) X2
� þ X2

r ¼ g1 X2
� þ x2

r

� �

ð18Þ

X2
� � X2

r

X2
� � x2

r

¼ m1

M1

¼ g1; ) X2
� � X2

r ¼ g1 X2
� � x2

r

� �

ð19Þ

D

d
¼ X2

c

x2
c

¼ g2; ) D ¼ g2d ð20Þ

With

A ¼ X2

x2
þ X2

c

x2
¼ A0 þ D; where A0 ¼

X2

x2
then

A ¼ A0 þ g2d

ð21Þ

A1

b1
¼ X2

� þ X2
r

X2
� þ x2

r

¼ g1; ) A1 ¼ g1b1 ð22Þ

A2

b2
¼ X2

� � X2
r

X2
� � x2

r

¼ g1; ) A2 ¼ g1b2 ð23Þ

Now, expressing A;A1;A2; and D in terms of

g1; g2;A0; d; b1 and b2 i.e., substituting Eqs. (17)–

(23) where applicable in Eqs. (13)–(16), we have

€X1 ¼� X1 A0 þ g2d þ g1b1 þ g1b2cos 2csð Þð Þc2

þ X2 g1b1 þ g1b2cos 2csð Þð Þc2

� X3 g1b2c
2sin 2csð Þ

� �
þ X4g2dc

2 � _X1h1c

þ X1 g1b2c
2sin 2csð Þ

� �
� X2 g1b2c

2sin 2csð Þ
� ��

þX3 g1b1 � g1b2cos 2csð Þð Þc2 þ 1�br
ð24aÞ

€X2 ¼ X1ðb1 þ b2cos 2csð ÞÞc2 � X2ðb1
þ b2cos 2csð ÞÞc2 þ X3 b2c

2sin 2csð Þ
� �

þ jc2sinðcsþ /0Þ ð25aÞ

€X3 ¼ �X1 b2c
2sin 2csð Þ

� �
þ X2 b2c

2sin 2csð Þ
� �

� X3 b1c
2 � b2c

2cos 2csð Þ
� �

þ jc2cos csþ /0ð Þ
þ 1 ð26aÞ

€X4 ¼ X1dc
2 � X4 � _X4h4c ð27aÞ

Finally, br is now defined as:

br ¼
e � sgn v� _X1

� �
� a v� _X1

� �
þ b v� _X1

� �3
; v 6¼ _X1

0; v ¼ _X1;

8
<

:

The value of the constants is given by

a ¼ 3

2

ls � lm
vm

and b ¼ 1

2

ls � lm
v3m

where ls is the coefficient of static friction, and vm is

the velocity corresponding to the minimum coefficient

of dynamic friction lm. Figure 4 gives the character-

istic of the Stribeck curve when v 6¼ _X1.
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Equations (24a)–(27a) are only valid during the

slip phase of the system, when v 6¼ _X1. When the mass

M1 sticks to the belt (v ¼ _X1), its acceleration becomes

zero, and the system of equations become:

€X1 ¼ 0 ð24bÞ

€X2 ¼ X1ðb1 þ b2cos 2csð ÞÞc2 � X2ðb1
þ b2cos 2csð ÞÞc2 þ X3 b2c

2sin 2csð Þ
� �

þ jc2sinðcsþ /0Þ ð25bÞ

€X3 ¼ �X1 b2c
2sin 2csð Þ

� �
þ X2 b2c

2sin 2csð Þ
� �

� X3 b1c
2 � b2c

2cos 2csð Þ
� �

þ jc2cos csþ /0ð Þ
þ 1 ð26bÞ

€X4 ¼ X1dc
2 � X4 � _X4h4c ð27bÞ

The switching conditions between the slip and stick

phase can be formulated in terms of the horizontal

force acting on the frameM1 (f h) and the normal force

exerted on the belt (fN). These forces are given by

f h ¼ X1 A0 þ g2d þ g1b1 þ g1b2cos 2csð Þð Þc2
� X2 g1b1 þ g1b2cos 2csð Þð Þc2
þ X3 g1b2c

2sin 2csð Þ
� �

� X4g2dc
2 þ _X1h1c

fN ¼ X1 g1b2c
2sin 2csð Þ

� �
� X2 g1b2c

2sin 2csð Þ
� �

þ X3 g1b1 � g1b2cos 2csð Þð Þc2 þ 1

Equations (24a)–(27a), governing the slipping

motion of massM1 on the belt, have to be solved when

v 6¼ _X1 and fhj j[ lsfN: ð28Þ

Equations governing the sticking motion of M1,

(24b)–(27b), become active when

v ¼ _X1 and fhj j � lsfN: ð29Þ

4 System parameters and solution methodology

The model under consideration was analyzed for four

different parameter sets, taken from the literature [31].

The values of these parameter sets are given in

Table 1. Analysis for each of the Data Sets (DS) was

done for two different belt velocities, v ¼ 0:1 (low belt

velocity) and v ¼ 0:5 (high belt velocity).

The ode45 routine in MATLAB was used to solve

the governing equations after incorporating the appro-

priate switching conditions specified in Sect. 3. As the

system is self-excited, zero initial conditions were

imposed on all oscillators. To ensure the complete die

out of transience and convergence to steady state, a

simulation time of 50,000 s was used. As there is no

characteristic forcing frequency with respect to which

Poincare points can be determined, the hyperplane

v4 ¼ 0 for state y1 and v1 ¼ 0 was taken as the

Poincare section. The frequency content of the

responses were computed using the FFT routine in

MATLAB, applied to the steady-state part of the

response alone.

Fig. 4 Stribeck dry friction characteristic for a _X1 ¼ �0:9 b _X1 ¼ 0:9
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Table 1 Simulation

parameters [31]
Fixed parameters

u0 ¼ 4p
9
; c ¼ 0:066; j ¼ 8:632; h1 ¼ 1:9231; h4 ¼ 0:1; g1 ¼ 0:1; g2 ¼ 0:2; e ¼ 0:2

Parameter Data set 1 (DS1) Data set 2 (DS2) Data set 3 (DS3) Data set 4 (DS4)

Data sets

b1 177.5148 710.0592 177.5158 44.3787

b2 5.3184 8.1462 6.2140 10.500

d 22.1893 44.3787 55.4734 14.7929

A0 33.2840 532.5444 133.1361 33.2840

Fig. 5 Phase portraits and frequency responses of the self-excited system for x ¼ 0 using DS1
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5 Self-excited dynamics in the absence

of parametric excitation

The dynamics of the system in the absence of

parametric excitation are obtained by putting the

rotation of the rotor to be zero (x ¼ 0). In this case, the

governing equations (in the dimensional form) reduce

to the form

€x1 ¼ �x1 X2 þ X2
c þ X2

� þ X2
r

� �
þ X2

� � X2
r

� �� �

þ x2 X2
� þ X2

r

� �
þ X2

� � X2
r

� �� �
þ x4X

2
c � _x1H1

þ x3 X2
� þ X2

r

� �
� X2

� � X2
r

� �� �
þ g

� 	
br

ð30Þ

€x2 ¼ x1ðx2
� þ x2

r þ x2
� � x2

r

� �
Þ � x2ðx2

� þ x2
r

þ x2
� � x2

r

� �
Þ ð31Þ

€x3 ¼ �x3 x2
� þ x2

r

� �
� x2

� � x2
r

� �� �
þ g ð32Þ

€x4 ¼ x1x
2
c � x4 x2

c þ x2
4

� �
� _x4H4 ð33Þ

For the parameter values specified as Data Set 1

(DS1) in Table 1 and for low belt velocity (v ¼ 0:1),

Eqs. (30)–(33) are solved in dimensional form con-

sidering appropriate switching conditions specified in

Sect. 3 and using the scaling factor Xs to convert the

solutions to the nondimensional equivalence. The

state-space variables become

x1 ¼ y1; _x1 ¼ v1; x1 ¼ y2; _x2 ¼ v2; x3 ¼ y3; _x4 ¼ v4.

Figure 5a–c shows the phase portraits and their

respective frequency responses.

Since the internal mass is not rotating, the vertical

component of the displacement y3 of the mass m1 is

negligible and is not shown. Figure 5 shows that the

system, in the absence of parametric excitation,

undergoes self-excited vibrations with a fundamental

frequency of Xs1 ¼ 19:774 rad/s. The frame M1

undergoes friction-induced self-excited vibration with

a discontinuity surface at the belt velocity value,

Fig. 6 a Bifurcation diagram with x as the bifurcation parameter, with phase portrait and corresponding Poincare section taken at b
x ¼ 11:22rad=s, c x ¼ 12:47rad=s
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v ¼ 0:1. It is this self-excited motion that drives the

horizontal vibrations of massesm1 andm4.M1 exhibits

the fundamental harmonic Xs1 along with its second

multiple Xs2 ¼ 39:5379rad=s � 2Xs1. Horizontal dis-

placement of mass m1 exhibits Xs1;Xs2 and a further

multiple Xs3 ¼ 59:3219rad=s � 3Xs1, while m4 exhi-

bits Xs1;Xs2 and Xs4 ¼ 79:0959rad=s � 4Xs1.

6 Synchronization of self-excited vibration

and parametric excitation

To understand the effect of parametric excitation, due

to the rotation of the rotor, on the self-excited vibration

of the system documented in Sect. 5, the bifurcation

diagram of the system with rotor speed x as the

bifurcation parameter is constructed. Nondimensional

Eqs. (24a)–(27a) and (24b)–(27b) are used, along with

switching conditions given by Eqs. (28) and (29), to

develop the bifurcation diagram. The specification of

the Poincare section and other specifications are given

in Sect. 4. The bifurcation diagram for the frameM1 is

shown in Fig. 6a. Parameter set DS1 was used here. It

is seen that we have quasi-periodic and chaotic

regimes interspersed by periodic windows. Figure 6b,

c shows the orbits, along with Poincare points, at two

typical values x ¼ 11:22 rad/s and x ¼ 12:47 rad/s,

respectively. The orbit shows chaotic behavior at the

former frequency and then becomes periodic at the

latter one.

To understand the qualitative transitions in the

nature of the response as the rotor frequency x is

Fig. 7 phase portrait and FFT plots for DS1, with varying parameter x taken at a x ¼ 32rad=s b x ¼ 36rad=s c x ¼ 43rad=s d
x ¼ 48:25rad=s

123

2212 G. Sani et al.



increased, Fig. 7 shows the response characteristics

for four x values between 32 rad/s and 49 rad/s. The

response is periodic at x ¼ 32rad=s (Fig. 7a) and

changes to two-periodic at x ¼ 36rad=s Fig. 7b. At

x ¼ 43rad=s, Fig. 7c shows a strange nonchaotic

attractor with a non-correlated number of frequencies,

similar to the result of intermittency effects demon-

strated in [33, 34]. The dynamics again becomes

periodic at x ¼ 48:25rad=s as shown in Fig. 7d.

In Sect. 5, it was shown that the self-excited

fundamental frequency of the system, in the absence

of parametric excitation (x ¼ 0), was given by Xs1 ¼
19:774 rad/s. Hence, to understand the bifurcation

mechanism, the bifurcation diagram for state variable

y1, in a neighborhood of x ¼ Xs1 is given in Fig. 8. It

can be seen that parametric excitation in the neigh-

borhood of the fundamental limit cycle frequency

produces interspersed periodic windows. These peri-

odic orbits are produced by the synchronization

phenomenon happening between the parametric exci-

tation and the friction-induced self-excited vibrations.

To study the mechanism of this synchronization,

the response of the system at two values of x which

fall in periodic windows in Fig. 8 is analyzed. The

phase portraits along with Poincare points and the

frequency content of all the four degrees of freedom at

rotor frequency value x ¼ 12:97 rad/s are shown in

Fig. 9. Phase portraits show periodic orbits. Further-

more, it can be observed that all the masses have the

same fundamental harmonic Xr1 ¼ 13:0694. This

fundamental harmonic is different from both the

parametric frequency x and self-excited frequency

Xs1. Thus, we have themutual adjustments of rhythms,

a phenomenon characteristic of synchronization,

between the parametrically excited sub-system and

the self-excited one, so that the system response

converge to a common fundamental harmonic. Fig-

ure 9 also shows that all the higher harmonics of self-

excited mass M1 (Fig. 9a) are present in the vertical

and horizontal components of the rotor mass m1

(Fig. 9b, c). Mass m4 undergoes more complicated

oscillations with more harmonics, but its fundamental

frequency is the same as that of the other masses.

Figure 10 shows the phase portraits and frequency

of the oscillators at x ¼ 21 rad/s, which belongs to

another periodic window, as is clear from Fig. 8. This

case also shows a similar synchronization pattern as in

the case studied in Fig. 9. All oscillators exhibit the

same fundamental frequency of Xr1 ¼ 13:0694 rad/s.

The self-excited oscillator (Fig. 10a) exhibits one

Fig. 8 Bifurcation diagram

with rotor frequencyx in the

neighborhood of

fundamental self-excited

frequency Xs1 for DS1
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higher harmonic at 2Xr1, whereas the parametric

system (Fig. 10b, c) contains two more higher har-

monics, 3Xr1 and 4Xr1. Furthermore, the frequency

content of the connected oscillator m4 (Fig. 10d) is

exactly similar to that of the parametric vibration. An

interesting feature that emerges from the comparison

of Figs. 9 and 10 is that the fundamental synchroniza-

tion frequency Xr1 remains the same in both cases.

This points toward the existence of a common

fundamental synchronizing frequency in the system

for varying values of rotor frequency x. This is a

consequence of the two-way interactions between

parametric and self-excitations in the system, dis-

cussed in Sects. 1 and 2.

To study the synchronization phenomenon further,

we plot the Lissajous curves for both the rotor

frequency values studied above. Figure 11 shows the

Lissajous plots of the system for x ¼ 12:97rad/s, and

Fig. 12 shows the same for x ¼ 21 rad/s. Figure 11

shows the configuration space of all three other

degrees of freedom with respect to the self-excited

massM1. Closed curves in all the configuration spaces

show that the self-excited vibration is synchronized

with parametric vibration in both directions and with

the supplementary mass. The complicated nature of

closed curves is due to the presence of higher

harmonics of fundamental synchronization frequency

Xr1 in other degrees of freedom, as noted in the

Fig. 9 Phase portraits and frequency spectra for x ¼ 12:97 rad/s showing synchronization between self-excited vibration and

parametric excitation
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discussion in Fig. 9. Furthermore, the pattern of

Poincare points obtained in Fig. 9 shows that the

Poincare map exhibits a 6-period behavior for M1,

while it is 2-periodic in other degrees of freedom. This

makes the curves in configuration space complicated.

The Lissajous plots for x ¼ 21 rad/s (Fig. 12) also

show synchronization between the self-excited and

parametric vibrations. As evident from Fig. 10, the

Poincare map is 6-periodic in massM1 while it is only

1-periodic in other oscillators. Hence the complicated

structure of the configuration curves, especially in

Fig. 12c.

7 Effect of belt velocity on the interaction

Another important parameter affecting the dynamics

of the system is the velocity of the belt, v. It is

responsible for the self-excited vibration in the system.

As mentioned in Sect. 2, in the case when model in

Fig. 1 is representative of a mechanical system like

disk brake, the velocity of the belt models important

system parameter like rotational speed of the brake

disk. As this is directly related to vehicle speed, study

of the influence of v on system dynamics, especially on

the interaction effects between self-excited and para-

metric vibration, is important. The effect of v on

system dynamics is studied here by generating the

bifurcation diagram of the system with v as the

Fig. 10 Synchronization of self-excited vibration with parametric excitation at x ¼ 21 rad/s
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bifurcation parameter. Figure 13 shows the bifurca-

tion diagram for parameter values in DS3 in Table 1. It

is generated at a rotor speed x ¼ 5:2 rad/s. The

hyperplane v1 ¼ 0 is selected as the Poincare sec-

tion. For the mass M1, v4 ¼ 0 is taken as the Poincare

section to make the Poincare points in its state space

more intuitive.

Figure 13 shows that the system exhibits non-

periodic motion for smaller values of v. At v ¼ 0:242,

these non-periodic orbits undergo bifurcation to

produce one-period orbits. To understand the mech-

anism of this bifurcation, state space orbits of all

degrees of freedom are plotted in Fig. 14 for different

values of v. Figure 14a shows the chaotic behavior

exhibited by the system at v ¼ 0:1. As the belt velocity

is increased to v ¼ 0:235, the orbit changes to quasi-

periodic one, as shown by the closed nature of

Poincare points in Fig. 14b. We get a one -period

orbit at the bifurcation point v ¼ 0:242 (Fig. 14c) and

these limit cycles are sustained for higher belt

velocities like v ¼ 0:5 as well (Fig. 14d). This shows

that the bifurcation seen at v ¼ 0:242 is the Neimark–

Sacker bifurcation (secondary Hopf bifurcation). On

the Poincare plane, closed orbits as shown in Fig. 14b

bifurcate into fixed points in Fig. 14c, d. This is a clear

instance of Neimark–Sacker bifurcation in the

Fig. 11 Lissajous curves of massM1 with other oscillators at x ¼ 12:97 rad/s. Closed curves in all plots show synchronization in the

system
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Poincare map of the system. The presence of Nei-

mark–Sacker bifurcations has been reported recently

in continuous systems with self- and parametric

excitations in the presence of time delay [17]. An

instance of the same in discontinuous systems due to

interaction between self- and parametric vibration is

seen here.

Instances of Neimark–Sacker bifurcations are not

limited to the parameter values in DS3 alone. Bifur-

cation diagram with respect to v for DS1 in Table 1 for

the same rotor speed as before (x ¼ 5:2 rad/s) is given

in Fig. 15. The orbits exhibit non-periodic character-

istics till v ¼ 0:175 after which they become two-

periodic.

This transition is studied in state space in Fig. 16.

Unlike the case with DS3, DS1 exhibits quasi-periodic

orbits for small belt velocities as well (Fig. 16a).

These quasi-periodic orbits get transformed to two-

periodic ones at the bifurcation point v ¼ 0:176

(Fig. 16b, c) and these two-period limit cycles are

sustained for high belt velocity as well (Fig. 16d). On

the Poincare section, the cycle associated with quasi-

periodicity gets transformed to alternating 2-period

points in this case.

8 Quenching of oscillations

Quenching of oscillations due to the interaction

between parametric and self-excited vibrations has

been well studied in continuous systems, as outlined in

Sect. 1. An instance of such quenching in the

Fig. 12 Lissajous curves of mass M1 with other oscillators at x ¼ 21 rad/s
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Fig. 13 Bifurcation

figures of all degrees of

freedom for belt velocity v.
Parameter values are taken

from DS3 in Table 1 and

rotor speed x ¼ 5:2 rad/s

Fig. 14 State space orbits and Poincare points corresponding to four different values of v in Fig. 13 a v ¼ 0:1; b v ¼ 0:235; c
v ¼ 0:242; d v ¼ 0:5
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discontinuous system under consideration is demon-

strated in this section. The bifurcation diagram, with

belt velocity v as the parameter, for system parameters

taken from DS2 and for rotor speed x ¼ 5:2 rad/s is

shown in Fig. 17. It is clear that for the given rotor

speed, oscillations in all degrees of freedom are

quenched till a critical belt velocity, v ¼ 0:124, is

attained. After this belt velocity, large amplitude

oscillations set in.

The quenching effect for smaller belt velocities and

the bifurcation associated with the value of belt

velocity v ¼ 0:124, observed in Fig. 17, are investi-

gated further in Fig. 18 using state space representa-

tions and Poincare points. Figure 18a shows the case

of belt velocity v ¼ 0:1 at which quasi-periodic orbits

with small amplitudes are observed. These small-

amplitude quasi-periodic oscillations persist for values

of v lesser than the bifurcation point (Fig. 18b). At the

bifurcation point v ¼ 0:124, we observe a transition

from quasi-periodic to chaotic orbits with large

amplitudes (Fig. 18c). This transition points toward

the breakup of the toroidal surface on which the quasi-

periodic orbits are confined, and is usually associated

with the quasi-periodic route to chaos. These high-

amplitude chaotic orbits persist for larger values of

belt velocities too, as shown in Fig. 18d.

Bifurcation diagram in Fig. 17 showed the small-

amplitude quasi-periodic solutions getting destabi-

lized to yield high-amplitude chaotic ones at higher

values of belt velocity. But, other parameter values

may also be adjusted to quench these high-amplitude

vibrations. Figure 19 shows the bifurcation diagram

with nondimensional coupling stiffness d between

masses M1 and m4. The diagram is plotted for

parameter values given in DS4, at a high value of

belt velocity v ¼ 0:5. It can be seen that small-

amplitude oscillations are stabilized for this high belt

velocity till a critical value of stiffness, dc ¼ 46:9.

Large-amplitude vibrations appear after this critical

value of d. Hence, the results presented in this section

show that the interaction between self and parametric

excitations can lead to quenching of oscillations in

some range of system parameters.

To quantify this quenching effect, a power flow

analysis is carried out in the model. From Eqs. (24a)–

(27a), it is clear that the excitation force on massesM1

and m4 comes from the parametric excitation and

excitation due to belt friction. Hence, Eqs. (24a) and

(27a) can be rewritten as

Fig. 15 Bifurcation figures of all degrees of freedom for belt velocity v. Parameter values are taken fromDS1 in Table 1 and rotor speed

x ¼ 5:2 rad/s
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€X1 þ X1A0c2 þ g2dc
2ðX1 � X4Þ þ _X1h1c ¼ Fpe þ Fbr

€X4 � X1dc2 þ X4 þ _X4h4c ¼ 0

�

ð34Þ

Fpe and Fbr are excitations imparted by parametric

and friction terms and are given by

Fpe ¼ �X1 g1b1 þ g1b2cos 2csð Þð Þc2
þ X2 g1b1 þ g1b2cos 2csð Þð Þc2
� X3 g1b2c

2sin 2csð Þ
� �

ð35aÞ

Fbr ¼ X1 g1b2c
2 sin 2csð Þ

� �
� X2 g1b2c

2 sin 2csð Þ
� ��

þX3 g1b1 � g1b2 cos 2csð Þð Þc2 þ 1
�
br

ð35bÞ

For studying the power balance, Eqs. (35a) and

(35b) are multiplied by their respective velocities [35],

which gives

_X1
€X1 þ _X1X1A0c2 þ _X1g2dc

2ðX1 � X4Þ þ _X1
_X1h1c ¼ _X1Fpe þ _X1Fbr

_X4
€X4 � _X4X1dc2 þ _X4X4 þ _X4

_X4h4c ¼ 0

�

ð36Þ

Summing these two equations, we have

_X1
€X1 þ _X4

€X4 þ _X1X1A0c
2 þ _X1g2dc

2ðX1 � X4Þ
� _X4X1dc

2 þ _X4X4 þ _X1
_X1h1cþ _X4

_X4h4c

¼ _X1ðFpe þ FbrÞ ð37Þ

It can be seen that Eq. (37) is of the form

_K þ _U þ Pd ¼ Pin ð38Þ

Fig. 16 State space orbits and Poincare points corresponding to four different values of v in Fig. 15. a v ¼ 0:1; b v ¼ 0:175; c
v ¼ 0:176; d v ¼ 0:5
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where _K and _U represent the rate of change of

kinetic and potential energies respectively and are

given by

_K ¼ _X1
€X1 þ _X4

€X4 ð39Þ

_U ¼ _X1X1A0c
2 þ _X1g2dc

2ðX1 � X4Þ � _X4X1dc
2

þ _X4X4

ð40Þ

Pd and Pin define the total power dissipation and input

power in the system:

Pd ¼ _X1
_X1h1cþ _X4

_X4h4c ð41Þ

Pin ¼ _X1Fpe þ _X1Fbr ð42Þ

Now, integrating Eq. (38) from t ¼ t0 over a time

span t ¼ t0 þ tf leads to energy balance equation for

the system

DK þ DU þ Ed ¼ Ein ð43Þ

Here, DK and DU are the net changes in kinetic and

potential energies and, Ed ¼
R t0þtf
t0

Pdds and Ein ¼
R t0þtf
t0

Pinds are the total dissipated energy and total

work done respectively.

The time-average instantaneous input power is

given by

Pin ¼
1

T

Z T

0

Pinds ¼
1

T

Z T

0

_X2Fpe þ _X1Fbrds ð44Þ

The time-average total instantaneous dissipated

power is

Pd ¼
1

T

Z T

0

Pdds ¼
1

T

Z T

0

_X1
_X1h1cþ _X4

_X4h4cds

ð45Þ

From this, we can obtain the normalized power

absorbed as

Pa ¼
1

TPpp

Z T

0

_X1
_X1h1cþ _X4

_X4h4cds ð46Þ

where the peak power Ppp is given by

Ppp ¼
c
T

Z T

0

_X2
1maxh1 þ _X

2
4maxh4

� �
ds ð47Þ

The input power can also be normalized similarly.

Now, power absorption ratio is given as

Fig. 17 Bifurcation

figures of all degrees of

freedom for belt velocity v.
Parameter values are taken

from DS2 in Table 1 and

rotor speed x ¼ 5:2 rad/s
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Ra ¼
Pa

Pin

ð48Þ

It has to be noted that one cycle T i is typically made

up of sticking-time interval tki and slipping-time

interval tli as shown in Fig. 20. Hence, T i ¼ tki þ tli.

Figure 21 shows the variation of normalized input

and output power and the absorption ratio with the belt

velocity v for DS2 with rotor speed x ¼ 5:2rad/s. The

bifurcation diagram for these parameter values was

given in Fig. 17. It was noted that the system exhibited

quenching for belt velocity values less than v ¼ 0:124.

This quenching effect can be also inferred from

Fig. 21, where the absorbed power and the absorption

ratio start decreasing after v ¼ 0:124. Variations in

input power are due to the bi-directional nature of

interaction between rotor and friction oscillator.

9 Presence of co-existing attractors

The presence of co-existing quasi-periodic attractors

in the model is demonstrated with the help of an

example in this section. Using the system parameter

values DS1 given in Table 1, the Poincare points for y4
for different initial conditions are given in Fig. 22. In

generating the plot, only the initial conditions pertain-

ing to y4 were varied in the interval y4 0ð Þ 2 ½1;�1�.
Three different quasi-periodic attractors A1, A2 and A3

observed are labeled in the figure. As evident from the

plot, A1 occurs in three different intervals of initial

condition given by y4 0ð Þ 2 �1:00;�0:92½ �[
�0:56;�0:08½ � [ 0:44; 1:00½ �. A2 is observed in two

different intervals specified by y4 0ð Þ 2 �0:90;½

Fig. 18 State space orbits and Poincare points corresponding to four different values of v in Fig. 17. a v ¼ 0:1, b v ¼ 0:118; c
v ¼ 0:124; d v ¼ 0:5
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Fig. 19 Bifurcation figures of all degrees of freedom for non-dimensional coupling stiffness d for belt velocity v ¼ 0:5. Parameter

values are taken from DS4 in Table 1

Fig. 20 Time measurement

over one period of excitation
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�0:58� [ �0:06; 0:00½ �. The attractor A3 is observed to

occur in the interval y4 0ð Þ 2 ½0:02; 0:42�.
Basins of attraction of these three quasi-periodic

attractors in a subset of y2; y4 configuration space are

given in Fig. 23. The closed curves on the Poincare

sections for these three solutions are given in the

insets. Difference in the vibratory characteristics of the

system for these three different attractors is evident

from the time histories corresponding to these differ-

ent solutions presented in Fig. 24.

10 Conclusion

This work investigated the bi-directional interactions

between parametric excitation and self-excited vibra-

tion in a 4 DoF discontinuous mechanical system.

Bifurcation analysis with respect to the parametric

excitation variable x showed the presence of syn-

chronized periodic orbits. These periodic orbits shared

the same fundamental synchronized frequency for

different values of x, which shows the existence of

adjustment of rhythms between the sub-systems,

which is a characteristic of mutual synchronization.

The Lissajous plots of the self-excited mass reveal

complex synchronization patterns owing to the pres-

ence of higher harmonics in other degrees of freedom

of the system. Variation in belt velocity v revealed the

presence of Neimark–Sacker bifurcations in the sys-

tem. Similar qualitative changes from quasi-periodic

cycles to 2-period orbits on the Poincare section were

also observed. The quasi-periodic transition to chaos

observed under the variation of belt velocity was

associated with small-amplitude vibrations in the

quasi-periodic phase which transformed into high-

amplitude chaotic orbits after bifurcation. The same

phenomenon was observed in the bifurcation diagram

Fig. 21 Normalized power

and absorption ratio as

function of belt velocity v
for parameter values in DS2

and rotor speedx ¼ 5:2 rad/
s

Fig. 22 Co-existing attractors for parameter values given in

DS1 for different initial conditions of y4
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Fig. 23 Basins of attraction

in y2; y4 configuration space

for the three co-existing

solutions observed in

Fig. 22; Gray (A1), Blue

(A2) and Red (A3)

Fig. 24 Time histories corresponding to the three co-exiting solutions in Fig. 20. a A1, b A2 and c A3
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for coupling stiffness d. This points toward the

possibility of vibration suppression in the system by

proper tuning of the parameters to generate small-

amplitude quasi-periodicity. The complexity of the

system is also revealed by the presence of co-existing

quasi-periodic attractors. Future work is aimed toward

the realization of the mechanical discontinuous sys-

tems which would be studied using the model

considered. A disk brake under the effect of unbal-

anced vehicle vibrations is one such system to which

the study can be extended.
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