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Abstract A crucial challenge encountered in diverse

areas of engineering applications involves speculating

the governing equations based upon partial observa-

tions. On this basis, a variant of the sparse identifica-

tion of nonlinear dynamics (SINDy) algorithm is

developed. First, the Akaike information criterion

(AIC) is integrated to enforce model selection by

hierarchically ranking the most informative model

from several manageable candidate models. This

integration avoids restricting the number of candidate

models, which is a disadvantage of the traditional

methods for model selection. The subsequent proce-

dure expands the structure of dynamics from ordinary

differential equations (ODEs) to partial differential

equations (PDEs), while group sparsity is employed to

identify the nonconstant coefficients of partial differ-

ential equations. Of practical consideration within an

integrated frame is data processing, which tends to

treat noise separate from signals and tends to

parametrize the noise probability distribution. In

particular, the coefficients of a species of canonical

ODEs and PDEs, such as the Van der Pol, Rössler,

Burgers’ and Kuramoto–Sivashinsky equations, can

be identified correctly with the introduction of noise.

Furthermore, except for normal noise, the proposed

approach is able to capture the distribution of uniform

noise. In accordance with the results of the experi-

ments, the computational speed is markedly advanced

and possesses robustness.

Keywords Nonlinear dynamical systems � Sparse
identification � Akaike information criterion � Group
sparsity � Identification of noise distribution

1 Introduction

Across a range of engineering fields, if the form of the

governing equations is clearly known, it is possible to

analyze, forecast and control dynamics. However,

because it is impossible to obtain all observed data due

to the complexity of the nonlinear dynamics, solving

the governing equations of nonlinear dynamics has

become a challenging research task. Although models

are initiated from first principles [1], as the latest

motivation toward machine learning, the highlighted

developments posit on data-driven model discovery

[2], with a much broader class of methods, including

Koopman mode decomposition [3–5], dynamic mode

decomposition (DMD) [6, 9], neural networks

[7, 8, 12, 31], equation-free modeling [10], and

nonlinear Laplacian spectral analysis [11]. Advance-

ments regarding parsimonious models, which strike a

balance between accuracy and complexity, are partic-

ularly notable.
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In this line of evolution, innovative achievements

utilizing symbolic regression [12] were able to directly

realize nonlinear dynamics from data. Recently,

sparsity-promoting technologies via regularization

have been employed to robustly find the sparse

representation in the space of the potential functions

for nonlinear dynamics, incorporating the least abso-

lute shrinkage and selection operator (LASSO) [13],

sequentially thresholded least squares (STLSQ)

[14, 24], stagewise regression [15], basis pursuit

denoising (BPDN) [16], and matching pursuits [17].

Superior model discovery demands a severe tech-

nology for validation. Model selection [18–23] built on

Occam’s Razor filters parsimonious, explanatory and

generalizable models from an unknown feature library

via Pareto analysis. Furthermore, a well-selectedmodel

can be evaluated by information loss between observed

data and model-generated data via information criteria,

such as the Akaike information criterion (AIC) [19] or

Bayesian information criterion (BIC) [20].

The sparse identification of nonlinear dynamics

(SINDy) [24] algorithm is adopted in the context of

data-driven model discovery and sparse regression. Its

developments are discussed in Sect. 1.1, and the

contributions of this paper are outlined in Sect. 1.2.

1.1 Overview of SINDy

As the SINDy algorithm directly obtains the governing

equations of the nonlinear dynamics through partially

known data, its extensions have existed across various

engineering and science fields due to its particular

architecture. It frames the problem for solving governing

equations of nonlinear dynamics as the sparse regression

framework via a nonlinear, predefined function library.

Table 1 outlines a review of the SINDy algorithm.

As seen in Table 1, the extensions of the SINDy

algorithm have been classified by modified architec-

ture and distinct applications. Control terms or exter-

nal forcing are introduced to augment the potential

nonlinear function library [25], even for rational

nonlinearities [26], integrating the alternating direc-

tion method [27] to solve the implicit function in the

null space. In addition, since Lorenz-like systems [28]

are exceedingly sensitive to initial conditions, the

dismissed terms or discontinuous points [29] may be

considered.

More recently, Poincaré mappings [30], intrinsic

coordinates [31], constrained physical laws [32], and

integral forms of the SINDy model [33] have been

incorporated into the candidate function library to

obtain well-selected models.

The process of the sparse regression problem can be

recast as a convex problem. Therefore, convex relax-

ation regularization [34, 35] is embedded in the native

SINDy frame for parameter estimation except for its

inadequate robustness analysis. Bootstrap aggregating

is utilized to robustify the SINDy algorithm [36].

Furthermore, spike-and-slab prior, regularized horse-

shoe prior [37] or Bayesian inference [38] is consid-

ered to promote robustness for limited data.

Additionally, clustering is integrated into the SINDy

model to identify the turning point for infectious

disease [39, 40]. The underlying idea behind the

SINDy may be deeply exploited to exceedingly

extended areas, such as biology [26], optics [41] and

physical fluids [42, 43]. Additionally, Zhang et al.[14]

provided the proof of the convergence of SINDy, and

optimization techniques have been utilized to reduce

the derivative error in the original SINDy algorithm

[44]. Afterward, the Python package for SINDy was

explored [45, 46].

1.2 Contributions of this work

The proposed technique in this work focuses on the

improved framework of the SINDy algorithm to

identify the coefficients of a class of typical nonlinear

dynamics and the noise distribution. The principle

dedications and innovations of this paper are illus-

trated as follows.

(1) A variant method of the SINDy is developed

with the Akaike information criterion to directly

identify governing equations from data.

(2) Model selection is integrated with the original

SINDy framework to identify the number of

terms of nonlinearities in dynamics.

(3) The group sparsity is embedded in the sparse

regression to learn the coefficients of PDEs due

to the increased complexity of nonlinear

dynamics.

(4) Considering the situation in which noise exists

[53], input data may be polluted by noise or

other perturbation elements. To avoid generat-

ing error for derivative estimation, it is required

to divide the observations into noisy estimations

and estimated measurement data to
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Table 1 Overview of SINDy

Classification Literature Method Modification/Field Objective

Candidate

function

library

Brunton.

et al. [25]

SINDYc (SINDy with

control)

Include external actuation

and control signals

Generalize the SINDy algorithm to include

inputs and control

Mangan.

et al. [26]

Implicit-SINDy Rational function

nonlinearities with cross

terms

Infer networked nonlinear dynamical

systems

Quade et al.

[29]

Abrupt-SINDy Either additional, deleted,

or modified model terms

Learn parsimonious models of a system in

response to abrupt changes

Kaiser et al.

[47]

SINDy-MPC (model

prediction control)

Include the effects of

actuation

Enhance data-driven control of physical

systems

Champion

et al. [31]

Autoencoder-SINDy Include intrinsic

coordinates

Discover a coordinate transformation into a

reduced space

Bramburger

et al. [30]

UPO-SINDy

(unstable periodic

orbits)

Contain parameters for

Poincaré mappings

Produce parameter dependent Poincare

mappings to stabilize UPOs

Kaptanoglu

et al. [32]

Constrained-SINDy Incorporate known

physical laws

Build a connection to the large-scale

Galerkin in fluid mechanics

Wei [33] Integral-SINDy Contain the integral form

of state equations

Identify model structure and parameters of

nonlinear ODEs

Hoffmann

et al. [48]

Reactive-SINDy Incorporate concentration

time series

Estimate a parsimonious reaction network

Sparse

regression

Champion

et al. [35]

SR3(sparse relaxed

regularized

regression)

Additional regularizer for

auxiliary variable

Solve a relaxation of the regularized problem

Chu et al.

[49]

Lagrangian-SINDy Transform the naive

formulation as the

Legendre form

Learn interpretable and sparse formulations

of overall energy and the Lagrangian

Dai et al.

[50]

Extended-SINDy Stepwise Sparse Regressor

(SSR)

Detect the dynamic behavior from data

Fasel et al.

[36]

Ensemble-SINDy Incorporate the bootstrap

aggregating (bagging)

Robustify the SINDy algorithm

Hirsh et al.

[37]

UQ-SINDy

(uncertainty

quantification)

Add the spike-and-slab
prior and the regularized
horseshoe prior

Promote robustness against noise

measurements for out-of-sample forecast

Ram et al.

[38]

Bayesian-SINDy Combine with the

neuronized priors

Handle parameter and structural model

uncertainties

Modified

structure

Brunton

et al. [51]

HAVOK (Hankel

alternative view of

Koopman analysis)

Integrate with delay

embedding and

Koopman theory

Decomposition of chaotic dynamics into

linear models using forcing actuation

Loiseau

et al. [52]

SINDy-KNN (K-

nearest neighbors)

Incorporate the KNN to

map into the low-

dimensional space

Yield interpretable nonlinear models from

measurement data

Kaheman

et al. [53]

Modified-SINDy Integrate with the

automatic differential for

neural networks

Denoise the data and parametrize the noise

probability distribution

Dam et al.

[54]

Bifurcation-SINDy Combine with the

bifurcation analysis

Learn a underlying model from simulations

of a convection system
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simultaneously denoise the measurements and

to determine the probability distribution of the

noise.

1.3 Structure of the article

The remaining structure is arranged as follows: Sect. 2

provides the overall framework of the proposed

method. Section 3 elaborates the mathematical theory

for the proposed method, including the SINDy, the

sparse model selection with the Akaike information

criterion (SINDy-AIC), and the group sparsity identi-

fication. Relevant results for experiments are displayed

in Sect. 4. The discussion and further research are

described in Sect. 5. Finally, the meaning of symbols

appeared in this work is synthesized in ‘‘Appendix A’’.

2 Framework of the proposed approach

In this work, the SINDy algorithm is extended to

integrate with the Akaike information criterion (AIC)

and the group sparsity to identify a class of typical

ODE and PDE models. Noise with normal and

uniform distributions is introduced to test the

robustness of the proposed approach. The framework

and the flowchart of the suggestedmethod in this paper

are displayed in Figs. 1 and 2. The primary process is

described as follows:

(1) Step 1: Sparse identification of nonlinear

dynamics (SINDy). A set of the time series data

extracted from several ODE systems, prescribed

asX; _X, is imported into the SINDy model and a

predefined library HðXÞ is constructed on the

basis of a priori physical information. Next, the

sparsity threshold k is utilized to iteratively

regularize the nonzero entries nl in the matrix N
to obtain a sparse model ni.

(2) Step 2: Sparse model selection. The SINDy

algorithm provides a combinatorially large

amount of candidate models ModelðjÞ in the

training set X. Then the Akaike information

criterion (AIC) is incorporated into the SINDy

to select the optimal model Modelðindsð1ÞÞ by
hierarchically ranking the AIC scores ICðjÞwith
the inclusion of different categories of support

values in the validation set Y.

(3) Step 3: Sequentially thresholded group ridge

regression. In the primitive SINDy architecture,

the sequentially thresholded least squares is

Table 1 continued

Classification Literature Method Modification/Field Objective

Mathematical

theory

Zhang et al.

[14]

SINDy Convergence performance Make a proof that SINDy approximates to

local minimizers of an unconstrained l0-

penalty least squares issue

de Silva

et al. [45]

PySINDy (Python for

the SINDy)

Code package for the

SINDy algorithm

A Python package for SINDy

Messenger

et al.[55]

Weak-SINDy Formulate the problem as

the weak form

Data-driven reconstruction of model

coefficients from measurements

Wu et al.

[44]

SINDy Error processing from an

optimize perspective

Improve the accuracy of data

Cortiella

et al. [56]

SINDy Consider regularized

weight

Determine governing equations of nonlinear

dynamics from noisy observations

Application Jiang et al.

[40]

SINDy-LM

(Levenberg–

Marquardt)

Disease (especially for

COVID-19)

Analyze the infectious disease in both

Chinese mainland and other countries

Bhadriraju

et al. [57]

SINDy Chemistry Achieve the adaptive model identification

Fukami

et al. [42]

CNN-LSTM-SINDy Fluid flows Investigate influence on the parameter choice

Loiseau

et al. [43]

SINDy Thermal convection

dynamics

Predict a bifurcation of the high-dimensional

system

Jadhav et al.

[58]

SINDy Video process Extract related intelligence from actual

videos of strongly stochastic systems
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employed to learn the sparse terms nl incorpo-

rated in each candidate function library hl. Due

to the complex structure of the parametric PDE

dynamics, the group sparsity is used to learn the

dependently parametric coefficients with

function libraries and sparse vectors bundled

into a group C, where the ridge regression is

leveraged to threshold the coefficients ni.

(4) Step 4: Automatic noise identification. In gen-

eral, the robustness of this approach should be

Fig. 1 Schematic of the proposed technique process
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considered. First, the noise estimation N̂ is

achieved by presmoothing the noisy observation

U and obtaining the estimated value of the clean

measurements X̂ and its derivative
_̂
X. Finally,

the technique makes use of optimization and the

SINDy algorithm to synchronously recognize

the distribution of the noise and to denoise the

observations.

3 Methods

3.1 SINDy

Here, we consider the form of equations for dynamical

systems

d

dt
xðtÞ ¼ fðxðtÞÞ ð1Þ

Fig. 2 Overall calculation flow of the adopted method
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The function f(x(t)) denotes the governing equations

of nonlinear dynamical systems, and the vector xðtÞ 2
Rn indicates the shape of a system at time t.

Actually, there exist only a few important terms in

governing equations for physical systems of interest,

so that the right-hand side of the equations is assumed

to be sparse in the space of potential functions. To

identify the form of Equations f from measurements,

observations x(t) extracted from dynamical systems in

time history and sampled at several times t1; t2; . . .; tm

are arranged in the following matrix:

X ¼

xTðt1Þ
xTðt2Þ

..

.

xTðtmÞ

2
6664

3
7775 ¼

x1ðt1Þ x2ðt1Þ � � � xnðt1Þ
x1ðt2Þ x2ðt2Þ � � � xnðt2Þ

..

. ..
. . .

. ..
.

x1ðtmÞ x2ðtmÞ � � � xnðtmÞ

2
6664

3
7775

ð2Þ

However, as the observed data will be employed to

learn a model that can capture the entire trajectory of

the motion of systems, the amount of observations

should not be extremely small. In this way, the data

can be augmented by coordination transformation or

matrix transformation [59]. Here, the derivative _xðtÞ
calculated by numerically approximate or total vari-

ation regularization is applied as the augmentation of

the data dimension, which can be represented by

_X ¼

_xTðt1Þ
_xTðt2Þ
..
.

_xTðtmÞ

2
6664

3
7775 ¼

_x1ðt1Þ _x2ðt1Þ � � � _xnðt1Þ
_x1ðt2Þ _x2ðt2Þ � � � _xnðt2Þ
..
. ..

. . .
. ..

.

_x1ðtmÞ _x2ðtmÞ � � � _xnðtmÞ

2
6664

3
7775

ð3Þ

Realistically, X and _X are often contaminated with

noise. Relying on the noise, it may be indispensable to

filter X and _X. Otherwise, the vector of sparse

coefficients does not hold exactly. Total variation

regularization [60] is utilized to denoise the derivative
_X to counteract the differentiation error.

As control variables constituting dynamics can be

established by individual customs, it is promising to

make an assumption that the control variables can be

deemed known terms. Accordingly, a candidate

Table 2 The pseudo-code of Algorithm 1
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function, which includes all the possible nonlinearities

composed of control variables in the form of permu-

tations, including constant, polynomial or trigonomet-

ric terms, can be constructed. The specific form can be

defined by the form of the governing equations of

nonlinear dynamics,

HðXÞ ¼
j j j j j j
1 X XQ2 XQ3 � � � sinðXÞ cosðXÞ � � �
j j j j j j

2
4

3
5

ð4Þ

where XQ2 ;XQ3 denotes a higher order polynomial

term. For instance, XQ2 represents the quadratic

nonlinearities with respect to the state x, the exact

form of which is shown as

XQ2 ¼

x21ðt1Þ x1ðt1Þx2ðt1Þ � � � x22ðt1Þ � � � x2nðt1Þ
x21ðt2Þ x1ðt2Þx2ðt2Þ � � � x22ðt2Þ � � � x2nðt2Þ

..

. ..
. . .

. ..
. . .

. ..
.

x21ðtm1Þ x1ðtmÞx2ðtmÞ � � � x22ðtmÞ � � � x2nðtmÞ

2
6664

3
7775

ð5Þ

At this point, Eq. (1) can be transformed into the

form of Eq. (6). In this case, it is assumed that the left-

hand side of the equation and the first term on the

right-hand side of the equation represented as a self-set

library are known, and the quantity to be obtained is

the matrix of coefficients that characterize the control

terms N ¼ n1 n2 . . . nn½ �:
_X ¼ HðXÞN ð6Þ

Simply put, the problem for obtaining specific

governing equations is converted to a requirement for

the vector of sparse coefficients. Naturally, symbolic

regression is exploited to simplify the issue. There-

fore, Eq. (6) is substituted with Eq. (7).

_xl ¼ f lðxÞ ¼ HðxTÞnl ð7Þ

Here, HðxTÞ; which is a numerical matrix, is a

vector of the symbolic function of elements of x with

respect to HðXÞ. Naturally, the final form of the

equations to be solved is indicated by

_x ¼ fðxÞ ¼ NTðHðxTÞÞT ð8Þ

where the superscript T denotes the matrix transpose.

Each column of Eq. (6) demands a different

optimization to obtain the sparse vector of coefficients

nl for the lth row equation. To mitigate computational

errors caused by inconsistent data dimensions or

excessively small entries of X, columns of HðXÞ may

be normalized. In view of presupposing that most

coefficient matrices are sparse in an appropriate basis,

a sparse solution to an overdetermined system with

noise should be sought. Here, the sequentially thresh-

olded least squares [24] is used, the particular form of

which is given by

min
1

2
_X�HðXÞN

�� ��2þkRðNÞ ð9Þ

where k is the sparsity knob and the R(�) denotes the
regularized function.

Once the coefficient matrix has been acquired, the

identified model through SINDy is obtained, which

can also be considered a reconstruction or prediction

of the ground truth system. The detailed flow is shown

in Figs. 1 and 2, and Algorithm 1 outlines its pseudo-

code in Table 2.

3.2 Sparse model selection (SINDy-AIC)

For higher accuracy, the models obtained by regres-

sion analysis may be further refined in conjunction

with statistical learning methods. There are many

model selection methods, including the Akaike infor-

mation criterion (AIC) [19, 20], Bayesian information

criterion (BIC) [21], deviance information criterion

(DIC) [23] and cross-validation (CV) [22].

In this paper, the AIC is chosen as the statistical

score for model comparison from many combinatori-

ally probable models. Originally pioneered by Akai-

ke.H. [19, 20], AIC incorporated the principles of

information entropy and Kullback–Leibler (K-L)

distance [18] and built upon the notion of maximum

likelihood estimation to appraise parameters. Given a

candidate Model i, its corresponding AIC value is

AICi ¼ 2k � 2 lnðLðx; l̂ÞÞ ð10Þ

where Lðx; l̂Þ ¼ Pðxjl̂Þ denotes the conditional prob-
ability function for state variable x under the condition

of the estimation l̂, and k indicates the number of free

parameters. It should be noted that 2 k represents a

penalty enforced on the lower bound of the AIC

values. In a wide variety of cases, the sampled data are

finite datasets and a correction to the AIC value is

required by

AICc ¼ AIC þ 2ðk þ 1Þðk þ 2Þ
ðl � k � 2Þ ð11Þ
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where l refers to the dimension of the observed data. In

linear regression, the residual sum of squares (RSS) is

generally applied to least-squares fitting for the

objective function, which is embodied in the form of

RSS ¼
Pl

j¼1 ðyj � gðxj; lÞÞ2, where xj denotes the

independent variable for observation, yj signifies the

observed dependent variable, and the candidate model

is defined by g. Thus, Eq. (10) can be reformulated as

AIC ¼ l lnðRSS=lÞ þ 2k and its value will be used in

Eq. (11).

Indeed, the AIC scores prefer a rescaled criterion

named by AICmin with the value of the minimum AIC

since there are multiple AIC values for each potential

models. In addition, the relative AICc can be linked to

the statistical indicator p-value, so that the relative

AIC values Di ¼ AICi � AICmin can be straightfor-

wardly defined as a strength-of-evidence criterion for

a contrast with informative models [61]. The strong

support value corresponds to the models with Di � 2,

and the weak support is relative to the models with

4�Di � 7, while the models with Di � 10 are inter-

preted as no support.

The observations are divided into a training set and

a validation set to verify the performance of this

approach. The length and the sampling frequency of

the time-series traces in each validation set are the

same as the homologous training data, except for the

initial conditions. For each example in Sect. 4.2, to

validate the noise sensitivity, Gaussian noise with

mean zero and standard deviation e ¼ 1:5� 10�4 is

added to both the training sets and the validation sets.

The sparse threshold k appearing in the validation sets
is optimized by cross-validation.

3.3 Identification of parametric PDEs with group

sparsity

In this section, the partial differential equation func-

tional identification of nonlinear dynamics (PDE-

FIND) [62] is introduced firstly. The mathematical

form of the PDEs with constant coefficients is

formulated as

vt ¼ Nðv; vx; vxx; . . .Þ ¼
Xq

k¼1

Nkðv; vx; vxx; . . .Þnk ð12Þ

where the unknown nonlinear function N(�) is assumed

as the summation of monomial basis functions Nk

comprised by variable v and its differential values, and

the subscripts indicate the partial equation.

For simplicity, identifying a constant coefficient

PDE can be idealized as an overdetermined linear

regression problem Vt ¼ HðVÞn, its detailed formu-

lation is illustrated by

vtðx1; t1Þ
vtðx2; t1Þ

..

.

vtðxn; tmÞ

2
66664

3
77775

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Vt

¼

1 vðx1; t1Þ vxðx1; t1Þ . . . v3vxxxðx1; t1Þ
1 vðx2; t1Þ vxðx2; t1Þ . . . v3vxxxðx2; t1Þ
..
. ..

. ..
. ..

.

1 vðxn; tmÞ vxðxn; tmÞ . . . v3vxxxðxn; tmÞ

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
HðVÞ

n

ð13Þ

Note that measurement matrix Vt 2 Rm9n demon-

strates data sampled on m time instances and n spatial

grids. HðVÞ is a matrix composed with potential

models and n represents the sparse vector of

coefficients.

In contrast to PDE-FIND, the coefficients of either

temporally or spatially parameter-dependent PDEs are

required to be learned in this work. The time-varying

parametric dependent expressions are shown as

vt ¼ Nðv; vx; vxx; . . .; lðtÞÞ

¼
XQ

k¼1

Nkðv; vx; vxx; . . .ÞnkðtÞ ð14Þ

The form of Eq. (14) has similarity to Eq. (12)

except for the parametric term lðtÞ. If the coefficient

estimates are obtained in variable space, nðxÞ is

selected to substitute nðtÞ.
Similar to Eq. (4), the guessing candidate function

library is constructed as

HðvðkÞÞ ¼
j j j j
1 vðkÞ � � � v3v

ðkÞ
xxx

j j j j

0
@

1
A ð15Þ

It encapsulates cross terms constituted by deriva-

tives and parameters, where the form of the series of m

equations is shown by Eq. (16).

v
ðkÞ
t ¼ HðvðkÞÞnðkÞ; k ¼ 1; . . .;m ð16Þ

Unlike the sparse regression problems in SINDy,

the constraint that all the nðkÞ share the same sparsity

threshold is considered in this article. Therefore, the

notion of group sparsity [63] is introduced to group

sets of features in HðvðkÞÞ together. Then Eq. (13) can
be transformed into the block diagonal form
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v
ð1Þ
t

v
ð2Þ
t

..

.

v
ðmÞ
t

2
666664

3
777775

|fflfflfflffl{zfflfflfflffl}
Vt

¼

Hðvð1ÞÞ
Hðvð2ÞÞ

. .
.

HðvðmÞÞ

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~HðVÞ

nð1Þ

nð2Þ

..

.

nðmÞ

2
66664

3
77775

ð17Þ

Similar toEq. (13), the class of equations represented

by Eq. (16) can also be regarded as a solitary linear

system. And the group sparsity will be involved in the

original SINDy algorithm, then Eq. (9) will change to

n̂ ¼ argmin
n

Vt �
X

h2C HðVÞðhÞnðhÞ
���

���
2

2
þk nk k22

ð18Þ

where C denotes the groups, for m time grids and q

potential features in library, C is defined as

C ¼ k þ q � i : i ¼ 1; . . .;m : k ¼ 1; . . .; qf g. And
~HðVÞ indicates the block diagonal matrix HðVÞ.
Indeed, the approach evenly divides the measure-

ments into different time steps or spatial locations with

respect to the varied coefficients. Additionally, the

validation set is constructed with 20% sampled data.

And 20 cross-validation experiments are used to get

the optimal solution to the sparse threshold. Next the

well-selected models will be evaluated with the AIC-

enlightened loss function:

LðnÞ ¼ n ln
~Hn� ~vt

�� ��2
2

n
þ kf

 !
þ 2k ð19Þ

where n represents the amount of rows inH, k denotes

the amount of the non-zero elements in the learned

PDEs, kf indicates the threshold benchmark that exerts

on each model to prevent over-fitting, and ~vt represents

the normalized vector of vt that all terms in it have unit

length.

3.4 Identify noise

In practice, a wide range of systems of interest can be

affected by many adverse factors such as noise, which

are usually ineradicable. Indeed, the challenging

problems in actual application are how to identify

the regime of the noise distribution and how to learn

the type of noise apart from the Gaussian noise with

mean zero and standard variance e ¼ 1.

Crucially, noise can be considered as additional

data added to the clean data [64]. Based on this notion,

the observations u(t) = [u1(t), u2(t), …, up(t)]2 R19p

can be classified into noiseless data x(t) = [x1(t), x2(t),

…, xp(t)]2 R19p and noisy estimation n(t) = [n1(t),

n2(t), …, np(t)]2 R19p.

uðtÞ ¼ xðtÞ þ nðtÞ ð20Þ

Therefore, the candidate function library can also

consist of two parts: the noiseless measurements X =

[x(t1); x(t2); …; x(tl)]2 Rl9p and the noisy measure-

ments N = [n(t1); n(t2); …; n(tl)]2 Rl9p, which is

illustrated as

_U ¼ _Xþ _N ¼ HðUÞN ¼ HðXþ NÞN ð21Þ

Throughout the training, the advent of noise has the

implication on the correctness of the model identifi-

cation. Therefore, it is essential to isolate the noise

from signals as two segments, the noiseless observa-

tions and the noisy observations, whose patterns are

constituted with past states and future states, in which

step q denotes the degree advanced to current snap-

shots. Accordingly, the model is illustrated in integra-

tion form:

xðr þ qÞ ¼ FqðxðrÞÞ ¼ xðrÞ þ
Z trþq

tr

HðxðsÞÞNds

ð22Þ

where HðxðsÞÞN indicates the vector field of the

system, and F(�) denotes the nonlinear dynamics.

The two parts are then distinctly solved for sparse

coefficients, and the result is compromised with the

summation of distinct products. Aiming to diminish

the absolute error between the estimated derivative
_̂X

and the actual derivative HðX̂ÞN, named, ed, which is

shown as

ed ¼ _̂
X�HðX̂ÞN
���

���
2

2
ð23Þ

The additional constraint would be needed to

regularize the Eq. (23) to couple the optimization

parameters N̂ and N. Therefore, the formulation is

revised by

es;r ¼
Xq

l¼�q;l6¼0

xl uðr þ lÞ � n̂ðr þ lÞ � F̂
lðx̂ðrÞÞ

���
���
2

2

ð24Þ
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where xl is used to constrain the numerical error, h is

the decay factor, which is set to 0.9, and the details can

be described as xl ¼ h lj j�1ð0� h� 1Þ. Particularly,

upper triangle symbols represent the estimation value

and the subscripts indicate the time step.

As the validation set is separated for noiseless and

noisy estimation, the loss function is naturally composed

of two elements: numerical error ed and simulation

error es. Additionally, es is provided by the simulation

of the vector field across the overall trajectory.

es ¼
Xk�q

r¼qþ1

es;r

¼
Xk�q

r¼qþ1

Xq

l¼�q;l 6¼0

xl uðr þ lÞ � n̂ðr þ lÞ � F̂
lðx̂ðrÞÞ

���
���
2

2

ð25Þ

LðN; N̂Þ ¼ es þ ed

¼
Xk�q

r¼qþ1

Xq

l¼�q;l6¼0

xk uðr þ lÞ � n̂ðr þ lÞ � F̂
lðx̂ðrÞÞ

���
���
2

2
þ _̂

X�HðX̂ÞN
���

���
2

2

ð26Þ

Since certain errors are bound to exist due to the

extra noise, the same performance criterion advocated

by Rudy et al. [65] is applied to judge the performance

of the model. Specifically, these errors are the noise

estimation error EN , the vector field error Ef and the

simulated trajectory error EP. Notably, the relative

noise estimation error is

EN ¼ 1

k

Xk

l¼1

nl � n̂lk k22 ð27Þ

which is defined by the inconsistency between the true

noise nl and the identified noise n̂l with the mean ‘2
error. The vector field error is

Ef ¼
Pk

l¼1 fðxlÞ � f̂ðxlÞ
�� ��2

2Pk
l¼1 fðxlÞk k22

ð28Þ

which denotes the deviation from the identified vector

field f̂ðxlÞ to the true vector field fðxlÞ with relative

squared ‘2 error. The simulated trajectory error is

EP ¼ 1

Xk k2F

Xl�1

k¼1

xl � F̂
lðxlÞ

���
���
2

2
ð29Þ

which represents the discrepancy between the true

trajectory xl and the forward simulation trajectory

F̂
lðxlÞ, especially, �k kF denotes the Frobenius norm.

The exact process is shown in Figs. 1 and 2.

4 Results

In this section, we demonstrate the effectiveness of the

above methods by several hybrid dynamical systems:

the Van der Pol system, the Rössler system, the

temporally dependent Burgers’ equation and the

spatially dependent Kuramoto–Sivashinsky equation,

respectively. Finally, a class of physical systems are

provided to investigate the robustness of the proposed

approach here.

4.1 Experiment I: Sparse identification

of nonlinear dynamics

4.1.1 Van der Pol system

The Van der Pol system [66] is defined by

_x1 ¼ x2
_x2 ¼ 5ð1� x21Þx2 � x1

�
ð30Þ

The initial condition is given by ½x10; x20� ¼
½�2;�1� and the training set is acquired at interval

[- 25, 25] as the snapshot t = 0.001.

Figure 3a shows a comparison of the actual trajec-

tory with the identified trajectory for the Van der Pol

system in the form of a phase diagram, where it shows

that the learned trajectory is approximated to the true

trajectory with the extremely small error. Figure 3b

decomposes the two-dimensional phase into two

dimensions: x and y. Similarly, the result of the

comparison between the actual time-series data and

the estimated time-series instances on two dimensions

shows that the error between them is extremely small,

even almost zero.

4.1.2 Rössler system

The Rössler system [67] is also used to verify the

performance of SINDy, which is governed by

_x1 ¼ �x2 � x3
_x2 ¼ x1 þ 0:1x2
_x3 ¼ 0:1þ x3ðx1 � 14Þ

8<
: ð31Þ
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This system is simulated with initial condition

x10; x20; x30½ � ¼ ½3; 5; 0�. The training set is sampled

with the interval t = 0.001 from t = 0 to t = 25.

Figure 3c represents the actual Rössler system,

while Fig. 3d is the identified Rössler system via

SINDy. Comparing the two panels, it is known that

SINDy accurately reconstructs the Rössler system.

Simultaneously, the results of the coefficients indicate

that the model error between them is within the range

from 0.01% to 0.05%.

4.2 Experiment II: Sparse model selection

4.2.1 Rössler system

The Rössler system includes three state variable

(m = 3) with a third-order polynomial library

(p = 3). The total number of models is Nc ¼

PNa

i¼1

Na

i

� �
¼ 1023 in the library, each of them is

denoted with Na ¼ m þ p
p

� �
¼ 10 possible mono-

mials. One hundred initial conditions are randomly

given to generate distinct validation sets with identical

dimensions as the training sets, so that 100 cross-

validation experiments are enforced on the validation

set to adjust the values of the hyper-parameter k and to
determine the optimal model to be estimated.

As shown in Fig. 4c–e, there are so sizeable

candidate models selected from the hierarchically

ranked relative AICc that the rescaled relative AICc is

used to narrow the range of candidate models. It is

found that at the position relevant to the value of 6, the

value of the relative AICc falls dramatically. Simul-

taneously, as shown in Fig. 4e, the 6-term model is

equipped with ‘strong support’. Therefore, the model

involving 6 nonlinearities is the optimal model.

(a) (b)

(c) (d)

Fig. 3 Example of nonlinear dynamics to test the performance of the SINDy algorithm
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4.2.2 Van der Pol oscillator

The Van der Pol system is taken for the test case,

whose formulation is governed by Eq. (30), with two

state variables (m = 2) and a sixth-order polynomial

library (p = 6). On this occasion, there exist Na ¼

m þ p
p

� �
¼ 28 potential monomials, and Nc ¼

PNa

i¼1

Na

i

� �
� 2:68435� 108 possible models. One

hundred cross-validation trials are performed for each

system on a validation set of the same dimension as the

training set for ranking AICc.

Only the individual trajectory for each state vari-

able (x and y) of the Van der Pol is employed as input,

as shown in Fig. 5a. SINDy is able to subselect a series

of models from the candidate library, including

models with 1, 2 and 4 terms, as shown in Fig. 5b.

Notably, there is an abrupt drop in the value of relative

AICc at the number of nonlinear terms = 4, and the

support values of the selected models fall into the

strongly supported range, while other models fall into

the unsupported domain according to Fig. 5b. There-

fore, the optimal model selected is the one containing

four nonlinear terms.

Finally, the value of the prediction error of SINDy-

AIC is less than that of SINDy within the range of

noise level from 10�8 to 0.5, as shown in Fig. 5c.

Nevertheless, the larger the noise value is, the greater

the prediction of SINDy-AIC, with a value close to 1.

The robustness of SINDy-AIC can perhaps be the

focus of future research.

4.3 Experiment III: Identify the coefficients

of the partial differential equations

4.3.1 Burgers’ equation

The first example is focused on Burgers’ equation,

which has a nonlinear advection term in the form of a

sinusoidally oscillatory coefficient xðtÞ, which is

defined by

(a) (b) (c)

(e) (d)

Fig. 4 Selected sparse models for the Rössler system with SINDy-AIC
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vt ¼ xðtÞvvx þ 0:1vxx

xðtÞ ¼ � 1þ sinðtÞ
4

� � ð32Þ

Data are generated on the interval [- 8, 8] via the

spectral method and the periodic boundary require-

ments are constrained by k = 256 snapshots and

l = 256 time instances to evenly segment the time

scale and to construct the time-varying dependent

parametric PDE. Our library of candidate functions is

fabricated by employing the cubic order derivatives of

v, which can be multiplied by the fourth-order

derivatives of v. It is necessary to segregate 20% of

the data from each snapshot to be utilized as a

validation set. The proper level of sparsity requires the

optimal k through cross-validation to build the sparse

coefficients.

The consequent time series for the identified

coefficient ~xðtÞ and the true coefficient xðtÞ in the

case of either noiseless data or noisy data are

illustrated in Fig. 6c, d, respectively. The results show

that the parametric coefficients are identified elabo-

rately with subtle error.

4.3.2 Kuramoto–Sivashinsky equation

The Kuramoto–Sivashinsky equation is a nonlinear

PDE that simulates it with spatially varying

coefficients

vt ¼ xðxÞvvx þ nðxÞvxx þ cðxÞvxxxx ð33Þ

where xðxÞ ¼ 1þ sinðp
2

x=LÞ=5, nðxÞ ¼ �1þ
e�ðx�3Þ2=4=5, cðxÞ ¼ �1� e�ðxþ3Þ2=4=5 and L = 20.

The spatially dependent Kuramoto–Sivashinsky equa-

tion is solved mathematically employing a spectral

method on a periodic domain [- 20, 20] with k = 512

snapshots and l = 512 time instances. The library

(a) (b)

(c)

Fig. 5 Selected models for the Van der Pol system with SINDy-AIC
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consists of the product between the derivatives of

v and its cubic order terms up to fourth order.

Figure 7b–d show the differences between the true

coefficients and the learned coefficients in the noise-

free and noisy measurements, respectively. Tradition-

ally, the goodness-of-fit of the model is judged by the

mean square error (MSE) ~Hn� ~vt

�� ��2
2

.
n in Eq. (19).

And the related mean square errors in two cases are

3:92465� 10�6 and 8:54312� 10�3. Obviously, this

method can correctly determine the coefficients for

Kuramoto–Sivashinsky in the former, while it does not

accurately learn the coefficients with the introduce of

noise.

Additionally, the AIC can be employed to

evaluate the discrepancy for true coefficients and

identified coefficients, as shown in Fig. 7e. When

the noise magnitude e is less than 1, the differences

between the identified model and the true model is

close to 0.

In particular, the range of the threshold tolerances,

from jmin to jmax, is initially employed to select the

potential models, where jmin demonstrates the mini-

mum tolerance that has consequences for the sparsity

of the HðVtÞn� Vtk k, and jmax indicates the

minimum tolerance that ensures all coefficients in n
to be zero. And jmin=jmax is illustrated as jmin=jmax¼
jmin=jmax

h2C
nridge

�� ��
2
, where nridge¼ ~HT ~HþkI

� ��1 ~HT ~vt.

The notion of ~H and ~vt are illustrated in Sect. 3.3, k is
the threshold, and I indicates the identity matrix.

Figure 7f provides the model evaluation with the

loss function from Eq. (19). From 50 values of j,
ranging from 10�7 to 10�2 evenly spaced in steps of

10�1, the candidate models will be selected in both

intervals of j from 7:03� 10�4 to 7:98� 10�4 and

from 3:87� 10�3 to 5:00� 10�3. Furthermore, the

models corresponding to jmin within an interval are

overfit to the measurements, while the models related

to jmax are too sparse to predict the coefficients. Then

the AICwill be enforced to yield the optimal model for

the PDEs.

4.3.3 Comparison results

Regarding the validity of the augmented SINDy with

group sparsity, the structure error and the success rate

are introduced. The amount of entries in the model that

(a)  time-series data (b) original coefficients

(c)  identified coefficients (noiseless) (d)  identified coefficients (noise)

xuu
xxu

xuu
xxu

xuu
xxu

Fig. 6 Identified coefficients of parametric Burgers’ equation with or without the introduction of noise
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are abnormally increased or removed are denoted by

the structure error. As seen in Fig. 8a, the indigo area

implies no discrepancy between the discovered model

and the actual model, and the violin patterns quantify

the allocation of inaccurate entries with cross-valida-

tion among 20 models. It is obvious that the

augmented SINDy with group sparsity can handle

30,000 more noise data than SINDy-AIC.

Figure 8b shows the comparison of the success rate

of SINDy, SINDy-AIC and the augmented SINDy

with group sparsity in discovering the coefficients of

Burgers’ equation, where the success rate is denoted

by the average of the results of 15 runs. The

augmented SINDy employs approximately 5 times

less data than SINDy-AIC, and SINDy-AIC utilizes

approximately 2 times less data than SINDy across a

distinct percentage of measurements.

4.4 Experiment IV: Noise identification

4.4.1 Van der Pol System

Notably, the Van der Pol system is taken as the test

instance, and its equation is formulated as Eq. (30).

The system is simulated with two state variables (x

and y), and the prediction step q is set to 1. It is

essential to compute the Jacobian oL
	
oN̂ and oL

	
oN̂

to solve Eq. (26). The optimization problem in

Eq. (26) utilizes TensorFlow2.7 and the Adam opti-

mizer with a learning rate of 0.001 for calculations. To

(a) measurements of Kuramoto-Sivashinsky equation

(c) identified coefficients (noiseless (d) identified coefficients (noise

(f) loss function

(b) original coefficients

(e) Bayesian information criteria

Fig. 7 Identified coefficients of the spatial Kuramoto–Sivashinsky equation and its respective performance indices
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promote the sparsity of the identified model, the

sequentially thresholded is applied to Eq. (26) for

Nloop times.

The initial conjecture of the next iteration was set as

the preceding iteration’s optimization outcome N̂ in

each iteration. Additional parameters for each exam-

ple, such as the noise level, the initial conditions, the

number of iterations Nloop and the sparse threshold k,
are shown in Table 5.

Figure 9 shows the results after applying the

proposed method to the dataset with the introduction

of both 15% uniform and 15% normal measurement

noise. It illustrates that the noise estimation is

approximate to the true measurement noise with the

form of the single simulation trajectory for the time

series, histogram and probability density respectively,

as shown in Fig. 9a, b, c, e, respectively. The error

metrics for each noise distribution shown in Table 3.

4.4.2 Rössler system

The Rössler system is taken as the final example,

whose form is given by Eq. (31).

Data are generated by three input variables (x1,x2
and x3), and levels of 30% artificial noise for uniform

or normal distribution are added.

Similar to the first case in Sect. 4.4.1, a learning

rate of 0.001 of the Adam optimizer and Ten-

sorFlow2.7 are executed to learn the models. Auxil-

iary parameters, including the magnitude of noise,

prediction step q, initial conditions, the amount of

iterations Nloop and sparsity threshold k, are listed in

Table 5.

A total of 2500 time steps from t = 0 to t = 25 are

generated via high-fidelity simulation and then these

data are corrupted with 30% virtual noise in a normal

or uniform distribution. The error metrics for the

property of the algorithm are outlined in Table 4, and it

is shown that the values are approximate to zero.

(a)

(b)

Fig. 8 Comparison results of the augmented SINDy and other methods
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(a) True system vs. Identified system for Van der Pol

(b) Noise estimation with the form of the time series

(c) Histogram for various distributions of noise

(d) Probability density for two kinds of noise distributions

(e) Performance criterions for different distributions of noise

Uniform distribution Normal distribution

Uniform distribution Normal distribution

Uniform distribution Normal distribution

Uniform distribution Normal distribution

Uniform distribution Normal distribution

Noise Truth Noise Estimate Noise Truth Noise Estimate

T
rue system

N
oise

Identified system

T
rue system

N
oise

Identified system

Fig. 9 Identification for two kinds of noise distribution and system reconstruction for van der pol system
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Figure 10 displays the bias in the approximation of

the measurement noise for a single trajectory with the

time series, the simulation evolving into the attractor

and the probability density corrupted by 30% artificial

noise. In the left column, the system is contaminated

by 30% normal measurement noise. Another column

shows the system with 30% uniform noise against the

true system.

The learned results, either the simulation trajectory

or the probability density of various noise distribu-

tions, approach the actual values with minimal error.

Additionally, it is evident that the differences for

uniform observation noise are smaller than the mea-

surements with 30% normal noise, in such an occasion

where the error for 6 iterations declines gradually to

approximately 0.

Finally, a range of canonical systems are provided

to verify the robustness to significant measurement

noise for the algorithm, and their relevant expressions

are formulated as Eqs. (30), (31), (34), (35), (36) and

(37).

_x1 ¼ x2
_x2 ¼ �x1 � 4x31

�
ð34Þ

_x1 ¼ 0:5x1 � 0:025x1x2
_x2 ¼ �0:5x2 þ 0:05x1x2

�
ð35Þ

_x1 ¼ 10ðx2 � x1Þ
_x2 ¼ x1ð28� x3Þ � x2
_x3 ¼ x1x2 � 8=3x3

8<
: ð36Þ

_x1 ¼ x2x3
_x2 ¼ 2ðx1 � x2Þ
_x3 ¼ 5� x1x2

8<
: ð37Þ

The results are boxed in Fig. 11, which shows that

the systems are reconstructed successfully with the

levels of increasing noise, ranging from 5 to 30%.

More broadly, the parameters and the performance

indices for these systems are detailed in Tables 5, 6

and 7.

As the prediction step q, the number of iterations for

denoising the data and sparse threshold affect the

results of this algorithm, ergodic trials are utilized to

undermine the derivative error and to identify the

optimum for the abovementioned parameters, with the

exception of the overwhelming computational

disadvantage.

5 Discussion and conclusion

The incorporation of mathematical methods is recom-

mended here as follows: (i) identification of nonlinear

dynamics via SINDy, (ii) optimal model selection

through the AIC, (iii) integration between sparse

regression and group sparsity for coefficients of PDEs

and (iv) automated identification of noise via data

splitting.

From the point of view of experimental results, the

proposed method accurately identifies the coefficients

for either the ODEs or the PDEs. More broadly, the

following limitations may be attracted.

(1) Structural analysis. The clean measurements,

the proper candidate function library and the

appropriate regularized sparsity threshold are

regarded as three preliminary elements for the

structure of the SINDy model. Additionally, the

Table 3 Error metrics for the Van der Pol system

Model Type of noise distribution Noise percentage (%) EN Ef EP

Van der Pol Normal 15 0.00053 0.00024 6.14E-05

Uniform 15 1.04E-05 8.49E-06 5.40E-06

Table 4 Error metrics for the Rössler system

Model Type of noise distribution Noise percentage (%) EN Ef EP

Rössler Normal 30 0.02272 0.00046 0.01604

Uniform 30 0.00025 1.63E-06 3.52E-05
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(a) True system and reconstructed system

Normal distribution Uniform distribution

Normal distribution Uniform distribution

Normal distribution Uniform distribution

(d) Probability density of noise distribution for different dimensions

Normal distribution Uniform distribution

(e) Performance criterions for error

Normal distribution

Uniform distribution

True system Identified system Noise True system Identified system Noise

z
y x

z
y x

Noise Truth Noise Estimate Noise Truth Noise Estimate

(c) Histogram of noise distribution

(b) Noise estimation

Fig. 10 The results of

identification for both noise

distribution with different

forms and simulation

reconstructions for Rossler
system
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Duffing Oscillator Lotka-Volterra Van der Pol Lorenz Rössler SprottB
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Fig. 11 Corrupted systems and identified systems of a set of levels of artificial noise
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pure measurements play the most important role

in the framework; in case noise is introduced,

the items in the identified models are bound to

be incorrect regardless of the choice of the

candidate function library and the sparsity

threshold. Furthermore, the sparsity threshold

determines the coefficient values of the identi-

fied models, and the type of the identified

coefficients is defined by potential items in the

candidate function library. Due to the actual

consideration, the noise is impossible to neglect.

Crucially, the indispensable process in sparse

regression is parameter tuning.

(2) Model analysis. As the structure of the majority

of the models in engineering or biological fields

is unknown or complex, the class of the items in

the candidate function library is inconclusive.

Therefore, the solution to the identified model is

obscure. More broadly, the threshold selection

will undoubtedly be influenced by the polyno-

mial order in the potential function library. As

the magnitude of the polynomial order

increases, a regularization threshold may be

employed to scale down the dimensionality of

the function library.

Table 5 A variety of

parameters for different test

instances

Models Initial condition q k Nloop Library order Max Adam optimizer

Duffing [- 2, 2] 1 0.05 5 3 5000

Van der Pol [- 2, 1] 1 0.15 8 3 5000

Lotka-Volterra [1, 2] 1 0.18 10 3 5000

Lorenz [5, 5, 25] 1 0.20 8 2 15,000

Rössler [3, 5, 0] 1 0.08 8 2 15,000

SprottB [1, 1, 1] 1 0.20 8 2 15,000

Table 6 Error metrics for 5–15% noise of different test cases

Models 5% 10% 15%

EN Ef EP EN Ef EP EN Ef EP

Duffing 8.48E-06 4.43E-05 0.0001 3.59E-05 0.00018 0.00042 8.33E-05 0.0004 0.0009

Van der Pol 5.41E-05 1.77E-05 5.07E-06 0.00022 8.76E-05 2.32E-05 0.00053 0.00024 6.14E-05

Lotka-Volterra 0.00073 3.01E-05 4.48E-05 0.00303 0.00016 0.00011 0.03211 0.00018 0.50404

Rössler 0.0005 6.28E-06 0.00045 0.0021 3.10E-05 0.00181 0.00488 7.84E-05 0.00401

Lorenz 0.00484 0.00011 0.48734 0.0193 0.00042 0.46719 0.05444 0.00117 0.44858

SprottB 6.53E-05 1.07E-05 1.53695 0.00026 4.44E-05 1.02298 0.0006 0.00011 1.07388

Table 7 Error metrics for 20–30% noise of different test cases

Models 20% 25% 30%

EN Ef EP EN Ef EP EN Ef EP

Duffing 0.00015 0.00067 0.00149 0.00024 0.00101 0.00216 0.00035 0.00138 0.00287

Van der Pol 0.00099 0.00046 0.00012 0.00163 0.00078 0.00019 0.00245 0.00119 0.00029

Lotka-Volterra 0.00765 0.00037 0.00589 0.0183 0.00108 0.00074 0.02883 0.00164 0.00168

Rössler 0.00884 0.00017 0.00722 0.0147 0.00029 0.00029 0.02272 0.00046 0.01604

Lorenz 0.1267 0.00227 0.44827 1.59086 0.01819 0.40318 1.62864 0.01896 0.50842

SprottB 0.00109 0.0002 1.39116 0.00173 0.00032 1.41288 0.00255 0.00048 1.11184
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(3) Robustness analysis. In fact, there are many

kinds of probability distributions of noise, but

uniform and normal distributions are showcased

in this paper. Moreover, the identified model

will not be reconstructed with the introduction

of the noise due to the asymmetric structure of

the probability distribution, such as the gamma

or Rayleigh distribution. The method may be

extended to integrate with machine learning

models to detect the regime of various proba-

bility distributions of noise, particularly those

with a nonzero mean.

In conclusion, the proposed method has conse-

quences for data-driven model identification and

signal-to-noise separation. The flexibility of the

architecture of this approach yields a structure for

discovering the underlying dynamics of intricate

systems with interpretability. Moreover, it can perhaps

be engaged with brain science to exploit epilepsy or

Alzheimer’s disease.
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Appendix A

Table: The summation of the variable

Symbol Meaning Symbol Meaning

State
variable

h The decay factor

in Sect. 3.4

_X; X The training set in

Eq. (2) and

Eq. (3)

xl The constrained

condition in

Eq. (24)

X̂ ; _̂X The estimated

measurements

in Eq. (23)

lðtÞ The parametric

dependencies

in Eq. (14)

Y The validation set

in Sect. 2

Na The number of

possible

monomials in

Sect. 4.2

U The actually

observed data in

Eq. (20)

Nc The total

number of

potential

models in

Sect. 4.2

N̂ The estimated

noise in

Eq. (26)

p The pth order

polynomial

library in

Sect. 4.2

XQi The ith order of

polynomial

terms in Eq. (5)

m The dimension

of state

variable in

Sect. 4.2

H The candidate

function

collection in

Eq. (4)

k The threshold in

Sect. 4.4

Vt The

measurements

for partial

differential

equations

(PDEs) in

Eq. (13)

Performance
criterion

~H The block

diagonal matrix

H in Eq. (17)

ed The absolute

error of the

estimated

derivative and

system’s

vector field in

Eq. (23)

N The vector of the

sparse

coefficients in

Eq. (6)

es The simulation

error in

Eq. (25)
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Symbol Meaning Symbol Meaning

ni The ith element in

the vector of the

sparse

coefficients in

Eq. (7)

EN The noise

identification

error in

Eq. (27)

hl The lth potential

features in the

candidate

function library

in Sect. 2

Ef The vector field

error in

Eq. (28)

xi The state

variables of

distinct

dimension in

Eq. (30)

EP The prediction

error in

Eq. (29)

vxx. . .x|fflffl{zfflffl}
n

The nth order

derivative in

Eq. (12)

Function

ti The time points in

Sect. 3.1

fð�Þ The function of

nonlinear

dynamics in

Eq. (1)

Parameter Fð�Þ The flow map of

the dynamic

systems in

Eq. (21)

C A collection of

groups in

Eq. (18)

RSS The residual

sum of squares

in Sect. 3.2

l̂ The estimated

parameter in

Eq. (10)

Lð�Þ The loss

function in

Eq. (26)

k The degree free

parameters in

Eq. (10)

Di The relative

AICc in

Sect. 4.2

l The dimension of

measurements

in Eq. (11)

AICmin The minimum

AIC value in

Sect. 3.2

e The noise

magnitude in

Sect. 3.2

Rð�Þ The

regularization

function in

Eq. (9)

q The backward or

forward time

steps in

Eq. (22)

Nð�Þ The nonlinear

function for

the dynamics

in Eq. (12)
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