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Abstract This paper investigates the fault estimation
(FE)-based fault tolerant control (FTC) technique to
achieve the desired control performance for the nonlin-
ear systems suffering from uncertainties, external dis-
turbance and actuator faults using the interval type-2
(IT2) Takagi–Sugeno (T–S) fuzzy model. In this work,
an IT2 fuzzy observer is built to simultaneously esti-
mate both the system states and actuator faults, upon
which a fault tolerant controller is proposed to guaran-
tee the asymptotical stability of the closed-loop system
with a prescribed H∞ performance level. Considering
the bidirectional robustness interactions between the
observer and FTC system, an integrated design tech-
nique is developed to address observer and FTC units
together in one step to realize the required robustness
within the whole closed-loop FTC system. By utilizing
Lyapunov stability theory combined with the matrix
inequality convexification techniques, a membership-
function-dependent (MFD) FTC strategy is proposed
where the information of membership functions is
taken into account in the analysis for relaxation of
the stability conditions. Additionally, to offer greater
design flexibility and lower implementation cost to the
fault tolerant controller, the imperfect premise match-
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ing (IPM) scheme is adopted, such that the premise
membership functions of the fault tolerant controller
can be chosen differently from those of IT2 fuzzy
model. Finally, simulation results are provided to vali-
date the effectiveness of the proposed FTC strategy.
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performance · Fault estimation (FE) · Fault tolerant
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1 Introduction

Driven by increasing demands for higher system per-
formance, the complexity of modern industrial sys-
tems is growing correspondingly, under which the con-
stituents of control systems are more likely to experi-
ence unexpected faults. These faults could degrade sys-
tem performance, increase system instability, and even
result in a disaster [1,2]. In consequence, the fault toler-
ant control (FTC) system design [3] plays a significant
role in control domains to assure system functional-
ities with an acceptable performance in the presence
of faults, especially when tighter requirements of sys-
tem reliability, availability and safety have to be met
in engineering practice, such as robotic systems, air-
craft, underwater vehicles, and chemical process. In
the existing literature, there are two main FTC tech-
niques [4–6]: passive and active techniques. The pas-
sive FTC techniques adopt the unchanged control law
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to address both normal and faulty cases where prior
knowledge of all possible faults is required. By con-
trast, the active FTC techniques can actively update the
controller according to the fault effects imposed on the
system, and utilize the online fault estimations to com-
pensate for the effects of faults within the control plant.
Consequently, the active FTC approaches reveal more
preferable fault tolerant abilities. Note that most practi-
cal systems are nonlinear in nature and there are no uni-
fied FTC strategies to deal with the nonlinearity in dif-
ferent forms. Thereby, it is extremely worth investigat-
ing FTC strategies of nonlinear systems. Fortunately,
the Takagi–Sugeno (T–S) fuzzy model [7] offers an
effective approach to characterize nonlinear systems,
which is comprised of a series of local linear systems
combined throughmembership functions. Its favorable
model structure motivates the development of system
analysis and control synthesis of nonlinear systems and
a large body of important results have been published,
see, e.g., [8–15].

On the other hand, uncertainties quite frequently
occur in practical applications and have an adverse
effect on the control performance. As a consequence,
taking uncertainties into account in the control design
helps to guarantee the desired control performance
and enhance robustness. However, although the type-
1 fuzzy set is capable of characterizing nonlinearity
of the control systems, it fails to address uncertain-
ties directly through its crisp membership functions.
To overcome this issue, the type-2 fuzzy set coined
in [16] expands the type-1 fuzzy set theory with the
capability to directly capture uncertainties. As a par-
ticular case of type-2 fuzzy sets, the interval type-2
(IT2) fuzzy set [17] comes out, which can not only
cope with uncertainties efficiently but ease the com-
putation burden with respect to general type-2 fuzzy
sets. The research outputs in [18] manifest the merits
of type-2 fuzzy model in handling uncertainties in con-
trast to the type-1 counterpart. In [19], an effective IT2
fuzzy modeling approach was provided to assist the
design of IT2 fuzzy controller for nonlinear systems
subject to parameter uncertainties. In [20], a seminal
membership-function-dependent (MFD) control strat-
egy was published where the information of member-
ship functions is injected into the stability analysis with
the imperfect premisematching (IPM) scheme adopted
[21] which allows the fuzzy controller to freely choose
the fuzzy rule number and membership functions not
constrained to those of fuzzymodel. Some recentworks

can be found in [22–26] on the basis of type-2 fuzzy
model. In [27–30], the practical applications relevant
to aerospace, robot control, and image processing are
reported.

FTC strategies under the framework of IT2 fuzzy
model have also arisen some attention in recent years.
The works in [26,31–33] focus on the passive FTC
techniques which cannot be used in online system
repair after fault occurrence. In [34], an active FTC
method was studied where the IT2 fuzzy observer and
controller are designed separately with the extremely
strict assumption that they share totally the same mem-
bership functions with the IT2 fuzzy model, resulting
in a rather limited application scope. To the authors’
best knowledge, there are limited efforts made on the
IT2 fuzzymodel-based active FTCdesign for nonlinear
systems suffering from uncertainties, external distur-
bance and faults. Furthermore, the approaches in tack-
ling these issues also have great room for improvement
like conservatism reduction and flexibility enhance-
ment. Considering the mismatched membership func-
tions and estimation errors, there exist bidirectional
robustness interactions [35] between observer and FTC
modules, which make the separation principle inappli-
cable in the design of the observer-based FTC system.
Thereby, it highlights the significance and necessity
of the integrated design technique, that is, the observer
and controller are designed together. However, the inte-
grated design will increase the problem’s dimensions
and result in the couplingproblembetween the observer
and controller, which makes the analysis and design
more complicated. Upon the discussion above, how
to design the observer-based fault estimation (FE) and
FTC for the IT2 fuzzy systems under the IPM mecha-
nism as well as MFD approaches is a worthwhile and
challenging research topic, which motivates the work.

In this paper, the IT2 fuzzymodel-basedFEandFTC
are investigated for the highly nonlinear systems suffer-
ing from uncertainties, external disturbance and actu-
ator faults. Firstly, the IT2 T-S fuzzy model is used to
describe the nonlinear dynamics of the control system
where uncertainties are captured by lower and upper
membership functions. Then, resorting to Lyapunov
stability theory, the stability conditions are achieved
to guarantee that the augmented system is asymptot-
ically stable under the predefined H∞ performance
index. By applying matrix inequality convexification
techniques, the convex sufficient criteria for the exis-
tence of both the IT2 fuzzy observer and controller are
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obtained. Finally, two examples are provided to demon-
strate the efficacy of the developed approach. The main
contributions are concluded as follows:

(1) In the analysis, the information of membership
functions of each subdomain is taken into account
along with some slack matrices injected to make
the results not necessarily valid for all shapes of
membership functions, leading to less conservative
results, which is demonstrated by the simulation
results.

(2) In this work, the designs of FE and FTC are pro-
posed for the complicated nonlinear systems sub-
ject to uncertainties, external disturbance and actu-
ator faults under the IT2 fuzzy framework, in which
the controller and observer gains are obtained
simultaneously utilizing a single-step linear matrix
inequality (LMI) formulation.

(3) The IPM scheme is adopted to provide more design
flexibility in the construction of the fuzzy fault tol-
erant controller. Furthermore, the computational
complexity caused by the integrated design strat-
egy can be alleviated via applying fewer fuzzy rules
and relatively simple membership functions in the
fuzzy controller design.

The remainder of this paper is organized as follows.
The IT2 T-S fuzzy model, IT2 fuzzy observer and IT2
fuzzy fault tolerant controller are described in Sect. 2.
The analysis process and main results are presented
in Sect. 3. Section 4 shows the simulation examples
to verify the validity of the proposed approach. The
conclusion is summarized in Sect. 5.

Notation: The superscript “T” denotes matrix trans-
position; P > 0(≥ 0) stands for that P is a real sym-
metric and positive definite (semidefinite) matrix; I
and 0 stand for the identity matrix and zero matrix
with compatible dimensions, respectively; ‖v(t)‖2 is

defined by ‖v(t)‖2 =
√∫ ∞

0 vT (t)v(t)dt ; diag(. . .)
represents a block-diagonal matrix; � is used to repre-
sent a symmetric term in a symmetric matrix.

2 Preliminaries

2.1 IT2 T–S fuzzy model

Consider a nonlinear system suffering from uncertain-
ties, external disturbance and actuator faults character-
ized by the IT2 T-S fuzzymodel with r rules as follows:

Rule i : IF θ1(ρ(t)) is M̃i
1 and θ2(ρ(t)) is M̃i

2 and
· · · and θΨ (ρ(t)) is M̃i

Ψ , THEN

{
ẋ(t) = Ai x(t) + Bi

(
u(t) + f (t)

) + Diw(t),
y(t) = Cx(t),

where x(t) ∈ R
n denotes the system state; u(t) ∈ R

m

denotes the control input; w(t) ∈ R
d stands for the

external disturbance belonging toL2[0,∞); y(t) ∈ R
p

represents the measurement output; f (t) ∈ R
m signi-

fies the additive actuator fault on the assumption of ḟ (t)
belonging to L2[0,∞); ρ(t) ∈ R

ϑ denotes the mea-
surable vector; θα(ρ(t)) and M̃i

α , α = 1, 2, . . . , Ψ ,
i = 1, 2, . . . , r , signify the premise variable and IT2
fuzzy set, respectively; Ai , Bi , Di and C are known
system, input, disturbance and output matrices, respec-
tively, in which C is constrained to full row rank. The
firing strength of rule i is described by the following
interval sets:

Wi (ρ(t)) = [wi (ρ(t)), w̄i (ρ(t))], i = 1, 2, . . . , r

where wi (ρ(t)) = ∏Ψ
α=1 μ

M̃i
α
(θα(ρ(t))) and w̄i (ρ(t))

= ∏Ψ
α=1 μ̄M̃i

α
(θα(ρ(t))) stand for the lower and upper

grades of membership, respectively. μ
M̃i

α
(θα(ρ(t)))

and μ̄M̃i
α
(θα(ρ(t))) denote the lower and upper mem-

bership functions, respectively. From the definition of
IT2membership functions, it follows that μ̄M̃i

α
(θα(ρ(t)))

≥ μ
M̃i

α
(θα(ρ(t))) ≥ 0, leading to w̄i (ρ(t)) ≥

wi (ρ(t)) ≥ 0 for all i . The overall IT2 fuzzy model is
depicted as

⎧⎪⎪⎨
⎪⎪⎩
ẋ(t) =

r∑
i=1

wi (ρ(t))
[
Ai x(t)+ Bi

(
u(t)+ f (t)

)+Diw(t)
]
,

y(t) =Cx(t),
(1)

wherewi (ρ(t)) = λi (ρ(t))wi (ρ(t))+λ̄i (ρ(t))w̄i (ρ(t))
≥ 0 with the property of

∑r
i=1 wi (ρ(t)) = 1.

λi (ρ(t)) ∈ [0, 1] and λ̄i (ρ(t)) ∈ [0, 1] are nonlin-
ear weighting functions, not necessarily to be known
but exist, with the property of λi (ρ(t)) + λ̄i (ρ(t)) = 1
for all i . Assume that the IT2 fuzzy system in (1) is
observable and controllable so that the existence of the
observer and controller can be guaranteed to implement
the observer-based FTC performance.
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2.2 IT2 fuzzy observer

As IT2 membership functions of the model in (1) are
unknown, they are unavailable in the design of fuzzy
observer except for their lower and upper bounds. In
this paper, the IT2 fuzzy observer is supposed to only
share the same bounds of membership functions with
the fuzzy model. The details of the IT2 fuzzy observer
are as follows:

Rule j : IF θ1(ρ(t)) is M̃ j
1 and θ2(ρ(t)) is M̃ j

2 and

· · · and θΨ (ρ(t)) is M̃ j
Ψ , THEN

⎧
⎪⎨
⎪⎩

˙̂x(t) = A j x̂(t) + B j
(
u(t) + f̂ (t)

) + L j
(
y(t) − ŷ(t)

)
˙̂f (t) = Fj

(
y(t) − ŷ(t)

)
ŷ(t) = Cx̂(t)

where x̂(t) ∈ R
n denotes the observer state; f̂ (t) ∈

R
m signifies the estimation of fault f (t); ŷ(t) ∈ R

p

stands for the observer output; L j and Fj are the fuzzy
observer gains to be determined. The overall IT2 fuzzy
observer is depicted as⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x(t) =
r∑
j=1

ϕ j (ρ(t))
[
A j x̂(t) + Bj

(
u(t) + f̂ (t)

)

+ L j
(
y(t) − ŷ(t)

)]

˙̂f (t) =
r∑
j=1

ϕ j (ρ(t))
[
Fj

(
y(t) − ŷ(t)

)]

ŷ(t) =Cx̂(t)

(2)

whereϕ j (ρ(t)) = α j (ρ(t))w j (ρ(t))+ᾱ j (ρ(t))w̄ j (ρ(t))
∑r

k=1

(
αk (ρ(t))wk (ρ(t))+ᾱk (ρ(t))w̄k(ρ(t))

)
and

∑r
j=1 ϕ j (ρ(t)) = 1. α j (ρ(t)) ∈ [0, 1] and

ᾱ j (ρ(t)) ∈ [0, 1] are nonlinear weighting functions
with the property of α j (ρ(t)) + ᾱ j (ρ(t)) = 1 for all
j , which can be chosen according to practical require-
ments [25].

2.3 IT2 fuzzy fault tolerant controller

On the basis of the information of system states and
fault signal estimated by the fuzzy observer in (2), we
design an IT2 fuzzy fault tolerant controller to stabilize
the nonlinear systems subject to uncertainties, external
disturbance and faults, which can be expressed by the
IT2 fuzzy model in (1). In order to improve the design
flexibility, the fuzzy fault tolerant controller is consid-
ered with c fuzzy rules, capable of selecting different
rule number with respect to the fuzzy model. The lth

rule of the IT2 fuzzy fault tolerant controller is depicted
as follows:

Rule l: IF g1(ρ(t)) is Ñ l
1 and g2(ρ(t)) is Ñ l

2 and · · ·
and gΩ(ρ(t)) is Ñ l

Ω , THEN

u(t) =Kl x̂(t) − f̂ (t),

where gk(ρ(t)) represents the premise variable and
Ñ l
k signifies the IT2 fuzzy set, k = 1, 2, . . . , Ω ,

l = 1, 2, . . . , c. Kl is the fuzzy controller gain to be
determined. The firing strength of rule l is described by
the following interval sets:

Ml(ρ(t)) = [ml(ρ(t)), m̄l(ρ(t))], l = 1, 2, . . . , c

where ml(ρ(t)) = ∏Ω
β=1 μ

Ñ l
β

(gβ(ρ(t)) and m̄l(ρ(t))

= ∏Ω
β=1 μ̄Ñ l

β
(gβ(ρ(t)) signify the lower and upper

grades of membership, respectively. μ
Ñ l

β

(gβ(ρ(t)))

and μ̄Ñ l
β
(gβ(ρ(t))) stand for the lower and upper

membership functions, respectively. Upon the defi-
nition of IT2 membership functions, it follows that
μ̄Ñ l

β
(gβ(ρ(t))) ≥ μ

Ñ l
β

(gβ(ρ(t))) ≥ 0, leading to

m̄l(ρ(t)) ≥ ml(ρ(t)) ≥ 0 for all l. The overall IT2
fuzzy fault tolerant controller is inferred as

u(t) =
c∑

l=1

ml(ρ(t))
[
Kl x̂(t) − f̂ (t)

]
. (3)

whereml(ρ(t)) = β
l
(ρ(t))ml (ρ(t))+β̄l (ρ(t))m̄l (ρ(t))

∑c
k=1

(
β
k
(ρ(t))mk (ρ(t))+β̄l (ρ(t))m̄k(ρ(t))

)
and

∑c
l=1ml(ρ(t)) = 1. β

l
(ρ(t)) ∈ [0, 1] and

β̄l(ρ(t)) ∈ [0, 1] are nonlinear weighting functions
with the property of β

l
(ρ(t)) + β̄l(ρ(t)) = 1 for all

l.

Remark 1 Different from the existing work [34] in
which the fuzzy observer and fault tolerant controller
are designed separately by assuming that the IT2mem-
bership functions of the fuzzy model are completely
available, in this paper, the system membership func-
tions are unknown except for their bounds, and with
the IPM scheme employed, the fuzzy rule number and
shapes of membership functions of the fault tolerant
controller and fuzzy model can be different, which
extends the application scope of the provided tech-
nique and offers more freedom in the control design.
Besides, the proposed MFD approach utilizes a single-
step LMI formulation to co-design the fuzzy observer
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as well as the fuzzy fault tolerant controller to achieve
the required robust FTC performance.

3 Main results

In this section, the MFD stability criteria are pro-
vided to ensure the desired control performance for
the IT2 fuzzy model-based FTC system. Upon the suf-
ficient stability conditions obtained, the approach of
co-designing the IT2 fuzzy observer and fault tolerant
controller is carried out in the LMI forms.

3.1 MFD stability and performance analysis

In this paper, we define ex (t) = x(t) − x̂(t), e f (t) =
f (t) − f̂ (t), e(t) = [eTx (t) eTf (t)]T , and v(t) =
[wT (t) ḟ T (t)]T . For simplicity, we remove the time
t from symbols for the situation without ambiguity in
the subsequent analysis. For instance, x(t) and x̂(t) are
represented as x and x̂ , respectively. According to (1)-
(3), we have

ẋ =
r∑

i=1

c∑
l=1

wi (ρ)ml (ρ)
[(
Ai + Bi Kl

)
x̂ + Ai ex + Bi e f

+ Diw
]
, (4)

˙̂x =
r∑
j=1

c∑
l=1

ϕ j (ρ)ml (ρ)
[(
A j + B j Kl

)
x̂ + L jCex

]
, (5)

ė =
r∑

i=1

r∑
j=1

c∑
l=1

wi (ρ)ϕ j (ρ)ml (ρ)
[
Ā21i jl x̂ + Ā22i j e + Ē21

i v
]
,

(6)

where

Ā21
i jl =

[
Ai − A j + (

Bi − Bj
)
Kl

0

]
,

Ā22
i j =

[
Ai − L jC Bi

−FjC 0

]
, Ē21

i =
[
Di 0
0 I

]
.

Let ξ = [x̂ T eT ]T and hi jl(ρ) = wi (ρ)ϕ j (ρ)ml(ρ).
The augmented system consisting of (5) and (6) can be
described as follows:⎧
⎪⎪⎨
⎪⎪⎩

ξ̇ =
r∑

i=1

r∑
j=1

c∑
l=1

hi jl(ρ)
[
Āi jlξ + Ēiv

]
,

z p = Cx x̂ + Cee = C̄ξ,

(7)

where

Āi jl =
[
Ā11
jl Ā12

j
Ā21
i jl Ā

22
i j

]
, Ēi =

[
0
Ē21
i

]
,

Ā11
jl = A j + Bj Kl , Ā12

j = [
L jC 0

]
,

Ā21
i jl , Ā

22
i j and Ē21

i have been defined below (6). z p ∈
R
2n+m is the performance output with a given weight-

ing matrix C̄ = [Cx Ce].

Remark 2 It follows from (4) and (6) that the control
system is influenced by the estimation error e and dis-
turbance w, and the error dynamics is also subject to
the system state x , disturbancew and time derivative of
the fault ḟ . There exist bidirectional robustness interac-
tions between the observer and control system, which
makes the separation principle inapplicable. Therefore,
the technique of co-designing IT2 fuzzy observer and
controller is put forward to realize the required robust
FTC performance in this paper.

In order to bring more information into stability
analysis, referring to [20], we divide the whole oper-
ation space of interest Φ into U connected substate
spaces depicted by Φu (u = 1, 2, . . . ,U) with Φ =
∪U
u=1Φu . Define the lower and uppermembership func-

tions of hi jl(ρ) as below

hi jl(ρ) =
U∑

u=1

2∑
i1=1

2∑
i2=1

. . .

2∑
iϑ=1

ϑ∏
g=1

υgigu(ρg)δi jli1i2...iϑu,

(8)

h̄i jl(ρ) =
U∑

u=1

2∑
i1=1

2∑
i2=1

. . .

2∑
iϑ=1

ϑ∏
g=1

υgigu(ρg)δ̄i jli1i2...iϑu,

(9)

where δi jli1i2...iϑu and δ̄i jli1i2...iϑu are constant scalars to
be determined with 0 ≤ δi jli1i2...iϑu ≤ δ̄i jli1i2...iϑu ≤ 1,
and ρg is the g-th element of the vector ρ; 0 ≤
hi jl(ρ) ≤ h̄i jl(ρ) ≤ 1; for g = 1, 2, . . . , ϑ ,
ig = 1, 2, u = 1, 2, . . . ,U , and ρ ∈ Ψu , 0 ≤
υgigu(ρg) ≤ 1 and υg1u(ρg) + υg2u(ρg) = 1; oth-
erwise, υgigu(ρg) = 0. Then, we have the property that∑U

u=1
∑2

i1=1
∑2

i2=1 . . .
∑2

iϑ=1
∏ϑ

g=1 υgigu(ρg) = 1,
which is useful in the following analysis.
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Utilize the lower and upper membership functions
expressed in (8) and (9) to reconstruct hi jl(ρ) as

hi jl(ρ) = γ
i jl

(ρ)hi jl(ρ) + γ̄i jl(ρ)h̄i jl(ρ), (10)

where γ
i jl

(ρ) ∈ [0, 1] and γ̄i jl(ρ) ∈ [0, 1] are nonlin-
ear weighting functions which are not necessarily to be
knownbut existwith the property ofγ

i jl
(ρ)+γ̄i jl(ρ) =

1 for all i, j and l.
The objective of this paper is to simultaneously

design the IT2 fuzzy observer and fault tolerant con-
troller to guarantee that the augmented system (7) is
asymptotically stable and satisfies H∞ performance
‖z p‖2 ≤ γ ‖v‖2 under zero initial condition after fault
occurrence.

Theorem 1 Given a positive scalar γ , predefined
scalars δi jli1i2...iϑu, δ̄i jli1i2...iϑu, fuzzy controller gain
Kl ∈ R

m×n, and fuzzy observer gains L j ∈ R
n×p,

Fj ∈ R
m×p, the augmented system in (7) is asymp-

totically stable with the predefined H∞ performance
level γ , if there exist matrices X1 ∈ R

n×n, X2 ∈
R

(n+m)×(n+m), Wi jl ∈ R
(4n+3m+d)×(4n+3m+d), M =

MT ∈ R
(4n+3m+d)×(4n+3m+d) satisfying the follow-

ing inequalities for i, j = 1, 2, . . . , r , l = 1, 2, . . . , c,
u = 1, 2, . . . ,U , i1, i2, . . . , iϑ = 1, 2:

X1 > 0, (11)

X2 > 0, (12)

Wi jl ≥ 0, (13)

Ψ̃i jl + Wi jl + M > 0, ∀i, j, l (14)
r∑

i=1

r∑
j=1

c∑
l=1

(
δ̄i jli1i2...iϑuΨ̃i jl − (δi jli1i2...iϑu − δ̄i jli1i2...iϑu)

× Wi jl + δ̄i jli1i2...iϑuM
) − M < 0, ∀i1, i2, . . . , iϑ , u

(15)

where

Ψ̃i jl =
⎡
⎢⎣

Ψ̃ 11
i jl + Ψ̃ 11T

i jl Ēi Ψ̃ 13

� −γ 2 I 0
� � −I

⎤
⎥⎦ ,

Ψ̃ 11
i jl =

⎡
⎢⎣

A j X1 + Bj Kl X1 Φ12
j

(Ai − A j )X1 + (Bi − Bj )Kl X1 Φ22
i j

0 Φ32
j

⎤
⎥⎦ ,

Ψ̃ 13 =
[
X1CT

x
X2CT

e

]
, Φ12

j = [
L jC 0

]
X2,

Φ22
i j = [

Ai − L jC Bi
]
X2, Φ32

j = [−FjC 0
]
X2.

Proof To investigate the stability of the augmented sys-
tem in (7),we define theLyapunov functional candidate
as

V (t) = ξ T Pξ (16)

where P =
[

P1 0
0 P2

]
, P1 > 0, P2 > 0 and thus

P > 0. The derivative of V (t) with respect to time t
can be deduced as below:

V̇ (t) =ξ̇ T Pξ + ξ T P ξ̇

=
r∑

i=1

r∑
j=1

c∑
l=1

hi jl(ρ)
[
ξ T (P Āi jl + ĀT

i jl P)ξ

+ ξ T P Ēiv + vT ĒT
i Pξ

]
, (17)

In order to build the H∞ performance for the
observer-based FTC system under the zero initial con-
dition, we bring in the following induced index func-
tion:

H(t) =
∫ ∞

0

(
zTp z p − γ 2vT v)dt

=
∫ ∞

0
(zTp z p − γ 2vT v + V̇ (t))dt −

∫ ∞

0
V̇ (t)dt

≤
∫ ∞

0
(zTp z p − γ 2vT v + V̇ (t))dt. (18)

From (17), we have

zTp z p − γ 2vT v + V̇ (t) =
r∑

i=1

r∑
j=1

c∑
l=1

hi jl(ρ)zTΨi jl z,

(19)

where

Ψi jl =
[
P Āi jl + ĀT

i jl P + C̄T C̄ P Ēi

� −γ 2 I

]
,

z = [
ξ T vT

]T
.

Once the condition
∑r

i=1
∑r

j=1
∑c

l=1 hi jl(ρ)Ψi jl <

0 holds, we can conclude that H(t) ≤ 0 from (18) and
(19), which implies that the H∞ performance index is
satisfied. Furthermore, when v = 0, considering (19),
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we can get V̇ (t) < 0 excluding ξ = 0, which implies
the augmented system in (7) is asymptotically stability.

The aforesaid result is built on the basis of the sat-
isfaction of inequality condition:

∑r
i=1

∑r
j=1

∑
l=1

chi jl(ρ)Ψi jl < 0. To avoid the simultaneous coupling
between the observer, controller gain matrices and dif-
ferent Lyapunov matrices P1, P2 when co-designing
the observer and fault tolerant controller in the next
section, we perform the congruence transformation to∑r

i=1
∑r

j=1
∑c

l=1 hi jl(ρ)Ψi jl < 0 by premultiply-
ing and postmultiplying diag{X, I }with the definition
X =

[
X1 0
0 X2

]
, in which X1 = P−1

1 and X2 = P−1
2 .

Then, we can obtain

r∑
i=1

r∑
j=1

c∑
l=1

hi jl(ρ)Ψ̄i jl < 0, (20)

where

Ψ̄i jl =
[
Āi jl X + X ĀT

i jl + XC̄T C̄ X Ēi

� −γ 2 I

]
.

Applying Schur complement to (20) to address the
nonconvex term XC̄T C̄ X , one can get the following
equivalent inequality:

r∑
i=1

r∑
j=1

c∑
l=1

hi jl(x)Ψ̃i jl < 0, (21)

where

Ψ̃i jl =
⎡
⎣
Āi jl X + X ĀT

i jl Ēi XC̄T

� −γ 2 I 0
� � −I

⎤
⎦ .

Due to the intrinsic characteristics of IT2 mem-
bership functions and the utilization of IPM mech-
anism, the parallel distributed compensation (PDC)-
based approaches cannot be applied in this stabil-
ity analysis. To obtain less conservative results, the
approach of MFD stability analysis is employed. The
information of IT2membership functions is introduced

into the stability analysis with the injection of some
slack matrices via the following expressions:

( r∑
i=1

r∑
j=1

c∑
l=1

(
γ
i jl

(ρ)hi jl (ρ) + γ̄i jl (ρ)h̄i jl (ρ)
)−1

)
M = 0,

(22)

−
r∑

i=1

r∑
j=1

c∑
l=1

(
1 − γ

i jl
(ρ)

)(
hi jl (ρ) − h̄i jl (ρ)

)
Wi jl ≥ 0,

(23)

where M = MT andWi jl = WT
i jl ≥ 0 are the matrices

with proper dimensions.
From (10), (21)–(23), we have

r∑
i=1

r∑
j=1

c∑
l=1

hi jl(ρ)Ψ̃i jl

≤
r∑

i=1

r∑
j=1

c∑
l=1

(
γ
i jl

(ρ)hi jl(ρ)

+(
1 − γ

i jl
(ρ)

)
h̄i jl(ρ)

)
Ψ̃i jl

+
( r∑

i=1

r∑
j=1

c∑
l=1

(
γ
i jl

(ρ)hi jl(ρ)

+ (
1 − γ

i jl
(ρ)

)
h̄i jl(ρ)

) − 1
)
M

−
r∑

i=1

r∑
j=1

c∑
l=1

(
1 − γ

i jl
(ρ)

)(
hi jl(ρ) − h̄i jl(ρ)

)
Wi jl

=
r∑

i=1

r∑
j=1

c∑
l=1

γ
i jl

(ρ)
(
hi jl(ρ) − h̄i jl(ρ)

)(
Ψ̃i jl + Wi jl

+ M) +
r∑

i=1

r∑
j=1

c∑
l=1

(
h̄i jl(ρ)Ψ̃i jl − (

hi jl(ρ)

− h̄i jl(ρ)
)
Wi jl + h̄i jl(ρ)M

)
− M. (24)

Referring to (24) with the fact that γ
i jl

(ρ)(hi jl(ρ)−
h̄i jl(ρ)) ≤ 0,

∑r
i=1

∑r
j=1

∑c
l=1 hi jl(x)Ψ̃i jl < 0 is

satisfied if the following inequalities hold:

Ψ̃i jl + Wi jl + M > 0, ∀i, j, l, (25)
r∑

i=1

r∑
j=1

c∑
l=1

(
h̄i jl(ρ)Ψ̃i jl − (hi jl(ρ) − h̄i jl(ρ))Wi jl

+ h̄i jl(ρ)M
)

− M < 0. (26)
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The condition (26) cannot be numerically solved by
the LMI optimization technique because of the exis-
tence of lower and uppermembership functions hi jl(ρ)

and h̄i jl(ρ) represented by continuous nonlinear func-
tions. By rewriting hi jl(ρ) and h̄i jl(ρ) in terms of
(8) and (9), which are depicted by constant scalars
δi jli1i2...iϑu and δ̄i jli1i2...iϑu , and recalling the fact that∑U

u=1
∑2

i1=1
∑2

i2=1 . . .
∑2

iϑ=1
∏ϑ

g=1 υgigu(ρg) = 1,
(26) is satisfied if the following equivalent inequality
holds for all i1, i2, . . . , iϑ , u:

r∑
i=1

r∑
j=1

c∑
l=1

(
δ̄i jli1i2...iϑuΨ̃i jl − (δi jli1i2...iϑu

− δ̄i jli1i2...iϑu)Wi jl + δ̄i jli1i2...iϑuM
)

− M < 0.

(27)

Hence, once the conditions (11)–(15) in Theorem 1
are satisfied, it can be concluded that H(t) ≤ 0, which
implies that the augmented system in (7) is asymptot-
ically stability under the H∞ performance. This com-
pletes the proof. 	


3.2 Integrated design of IT2 fuzzy observer and fault
tolerant controller

Theorem 1 conducts the stability analysis for the aug-
mented system (7) with the given observer and fault
tolerant controller gains. However, the gain matrices
of the observer and fault-tolerant controller cannot be
directly solved from Theorem 1 owing to nonconvex
terms contained in the stability criteria. In this sec-
tion, by virtue of the results obtained in Theorem 1, the
singular value decomposition technique is exploited to
convexify the stability conditions so that the IT2 fuzzy
observer and fault tolerant controller can be gained via
the LMI optimization technique in one step. The fea-
sible design procedures are presented by the following
theorem.

Theorem 2 Given a positive scalar γ , predefined
scalars δi jli1i2...iϑu, δ̄i jli1i2...iϑu, constant matrix J ∈
R

p×m, the augmented system in (7) is asymptoti-
cally stable with the predefined H∞ performance
level γ , if there exist matrices X1 ∈ R

n×n, N1 ∈
R

p×p, N2 ∈ R
(n−p)×(n−p), N3 ∈ R

(n−p)×m, X22 ∈
R
m×m, Wi jl ∈ R

(4n+3m+d)×(4n+3m+d), M = MT ∈
R

(4n+3m+d)×(4n+3m+d), Ml ∈ R
m×n, T j ∈ R

n×p,

G j ∈ R
m×p satisfying the following inequalities for

i, j = 1, 2, . . . , r , l = 1, 2, . . . , c, u = 1, 2, . . . ,U ,
i1, i2, . . . , iϑ = 1, 2:

X1 > 0, (28)[
X11 X12

� X22

]
> 0, (29)

Wi jl ≥ 0, (30)

Ξi jl + Wi jl + M > 0, ∀i, j, l (31)
r∑

i=1

r∑
j=1

c∑
l=1

(
δ̄i jli1i2...iϑuΞi jl − (δi jli1i2...iϑu − δ̄i jli1i2...iϑu)

× Wi jl + δ̄i jli1i2...iϑuM
) − M < 0, ∀i1, i2, . . . , iϑ , u

(32)

where

Ξi jl =
⎡
⎣

Ξ11
i jl Ēi XC̄T

� −γ 2 I 0
� � −I

⎤
⎦ ,

Ξ11
i jl =

⎡
⎢⎣

Ω11
i jl + Ω11

i jl
T

Ω12
i jl t2 j

� Ω22
i j + Ω22

i j
T

Ω23
i j

� � −g2 j − gT2 j

⎤
⎥⎦ ,

Ω11
i jl =A j X1 + BjMl ,

Ω12
i jl =X1(Ai − A j )

T + MT
l (Bi − Bj )

T + t1 j ,

Ω22
i j =Ai X11 + Bi X

T
12 − t1 j ,

Ω23
i j =Ai X12 + Bi X22 − t2 j − gT1 j ,

t1 j = [
T j V1V

−1
2 0n×(n−p)

]
V T
3 , t2 j = T j J,

g1 j = [
G j V1V

−1
2 0m×(n−p)

]
V T
3 , g2 j = G j J,

X11 =V3

[
V−1
2 V T

1 N1V1V
−1
2 0p×(n−p)

� N2

]
V T
3 ,

X12 =V3

[
V−1
2 V T

1 N1 J
N3

]
.

V1, V2 and V3 are acquired through the singular
value decomposition of the output matrix C, i.e., C =
V1[V2 0]V T

3 . The fuzzy observer gain matrices are
given by L j = T j N

−1
1 , Fj = G j N

−1
1 , and the fuzzy

controller gain matrix is given by Kl = Ml X
−1
1 .

Proof In Theorem 1, the coupling issues severely hin-
der solving of observer and controller gains. Hence, the
main objective subsequently is to convexify the design
conditions. As the output matrix C is of full row rank,
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the singular value decomposition ofC can be presented
as below

C = V1
[
V2 0p×(n−p)

]
V T
3 , (33)

where V1 ∈ R
p×p, V2 ∈ R

p×p, and V3 ∈ R
n×n are all

nonsingular matrices with V1V T
1 = I and V3V T

3 = I .
Then, for the convenience of design, we specify the
positive definite matrix X2 in the form of

X2 =
[
X11 X12

� X22

]
, (34)

X11 =V3

[
V−1
2 V T

1 N1V1V
−1
2 0p×(n−p)

� N2

]
V T
3 , (35)

X12 =V3

[
V−1
2 V T

1 N1 J
N3

]
, (36)

where N1, N2, N3, X22 are unknownmatrix variables to
be determined, and J is the constant matrix determined
by the user.

Then, upon (33)–(36), we can have

L jCX11 = L j V1
[
V2 0

]
V T
3

× V3

[
V−1
2 V T

1 N1V1V
−1
2 0

� N2

]
V T
3

= [
T j V1V

−1
2 0

]
V T
3

:= t1 j , (37)

L jCX12 = L j V1
[
V2 0

]
V T
3 V3

[
V−1
2 V T

1 N1 J
N3

]

=T j J

:= t2 j . (38)

Similarly, we can also have

FjCX11 = FjV1
[
V2 0

]
V T
3

× V3

[
V−1
2 V T

1 N1V1V
−1
2 0

� N2

]
V T
3

= [
G j V1V

−1
2 0

]
V T
3

:= g1 j , (39)

FjCX12 =G jV1
[
V2 0

]
V T
3 V3

[
V−1
2 V T

1 N1 J
N3

]

=G j J

:= g2 j . (40)

Now, substituting the matrix variable X2 defined in
(34)–(36) into (14) and (15) togetherwith consideration
of the matrices defined in (37)–(40), andMl = Kl X1,
the conditions (31) and (32) can be obtained. Thus, this
completes the proof. 	

Remark 3 It is noted that the convexifying proce-
dure reported in this paper is based on the singu-
lar value decomposition technique. Additionally, other
approaches such as the matrix decoupling method [36]
and completing squares [37], could also be adopted to
separate decision variables. However, these methods
would increase the number of stability conditions or
the dimension of matrices together with some tuning
parameters introduced which are required to be fixed
beforehand, resulting in heavy computational burden
especially when the MFD stability analysis approach
is employed. In contrast, utilizing the singular value
decomposition technique results in the stability condi-
tions to be solved with much less computational com-
plexity.

4 Simulation examples

In this section, two detailed simulation examples are
provided to verify the validity of the proposed FTC
technique.

4.1 Numerical example

Consider a nonlinear system subject to parameter
uncertainties, which is described by the following
three-rule IT2 T-S fuzzy model:

A1 =
[
0.59 −7.29
0.01 −2.85

]
, A2 =

[
0.02 −4.64
0.35 −8.56

]
,

A3 =
[
0.73 8.45
0.26 −15.43

]
, B1 =

[
1.0
0.3

]
,

B2 = [
8.0 2.0

]T
, B3 = [

4.0 0.8
]T

,

D1 = D2 = D3 = [
0 0.01

]T
,C = [

1.0 0
]
,

where the lower and uppermembership functions of the
IT2 fuzzymodel are described as:w1(x1) = 1−1/(1+
e(−x1−3.5)), w3(x1) = 1/(1 + e(−x1+3.5)), w̄2(x1) =
1−w1(x1)−w3(x1), w̄1(x1) = 1−1/(1+e(−x1−2.5)),
w̄3(x1) = 1/(1+ e(−x1+2.5)), w2(x1) = 1− w̄1(x1) −
w̄3(x1). To demonstrate the design flexibility, a two-
rule IT2 fuzzy fault tolerant controller is constructed

123



1450 H. Zhou et al.

to stabilize the faulty system with the lower and upper
membership functions selected by:m1(x1) = {1, when
x1 < −5.2; (−x1 + 4.8)/10, when −5.2 ≤ x1 ≤ 4.8;
0, when x1 > 4.8}, m̄1(x1) = {1, when x1 < −4.8;
(−x1+5.2)/10, when−4.8 ≤ x1 ≤ 5.2; 0, when x1 >

5.2}, m̄2(x1) = 1 − m1(x1), m2(x1) = 1 − m̄1(x1).
Assume that the operating domain of x1 locates

in the interval of [−10, 10]. In order to introduce
more information of membership functions into the
design process, we divide the whole operating domain
x1 into 10 uniform subdomains where each inter-
val is represented by [−12 + 2u,−10 + 2u], u =
1, 2, . . . , 10. Through Theorem 2 with the prescribed
H∞ performance index γ = 4.5, the fuzzy observer
and controller gains are obtained as follows: L1 =[
220.4788
60.0927

]
, L2 =

[
1168.4
295.5

]
, L3 =

[
2022.9
432.1

]
,

F1 = 82.6389, F2 = 367.1322, F3 = 1997.8, K1 =[−184.0873 378.6501
]
, K2 = [−245.5332 502.1574

]
.

To perform simulation, we choose the weighting
functions λ1(x1) = (sin(5x1) + 1)/2, λ̄1(x1) =
1 − λ1(x1), λ3(x1) = (cos(5x1) + 1)/2, λ̄3(x1) =
1 − λ3(x1), from which we can obtain w1(x1) and
w3(x1). λ2(x1) and λ̄2(x1) are unnecessary to know
as we can get w2(x1) from the relationship w2(x1) =
1−w1(x1)−w3(x1). Additionally, the weighting func-
tions of the IT2 fuzzy observer are chosen as α j (x1) =
ᾱ j (x1) = 0.5, j = 1, 2, 3. The weighting functions
of the IT2 fuzzy fault tolerant controller are chosen as
β
l
(x1) = β̄l(x1) = 0.5, l = 1, 2.
To investigate the FTC performance of the proposed

approach, suppose that the fault f (t) is considered as

f (t) =
{
2 sin(0.5t − 5), 5 ≤ t ≤ 22.5

0, otherwise
(41)

and the external disturbance is characterized byω(t) =
e−0.25t sin(0.29t). Under the initial condition x(0) =
x̂(0) = [0.1 0.01]T , simulation results are displayed in
Figs. 1, 2, 3, 4. Fig. 1 depicts the trajectories of actuator
fault f (t) with its estimation f̂ (t), Figs. 2 and 3 depict
the trajectories of system state x(t) with its estima-
tion x̂(t). Fig. 4 describes the control input signal u(t).
From Figs. 1, 2, 3, it can be observed that the obtained
IT2 fuzzy observer can offer effective estimations of
the actuator fault and system states, contributing to the
well construction of the fault compensation-based fault
tolerant controller in the form of (3). Based on the sim-
ulation results, we can see that the designed two-rule
IT2 fault tolerant controller can successfully stabilize

0 5 10 15 20 25 30 35
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-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 1 Time response of actuator fault f (t) with its estimation
f̂ (t)

0 5 10 15 20 25 30 35
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Fig. 2 Time response of system state x1(t) with its estimation
x̂1(t)

the three-rule IT2 fuzzy system with the desired con-
trol performance in the presence of actuator fault and
disturbance. By constructing the fuzzy controller with
less rule number and simpler shapes of membership
functions, it will be beneficial to the release of imple-
mentation cost and improvement of design flexibility.

Remark 4 To demonstrate the superiority of the MFD
FTC strategy studied in this paper contrast with
the membership-function-independent (MFI) one, we
remove the terms relevantwith the informationofmem-
bership functions in Theorem 2. Then the sufficient cri-
teria for the existence of the observer and fault tolerant
controller becomeMFI which are summarized by (28),
(29) and Ξi jl < 0, i, j = 1, 2, . . . , r , l = 1, 2, . . . , c.
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Fig. 3 Time response of system state x2(t) with its estimation
x̂2(t)

0 5 10 15 20 25 30 35
-20

-15

-10

-5

0

5

10

Fig. 4 Time response of the control input signal u(t)

Under the same configuration aforesaid, no feasible
solution can be found by the MFI approach. It reveals
that our proposed approach incorporating the informa-
tion ofmembership functions outperforms theMFI one
with less conservativeness.

To further illustrate the performance of FTC affect-
ing by theMFDapproach proposedwith different num-
ber of subdomains, we make comparison simulations
under 3 cases where the whole state space of x1 is
evenly divided into 7, 10 and 13 subdomains, respec-
tively. The time responses of actuator fault estimation
and system states are respectively displayed in Figs. 5,
6, 7 with all other settings being the same as above,
from which we can see that better FE performance and
superior transient response are obtained as the number

0 5 10 15 20 25 30 35
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-0.5

0
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10 10.5
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Fig. 5 Time response of actuator fault f (t) with its estimation
f̂ (t) under different number of subdomains
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Fig. 6 Time response of system state x1(t) under different num-
ber of subdomains

of subdomains rises. It can be concluded that the stud-
ied fuzzy FTC strategy is furnished with more supe-
rior robustness along with more membership function
information considered in the analysis. However, there
is a tradeoff between the control performance and com-
putational burden because the computational complex-
ity will increase along with the number of subdomains
growing.

4.2 Nonlinear mass-spring-damper system

To further exemplify the effectiveness of the proposed
FTC scheme, a nonlinear mass-spring-damper system
suffering from the parameter uncertainty from [25] is
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Fig. 7 Time response of system state x2(t) under different num-
ber of subdomains

considered. Its dynamics is described by

mẍ(t) + Ff + Fs = u(t)

where x(t), m, Ff , Fs , and u(t) signify the displace-
ment from a reference point, mass, the friction force,
the restoring force of the spring, and the control input,
respectively. Assume that Ff = cẋ(t) and Fs =
kx(t) + ka2x3(t) in which k is an uncertain param-
eter. Thereby, the following equation can be obtained:

mẍ(t) + cẋ(t) + kx(t) + ka2x3(t) = u(t). (42)

Define x(t) = [x1(t) x2(t)]T = [x(t) ẋ(t)]T and

g(t) = −k−ka2x21 (t)
m , and suppose the operation domain

x1(t) ∈ [−1.5, 1.5]. Let m = 1kg, c = 1.5N · s/m,
a = 0.2m−1 and k ∈ [4, 6]N/m. The maximum
and minimum of g(t) are calculated as gmax = −4
when x1(t) = 0 and k = 4 and gmin = −6.54
when x1(t) = ±1.5 and k = 6, respectively. Follow-
ing the sector nonlinearity approach [38], the mass-
spring-damper system (42) suffering from the param-
eter uncertainty, disturbance and actuator fault can be
depicted by a two-rule IT2 T-S fuzzy model, where

A1 =
[

0 1.0
gmin − c

m

]
, A2 =

[
0 1.0

gmax − c
m

]
, B1 = B2 =

[
0 1

m

]T
, D1 = D2 = [

0 0.01
]T
, C = [

1.0 0
]
. The

lower and uppermembership functions of the IT2 fuzzy
model are computed as w1(x1) = −g(t)+gmax

gmax−gmin
with

k = 4, w̄1(x1) = −g(t)+gmax
gmax−gmin

with k = 6, w2(x1) =

g(t)−gmin
gmax−gmin

with k = 6, and w̄2(x1) = g(t)−gmin
gmax−gmin

with
k = 4.

During the simulation, the uncertain parameter k
is supposed as 5, and the number of subdomains is
15. The lower and upper membership functions of
the designed IT2 fuzzy fault tolerant controller are

selected as:m1(x1) = 1−1/(1+ e
−x1−0.25

2 ), m̄1(x1) =
1 − 1/(1 + e

−x1+0.25
2 ), m2(x1) = 1 − m̄1(x1), and

m̄2(x1) = 1 − m1(x1). The weighting functions of
the fuzzy observer and fault tolerant controller are
chosen as: α j (x1) = ᾱ j (x1) = 0.5, j = 1, 2, and

β
l
(x1) = β̄l(x1) = 0.5, l = 1, 2, respectively.

The initial conditions are given as x(0) = [0 0.1]T
and x̂(0) = [0 0.05]T , and the injected fault is consid-
ered as follows:

f (t) =

⎧
⎪⎪⎨
⎪⎪⎩

1, 10 < t ≤ 20
1.5 − 0.5e(−t+20), 20 < t ≤ 45
0.5 + cos(0.1t − 4.5), 45 < t ≤ 129
0, otherwise

(43)

The external disturbance is identical to that in Exam-
ple 4.1. Applying Theorem 2 with the predefined H∞
performance index γ = 2.6, the simulation results are
presented in Figs. 8 and 9, which show the FE result
and state response of the closed-loop system.As the fig-
ures display, the proposed approach can achieve effec-
tive FE and desired FTC performance for the nonlin-
ear mass-spring-damper system in the presence of the
parameter uncertainty, external disturbance and actua-
tor fault, which verify the effectiveness of the proposed
IT2 fuzzy model-based FTC strategy.

5 Conclusion

In this paper, the problems of the observer-based FE
and FTC for IT2 T-S fuzzy systems have been stud-
ied. In the proposed approach, an IT2 fuzzy observer
is developed to estimate both the system states and
actuator faults simultaneously. Upon these estimations
obtained, a fuzzy fault tolerant controller is developed
to offset the fault influences imposed on the control sys-
temandmaintain the desired control performanceof the
closed-loop system. Based on Lyapunov stability the-
ory, the IT2 fuzzy observer and fault tolerant controller
are co-designed in a single step via the LMI formula-

123



Fault estimation and fault tolerant control 1453

0 20 40 60 80 100 120 140 160 180

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 8 Time response of actuator fault f (t) with its estimation
f̂ (t)
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Fig. 9 Time response of system state x(t) of the mass-spring-
damper system

tion. The membership functions of the fuzzy fault tol-
erant controller proposed can be selected freely based
on practical requirements, contributing to the enhance-
ment of design flexibility.Moreover, to further relax the
result conservativeness, the MFD technique is utilized
by injecting the information of membership functions
into the stability criteria. Finally, simulation examples
have been presented to verify the effectiveness of the
proposed IT2 fuzzy model-based FTC strategy. Con-
sidering the sampled-data problems frequently occur
in practical control applications, the IT2 fuzzy model-
based sampled-data FTC strategies will be investigated
in the future. To expand applications, actuator faults
and sensor faults could be considered at the same time.
In addition, the fuzzy FTC strategies without differen-

tiability restriction on the faults will be considered as
well.
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