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Abstract Freezing of gait is a late-stage debilitat-
ing symptom of Parkinson’s disease (PD) characterised
by a sudden involuntary stoppage of forward progres-
sion of gait. The present understanding of PD gait
is limited, and there is a need to develop mathemat-
ical models explaining PD gait’s underlying mecha-
nisms. A novel hybrid systemmodel is proposed in this
paper, in which a mechanical model is coupled with a
neuronal model. The proposed hybrid system model
has event-dependent feedback and demonstrates PD-
relevant behaviours such as freezing, high variability
and stable gait. The model’s robustness is studied by
analysing relevant parameters such as gain in the event-
dependent feedback and level of activation of the cen-
tral pattern generator neurons. The effect of augmented
feedback on the model is also studied to understand
different FoG management methods, such as sensory
and auditory cues. The model indicates the frequency-
dependent behaviours in PD, which are in line with the
STN stimulation and external cueing-related studies.
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The model allows one to estimate the parameters from
the data and thereby personalise the cueing regimes for
patients. Themodel can be of help in understanding the
mechanismof FoG and developingmeasures to counter
its severity.
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1 Introduction

Parkinson’s disease (PD) is a degenerative neurolog-
ical disease. According to [42], approximately 1% of
the population over the age of 60 is affected by PD.
It impairs the lower and upper limb movements and
causes several cognitive deficits. Freezing of gait (FoG)
is a highly debilitating symptom among people with
Parkinson’s disease. FoG is typically observed in the
advanced stages of the disease [22]. It is defined as a
sudden involuntary stoppage of the forward progres-
sion of gait. While there is no complete cure for PD
and implicitly FoG, many non-invasive disease man-
agement options exist. These options focused on pro-
viding sensory and auditory cues and augmented feed-
back [30,55,57] to manage FoG. There is vast liter-
ature based on mathematical modelling to understand
the effect of sensory feedback on normal gait [4,72,73].
However, to the best of our knowledge, comparatively,
the research, from a mathematical modelling perspec-
tive, on howFOG is related to the feedback is somewhat
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limited. Provision of a physiologically relevant expla-
nation for the intermittent transitions occurring to PD
gait from walking to freezing and back to walking is
essential.

There have been attempts to understand PD gait
using modelling techniques. Muralidharan et.al’s [52]
PD gait model captures the neuronal dynamics of FoG;
however, they do not focus on the kinetic aspects of
the PD gait. Moghadam et al. [51] combine the chaotic
region of the Lorentz system with a passive dynamic
walker and generate high variability observed in PD.
Even though mechanical aspects of gait are captured
in their model, the addition of chaos externally limits
its biophysical meaning. Moreover, Modgam et al.’s
model does not capture the FoG. Our earlier work [60]
has demonstrated some aspects of PD gait, such as
freezing and variability. The model uses an inverted
pendulum with ankle push-off forces. However, there
is still a need to delineate the effect of feedback and
transitioning of gait from freezing towalking. Sarbaz et
al. [69] provide a discrete map-based model to capture
variability in PD.A ‘sine circlemap’ is used in their dis-
crete model; this model, even though very simple to be
used with the data, its biophysical meaning is difficult
to ascertain. Hence, one finds it necessary to develop a
model that can explain FoG in PD gait addressing the
mechanical and neuronal aspects of physiology.
CPG-basedwalking:Central pattern generators (CPG),
typically argued to be fundamental to most rhythmic
behaviours, are a group of neurons with interconnec-
tions that generates a fictive motor pattern when appro-
priately activated. CPG is used to drive the mechani-
cal systems in several models of human locomotion.
This approach assumes that the CPG receives feed-
back (perturbations) from the sensory system (or indi-
rectly gets modulated by the brain) such that the over-
all system is synchronised [80]. Yamasaki et al. in [80]
take a control systems-based approach to the problem
using a simple model for the CPG. Their model also
uses an IDM (inverse dynamics model) module, the
physiological correlates of which is assumed or spec-
ulated to be in the cerebellum. Aoi et al. in [2] have
made the model more physiologically relevant using
the experimental findings from [37]. There are two dif-
ficulties associated with using these models for under-
standing freezing, (1) a large number of parameters, (2)
the use of dimensionality reduction-based approxima-
tions.While Aoi et al.’s model is an excellent candidate
for understanding normal walking, it is challenging to

use it to understand FoG. This difficulty is because of
too many tuned-parameters and the difficulty of judg-
ing which component’s failure caused FoG. Also, the
muscle synergy and factor analysis-based approxima-
tions may not be valid in a pathological scenario. Sen-
sory feedback to the brain and CPG is another crucial
aspect of gait addressed in themodelling literature over
the years [4,72,73]; however, current literature does not
address howFoG is related to feedback.Moreover, how
PDgait changes fromwalking to freezing and back also
need a physiologically relevant explanation.
Link to robotics: While studying gait, it is impossi-
ble to ignore the robotics literature. The passive gait
links the robotic literature with the biophysical mod-
els as the fundamental difference between the robotic
models and the biophysical models lies in the con-
trol aspect. McGeer et al.’s early work in passive gait
models [48] shows the stability and effect of exter-
nal inputs on passive gait. Several others have also
studied the passive gait models and their bifurca-
tions [10,16,17,23,35,44,46,66,81]. The fully actu-
ated bipedal robots are in the other end of the spectrum
where typically feedback linearisation is used to nullify
the ‘natural’ dynamics of the robot [26]. On the other
hand, underactuated robots use the ‘natural’ dynamics
of the rigid body system while simultaneously provid-
ing some actuation [26]. However, thesemodels cannot
directly explain PD pathology due to the lack of actu-
ation or actuation’s biological nature.
Dealing with neuromuscular over-actuation: The neu-
romechanical system is over-actuated with redundan-
cies as it contains less degree of freedom than the num-
ber of actuators. Optimal-control formalism addresses
this issue to some extent and forms an alternative
approach to modelling motor control. This approach
assumes a cost functional, which is minimised during
motor action. This is very suitable for robotic applica-
tions [36,63]. Inverse optimal control can be used to
circumvent the assumption of the cost functional by
inferring it from the data. Nevertheless, this necessi-
tates formulating the problem in such a way that there
is a cost function that is minimised during a motor
action [50,61,65]. In a pathological scenario such as
PD gait, such an assumption need not be valid. Mus-
cle synergy-based approaches also address the issue of
redundancies. However, muscle synergy-based models
assume co-activation of muscles as motor primitives
to address the redundancy [3,73]. Some authors still
question the idea of muscle synergy [76]. However, an
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elegant description of the necessity of the synergy of
muscles in terms ‘uncontrolled manifold’ hypothesis is
presented in [41], where muscles that achieve targeted
action are considered ‘good’ region of variability and
that do not achieve targeted action are considered ‘bad’
regions of variability. Moreover, the equilibrium point
hypothesis [15,18], which suggests movements are the
result of active changes in the motor system’s equilib-
rium state, has natural links to the muscle synergies
[40]. One needs the determination of invariant charac-
teristics [67] (e. g. torque–length characteristics [18])
for confirming equilibrium point hypothesis. However,
achieving this in practice by advising the subjects to
‘not to intervene’ [18,67] is debatable due to the pos-
sibility of involuntary responses.

Hybrid systems point of view: Walking involves the
interaction of continuous differential dynamics gen-
erated by the limbs and their neural control and dis-
crete dynamics due to the leg’s impact on the ground.
Naturally, this results in a hybrid dynamic system.
The hybrid systems theory becomes highly relevant
to model the gait for studying the orbital stability of
the limit cycle. A non-singular Jacobian is essential
to the contraction analysis of the system, which is
based on variationalmethods of the differential dynam-
ics [43,74]. However, biologically relevant gait models
with event-driven feedback can have singular Jacobian.
Therefore, this case requires adapting the Poincare
section-based methodologies such as the one given by
[23] for the study.

Time series analysis: Gait and FOG have also been
studied using the time series data gathered during loco-
motion. Much of these studies involve signal process-
ing andmachine learning-based techniques to study the
human gait and to understand freezing. The analysis
study of publicly available locomotion data (MIT Gait
database) reported in [64] makes use of the nonlinear
time series analysis (such as mutual information, false
nearest neighbour and Lyapunov exponent). Specifi-
cally, FoG time series has also been studied using non-
linear signal processing techniques to reveal the under-
lying mechanics of freezing. Moreover, the works on
critical transitions [53] which lie in the intersection of
dynamical systems theory and nonlinear signal pro-
cessing is applicable in the area of FoG. Furthermore,
studies reported in [47] [59] [62] apply machine learn-
ing techniques to time series stepping data for predict-
ing freezing.

Summarising the problem: In summary, there is a need
for a mathematical model that describes the FoG and
the variability in PD gait, focusing on limb mechan-
ics and event-driven feedback to CPG relevant to PD.
As freezing is an intermittent behaviour, the model’s
transient and long-term behaviours need to be studied.
Moreover, event-dependent feedback on the synchro-
nisation property of the CPG is studied to understand
the effect of the augmented feedback on CPG.

How we address these problems: In this work, we
combine a CPG model and a limb mechanics model.
The limb model focuses on the ankle push-off forces
[60] making it relevant to PD. A state dependant,
event-driven feedback is provided to account for the
impulse signal occurring at the heel strike. The math-
ematical description of such a system becomes a
nonlinear-hybrid-dynamical system. The orbital sta-
bility of gait in this model is studied using a Poincare-
based approach, since the Jacobian associated with the
model is singular. The effect of the feedback on gait
and its variability is studied from the perspective of
the neuromechanical system and the synchronisation
properties of the CPG. The intermittent transition of
the gait from walking to freezing and back has been
demonstrated.

2 Preliminaries

2.1 Introduction to hybrid system

Hybrid systems are a class of dynamical systems,which
exhibit both continuous and discrete mode dynam-
ics and their mutual influence, often associated with
events such as resets or jumps, and switching. A sys-
tem of ordinary differential equations typically governs
the continuous behaviour, and a vector-valued function
governs the discrete part. The dynamics in this work is
governed by the general hybrid dynamical system of
the form,

ż(t) = F(z(t), λ), z(t)− /∈ S , (1)

z(t)+ = Δ(z(t)−, λ), z(t)− ∈ S, (2)

where z ∈ Z represents the state variables andZ ⊂ R
n

is the state manifold. In (1),F(z(t), λ) : Z ×Λ → R
n

is continuous vector-valued function, which is strictly
forward invariant under F . Further, λ ∈ Λ ⊂ R

m rep-
resents a vector of adjustable constant parameters of the
system and Λ characterises a set of admissible param-
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eter values. In this case, F(z(t), λ) : Z × Λ → TZ
is C∞ vector field, in which TZ is the tangent bundle
of state manifold Z . The solution curve of the system
is denoted as ζ(t, z0, λ), such that z(t) = ζ(t, z0, λ) is
the solution at time t > 0 of the system with an initial
state z(0) = z0 at time t = 0.

In hybrid systems, the state can instantaneously reset
to a discrete time part according to a C∞ reset map
Δ(z(t)−, λ) : Z × Λ → Z in Eq. 2. The switching
surface is defined as

S := { z(t) ∈ Z ∣
∣ gr (z(t)) = 0 } , (3)

where gr (z(t)) : Z → R is a C∞ real valued switching
function, satisfying the condition ∂gr

∂z (z) �= 0. The sys-
tem with the reset, or so-called impulse effect, brings
forth the possibility of the state’s jumping (also known
as ‘resets’)when certain boundaries are crossed. In gen-
eral, these boundaries are subsets of the space, S ⊂ Z .
The difference between a smooth system and a hybrid
one lies in the fact thatwhen theflow ζ(t, z0, λ) reaches
the switching surface Eq. 3, a reset map in Eq. 2 is
applied.

The time to reset function is then defined as T : Z×
Λ → R+ as the first time at which the continuous part
solution ζ(t, z0, λ) intersects the switchingmanifoldS:

T (z0, λ) := inf{ t > 0 | ζ(t, z0, λ) ∈ S } . (4)

A Poincaré map, which describes the motion of the
point of intersection of a differential dynamical system

Fig. 1 Illustration of the trajectory in the hybrid system. The
dashed line corresponds to the discrete mode dynamics, whereas
the solid line corresponds to the continuous part of the hybrid
system

with a planar section traverse to the flow, P : Z×Λ →
Z , is defined by

P(z, λ) := ζ(T (Δ(z, λ), λ), Δ(z, λ), λ) , (5)

and describes the evolution of the hybrid model in
Eqs. 1–2 on the switching surface, S, which is con-
sidered as the Poincaré section (indicated in Fig. 1)
according to a discrete time dynamics

z[k + 1] = P(z[k], λ), k = 0, 1, 2, · · · (6)

Typically a periodic orbit is transversal, i.e. not tan-
gent, to the switching manifold S. Consequently, the
invariant fixed point for the Poincaré map in Eq. 5 is

P(z∗, λ) = z∗, ∀λ ∈ Λ. (7)

In the hybridwalking systemdescribed here, a Poincare
map may be constructed by choosing the switching
surface S as the Poincare section [1,78]. The discrete
dynamics on thePoincaré section is defined as follows:

P : z[k + 1] = P(z[k], λ). (8)

One could note that the variable z when used as an argu-
ment to the Poincare map it is indicated with square
braces to indicate the discrete nature of the map.

One gait cycle constitutes two steps since the left
and right leg acts as a stance leg. Henceforth, a gait
cycle is the composition of FR ◦ ΔL→R ◦FL ◦ ΔR→L

whereFL andFR denotes the flowcorresponding to the
left and right leg as the stance legs, respectively, and
‘◦’ represents the composition. Symbols ΔL→R and
ΔR→L represents the reset corresponding to the left leg
to the right leg and vice versa. Consequently, it is conve-
nient to study the composition of the Poincaremapwith
itself (P(P(.)) := P̃(.)) for understanding the stability
properties of the gait cycle. The stability of this map is
numerically studied. The Jacobian that corresponds to
the vector field and thePoincarémap is denoted byDF ,
and DP , respectively. A non-singular DF is essential
to the contraction analysis of the system based on varia-
tional methods of analysis of the differential dynamics
[43,74]. A lack thereof leaves out the possibility of only
Poincare-based analysis of P or its iterates.
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Fig. 2 The physiology and the associated modelling assump-
tions are depicted here. The brain (basal ganglia, cortical and
subcortical areas) control the spinal cord which in turn control
gait. CPG is modelled as coupled oscillators (representing neu-
rons). The walking dynamics is represented by a simple pendu-
lum model

2.2 Physiology

The relevant physiology is briefed here. Central pat-
tern generators (CPG) are neuronal circuits in the spinal
cord that can generate oscillatory activitywithout being
forced rhythmically [31]. There is evidence in the litera-
ture for the presence of CPG in quadrupeds [12,25] and
indirect evidence [12,75] for its existence in humans.
Brain modulates the CPG dynamics in the spinal cord
[12,70]which in turn coordinates the leg-muscles using
feedback inputs from the brain[6,49]. Simplified phys-
iology of gait and the corresponding modelling aspects
are depicted in Fig. 2.

A bursting dynamical state of a neuron is associ-
ated with the excitation of a group/bursts of action
potentials in succession. The spinal CPG neurons are
known to elicit bursting behaviour [24,39] which con-
trol the torque generated by the muscles. While there
are multiple spikes in a burst, the torque produced can
be assumed to be resulting from the ‘equivalent mem-
brane potential’ [20,38] of the bursting dynamics. The
torques are generated during the bursting region of the
dynamics. Almost very low, or zero, torque is gener-
ated during the non-bursting region [8,9,29]. Conse-
quently, the neuromechanical dynamics is controlled
by the equivalent voltage of the motor neuron bursts
[24,39] rather than individual spikes.

The role of sensory feedback inputs through afferent
nerves inwalking rhythmgeneration is nowwell recog-
nised [7,12,77]. Transmission of these signals requires
a finite amount of time to reach the destination. Hence,
it occurs with a delay. However, this delay is known to

be negligibly small (<50ms) [45]when comparedwith
the stepping times [5]. Hence, the feedback is modelled
and studied as event-driven instantaneous inputs to the
neuronal system. A defective utilisation of these affer-
ent feedback inputs has been suggested in PD in [13]
resulting in defective electromyogram (EMG) traces
[13,56] making feedback relevant in the study of PD
gait.

3 Mathematical modelling

The dynamics of the neuromechanical system govern-
ing PD physiology is explained in this section. The
section starts with the complete equations of motion,
the underlying assumptions and the description of the
subsystems successively follow.

3.1 Equations of motion

Ahybrid system formulation of the equations ofmotion
(EoM), as in Eqs. 1 and 2, has three components: (1)
continuous dynamics (F(z(t), λ)), (2) a discrete part
(Δ(z(t)−, λ)) and (3) a definition for the switching sur-
face (S). In this study, the continuous part of the dynam-
ics (F(z(t), λ)) comprises two interacting subsystems,
of which, one is a neuronal CPG part (Σni ), modelled
as two coupled oscillators and the other corresponds to
mechanical dynamics (Σm). Figure 3 shows the inter-
action between the neuronal and mechanical systems
and the external input received by the CPG.

The overall system is described using Eqs. 1 and 2
with the following characterisation:

Fig. 3 A block diagram showing the feedback interaction
between the neural and mechanical components of the system.
While the neuronal states y1 and y2 become the inputs to the
limbs, the proprioceptive feedback modelled as state Ξ mod-
ulates the CPG. The term I (t) represents other external inputs
received by the CPG. This external input, in turn, phenomeno-
logically models the cues given to the PD patients
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z = [

y1, x1, y2, x2, θ, ω, Ξ
]T

, (9)

F(z, λ) := [

ΣT
n1 ΣT

n2 ΣT
m

]T
, (10)

gr (z) = θ − θreset , (11)

Δ
(

z−, λ
) = [

y1, x1, y2, x2,−θ, ω cos(θh), − Ξ
]

.

(12)

The dependency on time in the equations is absent for
brevity. The variables xi and yi represent the states of
the neuronal CPG, with yi indicating the activity of the
i th neuron. In Eq. 10, the dynamics of the neuronal
CPG is written as follows:

Σni :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
τ

(

Intrinsic CPG Dynamics
︷ ︸︸ ︷

−αyi
(

x2i + y2i − e
)

e
− xi + ΞΦi

︸︷︷︸

Feedback

+
2

∑

j=1

wi, j y j

︸ ︷︷ ︸

Neuronal Coupling

− aIi (t)
︸ ︷︷ ︸

Ext. Input

)

yi
τ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, i = 1, 2.

(13)

where

Φ := [− fb, fb]T , (14)

w :=
[

0 St
St 0

]

. (15)

The term wi, j , which controls the mutual inhibition
through the synaptic strength St is element of matrix
w ∈ R

2×2. The neurons modelled are assumed to be
mutually inhibiting (one inhibiting the other) and not
directly influencing its own activity (w1,1 = w2,2 = 0).
The element Φi of the vector Φ ∈ R

2 represents the
positive or negative feedback strength ( fb). The term
Ξ corresponds to the proprioceptive feedback from the
limbs modulating the CPG dynamics. The constants
e, α and τ govern the intrinsic CPG oscillator dynam-
ics [32] and discussed more in sequel.

In Eq. 13, the effect of periodic auditory/sensory
cues [7,12,77] is represented as a scaled periodic exter-
nal input aIi (t) where

I (t) := [ − us(t), us(t)
]T

, (16)

and

us(t) =
{

+1, sin(2πΩ f t) ≥ 0 ,

−1, sin(2πΩ f t) < 0 .
(17)

The variable a scales the amplitude of the external
input, when present, and Ω f represents the frequency
of the input.
In Eq. 9, the states θ, ω andΞ represent the angle sub-
tended w.r.t. the horizontal, angular velocity and ‘pro-
prioceptive feedback’, respectively. The ‘propriocep-
tive feedback’ stateΞ ∈ {−1, +1} indicates which leg
is on the ground at time t to generate an event-driven-
feedback signal. In this formulation, the proprioceptive
feedback is sent from the limbs to the neural system. In
Eq. 10, the mechanics of the limbs (Σm) are described
using the following set of equations,

Σm =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ω

1
θ

(

Ξ max(0, θ)
( p(θ, −Ξ)τl max(0, y1)

l2m

− p(θ, Ξ)τr max(0, y2)
l2m

)
)

+ gθ
l − q(θ)

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(18)

where

p(θ, Ξ) :=
{

l sin(2θ) when Ξ = +1 ,

1 when Ξ = −1 ,
(19)

q(θ) :=
{

0 if θ < −θreset + ε ,

K θ if θ ≥ −θreset + ε ,
(20)

and l, m, g, and K are length, mass, acceleration due
to gravity and the stiffness constant of the trailing leg,
respectively. The parameters τl and τr scales the neu-
ronal activity signals y1 and y2 . The stiffness of the
trailing leg (K ) models themeasure of the angular stiff-
ness, and small positive scalar ε is a design freedom.
The hip angle (θh) in Eq. 12 is considered as twice the
reset angle θreset since the step angle is assumed con-
stant in every step. The step length is defined to be equal
to |θreset| where |.| denotes the absolute value.

3.2 Neuronal dynamics as locomotion control

The CPG is assumed to control the movement of the
limb dynamics [14] while simultaneously affected by
feedback with a negligible delay [45]. The ‘equivalent
membrane potential’ [38] of the bursting dynamics is
assumed to control the torques generated in the mus-
cles. Moreover, the activity of those neurons is directly
proportional to the torques generated in the muscles.
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In this work, the CPG is modelled as two inter-
connected oscillators (matching the number of lower
limbs in humans) effectively modelling the ‘equivalent
membrane potential’. The intrinsic CPG dynamics part
in Eq. 13 is inspired from [32] and in the absence of
the external inputs and the feedback signal, the CPG
exhibits limit cycle. Plantar flexors innervated by the
neurons from the CPG supply the necessary torques to
the limbs. The activation of CPG occurs only for the
positive neuronal activity, i.e. when y1 > 0, or y2 > 0.
Hence, this representation effectively models muscle
contraction.

The parameter e in the intrinsic CPG dynamics in
Eq. 13 increases the amplitude of the limit cycle. An
increase in the amplitude of the limit cycle models the
increased neuronal activity. The positive constants e
and τ > 0 together control the total energy in every
stepping cycle. While the system is on the limit cycle,
the term x2i + y2i is e, and thus there is no influence
for the parameter α. Henceforth, the positive parame-
ter α can be interpreted as a scaling of the perturbation
from the limit cycle. The feedback ΞΦi , the neuronal
coupling

∑2
j=1 wi, j y j and the external input I (t) in

Eq. 13 can apparently change the phase of the oscil-
lator. The perturbations to the phase of the oscillator
have influence on the synchronisation [38].

3.3 Mechanical model and definition of freezing

It has been shown in [60] that an inverted pendulum-
based model adequately represents the freezing and
irregular walking motion of the centre of mass of the
body having PD. The torque generated due to the plan-
tar flexors’ activity alone provides the ankle push-off
forces to propel the leg forward. Inspired by this, the
lower limb mechanics is modelled here as a hybrid
inverted pendulum (inverted pendulum with a reset).
The reset map and the differential part of the dynam-
ics (Eqs. 12 and 18–20) are derived by balancing the
torques and the angular momentum, respectively. The
stiffness of the trailing leg is triggered when the angu-
lar displacement θ increases beyond −θreset + ε in the
counter direction to walking. In this study, ε is fixed
at 0.02 (chosen arbitrarily, do not affect the dynam-
ics qualitatively). The negative sign associated with the
term θreset represents this convention. The stiffness term
in Eq. 20 takes into account the opposing force exerted
by the trailing leg preventing a fall; at this moment,

the subject is assumed to freeze. This opposing stiff-
ness force is necessary to model the shift from freezing
to walking. The impulsive mechanics at ‘heel strike’
(when the swing leg hits the ground) is modelled using
a reset, effectively making the dynamics belong to the
class of hybrid system. At every instance the flow of the
dynamics reaches the switching surface S in Eq. 3, the
reset map given in Eq. 12 is applied. The function gr (z)
in Eq. 11 defined the identity of the switching surface.
The state representing the proprioceptive feedback Ξ

is reset at every step accounting for the change in the
stance leg loaded with the weight of body. The angular
velocity is also reset to account for the conservation of
angular momentum. Furthermore, the angle (θ ) is reset
to account for the alternation between limbs as given
in [60].

By convention, a negative angular velocity indicates
limbs moving forward. At every point in the phase
space, a finite amount of energy is necessary to keep
the direction of the angular velocity negative (ω < 0).
During a freezing episode, the limbs receive insuffi-
cient net torque to move forward. Consequently, the
angular velocity ω becomes positive, which leads to
the following definition.

Definition 1 Let zt0 ∈ S be the state at time t0 and
ts − t0 be the time to impact (or reset). Freezing tra-
jectory is defined as the set C := {ζ(t, zt0) | zt0 ∈
S, ω(t) > 0 for some t ∈ (t0, ts)} .
The freezing fraction for a discrete simulation is deter-
mined by finding the fraction of time points where
ω(t) > 0 and satisfiesDef. 1. Thefinite time simulation
results are sampled uniformly, and the number of data
points with ω(t) > 0 is divided by the total number of
points in the simulation to compute freezing fraction.
From a physiological perspective, whenever the pre-
mature activation prevails upon the normal activation,
the stance leg momentarily moves backwards, result-
ing in ω > 0. Consequently, freezing fraction gauges
the effect of premature activation of the muscles in the
stance leg. According to [56] premature activation of
plantar flexors is a characteristic of PDmaking freezing
fraction very relevant for PD.

4 Simulation results

The overallmodel described using Eqs. 1 and 2with the
characterisation given inEqs. 9–12 is simulated.Unless
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Table 1 The values of different parameters of the model and
initial conditions

Parameters Value (units)

Mechanical system

l 0.6m

g 9.8ms−2

m 70kg

τl 20

τr 20

θreset −0.1 rad.

K 50

ε 0.02

Initial condition

θ0 −0.05 rad.

ω0 −0.5 rad. s−1

Neuronal system

e 0.5

τ 0.1

α 0.1

fb 1 (normal gait)

0.1 (freezing gait)

St 1

a 0 (no external input)

2.5 (with external input)

Initial condition

y10 1

y20 2

x10 1

x20 1

specified otherwise, values of the parameters and ini-
tial conditions used in the model are listed in Table 1.
While Table 1 specifies a particular set of parameters
to reproduce the results, a larger set of parameter vari-
ations, for which the results are valid, are explored in
sequel. The evolution of the states for a short duration
of time is shown in Fig. 4. In simulations, high and low
values of the feedback strength ( fb) are considered.
(i) Normal gait: In this simulation, no external input
I (t) is considered. Figure 4a, b shows the states of the
CPG dynamics and the mechanical system during nor-
mal walking. The value of the feedback gain ( fb) used
in the simulation is 1.
(ii) Freezing of gait: The states of the neural and the
mechanical system are indicated in Fig. 4c, d, respec-
tively. When compared with the results of normal gait,

the freezing of gait is obtained by decreasing the value
of the single parameter, the feedback gain ( fb), to a
lower value of 0.1 from 1.

The oscillations in the four neuronal state variables
of the CPG can be noticed in Fig. 4c. Among the states,
the signals y1 and y2 control the mechanical part of the
system. In this simulation, the chosen lowvalue of feed-
back strength ( fb = 0.1) is insufficient to synchronise
the neural (Σni ) and mechanical (Σm) systems. This
aspect is evident from the resultant intermittent walk-
ing and freezing behaviour observed in Fig. 4d. The
proprioceptive feedback state Ξ , indicating which leg
is on the ground, changes the sign on reset as indicated
in Fig. 4d, sinceΞ ∈ {1,+1} and Ξ̇ = 0. FromFig. 4d,
it can also be observed that at the reset point, the state
θ is reset to −θ as well.

The trajectory from an initial condition till the reset
is defined to be a ‘step’. A ‘freeze’ as defined in Def. 1
is indicated in Fig. 4dwhereω crosses zero and reaches
a positive value generating a longer ‘pause’ in walking.
Multiple steps without an intermediate freeze are indi-
cated as walking. One could note that, from the hybrid
systems point of view, the ‘pause’ in walking owes to
the relatively higher time to reset.

The sharp changes in angular velocity owe to two
aspects of the model: (i) the reset accounting for the
conservation of angularmomentumand (ii) the effect of
the piecewise linear characteristics of q(θ) in Eq. 20 as
the angle θ crosses the condition−θreset+0.02 = 0.12 .
The latter aspect contributes to the rapid changes to the
angular velocity during the freezing episode shown in
Fig. 4d.

Figure 5a shows the time series of states θ and ω

from 20s of simulation. In the simulation, the feedback
gain is fixed at 0.1. The regions where freezing occurs
are indicated in red colour. The intermittent episodes
of walking and freezing can be observed. A plot of
the trajectories in the θ–ω phase plane is shown in
Fig. 5b. In the phase plot, the segment of trajectories in
the first quadrant shown in red colour reflects freezing
behaviour, since angular velocity is positive.
(iii) In presence of external input: An external input
I (t) as in Eq. 16 is applied to the model ( fb = 0.1)
which exhibited the intermittent freezing behaviour as
shown in Fig. 4c, d. The frequency of the external input
Ω f is 1.2 and the parameter a equals 2.5. Figure 6
shows the effect of the external input, which converts
an otherwise freezing gait into a normal gait.
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Fig. 4 a The states of the neural system (y1, y2, x1, x2) at high
value of feedback strength ( fb = 1). b States of the mechanical
system (θ, ω, Ξ ) at high value of feedback strength ( fb = 1). c
The states of the neural system at a lowvalue of feedback strength
( fb = 0.1) d States of the mechanical system at a low value of
feedback strength ( fb = 0.1). Phases of Walking and Freezing,
single step and one reset point are indicated. A freezing episode

(Freeze) starts from one heel strike and lasts until the end of the
heel strike, which is in accordancewith the definition of the freez-
ing trajectory. This depiction is relevant physiologically because
it is relatively easier to determine a freezing trajectory between
two heel strikes. The figure contains more than one walking and
freezing regions, but only one is labelled here

The external input is shown to influence the neu-
romechanical system resulting in a gait without freez-
ing. While Fig. 6 shows the dynamics with one partic-
ular external input, distinct effects of external inputs
over a larger parameter range are explored in sequel
in Sect. 6.2. In addition, short-time Fourier transform
(STFT) of the filtered angular acceleration signal (ω̇(t))
is computed. A Gaussian filter of kernel radius ten is
utilised for filtering the (ω̇(t)) signal. A window size
of 0.32 sec and a sampling rate of 100Hz is adopted
for the STFT calculation[33]. The STFT analysis indi-
cated that the frequency content of the signal increases
in the model during a freeze, which is in line with the
experimental evidence [5,68].

5 Stability analysis of periodic walking region

Human locomotion is generally stable in the pres-
ence of certain class of perturbations [34]. The sta-

bility of the overall model in Eqs. 1 and 2 with the
characterisation as given in Eqs. 9–12 is analysed in
this section. The CPG model considered in this work
is phenomenological. Three parameters of the CPG
model—constant e governing the intrinsic CPG oscil-
lator dynamics, the feedback gain fb and the synap-
tic strength St—are of physiological significance [32].
For the purpose of stability analysis, the perturbation to
these parameters is assumed to occur within the range
e ∈ (0.1, 1), St ∈ (0, 6), and fb ∈ (0, 2) where rel-
evant walking and freezing behaviours are exhibited.
Demonstration of orbital stability of the hybrid walk-
ing model in the presence of the perturbations is vital.

For stability analysis, the surface defined by the set
S is considered for constructing the Poincare section.
The discrete map Δ(.) maps the points from S to S̃
which is again mapped back to S by the differential
dynamics. The Poincare map P is defined as a com-
position of these maps taking a point z[k] ∈ S to
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Fig. 5 a Time series of θ(t) with respect to time is provided for
a low value of feedback gain ( fb = 0.1). The angular velocity
ω(t) = θ̇ is shown in blur background. b θ–ω phase plane dia-
gram; The regions in red colour show part of the data exhibiting
freezing behaviour where ω is positive. (Color figure online)

z[k + 1] ∈ S. Since proprioceptive feedback state Ξ

switches in every reset (as shown in Fig. 7), the map P̃
is formed by iterating P twice, which is considered for
the stability analysis.

Out of the seven state variables, only five (excluding
θ and Ξ as they remain constant during the evolution
due to the differential part of the dynamics) are consid-
ered for the computation of the Jacobian. This results
in the definition of a new map, denoted by P̃c, where
the parameters θ and Ξ remains constant. Hence, the
map P̃c is defined as follows,

z̃[k + 2] = P̃c(z̃[k]) , (21)

(a)

(b)

Fig. 6 Recovery of normal gait for a low value of feedback
gain ( fb = 0.1) in the presence of an external input I (t). The
results given here are for an example external input parameter set,
a = 2.5, Ω f = 1.2. Physiologically this represents a scenario
of external cueing-based FoG alleviation

Fig. 7 The value of Ξ as it changes between S and S̃ has been
shown. The dashed lines represent the discrete dynamics gov-
erned by Δ(.) and the solid lines represent the smooth dynamics
governed by F(.). The map P̃(.) formed by iterating P(.) two
times, is also indicated
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where z̃[k] := z[k]\{θ [k], Ξ [k]} ∈ R
5 is the state vec-

tor of the overall system excluding θ, Ξ at the kth step.
The Jacobian associated with this system is denoted by
DP̃c ∈ R

5×5.
A Taylor series-based methodology, adapted from

[23], is used for the computation of the Jacobian matrix
of the map P̃c. The eigenvalues of the Jacobian matrix
D P̃c determine the stability of the system [11]. Follow-
ing the approach in [23], at the periodic point z̃∗ of the
map P̃c, the perturbation vectors δz̃∗i s are applied. The
vector δz̃∗i has only one small nonzero term (= 10−3),
such that, the perturbations are applied to each state
independently. Hence, a diagonal matrix γ ∈ R

5×5 is
defined constituting the perturbation vectors δz̃∗i asso-
ciated with each states as its columns. For the perturba-
tion vector δz̃∗i associatedwith each individual state, the
corresponding (P̃c(z̃∗+δz̃∗i )−z̃∗) ∈ R

1×5 is computed,
yielding the matrix Ω ∈ R

5×5. Since γ is diagonal
matrix and Ω is determined as described above using
the map P̃c, it is possible to write the Jacobian of P̃c as:

DP̃c = Ωγ −1. (22)

The sequence {z̃n} is obtained by iterating the map
P̃c in Eq. 21 starting from an initial condition z̃0 :=
(y10 , y20 , x10 , x20 , θ0, ω0)

T = (0.29,−0.29, 5.53,
−5.53, 0.1,−0.7)T . Fifty iterations of the map P̃c
are computed. The Jacobian matrix DP̃c is determined
using the last iterate. The maximum absolute value of
the eigenvalues (MAE) of the Jacobian matrix DP̃c
determines the stability, and the system is stable when-
ever this value is less than 1. The condition (MAE< 1)
can also include possible, stable, intermittent freezing
behaviour of the dynamics. Normal gait responses are
associated with the Period-1 orbits. Hence, in addi-
tion to the MAE condition, an additional term based
on the return map information is made use to identify
the Period-1 orbits. The additional metric introduced
ensures the convergence to Period-1 orbit over a finite
period of simulation time.

The convergence of the orbits to a limit cycle during
a finite time simulation is tested by generating a vector
Cp. The vector Cp is generated by computing the norm
of the differences between consecutive iterates of states
for the last 20 iterations in the following way,

Cp := { ‖(z̃[r ] − z̃[r − 1])‖2 , ∀r ∈ {N − n, N }} .

(23)

Here, N (= 50) is the total number of iterations simu-
lated, n (= 20) is the number of consecutive iterations
used for convergence estimation and r is the iteration
number. The l2 norm of the resulting vector Cp is com-
puted as a measure of convergence. When ‖Cp‖2 <

10−4 the orbit is assumed to converge to a limit cycle.
The procedure described addresses the Period-1

orbits (stability of normal walking) of the map P̃c.
Period-1 orbit of the map P̃c which in turn is formed by
the iteration of the map P twice as explained in Fig. 7,
hence when N = 50 a total of 100 steps are simulated.

AMonteCarlo stability analysis was performed. For
this, the system in Eqs. 9–12 is simulated using 1000
randomly initiated (e, St , fb) parameter vectors. For
each (e, St , fb) parameter vector, the procedure dis-
cussed above is followed, and the MAE and ‖Cp‖2 are
computed to classify the stability of thewalking regime
of the system. Figure 8 shows the results of the Monte
Carlo simulation.Here the green points indicate the sta-
ble Period-1 orbit, i.e. MAE < 1 and ‖Cp‖2 ≤ 10−4.
The analysis reveals the existence of stable periodic
orbits for a subset of the parameter space considered.
As evident in Fig. 8 while a higher value of e and st are

Fig. 8 Results of the 1000-point Monte Carlo simulation show-
ing stable periodic region and the rest. The region with MAE <

1 and ‖Cp‖2 < 10−4 is shown in green. The rest of the region
is indicated in red. The figure shows the ability of the model to
elicit stable (under the perturbation of initial conditions as men-
tioned in Sect. 5) normal walking for a range of e and fb values.
(Color figure online)
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beneficial for walking, the key distinguishing factor is
fb. A higher value of fb is necessary for the system to
be in a stable periodic orbit. The median and standard
deviation (given in brackets) of the parameter fb, e and
St in the stable periodic region (green) is found to be
1.34 (± 0.37), 0.64 (±0.23) and 3.5 (±1.57), respec-
tively. The distribution of the parameters fb, e and St in
the stable region are significantly different (p < 10−6

Mann–Whitney test) from that in the rest (red region).
Further analysis of the freezing fraction and coeffi-

cient of variation is aimed to study the possibility of
a possible freezing episode during the iterations of the
map.

6 Effect of external
input in the absence of proprioceptive feedback

This section details the effect of periodic sensory sig-
nals such as auditory inputs and STN stimulation given
to PD patients for alleviating FoG. The external input
I (t) shown in Fig. 3 alters the phase and thereby influ-
ences the synchronisation as discussed in Sect. 3.2. In
this section, the effects of varying the amplitude and
the frequency of the external input I (t) on states defin-
ing the neuronal activity (y1(t), y2(t)) and the angu-
lar velocity state of the limbs (Σm) in the absence of
the proprioceptive feedback Ξ(t) in Fig. 3 are stud-
ied. This helps to understand qualitative differences
in the region of synchronous behaviour of CPG and
the non-freezing regime under the action of external
periodic input for the overall system in the absence of
proprioceptive feedback. The analysis is done in two
sub-sections as follows:

6.1 Effect of external input on neuronal activity

The system in Eqs. 9–12 under the influence of exter-
nal input, with a �= 0 and fb = 0, possibly resulting
from sensory or auditory cues [7,12,77], is studied. By
forcing the feedback term to zero, the effect of exter-
nal input on the CPG neural part of the system only
is considered here. The amplitude scaling parameter a
and the frequency Ω f of the external input in Eq. 13
are varied from 0 to 3 in steps of 0.1 and from 0 to
2 in steps of 0.025, respectively. The frequency range
is chosen to be a representative range of the walking

Fig. 9 The l2 norm of the difference trajectories, ‖E‖2, for dif-
ferent values of frequency Ω f in Eq. 17 and for different values
of amplitude scaling parameter in Σni (with 0.1–0.025 grid).
‖E‖2 calculated for time duration from t1 = 27 to t2 = 30s with
initial conditions a y10 = 1 and b y10 = 2. The highly syn-
chronised regions are in blue with low value for the norm. This
illustrates the ability of the external inputs to synchronise the
CPG behaviour for a subset of frequency and amplitudes. (Color
figure online)

frequencies [27]. The effect of variations on the CPG
is quantified in the following manner.

The system in Eqs. 9–12 are simulated for 30 s using
two sets of initial conditions—(a) Nominal initial con-
ditions as given in Table 1 and (b) Perturbed initial
conditions with y10 = 2 instead y10 = 1 and the
remaining as listed in Table 1. The perturbation to state
y1 alone causes desynchronisation. The chosen per-
turbed initial condition corresponds to a point chosen
outside the limit cycle of the oscillator. Suppose the
subscripts ‘a’ and ‘b’ in sequel correspond to the two
cases of initial conditions for the 30s finite time simu-
lation of the system as described above. LetY [t1, t2]

a and
Y [t1, t2]
b represent the CPG neuronal activity state vec-

tors (y1(t), y2(t)) during the time period [t1, t2].While
synchronisation is achieved, Y [t1, t2]

a and Y [t1, t2]
b must

be close in both phase and amplitude, in a non-trivial
manner. Further, let ‖E‖2 := ‖Y [t1, t2]

a − Y [t1, t2]
b ‖2

be the l2 norm of the difference between the neuronal
activity trajectories from t1 = 27 to t2 = 30s. When
two trajectories Y [t1, t2]

a and Y [t1, t2]
b are close in both

phase and amplitude the ‖E‖2 reaches a very small
value (‖E‖2 <= 10−4) indicatinghere synchronisation
of neuronal states. The term ‖E‖2 for different values
of frequency Ω f in Eq. 17 and for different values of
scaling of amplitude a in Σni is plotted in Fig. 9.
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External cueing is a highly relevant treatment option
for PD [21,54,71,79]. Moreover, orbitally stable walk-
ing requires synchronised neuronal activity at the level
of CPG. In Fig. 9, a region of synchronised behaviour
(blue region) can be observed for a higher amplitude
of external input.

Even though one could see synchronised neural
activity at a low amplitude of external input, synchro-
nisedneural behaviour is observed for a relatively broad
range of frequencies at a higher amplitude of external
input.

6.2 Effect of external input on the Freezing Fraction

The neuromechanical system described in Eqs. 9–12
under the influence of external input (with a �= 0 and
fb = 0) is studied in this section for its effect on
freezing fraction defined in Sect. 3.3. The parameters a
and Ω f of the state-independent exogenous input term
aI (t) in Eq. 13 are varied. The frequency Ω f and the
amplitude a of the external input are plotted against the
freezing fraction in Fig. 10. The simulation is executed
for 30 s, and the fraction of freezing events is computed
from the simulated data. The result is plotted in Fig. 10
where the blue and red region indicates the region of the
low and high number of freezing episodes, respectively.
A blue region is observed with a low freezing fraction
when the external input frequency (Ω f ) is between 1
and 1.5 Hz. In this region, the neural and mechanical
systems synchronise to generate a normal gait pattern.
Figure 6a, b demonstrates the effect of external input
on otherwise freezing neuromechanical model with a
very low feedback ( fb = 0.1), as fully evident from
the present analysis in Fig. 10.

7 Effect of feedback on the overall system

The sensitivity of the parameters fb and e in CPG
dynamics has been studied to understand gait variabil-
ity. The coefficient of variation (CV) [58] is used as
the metric for this study. The coefficient of variation
is calculated as the ratio of the standard deviation to
the mean of the angular velocity ω in simulations. The
static parameters fb and e are varied, and the hybrid
walking model is simulated for a duration of 30 s. The
CV of theω is presented as a function of the parameters
e and fb in Fig. 11a. Lower fb generates high variabil-

Fig. 10 The effect of external input I (t) on a system with no
feedback ( fb = 0) is studied here. The amplitude of the input
a and the frequency of stimulation Ω f are plotted against the
freezing fraction. The simulations are done for 30s and the cor-
responding fraction of freezing events is computed. The blue
region has a low, and the red region has a high fraction of freezing
events. For the parameter set chosen, the appropriate frequency
to achieve walking is between 1 and 1.5 Hz. This illustrates, even
in the absence of feedback, the external input (plausibly result-
ing from cueing) reduces FoG, resulting in synchronised walk-
ing for a subset of the frequencies and amplitudes. The range of
frequencies for which the system is synchronous increases for
higher amplitudes. (Color figure online)

ity. A very low value of e results in a lower energy sup-
ply to the mechanical system and results in higher vari-
ability. A region of appropriate fb and e (the red region
in Fig. 11a) results in low variability and low freezing.
The freezing fraction also has a qualitatively identical
pattern as that of Fig. 11a (see Fig. 11b). This helps to
explain the higher variability seen in PD patients. [28].

7.1 Parameters α, τ, K , St

A set of figures are provided here which study the
effect of parameters α, τ, K , St . The parameters are
explored while varying simultaneously with fb. The
parametersα, τ, K , and St (Fig. 11) are also studied to
understand its effect on the freezing fractionwhile var-
ied simultaneously with the parameter fb. Increasing
α and K from 0 to 1 and 10 to 60, respectively, showed
qualitative changes in behaviour only at lower fb ( fb <

1). Increasing τ resulted in higher freezing fractions
even at higher fb values. Varying St with fb showed
different regions of walking and freezing behaviour is
higher fb resulting in lower freezing fractions.
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Fig. 11 The parameters e, fb, α, τ, K , St are studied here to
understand its effect on the freezing fraction. The effect e and fb
on CV is also provided. While freezing depends on every param-
eter in the model, its dependence on St , τ and e, are qualitatively
different from α and K when simultaneously varied with fb.
The effect of fb on synchronisation is not altered by the other
parameters, and an increase in τ results in freezing even at high
fb. From a physiological perspective, a higher feedback benefits
to counter freezing. Increased τ results in higher variability irre-

spective of feedback a CV of a 30 s. simulation while varying e
and fb has been plotted. A low value of fb and e result in a higher
absolute value of CV and vice versa. b Freezing fraction in 30 s.
simulation; while varying e and fb has been plotted. A low value
of fb and e result in higher freezing fraction and vice versa. c
The effect of St and fb on the freezing fraction is indicated d
The effect of τ and fb on the freezing fraction is considered. e
The effect of K and fb on the freezing fraction is studied. f The
effect of α and fb on the freezing fraction is plotted

8 Discussion

Amathematical model has been developed, taking into
account the CPG-based control, state-dependent pro-
prioceptive feedback and limb mechanics. The pro-
posed model exhibits normal gait with orbital stabil-
ity, Freezing of gait (FoG) and transitions between the
walking and freezing behaviour. The proposed model
explains freezing from the perspective of propriocep-
tive feedback (Sect. 7) and has relatively lower dimen-
sional complexity than existing detailed biophysical
models such as the one by [3,72]. The analysis of the
multiple parameters of the model together with feed-
back strength fb revealed the importance of individual
parameters on the freezing fraction. A more detailed
study of the variations in the oscillator’s time period,
its stochastic nature and the variations in the phase
responses of the neural system is future work.

The effect of sensory feedback on normal gait has
been studied previously by several authors [4,72,73]. It
is also hypothesised that subjects with PD show a lack
of adequate feedback [21,71]. The results in Sect. 7
articulates the role of feedback in freezing, primarily
how the reduced feedback generates a lack of syn-
chrony and consequently the FoG. The synchronisa-
tion of nonlinear systems using external inputs is well
established [39]. This study, specifically the results in
Sect. 6.2, reveals how the synchronisation gets induced
in PD gait to avoid FoG. The results indicate that exter-
nal input (I (t)) help to reduce the freezing incidences
in this case for inputs of a range of frequencies (1–
1.5Hz) and amplitudes (greater than 1.2). Hence, there
is potential for the use in real-life scenario with appro-
priate personalised adaptation of the model.

The external input models the auditory/sensory cue-
ing in a phenomenological way, the frequency of which
is vital [79]. Cueing at low and very high frequency are
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not considered appropriate for managing FoG [54,79].
Moreover, an STN stimulation study by Fischer et al.
[19] also shows entrainment in stepping in place for
PD patients. Results in Sects. 6.1 and 6.2 indicate
the plausible physiological mechanism underlying this
frequency-dependent behaviour in PD. The ‘region of
synchrony’ of oscillators shown in Fig. 9 is larger than
the non-freezing areas shown in Fig. 10. Therefore,
synchrony in CPG does not necessarily imply normal
walking, and walking in humans is essentially a result
of synergistic neuromechanical interaction of the limbs
and CPG.
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