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Abstract AGeneralized (2+1)-dimensionalCaudrey–
Dodd–Gibbon–Kotera–Sawada equation (2D-
gCDGKSE) is an integro-differential equation that
describes tow-layer fluid interaction. The non-
autonomous (2+1)-dimensional gCDGKSE (NAUT-
gCDGKSE) was rarely considered in the literature. In
the previous works, the concepts of two-layer fluid
interaction and non-uniform fluid were not explored.
This motivated us to focus the attention on these
themes. Our objective is to inspecting waves structures
in non-uniform fluid which describes fluid flows near
a solid boundary. Thus, the present work is completely
new. Our objective, here, is to inspect waves which
are similar to those created in waterfall, water waves
behind dams, boat sailing, in the network of canals dur-
ing water release, and internal waves in submarine. In
a uniform fluid, rogue waves occur in open oceans and
seas, while in the present case of non-uniform fluid,
towering and internal rogue waves occur near barriers
(islands) and near submarine, respectively. This was
consolidated experimentally, as it was shown that rogue
wave is produced in a water tank (which is with solid
boundary). The exact solutions of NAUT-gCDGKSE
are derived here, by implementing the extended uni-
fied method (EUM). In applications, it is found that the
EUM is of lower time cost in symbolic computation,
than when using Lie symmetry, Darboux and Auto-
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Bucklund transformations. The results obtained here
are evaluated numerically, and they are displayed in
graphs. They reveal multiple waves structures with rel-
evance to waves created near a solid boundary. Among
them are towering and internal rogue waves, internal
(hollowed) and bulge-U-shapewave and S-shapewave,
water fall, saddle wave, and dromoions.

Keywords Non-autonomous · Caudrey–Dodd–
Gibbon–Kotera–Sawada equation · Towering ·
Internal · Rogue waves · Waterfall

1 Introduction

Indeed, the Caudrey–Dodd–Gibbon–Kotera–Sawada
equation (CDGKSE) and the generalized CDGKSE
(gCDGKSE) describe two-layer fluid interaction. The
gCDGKSE was currently considered in the literature.
It is a higher-order generalization of the celebrated
Kadomtsev–Petviashvili equation. In [1], a (2+1)-
dimensional gCDGKS equation (2D-gCDGKSE) was
studied by the Hirota bilinear method (HBM). A hier-
archy of bilinear CDGKSEwith a unified structure and
a nonlinear superposition formula was proved under
certain conditions [2]. Under the HBM, the specific
expression for N-soliton solutions of 2D-gCDGKSE in
fluid mechanics was given [3]. In [4], the 2D- CDGKS-
like equation was investigated, based on bilinear neural
network method, where novel solutions were derived.
The N-soliton solutions were found by focusing on the
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nonlinear superposition between one lump and other
types of localized waves of the2D-gCDGKSE [5]. By
means of the HBM, lump-type solution and two types
of interaction solutions of the 2D-Caudrey–Dodd–
Gibbon–Kotera–Sawada equation were obtained [6].
The interaction phenomenon between the lump waves
and stripe solitons in the 2D- CDGKSE, by making
use of the HBM, was investigated [7]. The CDGKS
hierarchy associated with a matrix spectral problem
was suggested, based on Lenard recursion equations
[8]. In [9], Bernoulli sub-equation functionmethodwas
applied to obtain some new exact oscillating solutions.
The CDGKSE was analytically investigated by using
theHBM,whereN-soliton solutionwas derived [10]. In
[11], M-lump and interaction between lumps and kink
solitons of the 2D- CDGKSE were studied based on
HBM. Novel analytical and numerical solutions of the
CDGKSE were established by means of Tanh method
and order residual power series method [12]. TheHBM
was used to obtain some breather wave and lumps
solutions to the CDGKSE that was converted into its
potential version together with implementing of Cole–
Hopf transformation [13]. The Lie symmetry analy-
sis, exact solutions, and conservation laws to the time
fractional CDGKSE with Riemann–Liouville deriva-
tive were investigated [14]. The solution of the third-
order isospectral equation of the CDGKSE for soli-
ton potential was obtained recursively from the Riccati
equation via the auto-Backlund transformation [15].
The symmetry transformations of the 2D- CDGKSE
with Lou’s direct method that based on Lax pairs were
considered [16]. The Bäcklund transformation and Lax
pair for a differential–difference CDGKSE were pre-
sented in [17]. The HBM of 2D- CDGSKE was used
to obtain, a class of solutions, among them, lump,
strip soliton, a pair of resonance solitons as well as
the rogue wave [18]. A 2D- CDGKSE was investi-
gated with the help of the HBM, where some sin-
gular soliton, shock-wave, breather-stripe soliton, and
hybrid solutions were found [19]. In [20], the HBM
combined with the simplified Hereman method was
used to determine the N-soliton solutions for the fifth-
order CDG equation. Someworks related to the present
work on CDGKSE with variable coefficients (VCs)
have received the attention of many research works.
The interaction between solitons and the cnoidal peri-
odic waves of the2D- CDGKSE was explored via the
consistent Tanh expansion [21].The Darboux trans-
formation, associated with nonlocal symmetry of the

2D- CDGKSE, was localized by introducing four field
quantities [22]. It is worthy to mention the CDGKSE
with variable coefficients is modestly studied in the
literature. In [23], soliton solutions of the 2D- VCs-
CDGKSE were derived via a new velocity resonance
condition. The (2+1)-dimensional variable-coefficient
CDGKSE was studied, and N-th-order Pfaffian solu-
tions were constructed [24]. In [25], the HBM was
used to derive M-lump solution and N -soliton solution
to the 2D- VCs-CDGKSE. Multi-waves and breathers
solution of the 2D- VCs-CDGKSE, under the HBM,
were obtained [26]. In [27], the bilinear form, bilin-
ear Bäcklund transformation, and Lax pair of a 2D-
VCs-CDGKSEwere derived viaBell polynomials. The
HBM was employed to study the 2D- VCs-CDGKSE
[28].In these works, the studies focused on waves gen-
erated in a uniform fluid, while the notions of nonuni-
form fluid and the two-layer fluid interaction were not
invoked there. In contrast with this, here, these charac-
teristics are dealtwith. The solitarywave ansatzmethod
alongwithHBMandnumerical simulationswasused to
study the CDGKSE and its bidirectional form [29,30].
An algebraic method with symbolic computation was
employed to construct a series of exact solutions of
the 2D-CDGKSE [31]. Based on bilinear neural net-
work method, the lump solutions were constructed by
activation functions in the single hidden layer neural
network model and the “3-2-2” neural network model
[32]. The bilinear residual network method was pro-
posed to solve the steady state CDGKSE, where rogue
waves were shown [33]. After the graphs displayed in
[33], they show peak waves and not rogue waves. We
think that rogue waves are produced in a system, when
it is in the unsteady state. Some relevant works were
also carried in [34,35].

The NAUT- DGKSE ( with time-dependent coeffi-
cients) describes waves in nonuniform fluid, where the
velocity is space dependent at a fixed time. It charac-
terizes every fluid flows near a solid boundary. Thus,
waterfall, water waves behind dams, and water flow
in the network of canals during water release are non-
uniform fluid flow. Here, a (2+1)-dimensional - NAUT-
gCDGKSE is considered. So, we are concerned with
inspecting waves in nonuniform flow. The exact solu-
tions are found here via the extended unified method
(EUM) [36–40]. Further papers on the neural network
method were carried [41,42]. Some works on rogue
waves and dynamical fluid equations were presented
[43–50].
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The outlines of this paper are as follows. In Sect. 2,
the model equation and a brief account of the EUM are
presented. Section 3 is devoted to polynomial solutions,
while rational solutions are given in Sect. 4. Section 5
is concerned with discussions, while some conclusions
are given in Sect. 6

2 The model equation and outlines of EUM

2.1 The model equation

The (2 + 1)-dimensional gCDGKSE was considered in
[1],

36ut + (uxxxx + 15uuxx + 15uxxx )x − α
∫
uyydx

−γ (uxxy + 3uuy + 3ux
∫
uydx) = 0,

(1)

where u = u(x, y, t) is the wave function ; α and γ

are real parameters. In (1), we put v = ∫
uydx , so, (1)

reduces to

36ut + (uxxxx + 15uuxx + 15uxxx )x − αvy
−γ (uxxy + 3uuy + 3uxv) = 0,

vx = uy .

(2)

A more general CDGKSE is proposed, here, by

β1ut + ν
(
uxxxx + β2uuxx + β2u3

)
x−αvy − γ

(
uxxy + β3uuy + β3uxv

) = 0,
vx = uy .

(3)

In (3), when β1 = 36, β2 = 15, β3 = 3, ν = 1,then
(3) reduces to (2).As,we are interested in studying non-
autonomous gCDGKSE, we consider (3) with time-
dependent coefficients

β1ut + ν(t)
(
uxxxx + β2uuxx + β2u3

)
x−α(t)vy − γ (t)

(
uxxy + β3uuy + β3uxv

) = 0,
vx = uy .

(4)

Equation (4) suggests to introduce a stream function
ψ(x, y, t) such that u = ψx and v = ψy , and it reduces
to the closed form

−α(t)ψyy + β1ψxt − γ (t)
(
β3

(
ψxψxy +ψyψxx

) +ψxxxy
)

+ν(t)
(
β2

(
3ψ2

xψxx + +ψxxψxxx + ψxψxxxx )

+ ψxxxxxx ) = 0. (5)

In (5), we consider the similarity transformations
ψ(x, y, t) = ϕ(z, t), z = μ(t)x + σ(t)y, and t =

t , where z and t are independent variables. Thus, (5)
becomes

−β1μ(t)ϕ − α(t)σ (t)2ϕzz

−γ (t)μ(t)2σ(t) (2β3ϕzϕzz + μ(t)ϕzzzz)

+ν(t)
(
β2μ(t)4

(
3ϕ2

z ϕzz + ϕzzϕzzz + μ(t)ϕzϕzzzz
)

+μ(t)6ϕzzzzzz = 0. (6)

The exact solutions of (6) are found, here, by using
the EUM.

2.2 Outlines of the EUM

Consider the NLPDE’s , with explicit time-dependent

f (t, ux , uy, uzut , vx , vy, vzvt , uxx , ....) = 0. (7)

We introduce the similarity transformations
u(x, y, z, t) = U (z, t), z = α(t) x + β(t) y, and
t := t;thus, (7) is rewritten as
F(t,Ut ,Uz,Utt ,Uzz, ....) = 0. (8)

The EUM asserts that the solutions of (6) are expressed
in polynomial and rational forms in an auxiliary func-
tion that satisfies suitable auxiliary equations. It is wor-
thy to mention that the EUM can be considered as an
alternative technique to the use of Lie group symme-
tries of NLPDEs. In the application, it is found that
the use of the EUM is of lower time cost, in symbolic
computations, than the Lie symmetry. So we think that
it prevails the use of Lie symmetries as the later tech-
nique requires a long hierarchy of steps. On the other
hand, it provides a wide class of solutions.

2.2.1 Polynomial solutions

The polynomial solutions of (6) are expressed in the
form

ϕ(z, t) =
j=n∑

j=0

a j (t) g(z, t)
j ,

(gz(z, t))
p = μ

j=pk∑

j=0

c j g(z, t)
j ,

(gt (ξ, z, t))p = h(t)
j=pk∑

j=0

c j g(z, t)
j , p = 1, 2. (9)

The solutions in (9) exist if there exist integers n,

and k. Thus, our objective is to show that there exist
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integersn, and k with relevance to (6). For achieving
this, we use two conditions: the balance and consis-
tency conditions. We consider the case when p = 1.
By inserting (9) into (7), we find that the balance con-
dition gives rise to n = k − 1. For the consistency
condition, we need to calculate:

(i) Thenumber of equations that results from inserting
Eq. (7) intoEq. (4) andby setting the coefficients of
g(z, t)i , i = 0, 1, 2, .. etc. equals to zero; r(k) =
7k − 6.

(ii) The number of arbitrary functions and parameters
in Eq. (7), namely ci , ai (z, t), s(k) = 2k + 1.

Together with using the condition r(k) − s(k) ≤ q,
where q is the highest order derivative in (6) (q = 6),
the last conditions lead to 1 ≤ k ≤ 13/5.

When p = 2,the same results hold.Wemention that
the solutions of Eq. (7) are hyperbolic functions when
p = 1., while, when p = 2, they are periodic or elliptic
functions.

2.2.2 Rational forms

The rational solutions of Eq. (6) are expressed in the
form

U (z, t) = A(t)
a1g(z, t) + a0
s1g(z, t) + s0

, (10)

(gz(z, t))p = ∑ j=pk
j=0 c j g(z, t) j ,

(gt (z, t))p = h(t)
∑ j=pk

j=0 c j g(z, t) j , p = 1, 2.
(11)

3 Polynomial solutions of (6)

3.1 When p = 1, k = 2, n = 1

In this case, we write

ϕ(z, t) = a1(t)g(z, t) + a0(t), (12)

and the auxiliary equations (AEs) are

gz(z, t) = c2g(z, t)2 + c1g(z, t) + c0,
gt (z, t):=h(t)

(
c2g(z, t)2 + c1g(z, t) + c0

)
.

(13)

Inserting (12) and (13) into (6) and by setting the
coefficients of g(z, t) j , j = 0, 1, 3, ..., equal to zero
lead to

μ(t) = r, a1(t)

= −
c2

(√
β2

(
β2(2r + 1)2 − 120r2

) + β2(2r + 1)
)

β2
,

σ (t) = 1

K

(

r2c21 − 4c0c2β2

(√
β2(β2(2r + 1)2 − 120r2)

+β2

(
2r2 + 3r + 1

)

−60r2 +r
√

β2(β2(2r + 1)2 − 120r2)

)

ν(t)

)

,

K = 2

(

β3

√
β2(β2(2r + 1)2 − 120r2)

+β2 (β3(2r + 1) − 6r)) γ (t),

h(t) = 1

M
(

√
β2(β2(2r + 1)2 − 120r2)(

(
c21 − 4c0c2

)
2

−r3ν(t)
(
−4β3r

2 (β3(2r + 1) + 9r) γ (t)2

+2β2r(r + 1)) ((β3(2r + 1) − 3r)γ (t)2 − 30rα(t)ν(t)

+β2
2 (r + 1)2(2r + 1)α(t)ν(t))) − r3

(
c21 − 4c0c2

)
2ν(t)

(
240β2

3r
4γ (t)2 + β3

2 (2r
2 + 3r + 1)2α(t)ν(t)

−4β2(r
2(−72r2 + 3β3(16r + 13)r

+β2
3 (2r + 1)2))γ (t)2 − 450r4α(t)ν(t))

+2β2
2r(r + 1) ((2r + 1) (β3(2r + 1)

−3r) γ (t)2 − 30r(3r + 2)α(t)ν(t)
))

),

M = (8β1β
2
3rγ (t)2 − 24β1β3rγ (t)2

+4β1β
2
3γ (t)2)

√
β2(β2(2r + 1)2 − 120r2)

−240β1β
2
3r

2γ (t)2 + 16β1β2β
2
3r

2γ (t)2

+72β1β2r
2γ (t)2 − 48β1β2β3r

2γ (t)2

+16β1β2β
2
3rγ (t)2 − 24β1β2β3rγ (t)2

+4β1β2β
2
3γ (t)2. (14)

The solution of (5) (or (6)) is

ψ(x, y, t)= 1

2β2

√
β2(β2(2r + 1)2 − 120r2)

+β2(2r + 1)

(√
c21 − 4c0c2

+c1Tanh

[
1

2M

√
c21 − 4c0c2 (r x + B(t)

+ (
r2yc21 − 4c0c2β2

(−60r2

+β2
(
2r2 + 3r + 1

)

+
√

β2(β2(2r + 1)2−120r2)(r+1)

)

ν(t)

)

))+a0(t),

M = 2

(

β3

√
β2

(
β2(2r + 1)2 − 120r2

)

+β2 (β3(2r + 1) − 6r)) γ (t)) ,

B(t) =
∫ t

0
h(s)ds, (15)
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where h(t) is given in (14).
The two-layer solutions are u = ψx and v = ψy ,

and they are

u(x, y, t) = 1

4β2
rSech

[
1

2M

√
c21 − 4c0c2 (r x + B(t)

+
((

c21 − 4c0c2
)
r2y β2

(√
β2

(
β2(2r + 1)2 − 120r2

)
(r + 1)

+β2

(
2r2 + 3r + 1

)
− 60r2

)
ν(t))]2)

(
c21 − 4c0c2

)

(√
β2

(
β2(2r + 1)2 − 120r2

) + β2(2r + 1)

)

, (16)

v(x, y, t) = 1

4M

(

r2Sech

[
1

2M

√
c21 − 4c0c2 (r x + B(t)

+
(
r2y(c21 − 4c0c2) β2

(

(r + 1)
√

β2
(
β2(2r + 1)2 − 120r2

)

+β2

(
2r2 + 3r + 1

)
− 60r2

)
ν(t))]2

(
c21

−4c0c2)
2
(√

β2
(
β2(2r + 1)2 − 120r2

)

+β2(2r + 1))

(

(r + 1)
√

β2
(
β2(2r + 1)2 − 120r2

)

+β2

(
2r2 + 3r + 1

)
− 60r2

)
ν(t)

)
. (17)

The solutions in (16) and (17) are displayed for the
two-layer functions u and v in Figs. 1 (i)-(vi).

3.2 When p = 1,k = 3 and n = 2

The solution of (6) and the AEs are

ϕ(z, t) = a2(t)g(z, t)2 + a1(t)g(z, t) + a0(t),
gz(z, t) = c3g(z, t)3 + c2g(z, t)2 + c1g(z, t) + c0,
gt (z, t):=h(t)

(
c3g(z, t)3 + c2g(z, t)2 + c1g(z, t) + c0

)
.

(18)

From (18) into (6), it gives rise to

a2(t) = −
2

(√
30

√
β2 − 30

)
c3

β2 − 30
,

a1(t) =
20

(
27

√
30β3/2

2 −16β2
2+450β2−1410

√
30

√
β2+18900

)
c2

(β2 − 30)
(
8
√
30β3/2

2 − 165β2 − 390
√
30

√
β2 + 9450

)
,

μ(t) =
√
30

√
β2 − β2

2 (β2 − 30)
,

c0 = 9c1c2c3 − 2c32
27c23

,

σ (t) = P

Q
, P = (

c22 − 3c1c3
) 2β2

2

(
−13020304500000

√
30

√
β2

+40312424250000β2

+50634517500000543408750000β2
2

−1919359800000
√
30β3/2

2 + 72994770000
√
30β5/2

2

+876582000
√
30β7/2

2 − 100068615000β3
2

−48431250
√
30β9/2

2

+331560
√
30β11/2

2 + 1024
√
30β13/2

2

−186240β6
2 + 7159725β5

2 + 1561092750β4
2 )ν(t),

Q = 18c23 (β2 − 30) 2
(
128

√
30 (16β3 − 195) β

11/2
2

+6144β6
2 + 3375634500000β33061800000β2 (421β3

−630) − 16074450000
√
30

√
β2 (40β3 − 21)

+105
√
30 (976β3 + 26625) β

9/2
2 − 240 (1040β3

−1281) β5
2 − 378000 (947β3 − 18714) β3

2

−1620000
√
30β3/2

2 − 12600
√
30 (3494β3 + 2841) β

7/2
2

+3150 (8875β3 − 41928) β4
2 + 27000

√
30 (87332β3

−177483) β
5/2
2 − 810000 (59161β3 + 76260) β2

2

+ (12710β3 − 79569))

γ (t), (19)

and there exists an equation for h(t),which is very
lengthy to be produced here.

The solution of (5) is

ψ(x, y, t) = 1

M

(
10c22(e

2c1(B(t)+z)

+e
2c22(B(t)+z)

3c3 )(4e2c1(B(t)+z) − e
2c22(B(t)+z)

3c3

−2e2c1(B(t)+z))(27
√
30β3/2

2 − 16β2
2 + 450β2

−1410
√
30

√
β2 + 18900) − 90c1c3(e

4c1(B(t)+z)

+e
2(c22+3c1c3)(B(t)+z)

3c3 )(27
√
30β3/2

2 − 16β2
2

+450β2 − 1410
√
30

√
β2 + 18900)

+20c2
(
e2c1(B(t)+z) − e2c1(B(t)+z)

)

ec1(B(t)+z)

√

(c22 − 3c1c3)(e2c1(B(t)+z) + e
2c22(B(t)+z)

3c3 )

(−81
√
10β3/2

2 + 16
√
3β2

2 − 450
√
3β2

+4230
√
10

√
β2 − 18900

√
3)

+3

(

e
2c22(B(t)+z)

3c3 + e2c1(B(t)+z)

)
2c3β2

−30
(
9450 − 390

√
30

√
β2

8
√
30β3/2

2 − 165β2

)
a0(t)

)
,

M = 3 (β2 − 30) c3(e
2c22(B(t)+z)

3c3 + e2c1(B(t)+z))2,

z = yσ(t) +
(√

30
√

β2 − β2

)
x

2 (β2 − 30)
,

B(t) =
∫ t

0
h(s)ds, (20)
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Fig. 1 Figure 1 (i)–(vi). The 3D and contour plots of u and v

are displayed against y and t for two values of x , in Figs.1(i)–
(iii) and 1(v)–(vi), respectively. When α(t) = 3 sin(2(t −
2)), ν(t) = e−0.5t sin(2(t − 5))(cos(2(t − 2)) + 2), γ (t) =√
cos(2(t − 2)) + 2, β2 = 5, r = 0.25, c1 = 2.5, c0 =

0.7, c2 = 1.5, β3 = 0.3, β1 = 0.2.

Figure 1(i) shows double-U-shape internal (hollowed waves).
Figure 1(ii) shows U-shape and S-shape bulge waves. Figure 1
(iii) shows the same waves.
Figure 1(iv) shows U-shape internal (hollowed wave) and S-
shape bulge wave. Figure 1(v) and (vi) shows the same behavior.

where σ(t) and h(t) are given in (19). By bearing in
mind that u = ψx and v = ψy , it leads to

u(x, y, t) = − 1

N

⎛

⎝10

⎛

⎝exp(

(
2c22 + 3c1c3

) (
2 (β2 − 30) B(t) − β2(x − 2yσ(t)) − 60yσ(t) + √

30
√

β2x
)

3 (β2 − 30) c3
)

+ exp(

(
c22 + 6c1c3

) (
2 (β2 − 30) B(t) − β2(x − 2yσ(t)) − 60yσ(t) + √

30
√

β2x
)

3 (β2 − 30) c3
)

⎞

⎠

(
c22 − 3c1c3

)
2
√
30 − √

β2
√

β2

(
18900 − 1410

√
30

√
β227

√
30β3/2

2 − 16β2
2 + +450β2

)
, (21)
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Towering and internal rogue waves induced 1613

v(x, y, t) = −20(β2 − 30)

N

⎛

⎝exp(

(
2c22 + 3c1c3

) (
2 (β2 − 30) B(t) − β2(x − 2yσ(t)) − 60yσ(t) + √

30
√

β2x
)

3 (β2 − 30) c3
)

+ exp(

(
c22 + 6c1c3

) (
2 (β2 − 30) B(t) − β2(x − 2yσ(t)) − 60yσ(t) + √

30
√

β2x
)

3 (β2 − 30) c3
)

⎞

⎠

(
27

√
30β3/2

2 − 16β2
2 + 450β2 − 1410

√
30

√
β2 + 18900

) (
c22 − 3c1c3

)
2σ(t),

N = 3(exp(2c1(B(t) + yσ(t) +
(√

30
√

β2 − β2

)
x

2 (β2 − 30)
)) + exp(

2c22

(

B(t) + yσ(t) +
(√

30
√

β2−β2

)
x

2(β2−30)

)

3c3
))3

(β2 − 30) 2
(
8
√
30β3/2

2 − 165β2 −390
√
30

√
β2 + 9450

)
c23. (22)

The solutions in (21) and (22) are displayed for the
two-layer functions u and v in Figs.2 (i)-(vii).

3.3 When p = 2, k = 2 and n = 1

Case (i)
We consider (12) and the AEs

gz(z, t) = (m1g(z, t)
+m0)

√
c2g(z, t)2 + c1g(z, t) + c0,

gt (z, t):=h(t)(m1g(z, t)
+m0)

√
c2g(z, t)2 + c1g(z, t) + c0.

(23)

From (12) and (18) into 6), we have

μ(t) = − 1
2 , σ (t)

=
(
4c22m

2
0+3c21m

2
1−4c2m1(c1m0+2c0m1)

)
β2ν[t]

64c2β3γ [t] ,

c0 = m0(5c2m0−2c1m1)

m2
1

, m1 = − 10c2m0
c1

,

a1(t) = 10
√
30c3/22 m0

c1
√−β2

,

β2 = −10β3, h(t) = 81c22m
4
0ν(t)

(
4γ [t]2+25α(t)ν(t)

)

2β1γ [t]2 .

(24)

The solution of (6) is

ψ(x, y, t) = −
5
√
3

(
−1 + e6(−z+B(t))

√
c2m0

) √
c2m0

(
5 + e6(−z+B(t))

√
c2m0

)√
β3

+a0(t), z = − x

2
− 45c2m2

0ν(t)

2γ (t)
y

B(t) =
∫ t

0
h(s)ds, (25)

where h(t)is given in (24).
The two functions (u and v) solutions are

u(x, y, t)

= − 90
√
3e

6
√
c2m0(B(t)+ 1

2 (x+ 45yc2m
2
0ν(t)

γ (t) ))
c2m2

0⎛

⎝5+e
6
√
c2m0(B(t)+ 1

2 (x+ 45yc2m
2
0ν(t)

γ (t) ))

⎞

⎠2
√

β3

,

v(x, y, t)

= −4050
√
3e

6
√
c2m0(B(t)+ 1

2 (x+ 45yc2m
2
0ν(t)

γ (t) ))
c22m

4
0ν[t]

⎛

⎝5+e
6
√
c2m0(B(t)+ 1

2 (x+ 45yc2m
2
0ν(t)

γ (t) ))

⎞

⎠2
√

β3γ [t]
.

(26)

The two-layer functions u and v, given in (26), are
displayed in Fig. 3 (i)-(vi).

Case(ii)
We consider (12) and the AEs

gz(z, t) = √
m2g(z, t)2 + m1g(z, t) + m0√

c2g(z, t)2 + c1g(z, t) + c0,
gt (z, t) = h(t)

√
m2g(z, t)2 + m1g(z, t) + m0√

c2g(z, t)2 + c1g(z, t) + c0.

(27)

From (12) and (27) into (6), it yields
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1614 H. I. Abdel-Gawad

Fig. 2 Figure 2 (i)-(vii). The 3D and contour plots of u and v

are displayed against y and t for two values of x , in Fig. 2(i)-(iv)
and (v)-(vii), respectively. When ν(t) = 2 sin(5(t − 5)), α(t) =
3 sin(5(t − 5)) + cos(5(t − 5)), β3 = 5, β1 = 0.2, γ (t) =
3e−0.3t , β2 = 0.1, c1 = 0.05, c3 = 0.025, c2 = 0.5.

Figure 2(i) and (ii) showswaterfalls. Figure 2(iii) shows the same
behavior as in Fig. 2(i) and 2(ii). Figure 2(iv) shows doubly peri-
odic waves.
Figure 2(iv) and (v) shows towering rogue wave and internal
rogue wave ( in submarine). Figure 2(vii) shows cyclic waves.

μ(t) = − 1
2 ,

σ (t) = β2
(
c22

(
3m2

1−8m0m2
)−2c2m2(c1m1+4c0m2)+3c21m

2
2

)
ν(t)

64β3c2m2γ (t) ,

m0 = m2
1

4m2
−

(
c21−4c0c2

)
m2

4c22
,

m2 = c2m1
c1

, a′
1(t) = 0, a1(t) =

√
30c2

√
m1√−β2

√
c1

,

β2 = −10β3,

h(t) =
(
c21−4c0c2

)
2m2

1ν(t)
(
25α(t)ν(t)+4γ (t)2

)

32β1c21γ (t)2
.

(28)

The solution of (5) (or (6) ) is

ψ(x, y, t) = a0(t) −
√
3
√
m1(c1 −

√
c21 − 4c0c2 tanh(

√
c21−4c0c2

√
m1

(

B(t)− 5(c21−4c0c2)m1 yν(t)
8c1γ (t) − x

2

)

2
√
c1

))

2
√

β3
√
c1

,

B(t) =
∫ t

0
h(s)ds, (29)

where h(t) is given in (28).
The solutions u and v are
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Towering and internal rogue waves induced 1615

Fig. 3 Figure 3 (i)-(vi). The 3D and contour plots of u and v

are displayed against y and t for two values of x , in Figs. 3(i)-
(iii) and (v)-(vi), respectively. When ν(t) = e−0.5t sin(5(t −
5))(cos(5(t − 5)) + 2), γ (t) = √

cos(5(t − 5)) + 2, α(t) =
3 sin(5(t − 5)), β2 = 5,m0 = 0.25, c1 = 2.5, c2 = 0.05, β3 =
0.3, β1 == 2.

Figure 3(i) and (ii) shows saddle ( Fan waves) with periodic
waves tail. Figure (iii) shows saddle waves.
Figure 3(iv) and (v) shows periodic waves cascade. Figure 3(vi)
shows the same behavior.

u(x, y, t) = −
√
3

(
c21 − 4c0c2

)
m1sech2(

√
c21−4c0c2

√
m1

(

_B(t)− 5(c21−4c0c2)m1 yν(t)
8c1γ (t) − x

2

)

2
√
c1

)

8
√

β3c1
, (30)

v(x, y, t) = −
5
√
3

(
c21 − 4c0c2

)
2m2

1ν(t)sech2(

√
c21−4c0c2

√
m1

(

_B(t)− 5(c21−4c0c2)m1 yν(t)
8c1γ (t) − x

2

)

2
√
c1

)

32
√

β3c21γ (t)
. (31)

The two-layer functions u and v, given in (30) and
(31), are displayed in Figs. 4 (i)-(vi).

4 Rational solutions of (6).

Here, we consider the solution in (10) together with the
AEs in (11).

4.1 When p = 1 and k=2

The AEs take the form given in (13), and into (6) it
gives

μ(t) = − β2

β2 − 30
, A′(t) = 0,

c0 = m (s0 (c1s1 − c2s0))

s21
,

A(t) = −60(m − 1)s0 (c2s0 − c1s1)
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1616 H. I. Abdel-Gawad

Fig. 4 Figure 4 (i)-(vi). The 3D and contour plots of u and v

are displayed against y and t for two values of x , in Fig. 4(i)–
(iii) and (v)–(vi), respectively. When α(t) = 0.3e−0.5t sin(5(t −
5)) sin(5(t − 5)), ν(t) = cos(5(t − 5)) + 2, , β = 0.2, γ (t) =

√
cos(5(t − 5)) + 2, β2 = 5, c1 = 2.5,m1 = 1.5, c0 =

0.7, c2 = 1.5, β3 = 0.3.
Figure 4(i) and (ii) shows internal dromoions. Figure 4(iii) shows
helix-shaped waves.
Figure 4(iv)–(vi) shows the same behavior as in Figs. 4(i)-(iii).

(β2 − 30) (a1s0 − a0s1),

σ (t) = −5β3
2ν(t)

(
4c22ms20 − 4c1c2ms1s0 + c21s

2
1

)

(β2 − 30) 2 (β2 − 10β3) s
2
1γ (t),

h(t) = 1

K

(
4c22ms20 − 4c1c2ms1s0 + c21s

2
1

)
2β5

2ν(t)
(
−100

(
β2
3γ (t)2

−15β3γ (t)2 − 225α(t)ν(t))

+β2
2

(
25α(t)ν(t) + 4γ (t)2

)

−30β2

(
50α(t)ν(t) + (β3 + 5) γ (t)2

))
,

K = β1 (β2 − 30) 5 (β2 − 10β3)
2s41γ (t)2. (32)

The solution of (5) is

ψ(x, y, t) = P

Q
, P = − (60(m − 1)s0(c2s0 − c1s1)

(

a0 − 1

2c2
a1 (c1 +

√
4c2ms0 (c2s0 − c1s1)

s21
+ c21Tanh

[
1

2

√
4c2ms0 (c2s0 − c1s1)

s21
+ c21

(B(t) − 5β3
2 yν(t)

(
4c22ms20 − 4c1c2ms1s0 + c21s

2
1

)

(β2 − 30) 2 (β2 − 10β3) s21γ (t)

− β2x

β2 − 30
)

]))

,

Q = (a1s0 − a0s1)(β2 − 30)(s0 − 1

2c2
s1(c1 +

√
4c2ms0 (c2s0 − c1s1)

s21
+ c21Tanh

[
1

2

√
4c2ms0 (c2s0 − c1s1)

s21
+ c21 (B(t)

−5β3
2 yν(t)

(
4c22ms20 − 4c1c2ms1s0 + c21s

2
1

)

(β2 − 30) 2 (β2 − 10β3) s21γ (t)

− β2x

β2 − 30
)

]

)),

B(t) =
∫ t

0
h(s)ds, (33)

where h(t)is given in (32).
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The waves functions u and v are

u(x, y, t) = P1
Q1

,

P1 = −60(m − 1)Sech

⎡

⎣

√
4c2ms0 (c2s0 − c1s1) + c21s

2
1

2s1

(B(t) − 5β3
2 yν(t)

(
4c22ms20 − 4c1c2ms1s0 + c21s

2
1

)

(β2 − 30) 2 (β2 − 10β3) s21γ (t)

− β2x

β2 − 30
)

]2

β2c2s0 (c2s0 − c1s1)
(
4c22ms20 − 4c1c2ms1s0 + c21s

2
1

)
,

Q1 = s21 (β2 − 30) 2 (−2c2s0 + s1 (c1

+ 1

s1

√
4c2ms0 (c2s0 − c1s1) + c21s

2
1

Tanh

⎡

⎣

√
4c2ms0 (c2s0 − c1s1) + c21s

2
1

2s1

(B(t) − 5β3
2 yν(t)

(
4c22ms20 − 4c1c2ms1s0 + c21s

2
1

)

(β2 − 30) 2 (β2 − 10β3) s21γ (t)

− β2x

β2 − 30
)

]))2

, (34)

v(x, y, t) = P2
γ (t) (β2 − 30) s21Q1

,

P2 = −300(m − 1)Sech

[
1

2

√
4c2ms0 (c2s0 − c1s1)

s21
+ c21

(B(t) − 5β3
2 yν(t)

(
4c22ms20 − 4c1c2ms1s0 + c21s

2
1

)

(β2 − 30) 2 (β2 − 10β3) s21γ (t)
− β2x

β2 − 30
)

]2

β3
2 c2s0 (c2s0 − c1s1) ν(t)

(
4c22ms20 − 4c1c2ms1s0 + c21s

2
1

) 2. (35)

The functions u and v given in (34) and (35) are
displayed in Fig. 5 (i)–(vi).

4.2 When p = 2 and k = 2

We consider (10) and the AEs

gz(z, t) =
√
c2g(z, t)2 + c1g(z, t) + c0

(m1g(z, t) + m0) ,

gt (z, t) = h(t)
√
c2g(z, t)2 + c1g(z, t) + c0

(m1g(z, t) + m0) . (36)

From (10) and (36) into (6), it leads to

A′(t) = 0, c0 = c21
4c2

,

σ (t) = − 5 (c1m1 − 2c2m0)
2ν(t)

32c2γ (t)
,

μ(t) = − 1

2
, A(t)

=
√
3
√−β3s21

√
2c2m0 − c1m1

√
2c2m0 − c1m1 (c1m1 − 2c2m0)

4β3
√
c2s1 (4a0c2m1 − a1 (2c2m0 + c1m1))

,

h(t) = (c1m1 − 2c2m0)
4ν(t)

(
25α(t)ν(t) + 4γ (t)2

)

512β1c22γ (t)2
,

s0 = 1

4
s1

(
c1
c2

+ 2m0

m1

)

. (37)

The solution of (5) is

ψ(x, y, t) = P

Q
, = √

3
√
c2m12c2m0 − c1m1

(

a1(m0 exp(
1

2

√
c2m0(B(t)

− 5y (c1m1 − 2c2m0)
2ν(t)

32c2γ (t)
− x

2
)

−c1 exp(
c1m1(B(t) − 5y(c1m1−2c2m0)

2ν(t)
32c2γ (t) − x

2 )

2
√
c2

))

+a0(2c2 exp(
c1m1(B(t) − 5y(c1m1−2c2m0)

2ν(t)
32c2γ (t) − x

2 )

2
√
c2

)

−m1 exp

(
1

2

√
c2m0(B(t)

− 5y (c1m1 − 2c2m0)
2ν(t)

32c2γ (t)
− x

2
)

)

)

)

,

Q = 2c2 exp(
c1m1(B(t) − 5y(c1m1−2c2m0)

2ν(t)
32c2γ (t) − x

2 )

2
√
c2

)

+m1 exp

(
1

2

√
c2m0(B(t) − 5y (c1m1 − 2c2m0)

2ν(t)

32c2γ (t)
− x

2
)

)

√−β3 (4a0c2m1 − a1 (2c2m0 + c1m1)) , B(t) =
∫ t

0
h(s)ds,(38)

where h(t) is given in (37).
The two wave functions u and v are
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1618 H. I. Abdel-Gawad

Fig. 5 Figure 5 (i)–(vi). The 3D and contour plots of u and
v are displayed against y and t for two values of x , in Fig.
5(i)–(iii) and (v)-(vi), respectively. When ν(t) = 2 sin(5(t −
5))(cos(5(t−5))+2.), α(t) = 3e−0.3t sin(5(t−5))+cos(5(t−
5)), β1 = 0.2, γ (t) = 0.03

√
cos(5(t − 5)) + 2, β2 = 0.1, c1 =

0.05, c2 = 0.5, β3 = 5, s1 = 1.2, s0 = 0.5,m = 0.7.

Figure 5(i) and (ii) shows waves similar to those created behind
and in front of dams. Figure 5 (iii) shows two sets of separated
waves.
Figure 5(iv)–(vi) shows doubly periodic waves.

u(x, y, t) = P1
Q1

, P1 = √
3m1 (c1m1 − 2c2m0) (c1m1 − c2m0)

exp

(

− (c2m0 + c1m1)
(
4c2 (4γ (t)(x − 2B(t)) − 5c1m0m1yν(t)) + 20c22m

2
0yν(t) + 5c21m

2
1yν(t)

)

64c3/22 γ (t)

)

,

Q1 = 4
√−β3(2c2 exp

⎛

⎝
c1m1(B(t) − 5y(c1m1−2c2m0)

2ν(t)
32c2γ (t) − x

2 )

2
√
c2

⎞

⎠ +

m1 exp(
1

2

√
c2m0(B(t) − 5y (c1m1 − 2c2m0)

2ν(t)

32c2γ (t)
− x

2
)))2, (39)

v(x, y, t) = P2
16c2γ (t)Q1

, P2 = 5
√
3m1 (c1m1 − 2c2m0)

3 (c1m1 − c2m0) ν(t)

exp

(

− (c2m0 + c1m1)
(
4c2 (4γ (t)(x − 2B(t)) − 5c1m0m1yν(t)) + 20c22m

2
0yν(t) + 5c21m

2
1yν(t)

)

64c3/22 γ (t)

)

. (40)
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By using (39) and (4), the functions u and v are
displayed in Fig. 6 (i)–(vi).

4.3 Double-wave solutions

In this case, two different AEs are used. We write

ϕ(z, t) = A(t)(a1g1(z,t)+a2g2(z,t)+a0)
s1g1(z,t)+s2g2(z,t)+s0

,

g1z(z, t) = c1g1(z, t) + c2g2(z, t),
g1t (z, t) = h(t) (c1g1(z, t) + c2g2(z, t)) ,

g2z(z, t) = d1g1(z, t) + d2g2(z, t),
g2t (z, t) = h(t) (d1g1(z, t) + d2g2(z, t)) .

(41)

From (41) into (6), we get

A(t) = 1

β3 (a2s0 − a0s2) 2
(2a2β3s

2
0 (c1s2 − c2s1) + 2a0β3s2s0 (c2s1 − c1s2)

−√
β3 (4β3 − 9)s0 (a2s0 − a0s2) (c2s1 − c1s2)),

σ (t) = −15
(√

β3 (4β3 − 9) + 2β3
)
2
(√

β3 (4β3 − 9) + 4β3
)
2 (c2s1 − c1s2) 2ν(t)

8β2
3

(
2
√

β3 (4β3 − 9) + 4β3 − 3
)
2s22γ (t)

,

μ(t) = −3

2
, d2 = −c2s1

s2
+ c1 + d1s2

s1
, d1 = c2s21 − 2c1s1s2

s22
, β2 = 30β3,

h(t) = P

Q
, P = −

(
243(2

√
β3(4β3 − 9) + 4β3 − 3)3s50(a2s0 − a0s2)

5

(c1s2 − c2s1)
9(32β2

3 + 9 + 4
(
4
√

β3 (4β3 − 9) − 15
)

β3

−12
√

β3 (4β3 − 9)) ν(t)
(
25α(t)ν(t) + 4γ (t)2

))
,

Q = 32s42β1

(
2s0(a2s0 − a0s2)(c2s1 − c1s2)

√
β3 (4β3 − 9) + a2(4β3 − 3)s20 (c2s1 − c1s2)

+ a0(4β3 − 3)s0s2(c1s2 − c2s1))
5 γ (t)2

)
. (42)

ψ(x, y, t) = (
√

β3(4β3−9)+2β3)s0(c1s2−c2s1)(a2B(t)(k1s1+k2s2)e
c2s1z
s2 +a0s2ec1z)

β3s2(a2s0−a0s2)(B(t)(k1s1+k2s2)e
c2s1z
s2 +s0ec1z)

,

z = − y
(
15(

√
β3(4β3−9)+2β3)2(

√
β3(4β3−9)+4β3)2(c2s1−c1s2)2ν(t)

)

8β2
3(2

√
β3(4β3−9)+4β3−3)2s22γ (t)

− 3x
2 ,

B(t) = ∫ t
0 h(s)ds,

(43)
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Fig. 6 Figure 6 (i)–(vi). The 3D and contour plots of u and v are
displayed against y and t for two values of x , in Fig. 6(i)–(iii) and
(v)-(vi), respectively. When ν(t) = 0.2 sin(5(t − 5))(cos(5(t −
5)) + 2.), α(t) = 0.3e−0.3t sin(5(t − 5)) + cos(5(t − 5)), β2 =
0.1, c2 = 1.5, β3 = −1.5s1 = 1.6, s0 = 1.3,m1 = 1.2,m0 =
−1.3, γ (t) = 3

√
cos(5(t − 5)) + 2, β1 = 1.3, c1 = −1.6.

Figure 6(i) and (ii) shows wave breaking which may occur near
barriers, near rocky ocean shores, or near boat sailing. Figure 5
(iii) shows separated waves.
Figure 6(iv)–(vi) shows doubly periodic waves.

where h(t)is given in (42).
The wave functions u andv are

u(x, y, t) = P1
Q1

, P1 = 3 exp(
1

8s32γ (t)
3(c2s1 + c1s2)(s

2
2 (45c

2
1 yν(t) + 4xγ (t))

+45c22s
2
1 yν(t) − 90c1c2s2s1yν(t)))

(√
β3 (4β3 − 9) + 2β3

)
s0B(t) (c2s1 − c1s2)

2

(k1s1 + k2s2) , Q1 = 2β3s
2
2

(

s0 exp(
3c2s1

(
s22

(
45c21 yν(t) + 4xγ (t)

) + 45c22s
2
1 yν(t) − 90c1c2s2s1yν(t)

)

8s32γ (t)
)

B(t) (k1s1 + k2s2) + exp(
3c1

(
s22

(
45c21 yν(t) + 4xγ (t)

) + 45c22s
2
1 yν(t) − 90c1c2s2s1yν(t)

)

8s22γ (t)
)

)2

, (44)

v(x, y, t) = P2
4s22β

2
3

(
2
√

β3 (4β3 − 9) + 4β3 − 3
)
2γ (t)Q1

, P2 = 15 exp(
1

8s32γ (t)
3(c2s1 + c1s2)

(s22 (45c
2
1 yν(t) + 4xγ (t)) + 45c22s

2
1 yν(t) − 90c1c2s2s1yν(t)))s0B(t)

(c2s1 − c1s2)
4 (k1s1 + k2s2)

(√
β3(4β3 − 9) + 2β3

)
3
(√

β3(4β3 − 9) + 4β3

)
2ν(t). (45)
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Fig. 7 Figure 7 (i)–(iv). The 3D plots of u and v are displayed
against y and t for two values of x , in Figs. 7(i) and (ii) and 6
(iii) and (iv), respectively.When ν(t) = 2 cos(25(t−5)), α(t) =
5 sin(15(t − 5)) + cos(15(t − 5)), s1 = 0.6, s0 = 0.5, β1 =
3, c1 = 0.6, c0 = 0.4, a0 = 2.5, a1 = 0.5, a2 = 2.5, γ (t) =
3e0.5t , β2 = 0.1, c2 = 0.5, β3 = 3, s2 = 3, k1 = 1, k2 = 2.

Figure 7(i) shows different waterfall structures, while 7(ii) shows
bulge and internal waves similar to those created by near a barrier
(island).
Figure 7(iii) and (iv) shows waves similar to those created near
a thin barrier.

Equations (44) and (45) are used to display u and v
in Fig. 7(i)–(iv).

5 Discussions

In the present work, multiple different waves struc-
tures were found. Attention is focused to simulate these
waves to those created in a nonuniform fluid, that is, to
waves created near a solid boundary.

(a) Figure 1(i) shows double-U-shape internal (hol-
lowed waves). Figure 1(ii) shows U-shape and S-shape
bulge waves.

Figure 1(iv) shows U-shape internal (hollowed
wave) and S-shape bulge wave.

(b) Figure 2(i) and (ii) showswaterfalls. Figure 2(iv)
shows doubly periodic waves.

Figure 2(iv) and (v) shows towering rogue wave and
internal rogue wave ( near submarine).
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(c) Figure 3(i) and (ii) shows saddle ( Fan waves)
with periodic waves tail. Figure (iii) shows saddle
waves.

Figure 3(iv) and (v) shows periodic waves cascade.
(d) Figure 4(i) and (ii) shows internal dromoions.

Figure 4(iii) shows helix-shape waves.
(e) Figure 5(i) and (ii) shows waves similar to those

created behind and in front of dams.
(f) Figure 7(i) shows different waterfall structures,

while 7(ii) shows bulge and internal waves similar to
those created by near a barrier (island).

An experimental work shows rogue wave formation
a water tank (which is of solid boundary). This consol-
idates the results in Fig. 2. Sea also [51].

6 Conclusions

TheCaudrey–Dodd–Gibbon–Kotera–Sawada equation
is an integro-differential equation that describes two-
layer fluid interaction. It was currently studied in the
literature when it is with constant coefficients, while,
in the non-autonomous version, it was rarely studied.
Such equation is of time-dependent coefficients. In the
works carried in the literature, in this area, the con-
cepts of two-layer fluid interaction and the notion of
nonuniform-fluidwere not invoked.Here, these charac-
teristics are taken into consideration. It is shown that the
time-dependent coefficients play a crucial role in deter-
mining the waves geometry. Here, the later equation
version is considered, which describes waves induced
by two-layer nonuniformfluid. In this fluid, the velocity
is space dependent at a fixed time. It stands for waves
created near solid surfaces, boats, dams, networks of (
under ground) canals, and submarine. The exact solu-
tion of the of the later equation version is foundbyusing
the extended unified method, which is a more efficient
method when compared with those used in the present
case, as it is of lower time cost in symbolic computation.
A class of exact solutions are obtained and they are rep-
resented graphically. A variety of waves structures are
revealed, waves similar to those created, behind and in
front of dams, near boat sailing, water fall, and internal
waves near submarine. The results found in this paper
can be utilized to explain some complex phenomena
in oceans and seas. In future works, the extended uni-
fiedmethodwill be used to investigate waves generated

in inhomogeneous or heterogeneous (inhomogeneous-
non-uniform) fluids.
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