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Abstract This paper investigates the dynamics of a
Duffing oscillator excited by an unbalanced motor. The
interaction between motor and vibrating system is con-
sidered as nonideal, which means that the excitation
provided by the motor can be influenced by the vibrat-
ing response, as is the case in general for real systems.
This constitutes an important difference with respect to
the classical (ideally excited) Duffing oscillator, where
the amplitude and frequency of the external forcing
are assumed to be known a priori. Starting from pre-
resonant initial conditions, we investigate the phenom-
ena of passage through resonance (the system evolves
towards a post-resonant state after some transient near-
resonant oscillations) and resonant capture (the sys-
tem gets locked into a near-resonant stationary oscil-
lation). The stability of stationary solutions is analyt-
ically studied in detail through averaging procedures,
and the obtained results are confirmed by numerical
simulations.
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1 Introduction

The analysis of forced vibrations in mechanical sys-
tems and structures is generally based on the hypothesis
of ideal excitation, whichmeans that the forcing ampli-
tude and frequency are assumed to be known a priori.
However, the ideality assumption fails to explain and
predict certain kinds of behaviour found in real sys-
tems [25,43]. In these situations, the excitation needs
to be considered as nonideal, meaning that there is a
reciprocal interaction between excitation and vibrating
response.

The study of nonideally excited oscillations started
with the pioneering work of Sommerfeld in 1904 [43].
The experimental setup consisted in an unbalanced
electric motor mounted on an elastically supported
table. Sommerfeld measured the rotor speed and the
oscillation amplitude, while gradually increasing the
input power in order to make the rotor speed pass
through the resonance frequency of the vibrating sys-
tem [30]. As represented in Fig. 1, it was discovered
that, with a steady rate of input power increment, the
increase in rotor speed was notably slowed down when
the system reached the vicinity of the resonance region,
while the oscillation amplitude grew considerably. This
smooth evolution of the system state was found to be
interruptedby an abrupt jumpof the rotor speed towards
a post-resonant value, together with a sudden decrease
in the amplitude of the oscillations. A less pronounced
jumped phenomenon occurred when passing through
resonance with decreasing input power (see Fig. 1).
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Actual Evolution
Expected Evolution
Natural Frequency of the System

Fig. 1 Numerical simulation of Sommerfeld’s experiment

This atypical behaviour is often referred to as the Som-
merfeld effect.

The Sommerfeld effect is closely related to the more
general notion of resonant capture [32,35,38]. This
phenomenon occurs when a nonlinear system becomes
locked in the vicinity of a particular surface of the phase
space, known as a resonance manifold, which usually
corresponds to a critical value of one of the frequen-
cies present in the system. The alternative, known as
passage through resonance, occurs when the system
undergoes a transient motion near the resonance man-
ifold and, after some time, it sets out towards the non-
resonant region of the phase space.

In 1992, Rand et al. [22,35] reported an interesting
real case of nonideal excitation. They investigated a
specific type of failure found in dual-spin spacecrafts
when first placed in orbit, known as precession phase
lock. Dual-spin spacecrafts consist of two bodies (plat-
form and rotor) connected by a bearing assembly that
allows for relative rotation. An internal motor is used to
generate a relative spin motion between platform and
rotor. When precession phase lock occurs, the energy
provided by the motor is found to be channelled into
motions other than the intended rotation. Rand et al.
concluded that the phenomenon of precession phase
lock is mathematically analogous to the resonant cap-
ture of an unbalanced motor attached to an elastic sup-
port and driven by a constant torque. Quinn et al. inves-
tigated approximate analytical methods to distinguish
initial conditions leading to capture or passage through
resonance [32]. Quinn also extended the analysis to the
case of an unbalanced motor supported by orthogonal,

linearly elastic supports, constrained to have a planar
motion [33].

Fidlin [14] analysed the near-resonant oscillations
produced by an unbalanced motor using two different
approaches: a standard second-order averaging and a
hierarchic averaging procedure, based on a coordinate
transformation suggested by Pechenev [31]. Sanders
[38] investigated the same system as Fidlin through
first-order averaging, looking for conditions leading to
resonant capture or passage through resonance.

The literature mentioned up to this point is partic-
ularly connected to the present work, due to the simi-
larity in the considered system and assumptions. (The
relation between these references and the results of our
investigationwill be highlighted in Sect. 6.) Some addi-
tional works of relevance are briefly described in the
next lines. Cveticanin et al. [7,8] used averaging tech-
niques to investigate different configurations of nonide-
ally excited systems, including cases of variable mass.
The behaviour of elastically supported unbalanced
motors with fractional damping was numerically anal-
ysed in [2,47]. Bharti et al. [3] addressed the appear-
ance of the Sommerfeld effect in the torsional vibra-
tions of a double-Cardan joint driveline. Drozdetskaya
and Fidlin used a particular type of averaging method,
namely the averaging technique for partially strongly
damped systems, to study the dynamics of an unbal-
anced motor with a passive self-balancing system [11].

As an alternative to averaging, many researchers
have exploited the method of Direct Separation of
Motions [4] for the analysis of nonideally excited oscil-
lators [9,21,24,39,41,42,49,50]. Of course, together
with the analytical and numerical research, experimen-
tal studies are critical to understand nonideally excited
oscillations. In this regard, it is worth mentioning some
recentworks fromVaranis et al. [45,46]where different
setups—a cantilever beam, a portal frame and a 3-DOF
shear-building structure—are used for experimental
validation. Also relevant is the experimental demon-
stration given byKossoski et al. [26] of the use of shape
memory alloys to mitigate the Sommerfeld effect.

From the above paragraphs, it is clear that nonide-
ally excited oscillations have attracted wide attention
from researchers in the last decades. On the other hand,
the Duffing oscillator is surely one of the most studied
systems within the field of nonlinear dynamics [44].
The fact that such an apparently simple equation—a
linear oscillator with an extra cubic term in the restor-
ing force—can give rise to jumps, chaotic behaviour,

123



Stability of a nonideally excited Duffing oscillator 3077

bursting oscillations, etc., makes the Duffing oscillator
a very useful system to understand the nature of these
complex dynamic phenomena [27,34]. In addition,
the Duffing equation has great practical importance
because it is able to capture the nonlinear behaviour
of many physical systems: pendulums [37], cables
[48], elastic beams undergoing large displacements
[19,29,36], nonlinear electrical circuits [27], etc. The
present work is intended to analyse how the Duffing
oscillator behaves when, instead of being subjected to
the usual harmonic forcing with known frequency and
amplitude, it is excited by a nonideal energy source.

The organization of this article is as follows. Sec-
tion 2 defines the problem under consideration and
the underlying assumptions. The analytical treatment
of the equations through averaging techniques is pre-
sented in Sect. 3. Section 4 shows that an extension
of the time scale of validity of the averaged system is
required to prove stability of near-resonant solutions.
Section 5 presents some numerical results to confirm
and illustrate the analytical developments. A discus-
sion and interpretation of the obtained analytical and
numerical results is offered in Sect. 6, which also high-
lights the relation between the present paper and some
relevant literature. Section 7 summarizes the work and
presents its conclusions.

2 Problem statement and assumptions

We investigate the dynamics of an unbalanced
electric motor attached to a fixed frame through a
nonlinear spring—whose force has linear and cubic
components—and a linear damper, as represented in
Fig. 2. Variable x stands for the linear motion, φ is
the angle of the rotor, m1 is the unbalanced mass with
eccentricity r , m0 is the rest of the vibrating mass, I0
is the rotor inertia (without including the unbalance), b
is the viscous damping coefficient, and k and λ are,
respectively, the linear and cubic coefficients of the
spring.

The equations of motion for this 2DOF system
are [13]

mẍ + bẋ + kx + λx3 = m1r(φ̇
2 cosφ + φ̈ sin φ)

I φ̈ = Lm(φ̇) + m1r ẍ sin φ
(1)

where m = m0 + m1, I = I0 + m1r2 and a dot repre-
sents differentiation with respect to time t . Gravity can

Fig. 2 Representation of the system under analysis: an unbal-
ancedmotorwith known torque–speed curve connected to a fixed
frame through a Duffing-like spring and a linear damper

be shown to have no relevance for the purposes of this
work [10], since the corresponding term in the equa-
tions becomes zero after averaging. For this reason, no
gravity term has been included in Eq. (1).

Function Lm(φ̇) represents the motor characteristic.
We assume this driving torque to be linearly related to
the rotor speed:

Lm(φ̇) = C + D(φ̇ − ωn), (2)

with C > 0, D < 0 and ωn = √
k/m. It should be

pointed out that writing the motor torque as a function
of the rotor speed, and not of some internal electri-
cal variables (voltages, currents or magnetic fluxes),
corresponds to a quasi-steady state hypothesis. This
means that the dynamics of the electrical variables are
assumed to be much faster than the dynamics of the
mechanical variables. For a thorough discussion on the
validity and limitations of this approach, see [6].

It is useful to define the following dimensionless
parameters

Rm = m1

m
, RI = m1r2

I
, ξ = b

2
√
km

α = RI Rm

2ξ
, ρ = λr2

k

(
Rm

2ξ

)2

c = C

Iω2
n
, d = D

Iωn

(3)

Let us also define dimensionless versions of displace-
ment x and time t :

u = x

r
· 2ξ

Rm
, τ = ωnt (4)

Nowsystem (1) can be rewritten in dimensionless form:

ü + u = −2ξ u̇ − ρu3 + 2ξ(φ̇2 cosφ + φ̈ sin φ)

φ̈ = c + d(φ̇ − 1) + αü sin φ
(5)

where a dot now represents differentiation with respect
to dimensionless time τ .
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In order to investigate system (5) using perturbation
techniques, some assumptions on the order of mag-
nitude of the parameters are needed. We assume the
damping, the unbalance, the spring nonlinearity and
the driving torque at resonance to be small. This is
expressed by making the corresponding parameters
proportional to a sufficiently small, positive, dimen-
sionless parameter ε:

ξ = εξ0, α = εα0, ρ = ερ0, c = εc0 (6)

where parameters with subscript 0 are ε-independent.
It can be shown that the system dynamics and

the required perturbation approach are very different
depending on the order of magnitude of themotor char-
acteristic [16,17]. We distinguish between the cases
of large slope (d = O#(1)) and small slope (d =
O#(ε))—symbol O# represents a sharp estimate, see
Definition 1.4.4 in [38] or Definition 1.1.4 in [12].
While the case of large slope was investigated by the
authors in [16–18], the case of small slope is the focus
of the present work:

d = εd0 (7)

A global comparison between the cases of large and
small slope can be found in Chapter 7.2 of [15].

3 Perturbation approach

By introducing Eqs. (6) and (7) into Eq. (5), the system
can be written as

ü + u = ε
[−2ξ u̇ − ρu3 + 2ξ(φ̇2 cosφ + φ̈ sin φ)

]
φ̈ = ε

[
c + d(φ̇ − 1) + αü sin φ

] (8)

where subscript 0 has been dropped for convenience.
It is useful to transform system (8) according to

change of variables

u = a cos (φ + β)

u̇ = −a sin (φ + β).
(9)

Let us also define a new variable for the rotor speed:

� ≡ φ̇. (10)

It can be shown that system (8), written in terms of the
new variables, takes the form (see [17] for details)

ȧ = −ε sin (φ + β)F1(a, β, φ,�) + O(ε2)

�̇ = ε [c + d(� − 1) − αa sin φ cos (φ + β)] + O(ε2)

β̇ = 1 − � − ε
cos (φ + β)

a
F1(a, β, φ,�) + O(ε2)

φ̇ = �

(11)

where

F1 = 2ξa sin (φ + β) − ρa3 cos3 (φ + β)

+ 2ξ�2 cosφ.
(12)

A direct inspection of system (11) reveals that it con-
tains two nonangular real variables {a,�} that are
slow—they evolve with rate O(ε)—and two angular
variables {β, φ} that are, in principle, fast—they evolve
with rateO(1) unless � ≈ 0 or � ≈ 1. Hence, this is a
suitable scenario for averaging over the fast angles (see
Chapter 7 in [38] for a thorough treatment of this kind
of techniques). However, in order to average over sev-
eral angles, the system needs to be rewritten with the
r.h.s. being a sum of functions, each of them depend-
ing on only one of the fast angles (see Remark 7.7.1 in
[38]). To this end, new angular variables are defined:

ϕ1 ≡ β, ϕ2 ≡ φ + β, ϕ3 ≡ 2φ + β. (13)

Then, by expanding the products of sines and cosines
in (11), the system can be written as

ȧ = ε
[−ξa − ξ sin ϕ1 + F2(a, ϕ2) − ξ�2 sin ϕ3

]+ O(ε2)

�̇ = ε
[
c + d(� − 1) + α

2
a sin ϕ1 − α

2
a sin ϕ3

]
+ O(ε2)

ϕ̇1 = 1 − � + O(ε) (14)
ϕ̇2 = 1 + O(ε)

ϕ̇3 = 1 + � + O(ε)

where

F2(a, ϕ2) = ρa3
(
1

4
sin (2ϕ2) + 1

8
sin (4ϕ2)

)

+ ξa cos (2ϕ2)

(15)

System (14) is in the appropriate form for averaging
over the 3 fast angles {ϕ1, ϕ2, ϕ3}. However, this aver-
aging procedure fails in the vicinity of � = −1 and
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� = 1—note that ϕ1 or ϕ3 is no longer a fast vari-
able when � = 1 or � = −1, respectively. Since we
assume the rotor speed to be always positive, the only
relevant singularity occurs at � = 1. This can also be
expressed by stating that the system has a resonance
manifold at � = 1. Thus, two different regions of the
phase space need to be distinguished: far away from
the resonance manifold (outer region), system (14) can
be averaged over the 3 fast angles, while in the vicin-
ity of the resonance manifold (inner region) a different
averaging approach is required.

3.1 Outer region

If the rotor speed� is away from 1, we can average sys-
tem (14) over the three fast angles {ϕ1, ϕ2, ϕ3}. Note
that system (14) is of the form ẋ = ε

∑3
i=1 Xi (x, ϕi )+

O(ε2), with x = [a �]T . Its corresponding first-order
averaged systemcan be obtained as ẏ = ε

∑3
i=1 Xi ( y),

with Xi (·) = 1
2π

∫ 2π
0 Xi (·, ϕi ) dϕi . This general pro-

cedure is described in detail in Section 7.7 of [38]. The
resulting averaged system is

ȧ = −εξa

�̇ = εHm(�)
(16)

where

Hm(�) ≡ c + d(� − 1) (17)

System (16) approximates system (14) with O(ε)-
precision on a time scale 1/ε, as is known from aver-
aging theory [38]. Note that, in the outer region of the
phase space, the vibration amplitude and the rotor speed
evolve independently of each other.

A direct analysis of system (16) yields the conclu-
sion that it has one only fixed point, given by

{
a = 0
Hm(�) = 0

}
⇒
{
a = 0
� = �̃ ≡ 1 − c

d

}
(18)

which is globally asymptotically stable as long as
d < 0.

Note that, according to the assumption that c > 0
and d < 0, the equilibrium point given in Eq. (18)
corresponds to a post-resonant regime (� > 1), as rep-
resented in Fig. 3.

Two different scenarios can be considered:

Fig. 3 Dimensionless motor characteristic Hm(�)

• If �(0) > 1, system (16) is exponentially attracted
towards equilibrium (18) without approaching the
resonance manifold. It can also be proved that, in
this case, the outer averaged system is valid for all
τ ∈ [0,∞) (see Sect. 5.5 in [38]).

• If �(0) < 1, system (16) is also exponentially
attracted towards fixed point (18). However, in its
way towards the equilibrium, the considered tra-
jectory will necessarily reach the neighbourhood
of the resonance manifold, making system (16) no
longer valid. There are, in principle, two options:

– The system remains close to the resonanceman-
ifold for all subsequent time (resonant capture
or locking into resonance).

– The system stays near the resonance manifold
for some finite time, after which it continues
its evolution towards fixed point (18) (passage
through resonance).

3.2 Inner region

In order to study the system behaviour in the neigh-
bourhood of the resonance manifold, the rotor speed is
expanded as

� = 1 + √
εσ. (19)

Introducing Eq. (19) into system (11) yields

ȧ = −ε sin (φ + β)F3(a, β, φ) + O(ε
√

ε)

β̇ = −√
εσ − ε

cos (φ + β)

a
F3(a, β, φ) + O(ε

√
ε)

σ̇ = √
ε [c − αa sin φ cos (φ + β)] + εdσ + O(ε

√
ε)

φ̇ = 1 + √
εσ (20)
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with

F3 = 2ξa sin(φ + β) − ρa3 cos3(φ + β) + 2ξ cosφ

(21)

System (20) contains three slow variables {a, β, σ } and
a fast angle φ. It is useful in this case to apply a second-
order averaging procedure, which providesmore accu-
rate results than theusual first-order averaging.Observe
that system (20) is of the form ẋ = √

εG1(x, φ) +
εG2(x, φ) + ..., with x = [a β σ ]T . Its corresponding
second-order averaged system can be obtained as ẏ =√

εG
1
( y)+εG

2
∗( y), withG

1
(·) = 1

2π

∫ 2π
0 G1(·, φ) dφ

andG
2
∗(·) = 1

2π

∫ 2π
0 [G2(·, φ) +H(·, φ)] dφ, whereH

is a term that depends on G1 and G
1
. The details of

this general methodology can be found in Section 7.9
of [38]. The obtained approximate system is

˙̄a = −εξ
(
ā + sin β̄

)
˙̄β = −√

εσ̄ + ε

(
3

8
ρā2 − ξ

cos β̄

ā

)

˙̄σ = √
ε
(
c + α

2
ā sin β̄

)
+ εdσ̄

˙̄φ = 1 + √
εσ̄ .

(22)

Note that an overbar has been used to emphasize the
difference between the original variables {a, β, σ, φ}
(solutions of system (20)) and the averaged variables
{ā, β̄, σ̄ , φ̄} (solutions of system (22)), whose relation
is given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a = ā + O(ε)

β = β̄ + O(ε)

σ = σ̄ + √
ε
α

4
ā cos(2φ̄ + β̄) + O(ε)

φ = φ̄ + O(
√

ε)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

for 0 ≤ τ ≤ L√
ε

(23)

with L an ε-independent constant. The general proce-
dure that allows obtaining the error estimates (23) is
described in Section 7.9 of [38].

Despite the fact that the evolution of {ā, β̄, σ̄ } is
independent of φ̄—which is precisely the purpose of
averaging—system (22) includes φ̄ as a state variable.
The reason is that variable φ̄(τ ) is required to con-
struct the error estimates in (23). However, in order to
investigate the dynamics of the averaged system, it is
convenient to rewrite it without the fast angle:

˙̄a = −εξ
(
ā + sin β̄

)
˙̄β = −√

εσ̄ + ε

(
3

8
ρā2 − ξ

cos β̄

ā

)

˙̄σ = √
ε
(
c + α

2
ā sin β̄

)
+ εdσ̄ .

(24)

Adirect analysis of system (24) reveals that, if c > α/2,
there are no fixed points. On the other hand, if c < α/2,
the system exhibits two fixed points, given by

aeq = a0 + √
εa1 + O(ε)

βeq = β0 + √
εβ1 + O(ε)

σeq = σ0 + √
εσ1 + O(ε)

(25)

with

a0 =
√
2c

α
, a1 = 0

β0 = tan−1
( −a0

−zR0

)
, β1 = 0

σ0 = 0, σ1 = zξ R0

a0
+ 3

8
ρa20

(26)

where R0 ≡
√
1 − a20 and z = ±1. The two possible

values of z correspond to the two different equilibrium
points.

It is now illustrative to represent the obtained fixed
points on a torque–speed plot. This will provide a clear
comparison between the cases of large and small slope
of the motor characteristic. To this end, consider the
condition ˙̄σ = 0 applied to Eq. (24), which yields

c = −α

2
a0 sin β0. (27)

This can clearly be interpreted as a torque balance con-
dition, since the terms on the r.h.s. of the third equation
in (24) represent the different torques acting on the
rotor. On the other hand, condition ˙̄a = 0 yields

sin β0 = −a0, (28)

which allows writing Eq. (27) as

c = α

2
a20 (29)

If we now define functions Tm (dimensionless motor
torque) and Tv (dimensionless vibration torque) as

Tm ≡ c

Tv(a0) ≡ α

2
a20,

(30)

the fixed points are defined by

Tm = Tv(a0). (31)
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Fig. 4 Torque–speed curves in the resonance region for ρ > 0
(for ρ < 0 the curve is inclined to the left). The fixed points of
system (24) correspond to the intersections between Tm and Tv

In addition, condition ˙̄β = 0 yields

σ0 = 0, σ1 = σv(z, a0) ≡ 3

8
ρa20 +

zξ
√
1 − a20
a0

.

(32)

The torque–speed curves can be represented as follows.
First, graph Tm versus σ1 (in this case, since Tm ≡ c, a
constant function is obtained). Then, plot the paramet-
ric curve given by {σv(z, a0), Tv(a0)} for z = ±1 and
a0 ∈ (0, 1]. The fact that a is strictly positive comes
from its definition as the radius of a polar coordinate
transformation—seeEq. (9)—while condition (28) for-
bids a0 from being greater than 1. This procedure gives
rise to a torque–speed representation such as the one
shown in Fig. 4.

The reader interested in the relation between the
cases of large and small slope of the motor character-
istic may find illustrative to compare Fig. 4 with Fig. 4
in [17].

Figure 4 shows the existence of two fixed points, as
long as c < α/2. The stability of these equilibria is
now investigated. To this end, the Jacobian matrix of
system (24) needs to be obtained and evaluated at the
equilibrium point of interest:

Jeq = √
ε J1 + ε J2 + O(ε

√
ε) (33)

with

J1 =
⎡
⎣ 0 0 0

0 0 −1
−α

2 a0 − zα
2 a0R0 0

⎤
⎦ , (34)

J2 =
⎡
⎢⎣

−ξ zξ R0 0
− zξ R0

a20
+ 3

4ρa0 −ξ 0

0 0 d

⎤
⎥⎦ . (35)

Frequency

Stable

Unstable

Fig. 5 Stability of near-resonant solutions for a classical (ideally
excited) Duffing oscillator, with ρ representing the cubic term in
the restoring force
Now we compute the eigenvalues of matrix Jeq. After
some algebra, the following result is obtained for the
fixed point at the right branch of the torque curve
(z = 1):

z = 1 →

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1 = −2εξ + O(ε
√

ε)

λ2 = √
ε

√
αa0R0

2
+ O(ε)

λ3 = −√
ε

√
αa0R0

2
+ O(ε)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(36)

which clearly corresponds to an unstable equilibriumof
the saddle type. For the left branch (z = −1)we obtain

z = −1 →

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1 = −2εξ + O(ε
√

ε)

λ2 = √
ε i

√
αa0R0

2
+ ε

d

2
+ O(ε

√
ε)

λ3 = −√
ε i

√
αa0R0

2
+ ε

d

2
+ O(ε

√
ε)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

(37)

where i represents the imaginary unit. According to
Eq. (37), the fixed point on the left branch is stable as
long as d < 0, since all eigenvalues have negative real
parts.

Note a significant feature of Eqs. (36) and (37):
the stability of both fixed points is independent of the
cubic nonlinearity. If condition d < 0 is met, then the
left equilibrium is stable and the right one is unsta-
ble, regardless of the value of parameter ρ. This is an
important difference with respect to the classical Duff-
ing oscillator, for which it is well known that the sta-
bility of near-resonant solutions is highly dependent on
the cubic nonlinearity [44], as represented in Fig. 5.
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4 Analysis of the time scales

This section focuses on a very relevant detail about
the stability results obtained in Sect. 3. Note that not
only give the eigenvalues information about stability,
but also about the time needed by trajectories to be
attracted to or repelled by a fixed point.

For z = 1 (right branch of the vibration torque
curve), we have Re(λ2) = O(

√
ε), where λ2 is the only

eigenvaluewith a positive real part—seeEq. (36). Thus,
repulsion of trajectories from the fixed point occurs on
the time scale 1/

√
ε. Note that this is precisely the

time scale on which the inner approximation is valid,
as specified in Eq. (23). Consider now a trajectory of
the averaged system (24) starting sufficiently close to
the considered fixed point. If this trajectory is tracked
for the time length on which the averaged system is
valid (O(1/

√
ε)), it is found to be repelled out of the

equilibrium. Therefore, it can be stated that this fixed
point, which is unstable in the averaged system (24), is
also unstable in the exact system (20).

For z = −1 (left branch of the vibration torque
curve), the situation ismore intricate. FromEq. (37),we
have Re(λ1, λ2, λ3) = O(ε), with all three eigenvalues
having negative real parts as long as d < 0. Hence, the
attraction of trajectories towards the fixed point takes
place on the time scale 1/ε. On the other hand, from
Eq. (23), the averaged system is known to be valid on
the time scale 1/

√
ε. Since 0 < ε � 1, we can write

τvalidity � τattraction. (38)

With a similar reasoning to the one used for z = 1,
we can consider an arbitrary trajectory of the averaged
system (24) starting in the neighbourhood of the fixed
point. If we follow the trajectory for the time length
on which the averaged system is valid (O(1/

√
ε)), it is

found to be neither attracted nor repelled by the equi-
librium, since the time scale is not long enough. On the
other hand, if a longer time scale is considered, solu-
tions of the averaged system may not be good approx-
imations to those of the exact system anymore.

From the above considerations, it is clear that a ques-
tion remains open at this point of the analysis. The fixed
point on the left branch of the vibration torque curve
has been shown to be asymptotically stable in the aver-
aged system (24) if d < 0. However, is it also stable in
the exact system (20)? We answer this question based
upon the following result.

Result 4.1 Assuming d < 0, and for initial conditions
sufficiently close to the fixed point corresponding to
z = −1, solutions of the averaged system (24) and
solutions of the exact system (20) satisfy

⎧⎪⎨
⎪⎩

a = ā + O(
√

ε)

β = β̄ + O(
√

ε)

σ = σ̄ + O(
√

ε)

⎫⎪⎬
⎪⎭ for τ ∈ [0,∞). (39)

Note by comparing Eq. (39) to Eq. (23) that the
time of validity of the averaged approximation has been
extended (in the vicinity of the stable fixed point), pay-
ing the price of losing an order of magnitude in

√
ε in

the accuracy of the estimate.
The proof of this result is based on the attraction

properties of system (24) in the vicinity of an asymptot-
ically stable fixed point. We note that the use of attrac-
tion properties to extend the time of validity of asymp-
totic approximations is standard in averaging theory
(see Chapter 5 in [38]). However, the problem under
study presents a particular difficulty in this regard, due
to the weakness of the attraction—as has been stressed
before in this section, the real part of the eigenvalues in
Eq. (37) is notO(

√
ε), butO(ε). This makes necessary

a modified version of the general theorem presented in
Section 5.5 of [38]. In order to avoid making the main
body of the paper too long and cumbersome, the details
of the proof can be found in Appendix I.

In summary, Result 4.1 allows stating that, if the
fixed point corresponding to z = −1 is asymptotically
stable in the averaged system (24), the stability is pre-
served in the exact system (20).

5 Numerical simulations

This section presents some numerical results intended
to confirm and illustrate the analytical developments of
previous sections.

The simulations are carried out as follows. After
assigning specific values to the system parameters, a
set of initial conditions for the original system (8) is
chosen with �(0) < 1, i.e. in the pre-resonant region
of the phase space. Then, differential equations (8) are
numerically solved for a time interval [0, τ f ] that is
long enough to ascertain whether the system is cap-
tured or passes through resonance.

Suppose the system passes through resonance.
Looking at the obtained numerical solution, two par-
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ticular instants τ1 and τ2 are defined, at which the sys-
tem enters and leaves the resonance region, respec-
tively. Although the choice of these two values is some-
what arbitrary, they give an approximation to the limits
between the inner and outer solutions. Then, the outer
averaged system (16) is solved for τ ∈ [0, τ1] and τ ∈
[τ2, τ f ], with the initial conditions obtained as the solu-
tion of the original system evaluated at and τ = 0 and
τ = τ2, respectively. The inner averaged system (22) is
solved for τ ∈ [τ1, τ2], with the initial conditions cor-
responding to the solution of the original system par-
ticularized at τ = τ1. Finally, the solutions of the origi-
nal, outer and inner systems are represented together, in
order to confirm the accuracy of the averaged solutions.

In the event of resonant capture, instant τ2 does not
exist. Then, the outer and inner averaged systems are
solved for τ ∈ [0, τ1] and τ ∈ [τ1, τ f ], respectively.

It is worth noting that, regarding the inner approx-
imation, we do not represent the solution {ā, β̄, σ̄ , φ̄}
of system (22), but the more accurate solution given
by {ā, β̄, σ̄ + √

ε α
4 ā cos(2φ̄ + β̄), φ̄}, according to

Eq. (23).
The selected set of dimensionless parameters is

ξ = 2, α = 4, ρ = −20, c = 1, d = −2 (40)

which might be associated with dimensional parame-
ters

m = 100 kg

k = 5 · 104 N/m

b = 8.94Ns/m

m1 = 0.1 kg

λ = −1.6 · 106 N/m3

r = 0.1m

I = 6.25 · 10−2 kgm2

C = 3.1 · 10−2 Nm

D = −2.8 · 10−3 Nm s

(41)

with ε = 0.001. This set of parameters gives rise to the
torque–speed curves in the resonance regiondepicted in
Fig. 6. Note that condition c < α/2 is fulfilled, which
implies that there exist two fixed points in the inner
region of the phase space (marked as A and B in Fig. 6).

As discussed in Sects. 3 and 4, the equilibrium on
left branch of the vibration torque curve (point A) is
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Fig. 6 Torque–speed curves near resonance for parameter val-
ues (40)

stable—since we have d < 0—while the one on the
right branch (point B) is unstable. These fixed points
can be readily computed by introducing parameter val-
ues (40) into expressions (26):

Fixed points in the inner region
{
a0 = 0.71 β0 = 5.50 σ0 = 0
a1 = 0 β1 = 0 σ1 = −5.75

}
Point A

Stable

{
a0 = 0.71 β0 = 3.93 σ0 = 0
a1 = 0 β1 = 0 σ1 = −1.75

}
Point B

Unstable

(42)

The third equilibrium, in the outer region of the phase
space, can be obtained through Eq. (18):

Fixed point in the outer region{
a = 0

� = 1.5

}
Stable

(43)

This scenario is particularly useful to highlight the
difference between the classical (ideally excited) Duff-
ing oscillator and its nonideal counterpart. In order to
see this in a clear manner, it is convenient to resort to
the amplitude–frequency plot, as usually done when
analysing the primary resonance of the classical Duff-
ing oscillator [44]. This can be easily done by represent-
ing the last of relations (26) for the parameter values
given in Eq. (40), as shown in Fig. 7. Note that the two
fixed points A and B are also represented on this curve.
There is a straightforward relation between the torque–
speed plot in Fig. 6 and the amplitude–frequency (or
amplitude–speed) plot of Fig. 7, since the vibration
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Fig. 7 Amplitude–frequency relation for the parameters in
Eq. (40). This curve is given by the last of relations (26)

torque is proportional to the squared amplitude—see
Eq. (30).

For a classical (ideally excited) Duffing oscillator
with an amplitude–frequency curve such as represented
in Fig. 7, it is known that point A is unstable and point
B is stable [44] (see Fig. 5). However, according to
the analytical results of Sects. 3 and 4, the situation
is exactly reversed for the nonideally excited Duffing
oscillator: point A is stable and point B is unstable, as
specified in Eq. (42). In order to confirm this remark-
able difference, some simulation results are presented
below.

For the first simulation, consider the following set
of initial conditions:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u0 = −1.3

u̇0 = 0.2

φ0 = 0

φ̇0 = 0.6

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (44)

The obtained numerical results are represented in
Fig. 8, with remarkably good accordance between solu-
tions of the original and averaged systems. In this
particular case, the outer averaged solution has been
depicted for the whole time range, in order to clearly
see that this approximation loses all accuracy once the
resonance region is reached.

Although Fig. 8 certainly displays a scenario of res-
onant capture, it is not clear from these graphs whether
the system is approaching point A or point B. In order
to evaluate this, let us first calculate the value of the
rotor speed � at these two points. By combining rela-
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Fig. 8 Numerical solutions for parameters given in Eq. (40),
initial conditions given in Eq. (44) and ε = 10−3. Top: Displace-
ment Bottom: Rotor speed
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Fig. 9 Numerical solutions for parameters given in Eq. (40),
initial conditions given in Eq. (44) and ε = 10−3 (close-up view
of the rotor speed). �A and �B represent the values of variable
� at fixed points A and B, respectively

tions (19), (25), (26) and (42), we can write

�A = 1 + εσ1A = 0.994

�B = 1 + εσ1B = 0.998,
(45)

where �A, �B , σ1A and σ1B represent the values of
� and σ1 at fixed points A and B, respectively. Fig. 9
shows a close-up view of the rotor speed evolution plot-
ted in Fig. 8 on which two horizontal lines correspond-
ing to �A and �B have been added. It is apparent from
this figure that variable � evolves towards �A, which
is in complete agreement with the analytical results of
Sects. 3 and 4: point A, which is known to be unstable
for the classical Duffing oscillator, is found to be stable
for the nonideally excited Duffing oscillator.
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Fig. 10 Numerical solutions for parameters given in Eq. (40),
initial conditions given in Eq. (46) and ε = 10−3. Top: Displace-
ment Bottom: Rotor speed

Consider now a different set of initial conditions:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u0 = −1.2

u̇0 = 0.2

φ0 = 0

φ̇0 = 0.6

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (46)

which yields the numerical results displayed in Fig. 10.
Unlike in the previous case, the system is now found

to pass through resonance, showing again very good
agreement between solutions of the original and aver-
aged equations. Once the system has overcome the res-
onance region, it evolves towards the outer stable equi-
librium given by Eq. (43).

It is also illustrative to investigate a scenario with
no fixed points in the inner region of the phase space.
With this purpose, consider the set of parameters

ξ = 2, α = 4, ρ = −20, c = 2.1, d = −2, (47)

which is exactly the same as (40) except for a larger
driving torque at resonance. The corresponding torque–
speed curves near resonance are represented in Fig. 11,
exhibiting no intersections between the curves.

Clearly, resonant capture cannot occur in this situa-
tion, unless an attractor other than a fixed point existed
in the inner region. After conducting numerous simula-
tions with different initial conditions, no numerical evi-
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Fig. 11 Torque–speed curves near resonance for parameter val-
ues (47)

dence of such an attractor has been found. This means
that the system appears to pass through resonance for
any pre-resonant initial condition, leading towards the
outer stable equilibrium given by

Fixed point in the outer region{
a = 0

� = 2.05

}
Stable

(48)

as obtained by introducing the parameter values given
in Eq. (47) into Eq. (18).

Despite the resonance being not active—i.e. there
are no attractors in the resonance region—it can be
expected that trajectories are somehow distorted when
passing through the resonance manifold. To the end of
observing this effect, the results of two representative
simulations are shown in Figs. 12 and 13, correspond-
ing to the initial conditions given in Eqs. (49) and (50),
respectively.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u0 = 0.1

u̇0 = 0

φ0 = 0

φ̇0 = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(49)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u0 = 3

u̇0 = 0

φ0 = 0

φ̇0 = 0.5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (50)

Note that, for the initial conditions given in Eq. (49),
the evolution of the rotor speed is nearly unaffected
by resonance, while there is a significant effect on the
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Fig. 12 Numerical solutions for parameters given in Eq. (47),
initial conditions given in Eq. (49) and ε = 10−3. Top: Displace-
ment Bottom: Rotor speed

vibration amplitude. It is interesting that exactly the
opposite case is encountered for the initial conditions
given in Eq. (50): whereas the displacement is almost
unaltered by resonance, the rotor speed undergoes sig-
nificant oscillationswhen the systempasses through the
resonance manifold. Thus, it is clear that the influence
of resonance on the system behaviour strongly depends
on the initial conditions. In general, we can state that
some transient resonant effects can be expected even
when the system has no attractors in the resonance
region.

6 Discussion

From the analytical developments of Sects. 3 and 4,
confirmed by the numerical results of Sect. 5, we can
draw a general picture on the behaviour of the nonide-
ally excited Duffing oscillator.

The system exhibits two equilibrium points in the
resonance region as long as condition c < α/2 is met.
Fig. 4 represents both equilibria on a torque–speed plot,
where the fixed point on the right branch is unstable and
the one on the left branch is stable as long as condition
d < 0 holds. The existence of a stable fixed point in the
inner region justifies the possibility of resonant capture.

The system reaches the resonance manifold when-
ever the rotor speed is initially below resonance, as
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Fig. 13 Numerical solutions for parameters given in Eq. (47),
initial conditions given in Eq. (50) and ε = 10−3. Top: Displace-
ment Bottom: Rotor speed

is readily deduced from the second of Eqs. (16). For
some sets of initial conditions, the system trajectory
in the phase space will enter the basin of attraction of
the near-resonant stable fixed point and, therefore, it
will remain close to resonance for all subsequent time
(resonant capture). Clearly, there may also be sets of
initial conditions whose corresponding trajectories do
not reach the basin of attraction of the near-resonant
stable fixed point. In these cases, the system may leave
the resonance region and evolve towards the fixed point
given at Eq. (18), in the outer region of the phase space
(passage through resonance).

In principle, it would also be possible for trajectories
to be attracted by a different object in the inner region,
such as a stable limit cycle or a chaotic attractor. This
would represent another kind of resonant capture, not
due to the presence of a stable fixed point. However, the
numerical simulations carried out have not revealed the
existence in the inner region of any attractor other than
the investigated fixed point. It should be noted that the
results presented in Sect. 5 correspond only to a small
portion of the total amount of simulations carried out
during this research.

It is worth stressing a particularity of the obtained
stability results. The cubic term in the classical (ideally
excited) Duffing oscillator is known to have a strong
influence in the stability of near-resonant motions [44]
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(see Fig. 5). However, for the nonideally excited Duff-
ing oscillator, we have shown that, although the cubic
term modifies the fixed points near resonance (note the
inclination of the vibration torque curve in Fig. 4), it
does not affect their stability (observe that parameter ρ

does not appear in Eqs. (36) and (37)).
It is also interesting to highlight the relation between

the presented investigation and some relevant works in
the literature. Sanders et al. considered a system anal-
ogous to (8) as an illustrative example in Chapters 7
and 8 of their book [38]. Regarding the outer region of
the phase space, they conducted a similar analysis to
the one presented in Sect. 3.1, averaging over the three
fast angles in Eq. (14) and obtaining the equilibrium
given in Eq. (18). However, in the inner region they
carried out a first-order averaging, in contrast to the
second-order averaging addressed in Sect. 3.2 of this
paper. This procedure did not allow them to analyse the
stability of the fixed points near resonance, since a first-
order averaging is not accurate enough for this purpose.
Moreover, although Sanders et al. included a nonlinear
term in the restoring force (see term f (x) in Section
7.5.3 of reference [38]), they could not study the effect
of this nonlinearity on the near-resonant oscillations
of the system, since this also requires a second-order
averaging procedure.

Fidlin devoted Chapter 5 of his book [14] to the
study of nonideally excited oscillations, taking system
(8) (with ρ = 0) as a relevant example. He focused on
the resonance region, arriving at a system analogous
to (24) after a second-order averaging. One of the main
contributions of the present research to Fidlin’s work
is the analysis of the effect that a cubic nonlinearity in
the restoring force has on the near-resonant behaviour
of the oscillator. Moreover, by using a torque–speed
plot (see Fig. 4), a clear graphical interpretation has
been given to the fixed points of the averaged system
near resonance, which in turn provides a useful visual
comparison between the cases of large and small slope
of the motor characteristic. Finally, it has been proved
that a stable fixed point near resonance in the averaged
system guarantees stability in the original system as
well, as discussed in Sect. 4.

We should also mention the thorough investigations
by Rand, Quinn and collaborators on the phenomenon
of resonant capture [22,23,32,33,35]. These works
aimed at unveiling the dynamics of a linear, undamped
oscillator driven by an unbalanced motor with a con-
stant torque, which can be written as system (1–2) with

b = λ = D = 0. Interestingly, the purpose was to
understand and control precession phase lock, an unde-
sired phenomenon in the motion of spacecrafts, which
is governed by the same equations as the unbalance-
driven oscillator. It can be shown that the analytical
developments of Sect. 3.2 are valid under the assump-
tions of Rand, Quinn, et al. However, recall that the
results of Sect. 3.2 guarantee the stability of one of
the near-resonant fixed points as long as the slope of
the motor characteristic is strictly negative. Under a
constant torque, the procedure presented in this paper
cannot determine whether there are any stable near-
resonant fixed points in the averaged system, as can
easily be observed by putting d = 0 in Eq. (37). Hence,
different approaches are required to study resonant cap-
ture in the case of constant torque, such as the energy
method or the invariant manifold approach described
in [32].

Regarding future work on the problem addressed in
this article, it would be interesting to analyse the robust-
ness of the presented results with respect to paramet-
ric errors (i.e. uncertainties on the values of the sys-
tem parameters) [1]. In addition, some effort should
be devoted to determining or estimating the basins of
attraction of the different attractors present in the sys-
tem [20,40]. Thiswould help to quantify the probability
of resonant capture and passage through resonance.

7 Summary and conclusions

In this article we investigated the dynamics of a 1-DOF
oscillator, with Duffing-type restoring force and linear
damping, excited by an unbalanced motor. The inter-
action between motor and oscillator was considered
as nonideal, meaning that the rotational motion of the
rotor is not assumed to be known a priori, but depends
on the oscillator response. The behaviour of such a sys-
tem is known to depend strongly on the order of magni-
tude of the slope of the motor torque–speed curve [17].
In this regard, two different scenarios are considered:
what we have called the case of large slope and the case
of small slope. While the former was addressed by the
authors in [16,17], the latter is investigated in this paper.

The system behaviour was analytically studied,
using averaging techniques, both within the resonance
region and far away from resonance, with particular
interest in the phenomena of resonant capture and pas-
sage through resonance.
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Under appropriate conditions, two possible station-
ary motions were found near resonance. A clear graph-
ical interpretation for these solutions was provided in
the form of torque–speed curves, which in turn yields
a good visual comparison between the cases of large
and small slope of the motor curve. A stability analy-
sis of the averaged system revealed that one of these
solutions is always unstable, while the other is stable
as long as the slope of the motor curve is negative.

Itwas also analytically proved that the stability prop-
erties of the original system coincide with those of the
averaged system. Although this step is straightforward
for most systems, it required a detailed analysis in the
case under study, due to the very weak attraction of
the stable solution in the averaged system. It is worth
pointing out that justifying the existence of a stable
stationary solution near resonance in the original sys-
tem provides a solid explanation for the possibility of
resonant capture.

Regarding the cubic term in the restoring force, it
was found that, although this nonlinearity produces an
inclination of the peak in the vibration torque curve,
it does not affect the stability of near-resonant solu-
tions. This constitutes a very significant differencewith
respect to the classical (ideally excited) Duffing oscil-
lator. The obtained analytical results were confirmed
by numerical simulations.
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Appendix I: proof of result 4.1

This appendix shows how the time of validity of the
averaged system (24) can be enlarged for trajectories
starting close enough to the fixed point corresponding
to z = −1, as long as conditiond < 0 holds. It is known
that attraction properties can be used to expand the time
of validity of asymptotic approximations (see Chap-
ter 5 in [38]). The problem in the case of system (24)
is that the attraction is very weak, which makes nec-
essary a modified version of the standard result given
in Section 5.5 of [38]. The analysis developed in this
appendix is based on an example given in [38]—see
page 109, The Case n=2, in the mentioned reference.

Among the possible choices for vector and matrix
norms, we will use throughout all three appendices the

Euclidean norm for vectors, ‖x‖ =
√
x21 + ... + x2n ,

and its associated operator norm for matrices, ‖A‖ =
sup{‖Ax‖ : ‖x‖ = 1}.

System (20) is of the form[
ẋ
φ̇

]
=
[
0

�0

]
+ ε

[
X1(x, φ)

�1(x)

]
+ ε2

[
X2(x, φ)

0

]

+ ε3
[
X[3](x, φ, ε)

0

]
.

(51)

For the sake of generality, instead of presenting the
proof using the exact system (20) and the averaged
system (24), we will use the exact system (51) and its
corresponding averaged system.

Regarding system (51), let us assume that all func-
tions of x on the r.h.s. are of class C1 on an open set
U ⊂ R

n . We assume further that x remains within a
connected, bounded, open set D ⊂ U ⊂ R

n , while the
angleφ is definedon the circle S1. The initial conditions
can be denoted as x(0) = x0, φ(0) = φ0. Note that
a superscript in square brackets in Eq. (51) denotes a
remainder of an expansion in powers of ε (X[3] depends
on ε, while X1 and X2 do not). Note also the change in

123

http://creativecommons.org/licenses/by/4.0/


Stability of a nonideally excited Duffing oscillator 3089

notation between Eqs. (20) and (51):
√

ε is now writ-
ten as ε for simplicity. This can be understood as a
simple correspondence between two small parameters
(
√

ε1 = ε2). One last remark on notation: dimensional
time and dimensionless time have been denoted as t and
τ , respectively, throughout the article. In this appendix
the distinction is not relevant and a generic time t will
be used.

A standard second-order averaging procedure
applied to system (51)—see Section 7.9 in [38]—yields
the averaged system

[
ẏ
ψ̇

]
=
[
0

�0

]
+ ε

[
X
1
( y)

�1( y)

]
+ ε2

[
X
2
∗( y)
0

]
, (52)

with initial conditions y(0) = x0 − εu1(x0, φ0),
ψ(0) = φ0. Function u1 is defined as

u1( y, ψ) = 1

�0

∫ ψ

ψ0

[
X1( y, φ) − X

1
( y)
]
dφ (53)

with constant ψ0 chosen in such a way that

∫ 2π

0
u1( y, ψ) dψ = 0. (54)

Functions X
1
and X

2
∗ are defined as

X
1
( y) = 1

2π

∫ 2π

0
X1( y, φ) dφ (55)

X
2
∗( y) = 1

2π

∫ 2π

0

[
X2( y, φ) + DX1( y, φ) · u1( y, φ)

]
dφ (56)

where symbolD represents differentiation with respect
to y.

The error estimate, i.e. the relation between solu-
tions of the averaged system (52) and those of the exact
system (51), is given by

x(t) = y(t) + εu1(y(t), ψ(t)) + O(ε2)

for 0 ≤ t ≤ L

ε

(57)

with L an ε-independent constant. Relation (57) consti-
tutes a standard result for second-order averaging—see
Section 7.9 in [38].

We now turn to consider the fixed points of the aver-
aged system. Assume that the averaged system (52),

written without the fast angle as

ẏ = εX
1
( y) + ε2X

2
∗( y), (58)

has a fixed point y = yeq. Assume further that this fixed
point is asymptotically stable, with all eigenvalues of
the Jacobian being distinct and

Re(λi ) = O#(ε
2), (59)

where λi is the eigenvalue of the Jacobian with the
greatest real part. This implies that attraction of trajec-
tories towards the equilibrium takes place on the time
scale 1/ε2. On the other hand, as specified in Eq. (57),
the solutions of the averaged system (52) only approx-
imate those of the exact system (51) on the time scale
1/ε. Thus, we can write

tvalidity � tattraction. (60)

It is clear from Eq. (60) that, in order to prove that the
fixed point under consideration is stable in the exact
system, the time of validity needs to be extended some-
how.

Note that, up to this point in the appendix, we have
simply presented a generalized version of the situation
found in Sects. 3.2 and 4. Now we turn to the proof
itself of Result 4.1.

In order to extend the time of validity of the averaged
system by using attraction arguments, the attraction
properties of system (58) are investigated.Consider any
pair of solutions y1(t) and y2(t) of system (58) starting
in the Poincaré–Lyapunov domain of the fixed point.
According to the Poincaré–Lyapunov theorem [38], the
difference between these two solutions decreases expo-
nentially:

‖y1(t) − y2(t)‖ ≤ C‖y1(0) − y2(0)‖e−μt , (61)

withμ > 0,C ≥ 1. Without loss of generality, we now
assume that Eq. (61) holds with C = 1 (see Appendix
II). On the other hand, it is known from Eq. (59) that
the contraction coefficient μ can be written as

μ = ε2μ0, (62)

with μ0 an ε-independent constant. Introducing
Eq. (62) and assumption C = 1 into Eq. (61) yields

‖y1(t) − y2(t)‖ ≤ ‖y1(0) − y2(0)‖e−ε2μ0t . (63)
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In order to apply a contraction argument, we will need
to guarantee that, after a time intervalO(1/ε), the norm
of the difference between y1 and y2 has decreased. By
introducing t = L/ε into Eq. (63), we have

‖y1(L/ε) − y2(L/ε)‖ ≤ k‖y1(0) − y2(0)‖,
with 0 < k < 1

(64)

where

k = e−εμ0L = 1 − εμ0L + O(ε2). (65)

Let x(t), φ(t) denote the solution of system (51) for
initial conditions x(0) = x0, φ(0) = φ0. Likewise, let
y(t) denote the solution of system (58) for initial condi-
tions y(0) = x0 − εu1(x0, φ0), with y(0) being within
the Poincaré–Lyapunov domain of the fixed point y =
yeq. Now, consider the following partition of time:

[
0,

L

ε

]⋃[
L

ε
,
2L

ε

]⋃
...
⋃[

mL

ε
,
(m + 1)L

ε

]⋃
...

m = 1, 2, ...

(66)

On each segment Im =
[
mL
ε

,
(m+1)L

ε

]
we define

y(m)(t) as the solution of system (58) with initial con-
dition

y(m)

(
mL

ε

)

= x
(
mL

ε

)
− εu1

(
x
(
mL

ε

)
, φ

(
mL

ε

))
.

(67)

By defining x̃(t) = x(t) − εu1(x(t), φ(t)), we can
rewrite Eq. (67) as

y(m)

(
mL

ε

)
= x̃

(
mL

ε

)
. (68)

For all finite m we have from Eq. (57)

‖x̃(t) − y(m)(t)‖ ≤ cε2 t ∈ Im, Im−1 (69)

with c an ε-independent constant andwhere y(m)(t) has
been continued on Im−1 (the existence properties of the
solutions permit this). On the other hand, we can use

Eq. (64) to write

‖y(t) − y(m)(t)‖Im ≤ k‖y(t) − y(m)(t)‖Im−1 (70)

with 0 < k < 1 (observe the notation ‖ · ‖Im ≡
supt∈Im ‖ · ‖). Combining Eqs. (69) and (70) and using
the triangle inequality yields

‖x̃(t) − y(t)‖Im ≤ cε2 + k‖y(t) − y(m)(t)‖Im−1 . (71)

We can now combine Eqs. (71) and (69) and apply
again the triangle inequality:

‖x̃(t) − y(t)‖Im ≤ cε2 + k‖x̃(t) − y(t)‖Im−1

+ k‖x̃(t) − y(m)(t)‖Im−1

≤ cε2(1 + k) + k‖x̃(t) − y(t)‖Im−1 .

(72)

Using relation (72) recursively, we obtain

‖x̃(t)−y(t)‖Im ≤ cε2(1+k)(1+k+k2+...+km). (73)

Taking the limit form → ∞ yields the following result
for t → ∞:

‖x̃(t) − y(t)‖ ≤ cε2
1 + k

1 − k
. (74)

Let us now introduce Eq. (65) into Eq. (74):

‖x̃(t) − y(t)‖ ≤

cε2
2 + εμ0L + O(ε2)

εμ0L + O(ε2)
= 2c

μ0L
ε + O(ε2),

(75)

which can be rewritten as

‖x̃(t) − y(t)‖ ≤ c1ε, (76)

with c1 an ε-independent constant such that c1 > 2c
μ0L

.
Note by comparing Eqs. (76) and (74) that we have lost
an order ofmagnitude in ε in the estimate due to the fact
that constant k is close to 1, which is in turn associated
to the very weak attraction of the fixed point of interest.
Nevertheless, this attraction proves to be sufficient to
guarantee the closeness between x̃(t) and y(t) for all t .

Finally, by recalling definition x̃(t) = x(t) −
εu1(x(t), φ(t)) and taking into account that function
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u1 is bounded for any x ∈ D and φ ∈ S1, we can write

‖x(t) − y(t)‖ ≤ c2ε for all t ∈ [0,∞) (77)

which completes the proof. Note that Eq. (39) is the
particularization of Eq. (77) to the problem of the non-
ideally excited Duffing oscillator.

Appendix II: Transformation to real modal form

This appendix is intended to justify the assumption
C = 1 in Eq. (61). Let us first summarize the situa-
tion of interest: we investigate a system of the form

ẏ = εX
1
( y) + ε2X

2
∗( y), (78)

which is assumed to have an asymptotically stable fixed
point y = yeq with all eigenvalues of the Jacobian
matrix, Jeq = ε J1 + ε2 J2 + O(ε3), being distinct.
For any pair of solutions y1(t) and y2(t) starting within
the Poincaré–Lyapunov domain of the fixed point, the
Poincaré–Lyapunov theorem states [38]

‖y1(t) − y2(t)‖ ≤ C‖y1(0) − y2(0)‖e−μt , (79)

withμ > 0,C ≥ 1. There is, however, one specific sce-
nario where relation (79) holds with C = 1, as proved
in Appendix III: the case in which Jeq is in real modal
form [5].

A realmatrix Awith distinct eigenvalues is said to be
in realmodal form if its nonzero elements coincidewith
its eigenvalues in the followingmanner. The real eigen-
values are located on the diagonal of A, while the com-
plex conjugate eigenvalues appear as 2 x 2 blocks, with
the real part on the diagonal terms and the imaginary
part,with alternate signs, on theoff-diagonal terms.The
rest of the elements of A are zero. For example, a 3 x 3
matrix A in realmodal formwith one real eigenvalueλ1
and two complex conjugate eigenvalues λ2,3 = α ± iβ

would be A =
[

λ1 0 0
0 α β
0 −β α

]
.

Since the proof presented in Appendix I relies upon
the assumption that relation (79) holds with C = 1,
it is clear that the obtained result—Eq. (77)—is valid
if Jeq is in real modal form. This appendix will show
that the conclusions of Appendix I are also valid in the
general case.

Consider again the situation portrayed in the first
paragraph of this appendix, with the Jacobian matrix
Jeq assumed to not be in real modal form. Let us
perform a set of coordinate transformations. First, we
define a new vector of variables z as

z ≡ y − yeq. (80)

In the vicinity of the fixed point of interest, system (78)
can be written as

ż = Jeqz + O(‖z‖2). (81)

We now define T as a matrix whose columns consti-
tute a real eigenbasis [28] of Jeq. This means that T is
constructed using the eigenvectors of Jeq as follows.
The real eigenvectors are directly stored as columns of
T , while, for the complex conjugate eigenvectors, the
real and imaginary parts are stored in different columns
of T . For example, if Jeq had one real eigenvector
v1 and a couple of complex conjugate eigenvectors
v2,3 = u ± iw, we would have T = [v1|u|w]. Now
we define a new vector of variables q as

z = Tq. (82)

Clearly, system (81), written in terms of q, takes the
form

q̇ = Beqq + O(‖q‖2), (83)

with Beq = T−1 JeqT . Due to the way in which matrix
Beq is defined, it has some relevant properties, which
are well known from the theory of linear dynamical
systems [5]:

• Beq has the same eigenvalues as Jeq.
• Beq is in real modal form.

Then, according to the result presented inAppendix III,
we can write

‖q1(t) − q2(t)‖ ≤ ‖q1(0) − q2(0)‖e−μt , (84)

withμ > 0 and q1(t), q2(t) being any pair of solutions
of system (83) starting within the Poincaré–Lyapunov
domain of the fixed point q = 0. The conclusion is that,
using variable q instead of y, the Poincaré–Lyapunov
theorem can be written with C = 1.
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It has been shown that system (78), subjected to
the coordinate transformation y �→ q, can be written
as system (83). Analogously, system (51) can also be
transformed according to change of variables {x, φ} �→
{ p, φ}, with

x = yeq + T p. (85)

Then, using variables p and q instead of x and y, we can
legitimately follow the steps from Eq. (66) to Eq. (77),
which clearly yields

‖p(t) − q(t)‖ ≤ c3ε for all t ∈ [0,∞) (86)

with c3 an ε-independent constant. Now the original
variables can be recovered:

‖x(t) − y(t)‖ = ‖T (p(t) − q(t))‖
≤ ‖T‖‖p(t) − q(t)‖. (87)

Hence, we have that

‖x(t) − y(t)‖ ≤ c4ε for all t ∈ [0,∞) (88)

with c4 = ‖T‖c3.
It has been shown that the conclusion of Appendix I

is valid whether or not matrix Jeq is in real modal form.
The only difference between both cases is the need for
an appropriate coordinate transformation. In Appendix
I, the Jacobian matrix was assumed to be in real modal
form in order to avoid making the proof unnecessarily
cumbersome.

Appendix III: The Poincaré–Lyapunov Theorem
with the Jacobian matrix being in real modal form

The Poincaré–Lyapunov Theorem is a classic result on
the stability of dynamical systems, whose general for-
mulation and proof can be found in any textbook on
the subject, such as [38]. In this appendix, we are con-
cerned with the specific form of the theorem when the
Jacobian matrix of the system, at the fixed point of
interest, is in real modal form:

Theorem A.3.1 (Poincaré–Lyapunov)
Consider the system

ẋ = Ax + g(x), x(0) = a. (89)

where x, a ∈ R
n; A is a constant n x n matrix in real

modal form, with all eigenvalues having strictly neg-
ative real part. The vector field g(x) is continuously
differentiable with respect to x in a neighbourhood of
x = 0, with

g(x) = o(‖x‖) as ‖x‖ → 0. (90)

Then, there exist constants δ, μ>0 such that if ‖a‖<δ

‖x(t)‖ ≤ ‖a‖e−μt for all t ∈ [0,∞). (91)

Remark A.3.2 The domain ‖a‖ < δ where the attrac-
tion is exponential is called the Poincaré–Lyapunov
domain of the system at x = 0.

Proof Consider first the linear system associated with
system (89):

ẏ = Ay, y(0) = a. (92)

The solution of Eq. (92) can be written as

y(t) = Φ(t)a, (93)

where Φ(t) is the fundamental matrix, i.e. the solution
of

Φ̇ = AΦ, Φ(0) = I, (94)

where I is the n x n-identity matrix. Recall that matrix
A is assumed to be in real modal form, which, by def-
inition, means that A is of the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 . . . 0
0 λ2

. . .

... λm
α1 β1

−β1 α1
α2 β2

−β2 α2
. . .

αr βr
0 −βr αr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(95)

where λi (i = 1, 2, . . . ,m) are the real eigenvalues of
A and λ j, j+1 = α j ± iβ j ( j = 1, 2, . . . , r ) are the
pairs of complex conjugate eigenvalues of A.
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The solution of Eq. (94) is

Φ(t) = eAt , (96)

which, for a matrix A such as shown in Eq. (95), takes
the form

Φ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eλ1t 0 . . . 0
0 eλ2t

. . .

.

.

. eλmt

T1(t)
T2(t)

. . .

0 T r (t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (97)

where

T j (t) =
[
eα j t cos(β j t) −eα j t sin(β j t)
eα j t sin(β j t) eα j t cos(β j t)

]
,

j = 1, 2, . . . , r.

(98)

Now, let us obtain the norm of Φ(t):

‖Φ(t)‖ = sup{‖Φ(t)χ‖ : ‖χ‖ = 1} (99)

IntroducingEqs. (97) and (98) intoEq. (99) yields, after
some algebra,

‖Φ(t)‖2 = sup‖χ‖=1{e2λ1tχ2
1

+ e2λ2tχ2
2 + · · · + e2λmtχ2

m + e2α1t (χ2
m+1 + χ2

m+2)

+ e2α2t (χ2
m+3 + χ2

m+4) + · · · + e2αr t (χ2
n−1 + χ2

n )}
(100)

An upper bound for the squared norm can be readily
provided:

‖Φ(t)‖2 ≤ e2Ht (χ2
1 + χ2

2 + · · · + χ2
n ) = e2Ht (101)

with H = max{λ1, λ2, . . . , λm, α1, α2, . . . , αr }.
On the other hand, a useful lower bound for ‖Φ(t)‖2

can be found by choosing an appropriate vector χ as
follows: if H = λi (i ≤ m), then χ = ei ; if H = α j ,
then χ = em+2 j (vectors ek represent the standard
basis, with the k-th component being 1 and the rest
being zero). With such a choice of vector χ , we have
that

‖Φ(t)‖2 ≥ ‖Φ(t)χ‖2 = e2Ht (102)

Since it has been shown that ‖Φ(t)‖2 ≤ e2Ht and
‖Φ(t)‖2 ≥ e2Ht , the plain conclusion is

‖Φ(t)‖ = eHt . (103)

Recall that all eigenvalues are assumed to have nega-
tive real parts, which means that H < 0. Hence, we
can write

‖Φ(t)‖ = e−μt , (104)

with μ = −H > 0. From Eq. (93), an upper bound for
the norm of y(t) can be obtained as

‖y(t)‖ = ‖Φ(t)a‖ ≤ ‖Φ(t)‖‖a‖. (105)

Introducing Eq. (104) into Eq. (105) yields

‖y(t)‖ ≤ ‖a‖e−μt for all t ∈ [0,∞). (106)

It should be stressed that, for a system of the form
of Eq. (94) with A being a generic real matrix with
all eigenvalues having negative real parts, the standard
estimate is ‖y(t)‖ ≤ C‖a‖e−μt for some constants
μ > 0, C ≥ 1 (see Section 5.2 of [38]). What we
have justified is that, when A is in real modal form,
this inequality holds with C = 1.

The next step would be to show that relation (106),
which applies to the linear system (94) for any initial
condition a, is also valid for the nonlinear system (89)
as long as ‖a‖ < δ, for some δ > 0. Since this sec-
ond part of the proof is standard, meaning that it does
not depend on whether or not matrix A is in real modal
form, itwill not be displayed here. The interested reader
can consult it, for example, in Section 5.2 of [38]. ��

Lemma A.3.3 Consider two solutions x1(t) and x2(t)
for the equation

ẋ = Ax + g(x) (107)

for which the conditions of the Poincaré–Lyapunov
Theorem A.3.1 are satisfied. Then, starting in the
Poincaré–Lyapunov domain, we have

‖x1(t) − x2(t)‖ ≤ ‖x1(0) − x2(0)‖e−μt for all t ∈ [0,∞)

(108)
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for some constant μ > 0.

Proof See Section 5.2 of [38]. ��
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