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Abstract This paper presents a critical review of the

nonlinear dynamics of hyperelastic structures. Hyper-

elastic structures often undergo large strains when

subjected to external time-dependent forces. Hypere-

lasticity requires specific constitutive laws to describe

the mechanical properties of different materials, which

are characterised by a nonlinear relationship between

stress and strain. Due to recent recognition of the high

potential of hyperelastic structures in soft robots and

other applications, and the capability of hyperelastic-

ity to model soft biological tissues, the number of

studies on hyperelastic structures and materials has

grown significantly. Thus, a comprehensive explana-

tion of hyperelastic constitutive laws is presented, and

different techniques of continuum mechanics, which

are suitable to model these materials, are discussed in

this literature review. Furthermore, the sensitivity of

each hyperelastic strain energy density function to

coefficient variation is shown for some well-known

hyperelastic models. Alongside this, the application of

hyperelasticity to model the nonlinear dynamics of

polymeric structures (e.g., beams, plates, shells,

membranes and balloons) is discussed in detail with

the assistance of previous studies in this field. The

advantages and disadvantages of hyperelastic models

are discussed in detail. This present review can

stimulate the development of more accurate and

reliable models.

Keywords Nonlinear dynamics � Hyperelasticity �
Hyperelastic beams � Hyperelastic plates �
Hyperelastic shells � Nonlinear elasticity

1 Introduction

Hyperelastic structures often undergo large strains

when subjected to external forces. The stress–strain

relation in such structures is highly complicated,

making the linear stress–strain relationship and linear

elastic models invalid for simulating their mechanical

behaviour. The hyperelastic behaviour can be seen in

different soft structures such as rubbers, foams and

human body organs. Along with understanding the

characteristics of such structures, having accurate

modelling of hyperelastic structures could also
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provide us with further potential applications in

different fields.

1.1 Necessity for this review

By analysing the available database in Scopus on

hyperelasticity, the significance of the dialogue

between scientists and researchers on this topic was

obtained. Figure 1a demonstrates the number of

published works on hyperelasticity from 1990 to

2020. It can be seen that, during this period, the

number of published papers on this subject has

increased noticeably, reaching more than 1100

research studies published in 2020 alone.

Moreover, analysing the mechanical behaviours

(bending, buckling and vibration) of hyperelastic

structures (e.g. beams, plates, shells and membranes)

shows the same incremental trend indicated in Fig. 1b;

from which it can be seen that many studies on

hyperelasticity are focused on the mechanics of such

structures. The phenomenal growth of studies on this

subject clarifies the importance of having a systematic

literature review to summarise the achievements to

date on this topic.

1.2 Applications of hyperelastic structures

In general, soft structures present hyperelastic beha-

viours while confronting different conditions. One of

the main applications of hyperelastic structures is soft

robotics [1–3]; since soft structures can provide

higher-order degrees of freedom, movement in robotic

(a)

(b)

Fig. 1 Tables for the

number of documents from

1990 to 2020 on

(a) hyperelasticity and

(b) hyperelastic beams,

plates and shells
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parts could potentially become more smooth than

when using rigid and/or firm structures.

Robotic rehabilitation systems for stroke patients

can be significantly improved by using soft robotic as

they can provide a smooth motion with a safer

operation [4]. For instance, soft robotic gloves are

capable of helping patients with muscular dystrophy,

amyotrophic lateral sclerosis or post-stroke hand

function assistance [5–8]. In the work presented by

Polygerinos et al. [4], a soft robotic glove is presented

to study the hand and fingers’ joint motion. In their

model, the different mechanical behaviours of bend-

ing, twisting and extensions of soft beam-shaped

structures were obtained.

Developing soft structures to explore unknown

environments is another important application of

hyperelastic structures as it can tolerate different types

of loadings and impacts. In a study done by Antol et al.

[9], it is shown that expensive wheel rovers can be

replaced with tumbleweed rovers for Mars explo-

ration. In another study, Trivedi et al. [10] used

hyperelastic tubes for soft robotic modelling of Oct-

Arm.

Besides, soft robots made of hyperelastic materials

have been used for sensing and monitoring environ-

ments. For example, a dragonfly-inspired soft robot

(DraBot) has been fabricated for measuring the

contaminants (such as the presence of oil), pH, and

temperature of water surfaces [11–13].

The application of hyperelastic structures in soft

robotics has reached a turning point with the capability

of 3D printing and the utilisation of soft actuators

[14–16]. Hyperelastic structures also have other types

of applications, of which some of the main ones are

wearable devices [17], stretchable electronics [17],

biomedical engineering [17], and energy harvesters

[18, 19].

Figure 2 presents a simple robot that is capable of

crawling using twisted and coiled actuators [20]. This

simple model has been fabricated using hyperelastic

beams, and the smooth motion of the robot was

obtained by bending. Figure 3 also presents some

useful examples of soft structures as actuators in soft

robotics, which can be used for grabbing, twisting,

motion, lifting and other purposes [15].

Another application of soft structures can be found

in belt operating systems. Belt conveyor systems are

mainly used for power transmission from the driving

pulley to the driver one in different engineering fields

[21–23].

Layered hyperelastic structures have been used for

packaging, especially food industry, as a soft safe

layer is required for inside and a stiffer layer for

outside. The proper design and material usage are of

high importance as the packaging is around 15% of the

total variable costs [24, 25]. Waste management and

environmentally friendly (biodegradable) packaging

[26–28] are also important topics making the discus-

sion of using proper hyperelastic materials for pack-

aging an ongoing novel research topic.

Since human body organs show nonlinear elastic

behaviour, researchers have worked on fabricating

prosthetics with similar hyperelastic behaviour. Using

hyperelastic structures for firstly modelling the human

body organs and secondly accurately designing

Fig. 2 Schematic view of a crawling robot using soft structures

[20]. (Permission obtained from Elsevier)
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Fig. 3 Actuators made of soft structures with different

purposes: a contractor; b bender; c grabber; d twister [15].

(This article is an open access article distributed under the terms

and conditions of the Creative Commons Attribution (CC BY)

license (https://creativecommons.org/licenses/by/4.0/).)
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prosthetics have been a novel topic for researchers to

invest [29–32].

1.3 Contribution of this paper to the field

The importance of modelling hyperelastic structures

accurately has been discussed in the previous subsec-

tions. It is shown that there has been a considerable

number of researches on hyperelasticity with promis-

ing, growing trends over the past few years. The

demonstration of the high application potential of

these structures in the early years of their development

and their future in engineering design

[14, 15, 20, 33, 34] emphasises the necessity of

having a systematic literature review through the need

for categorisation, discussion and explanation of the

achievements to date. Accordingly, this review

intends to clarify the achievements and goals of this

research field by analysing diverse critical hyperelas-

tic studies in the framework of nonlinear dynamics.

1.4 Structure of this review paper

To present a comprehensive investigation on hyper-

elastic structures, this review is structured in the

following order: as shown in the flowchart of Fig. 4, in

Sect. 1, a brief introduction to hyperelastic structures

is given, indicating the importance of understanding

the hyperelastic mechanical behaviour, emphasizing

the application’s potential and the future of hypere-

lastic structures, and lastly, demonstrating the contri-

bution of this review to this field. In Sect. 2, some

well-known constitutive hyperelastic models for

isotropic soft materials are discussed in detail by

presenting the fundamental continuum mechanics

formulation and definitions related to hyperelastic

behaviour. Some of the well-known techniques and

models in continuum mechanics are then provided,

followed by the sensitivity of the model in tracking

hyperelastic behaviour. In Sect. 3, the application of

the given and other hyperelastic continuum models on

obtaining the nonlinear dynamics of hyperelastic

beam structures is discussed. Section 4 concentrates

on analysing hyperelastic plate and shell structures in

Hyperelas�c
Structures

1. Introduc�on

2. Some cons�tu�ve hyperelas�c 
models for isotropic materials

1.1. Necessity for this review 1.2. Applica�ons of hyperelas�c structures

1.3. Contribu�on of this paper to the field 1.4. Structure of this review paper

2.1. Fundamental 
con�nuum defini�ons

2.2. The neo-
Hookean model

2.3. The Mooney-
Rivlin model

2.4. The Ogden 
model

2.5. The Eight-Chain 
model

2.6. The Polynomial 
model

2.7. The Gent 
model

2.8. The Blatz-Ko 
model

3. Nonlinear dynamics of hyperelas�c beams

6. Summary and conclusions

4. Nonlinear dynamics of hyperelas�c plates and shells

5. Nonlinear dynamics of hyperelas�c membranes and balloons

Fig. 4 Flowchart of the structure of this review
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the framework of nonlinear dynamics. Different plate

and shell theories together with hyperelastic constitu-

tive models are discussed for accurately modelling the

nonlinear dynamics of soft plate and shell structures.

Section 5 presents a detailed explanation on hypere-

lastic models and nonlinear dynamics of soft mem-

branes and balloons using different continuum

mechanics models. Lastly, in Sect. 6, a comprehen-

sive summary of the analysis performed through this

paper is provided, and the achievements and possible

potential for improving the modelling of such struc-

tures are presented.

2 Some constitutive hyperelastic models

for isotropic materials

2.1 Fundamental continuum definitions

In order to define the mechanical characteristics of

hyperelastic structures, there are key continuum

mechanics definitions that must be presented. In

general, the deformation gradient (F) is defined as

[35]:

Fij ¼ dij þ
oui

oxj
;

J ¼ det Fð Þ;

8
<

:
ð1Þ

with J is the determinant of the deformation gradient, d
is the Kronecker delta and ui is the displacement field,

which could be rewritten in the principal directions of

the structures as [36]:

F ¼
k1 0 0

0 k2 0

0 0 k3

2

4

3

5 ! Fij ¼ dijki; ð2Þ

where ki indicates the principal stretch through the

principal direction i, defined as

ki ¼
Li

L0
i

; ð3Þ

with Li and Li.
0 are the deformed and undeformed

lengths of the structure through the i direction,

respectively. Another important definition in describ-

ing hyperelastic structures is the left Cauchy–Green

strain tensor (B) which is [36]

B ¼ F � FT ! Bij ¼ FikFjk ð4Þ

For conventional definitions, the left Cauchy–

Green strain tensor’s invariants are defined as [37]:

I1 ¼
Tr Bð Þ

J
2
3

¼ Bii

J
2
3

;

I2 ¼
1

2
I21 �

BijBji

J
4
3

� �

;

I3 ¼ J2;

ð5Þ

where I1, I2 and I3 are the first, second and third strain

invariants for compressible structures, respectively;

for incompressible analysis, the first and second

invariants will be simplified by having J = 1 and the

third invariant will be equal to 1 (interested readers are

referred to Refs. [38–40] for more information

regarding compressible and incompressible materi-

als). The Green–Lagrange strain–displacement can be

written regarding the deformation gradient as:

E ¼ 1

2
FT F � I
� �

! Eij ¼
1

2
FpiFpj � dij

� �
: ð6Þ

In the case of having principal stretches, invariants

of the left Cauchy–Green strain tensor are:

I1 ¼
k21 þ k22 þ k23

k1k2k3
� �2

3

;

I2 ¼
k21k

2
2 þ k21k

2
3 þ k22k

2
3

k1k2k3
� �4

3

;

I3 ¼ k1k2k3
� �2

:

ð7Þ

As for the hyperelasticity definition, a structure is

hyperelastic if specific strain energy exists which is

differentiable from the deformation gradient. In other

words, to have a fully elastic behaviour, it is assumed

that the strain energy density is directly dependent on

the deformation gradient tensor. In another definition,

it has been shown that a hyperelastic structure is

isotropic if and only if the strain energy term can be

rewritten via the three invariants of the left Cauchy–

Green strain tensor [41].

According to Richter theorem [41, 42], the consti-

tutive equation of an isotropic solid hyperelastic can

be written as:

T ¼ b0I þ b1B þ b2B
2; ð8Þ

if and only if the coefficients are defined following a

specific relationship defined in the literature. It has

been shown that [42], by having an isothermic process,
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changes in –T0dS (in which T0 is the absolute

temperature and S is the entropy) to become equal to

the variation of the Helmholtz free energy. In case of

isothermic process, coefficients in Eq. (8) are

expressed by Eq. (9) as

b0 ¼
oW

oI1
þ I1

oW

oI2
þ I2

oW

oI3
;

b1 ¼ � oW

oI2
� I1

oW

oI3
;

b2 ¼
oW

oI3
:

ð9Þ

For a simple definition, by having the principal

direction stretches, the normal stresses (ri) can be

defined as [43]:

ri ¼
oW

oki
; i ¼ 1; 2; 3 ð10Þ

after which, due to the definition of hyperelastic strain

energy (W) being a function of its invariants, Eq. (10)

can be rewritten as:

oW

oki
¼ oW

oI3

oI3
oki

þ oW

oI2

oI2
oki

þ oW

oI1

oI1
oki

; i ¼ 1; 2; 3

ð11Þ

which for incompressible structures, the third term

(derivation with respect to I3) will be neglected.

Different types of formulation and modelling for

hyperelastic strain energy density have been presented

in order to predict the nonlinear behaviour accurately.

In further subsections, these isotropic models are

presented and the formulation procedure for reaching

the stress–strain equation is given. These models are

used by many researchers to study the nonlinear

dynamics of hyperelastic structures which is discussed

in further sections.

2.2 The neo-Hookean model

This strain energy density expression is one of the

straightforward models of a hyperelastic material in

which we only consider the first and third invariant

terms as

WNH ¼
Xn

i¼0

Ci I1 � 3
� �i þ D1 J � 1ð Þ2; ð12Þ

where WNH is the strain energy density of this model,

Ci are the coefficients of the first invariant parameter

and D1 is the compressibility factor, both of which

must be obtained experimentally. For n = 1 (one-term

neo-Hookean model), the axial stress (runi) is written

as [43]:

runi ¼ C1

4 1þ mð Þ
3

k� 5þ2mð Þ=3
1 k2þ2m

1 � 1
� �

þ 2D1 1� 2mð Þk�2m
1 J � 1ð Þ;

ð13Þ

where v is the Poisson’s ratio. By assuming an

incompressible structure, Eq. (13) is simplified as:

runi ¼ 2C1 k� k�2
� �

; ð14Þ

and for equibiaxial (rbi) stress and pure shear (rs)

stress, by using the same definition given in Eq. (12),

the stress resultants become

rbi ¼ 2C1 k� k�5
� �

; ð15Þ

rs ¼ 2C1 k� k�3
� �

; ð16Þ

which coincides with those used in ref [44].

2.3 The Mooney–Rivlin model

One of the popular formulations and models used for

predicting the hyperelastic behaviour of structures is

the Mooney–Rivlin model [45], which is an extended

form of the neo-Hookean model, considering the

second invariant term. In the basic form, Mooney

defined the strain energy density as a two-parameter

model defined as:

WM ¼ C1 I1 � 3
� �

þ C2 I2 � 3
� �

þ D1 J � 1ð Þ2;
ð17Þ

where WM is the strain energy density of the two-

parameter Mooney model and Ci and D1 are the

coefficients that must be found via the experimental

observations (such as the work done by Falope et al.

[46] where the coefficients were calibrated using

genetic algorithm), which can vary from one soft

structure to another. Rivlin [47, 48] extended this

equation by writing it in a general form as a

polynomial series of the first and second invariant

terms:

WMR ¼
Xn

i¼0

Xm

j¼0

Cij I1 � 3
� �i

I2 � 3
� � j

þ D1 J � 1ð Þ2;

ð18Þ
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where WMR is the strain energy density of the

Mooney–Rivlin model, of which some of the well-

known models and special cases of this polynomial

series are the Biderman model [49], Klosner model

[50] and Haines–Wilson model [51]. It has been

mentioned already that this model has been widely

used for analysing rubbers with less than 200%

deformation [52].

For the two-parameter Mooney–Rivlin model

under axial load, by having k2 = k3 = k�m
1 , Brown

et al. [43] obtained the axial stress as:

runi ¼
4 1þ mð Þ

3
k� 5þ2mð Þ=3
1 k2þ2m

1 � 1
� �

C1 þ C2k
�2 1þmð Þ=3
1

� �

þ 2D1 1� 2mð Þk�2m
1 J � 1ð Þ;

ð19Þ

from which, by assuming an incompressible structure,

Eq. (19) becomes

runi ¼ 2C1 k� k�2
� �

þ 2C2 1� k�3
� �

; ð20Þ

and for equibiaxial and pure shear stresses, by using

the same definition given in Eq. (18), the stress

resultants are:

rbi ¼ 2C1 k� k�5
� �

þ 2C2 k3 � k�3
� �

; ð21Þ

rs ¼ 2C1 þ 2C2ð Þ k� k�3
� �

; ð22Þ

which coincides with those used in ref [44]. To have a

better understanding of the Mooney–Rivlin model, the

effect of the coefficients C1 and C2 on the uniaxial

stress is presented in Fig. 5 for axial strain up to 100%.

It can be seen that the stress–strain behaviour is

completely nonlinear and the curve model is highly

sensitive to the two-parameter Mooney–Rivlin coef-

ficients. By having [37] C1 = 0.39 MPa and

C2 = 0.015 MPa, in Fig. 5a, the first coefficient term

is varied as [0.5C1–1.5C1], while in Fig. 5b the second

coefficient is varied as [0.5C2–5.5C2]. Since the

formulation of a neo-Hookean model is somewhat

similar to the Mooney–Rivlin hyperelastic model (by

neglecting the second invariant term), the influence of

varying the hyperelastic coefficient C1 in one-term

neo-Hookean models will be very similar to the one

presented in Fig. 5a.

2.4 The Ogden model

Ogden [53, 54] proposed a series of models of strain

energy density as a direct function of principal

stretches

WOg ¼
Xn

i¼1

2li

a2i
kai

1 þ kai

2 þ kai

3 � 3
� �

þ
Xn

i¼1

Di J � 1ð Þ2i ð23Þ

where WOg is the strain energy density of the Ogden

model and li, Di and ai are the constant properties that

must be found using experimental testing. This model

is well capable of simulating the typical hardening of

rubber materials, which is not included in both neo-

(a) (b)

Fig. 5 Uniaxial stress sensitivity to the two-parameter Mooney–Rivlin coefficients: a C1; b C2
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Hookean and Mooney–Rivlin models. Brown et al.

[43] have shown the uniaxial stress for this model to

be:

runi ¼
Xn

i¼1

2li

ai

kai�1 � 2mk�aim�1
� �

þ 2 1� 2mk�2m� �Xn

i¼1

iDi J � 1ð Þ2i�1 ð24Þ

which can be rewritten for incompressible structures

as

runi ¼
Xn

i¼1

2li

a2i
kai�1 � k�

ai
2
�1

� �
: ð25Þ

Similarly, the equibiaxial and pure shear stresses

are:

rbi ¼
Xn

i¼1

2li

a2i
kai�1 � k�2ai�1
� �

; ð26Þ

rs ¼
Xn

i¼1

2li

a2i
kai�1 � k�ai�1
� �

: ð27Þ

In order to elaborate the impact of each coefficient

term on the stress–strain behaviour of Ogden hyper-

elastic models, uniaxial loading of a three-parameter

Ogden model is considered with coefficients and

power terms as [37], where l1 = 0.62 MPa,

l2 = 0.00118 MPa, l3 = 0.00981 MPa, a1 = 1.3,

a2 = 5 and a3 = - 2. Figures 6a–f indicate the strong

effect of varying three-parameter Ogden model coef-

ficients and power terms by [0.5 l1–1.5 l1], [0.5a1–
1.5a1], [0.5l2–50.5l2], [0.5 a2–15.5a2], [0.5l3–5.5l3]
and [0.5a3–15.5a3], respectively. It can be seen that

each parameter has its own effect on the axial stress

magnitude through which, by properly accounting for

these terms, the hyperelastic behaviour of rubbery

structures can be obtained.

2.5 The eight-chain (Arruda–Boyce) model

Arruda and Boyce [55] proposed the eight-chain

model in which the strain energy is described as a

function of a polynomial series of the first invariant as

WAB ¼
Xn

i¼1

Ci Ii
1 � 3i

� �
þ
Xn

i¼1

Di J � 1ð Þ2i; ð28Þ

where WAB is the strain energy density of the Arruda–

Boyce model, for which, under uniaxial loading, the

stress-stretch equation will become [43]

runi ¼
4 1þ mð Þ

3

Xn

i¼1

iCi Ii�1
1

� �
k� 5þ2mð Þ=3 k2þ2m � 1

� �

þ 2 1� 2mð Þ
Xn

i¼1

iDi J � 1ð Þ2i�1k�2m;

ð29Þ

which for incompressible structures it is simplified as

runi ¼ 2
Xn

i¼1

iCi Ii�1
1

� �
k� k�2
� �

; ð30Þ

with equibiaxial and pure shear stresses as

rbi ¼ 2
Xn

i¼1

iCi Ii�1
1

� �
k � k�5
� �

; ð31Þ

rs ¼ 2
Xn

i¼1

iCi Ii�1
1

� �
k � k�3
� �

: ð32Þ

For analysing the coefficient sensitivity of this

model, a five-parameter Arruda–Boyce model is

considered by having [56] C1 = l/2, C2 = l/20,
C3 = 11l/1050, C4 = 19l/7000, C5 = 519l/673750
where l is the rubbery shear modulus assumed to be

0.4 MPa. The influence of each coefficient on the

uniaxial stress variation can be seen in Fig. 7a–f by

varying [0.5l–1.5l], [0.5C1–1.5C1], [0.5C2–2C2],

[0.5C3–2.5C3], [0.5C4–5C4], and [0.5C5–5C5], respec-

tively. Here, all the coefficients have a considerable

effect on the uniaxial stress term.

2.6 The polynomial model

The strain energy in the polynomial rubber model is

defined as [57]

WPo ¼
Xn

iþj¼1

Cij I1 � 3
� �i

I2 � 3
� � j þ

Xn

i¼1

Di J � 1ð Þ2i;

ð33Þ

where WPo is the strain energy density of polynomial

model, which can also be written as [43]
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(a) (b)

(c) (d)

(e) (f)
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WPo ¼
Xn

i¼0

Xn�i

j¼1�i

Cij I1 � 3
� �i

I2 � 3
� � j

þ
Xn

i¼1

Di J � 1ð Þ2i; ð34Þ

leading to an axial stress–stretch relationship as [43]

runi ¼
4 1þ mð Þ

3
k� 5þ2mð Þ=3 k2þ2m � 1

� �

Pn

i¼0

Pn�i

j¼1�i

iCij I1 � 3
� �i�1

I2 � 3
� � j

þk� 2þ2mð Þ=3 P
n

i¼0

Pn�i

j¼1�i

jCij I1 � 3
� �i

I2 � 3
� �j�1

2

6
6
6
4

3

7
7
7
5

þ 2 1� 2mð Þ
Xn

i¼1

iDi J � 1ð Þ2i�1k�2m;

ð35Þ

which, for incompressible structures using Eq. (33), is

rewritten as

runi ¼ 2
Xn

i¼0

Xn�i

j¼1�i

iCij I1 � 3
� �i�1

I2 � 3
� � j

k � k�2
� �

þ2
Xn

i¼0

Xn�i

j¼1�i

jCij I1 � 3
� �i

I2 � 3
� �j�1

1 � k�3
� �

;

ð36Þ

and for equibiaxial and pure shear stresses as

rbi ¼ 2
Xn

i¼0

Xn�i

j¼1�i

iCij I1 � 3
� �i�1

I2 � 3
� � j

k� k5
� �

þ2
Xn

i¼0

Xn�i

j¼1�i

jCij I1 � 3
� �i

I2 � 3
� �j�1

k3 � k�3
� �

;

ð37Þ

rs ¼ 2 k � k�3
� �

Xn

i¼0

Xn�i

j¼1�i

iCij I1 � 3
� �i�1

I2 � 3
� � j

þ
Xn

i¼0

Xn�i

j¼1�i

jCij I1 � 3
� �i

I2 � 3
� �j�1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

: ð38Þ

Similar to the previous subsections, by assuming

the coefficients to be C10 = 1.44 MPa,

C01 = 0.463 MPa, C11 = - 0.029 MPa,

C20 = - 0.151 MPa, and C02 = - 0.0042 MPa,

Fig. 8a–f present the influence of varying the coeffi-

cients of the five-parameter polynomial model on the

axial stress for strains up to 100%. Coefficients are

assumed to vary as [0.5C10–1.5C10], [0.5C01–1.5C01],

[0.5C11–1.5C11], [0.5C20–1.5C20] and [0.5C20–3C02],

respectively.

2.7 The Gent model

Gent [57, 58] proposed a simple model of hyperelas-

ticity using the first invariant parameter:

WG ¼ � l
2

Jm ln 1þ 3� I1
Jm

� �

; ð39Þ

where WG is the strain energy density of the Gent

model and Jm is the limiting stretch parameter [59],

which for biological tissues is around (0.4–2.3)

[60–63] and for plastic structures is in orders of 100

[57, 58]. By increasing the maximum permitted value

Jm to infinity, the Gent model will be changed to the

neo-Hookean incompressible model. The uniaxial,

biaxial and pure shear stresses for this model will be

runi ¼ lJm k� 1

k2

� �

1þ 3� I1
Jm

� ��1

; ð40Þ

rbi ¼ 2lJm k� 1

k5

� �

1þ 3� I1
Jm

� ��1

; ð41Þ

rs ¼ lJm k� 1

k3

� �

1þ 3� I1
Jm

� ��1

; ð42Þ

of which Eq. (40) coincides with the uniaxial stress

model presented by Ronald [64]. Figure 9a shows

the sensitivity of the axial stress parameter to

variations of l for Jm = 5 and Fig. 9b shows the

sensitivity of the axial stress parameter to variations

of Jm for l = 0.4 MPa. Although the main model

presented by Gent is only dependent on the first

invariant, modified versions of this model, designed

to incorporate the compressibility and other invari-

ant terms, have been extended by several researchers

[65–68].

bFig. 6 Uniaxial stress sensitivity to the three-parameter Ogden
coefficients and power terms: a l1; b a1; c l2; d a2; e l3; f a3
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Uniaxial stress sensitivity to the five-parameter Arruda–Boyce (eight-chain) model coefficients: a l; b C1; c C2; d C3; e C4; f C5
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(a) (b)

(c) (d)

(e)

Fig. 8 Uniaxial stress sensitivity to the five-parameter polynomial model coefficients: a C10; b C01; c C11; d C20; e C02
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2.8 The Blatz–Ko model

For the proposed model by Blatz and Ko [69], which is

used to characterise foam rubbery structures, the strain

energy density is written as [43]:

WBK ¼ l
2

I1
I2
þ 2

ffiffiffiffi
I3

p
� �

; ð43Þ

where WBK is the Blatz–Ko model of the strain energy

density and for the incompressible structures, for axial

loading, equibiaxial and pure shear stresses the stress–

stretch relationship is, respectively, obtained as:

runi ¼
l

2kþ k�2
k� k�2
� �

þ
k2 þ 2k�1
� �

2kþ k�2
� � 1� k�3

� �
" #

; ð44Þ

rbi ¼
l

2kþ k�2
k� k�5
� �

þ
k2 þ 2k�1
� �

2kþ k�2
� � k3 � k�3

� �
" #

; ð45Þ

rs ¼
l

2kþ k�2
k� k�3
� �

1þ
k2 þ 2k�1
� �

2kþ k�2
� �

" #

: ð46Þ

Figure 10 presents the influence of varying the

Blatz–Ko coefficient on the nonlinear stress–strain

behaviour of uniaxial loaded structures. There are

many other models presented by researchers to model

the hyperelastic behaviour of such structures [41],

such as the Rivlin–Saunders model [41], the Mur-

naghan model [70], the Ciarlet model [71], the

Valanis–Landel model [72], the Hill model [73] and

the Attard model [74].

The given models are mainly used for isotropic

hyperelastic materials; however, some structures

(especially biological tissues) show a more compli-

cated behaviour which requires orthotropic and

anisotropic modelling in their hyperelastic constitu-

tive models. These models are developed mainly for a

specific type of hyperelastic materials. A more

detailed explanation on orthotropic and anisotropic

modelling can be found in refs [75–80] and [81–90],

respectively.

An important topic in hyperelasticity analysis is

properly modelling the nonlinear dynamics of differ-

ent soft structures. Since hyperelastic structures have

been used lately in many different industrial needs

(a) (b)

Fig. 9 Uniaxial stress sensitivity to the Gent model coefficients: a l; b Jm

Fig. 10 Uniaxial stress sensitivity to the Blatz–Ko model

coefficient
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such as soft robotics [91–94], understanding their

nonlinear time-dependant behaviour in different

mechanical conditions is of high importance. Studies

in this field can be classified based on the structure

type and the mechanical analysis. In this review, the

nonlinear dynamics of hyperelastic structures is pre-

sented in three sections for beams, plates/shells and

membranes/balloons.

3 Nonlinear dynamics of hyperelastic beams

One-dimensional structures, including beams, tubes

and columns, as the critical part of many mechanical

structures, undergo different types of dynamic loads.

Since rubber-like beams undergo large strains and

deformations, classical linear material models cannot

define the nonlinear dynamics accurately; therefore,

an accurate hyperelastic model of the structure should

be derived and examined. In this section, the nonlinear

dynamics of hyperelastic beams is reviewed using

literature for different mechanical conditions. Since

this review is focused on the nonlinear dynamics,

interested readers on the statics of hyperelastic beam

structures are referred to [17, 95–100].

For hyperelastic beams laying on a foundation, a

mathematical formulation was presented by Forsat

[101] to examine the nonlinear free vibration beha-

viour of silicone rubbers and natural rubbers. A

higher-order shear deformation beam theory together

with four different nonlinear elasticity models was

utilised for modelling the soft beam. The structure was

assumed to be sitting on a Pasternak–Winkler

medium. Equations of motion were solved and

Fig. 11 The nonlinear frequencies of hyperelastic tube models using Yeoh and Mooney–Rivlin strain energy density models for

a pinned–pinned and b clamped–clamped boundary conditions [106]. (Permission obtained from Springer Nature)

Fig. 12 Variation of the

a first and b second natural

frequencies of neo-Hookean

axially moving beams with

respect to the velocity

parameter for different

geometrical parameters

[109]. (Permission obtained

from ELSEVIER)

123

A review on the nonlinear dynamics of hyperelastic structures 977



obtained using Galerkin’s scheme and Hamilton’s

principle (which have been used by researchers for

studying elastic structures [102–105]), respectively; it

was claimed that the shear strain effects were

neglected in the Yeoh strain energy. In another study,

Mirjavadi et al. [106] used the Euler–Bernoulli beam

assumptions showing that for hyperelastic tube mod-

els, by increasing the amplitude of vibration, since the

effect of nonlinear terms in the structure modelling

increases and due to different stress invariant consid-

erations, the difference between the Yeoh and two-

parameter Mooney–Rivlin results increased. Fig-

ure 11 shows the nonlinear frequencies of hyperelastic

tube models using Yeoh and Mooney–Rivlin strain

energy density models. In both of these studies, the

material was assumed to be incompressible; however,

the incompressibility condition, which leads to strains

in thickness directions, was neglected.

Since belt operating systems are one of the well-

known applications of hyperelastic structures

[107, 108], researchers focused on the nonlinear

dynamics of axially moving hyperelastic beams to

understand their mechanical behaviour in such condi-

tions. Wang et al. [109] used a finite deformation

leading-order model (presented in [110, 111]) to

investigate the nonlinear oscillations of axially trav-

elling soft beams. Using the Hamilton’s principle and

neo-Hookean strain energy density model, the equa-

tions of motion were obtained. It was claimed that the

natural frequencies of the Euler–Bernoulli beam

model are lower than the ones obtained for this model.

The variation of the natural frequencies with respect to

the axial velocity parameter for this model is shown in

Fig. 12. In another study by Wang et al. [112], they

analysed accelerated longitudinal motion in soft

beams using multiple scale perturbation methods and

Galerkin’s scheme. The time traces for the axial and

transverse vibrations of this model are shown in

Fig. 13. Khaniki et al. [113] investigated the nonlinear

forced oscillation of axially moving hyperelastic belts

by employing the Yeoh’s strain energy. Different

nonlinear elastic models were examined to find the

best fit with the experimental testing of hyperelastic

properties. The influence of the longitudinal speed on

the natural frequencies, mode shapes and nonlinear

frequency response was investigated showing a

significant effect in changing the mechanical beha-

viour (Figs. 14 and 15).

For the case of having both thermal and hyperelas-

ticity effects, a wave propagation method was

employed byMirparizi and Fotuhi [114] to understand

the nonlinear dynamics of thermo-hyperelastic one-

dimensional structures. Hyperelasticity was modelled

using a Mooney–Rivlin strain energy density model. It

was elucidated that the maximum amplitude of

oscillation in the structure is significantly higher than

for elastic ones. Figure 16 shows the stress wave

propagation with respect to time showing a large

difference between the hyperelastic and linear elastic

models response.

Since hyperelastic structures are mostly made by

moulding and 3D printing, the presence of voids and

porosity is highly possible. To understand the effect of

having porosities in the nonlinear dynamics of hyper-

elastic structures, Khaniki et al. [115] studied the

characteristics of hyperelastic samples experimentally

with different porosities (the infill rate). A general

constitutive model for hyperelastic-porous was pre-

sented via the Mooney–Rivlin hyperelastic strain

energy model, showing that the porosity has a

nonlinear effect in varying the hyperelastic constitu-

tive model (Fig. 17). For the derived model, they

modelled the nonlinear vibrations of porous

Fig. 13 The time traces for the a axial and b transverse

vibrations of axially accelerated neo-Hookean beams [112].

(Permission obtained from ELSEVIER)
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hyperelastic beams under externally time-dependent

forces, showing that increasing the porosity in the

structure has a significant effect in changing the

stiffness softening behaviour of the structure to a

combination of hardening and softening behaviour

(Fig. 18).

Layered hyperelastic structures have many appli-

cations in packaging industry (especially food pack-

aging) [116–119], which makes it important to

comprehend the behaviour of layered hyperelastic

structures made of different materials. For this reason,

Khaniki et al. [120] examined five different shear

deformable beam theories together with the Mooney–

Rivlin strain energy model for analysing the nonlinear

dynamics of sandwich soft beams. It was shown that

considering the shear effect, layering and material

positioning can highly affect the nonlinear resonance

behaviour of the thick sandwich soft beam. Figure 19

shows the effect of material ordering in changing the

nonlinear dynamic behaviour of higher-order shear

deformable three-layered beam structures.

Longitudinal vibrations of neo-Hookean beams

have been examined by Wang and Zhu [121, 122] in

its subcritical buckling regime and under different

axial loads. Using a linear bifurcation analysis, the

critical buckling loads were obtained showing a high

sensitivity of material and geometrical properties.

Using the pseudo-arc-length method, the nonlinear

frequency response of the system was calculated.

Figure 20 shows the axial frequency response of the

neo-Hookean beam model for different material and

geometrical properties.

In recent years, hyperelasticity has been employed

for modelling the static and dynamic responses of

Fig. 14 The natural frequency and mode shapes of axially moving hyperelastic beams versus the speed parameter a first and b second

modes of vibration [113]. (Permission obtained from ELSEVIER)
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nano-/micromaterials [123–126], which have crucial

importance in new technologies. For instance, micro-

scale beam structures made by hyperelastic materials

have been studied by Alibakhshi et al. [127] using the

Euler–Bernoulli beam theory, modified couple stress

theory (which have been used previously for studying

small-scale elastic structures [128–132]), and Gent

strain energy density model. It was shown that the

force–amplitude response of the structure is highly

sensitive to the stiffness parameter of Gent model

(Fig. 21). Studies on the nonlinear dynamics of

hyperelastic beams are summarised in Table 1.

4 Nonlinear dynamics of hyperelastic plates

and shells

Both shells and plates are an important element in

structural design, and the extensive usage of rubbery

structures makes it necessary to comprehend the

nonlinear dynamics of the hyperelastic plate and shell

structures. For this reason, this section focuses on the

investigations undertaken to comprehend the nonlin-

ear dynamics of such structures.

For isotropic hyperelastic plate structures, a com-

bination of the nonlinear von Kármán plate theory and

the neo-Hookean strain energy density model was

used by Breslavsky et al. [133] for examining the large

amplitude vibrations of thin rectangular hyperelastic

plates. The equations of motion were presented with

quadratic and cubic nonlinear terms by considering

both material and geometrical nonlinearities; it was

shown that for small strains, the material nonlinearity

terms have a weak effect, while this effect increases

significantly by having larger strains. Figure 22 shows

the amplitude response and backbone curves of the

Fig. 15 The transverse amplitude–frequency response of

axially moving hyperelastic beams with different velocities

a first, b second, and c third coordinates [113]. (Permission

obtained from ELSEVIER)

Fig. 16 Stress wave propagation in hyperelastic and elastic

structures [114]. (Permission obtained from ELSEVIER)
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Fig. 17 Experimental

results for stress–strain

behaviours of porous

hyperelastic structures with

different infill rates (a)
[115]. (Permission obtained

from ELSEVIER)

Fig. 18 Influence of the

infill rate (porosity) in

varying the nonlinear

frequency response of

porous hyperelastic beams

a first and b third dynamic

coordinates. [115].

(Permission obtained from

ELSEVIER)
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first mode of vibration with two peaks associated with

the 2:1 in-plane resonance. Amabili et al. [134]

investigated the vibration behaviour of hyperelastic

plates. A two-parameter incompressible Mooney–

Rivlin model was used to describe the nonlinearity

of the structure using Novozhilov nonlinear shell

theory to model the deformations. The governing

equations were obtained using Hamilton’s principle; it

was shown that the experimental results are in good

agreement with the proposed dynamic model.

The nonlinear dynamics of cylindrical shell struc-

tures have been examined lately by many researchers.

Zhang et al. [135] modelled the nonlinear vibrations of

thin-walled hyperelastic cylindrical shells using Don-

nell’s nonlinear shallow shell theory. Using the

Fig. 19 The effect of hyperelastic material layering on the

nonlinear dynamics Mooney–Rivlin shear deformable beams

for the a axial, b rotational and c transverse motions [120]. (This

article is an open access article distributed under the terms and

conditions of the Creative Commons Attribution (CC BY)

license (https://creativecommons.org/licenses/by/4.0/).)

Fig. 20 The axial nonlinear frequency response of the neo-

Hookean beam model for different amaterial and b geometrical

properties [121]. (Permission obtained from ELSEVIER)

Fig. 21 The force–amplitude response of micro-hyperelastic

beam for different Gent coefficients[127]. (Permission obtained

from MDPI)
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Lagrange equation together with the Mooney–Rivlin

strain energy density model, the equations of motion

were obtained. It was shown that radius-to-thickness

ratio has a significant effect in changing the radial

vibration behaviour. Figure 23 shows the Poincare

section and bifurcation diagram of the hyperelastic

cylindrical shell for different excitation forces. Xu

et al. [136, 137] examined the nonlinear dynamics of

Table 1 Studies on the nonlinear dynamics of hyperelastic beams

Study Year Hyperelastic strain

energy density model

Formulation methods/Experiments Solution

methods

Analysis

Forsat [101] 2019 Neo-Hookean, Ishihara,

Mooney–Rivlin, and

Yeoh models

Higher-order shear deformation

theory,

Hamilton’s principle

Galerkin’s

scheme,

Extended

Hamiltonian

method

Nonlinear free

vibrations of

hyperelastic beams

Mirjavadi

et al.

[106]

2019 Neo-Hookean, Ishihara,

Mooney–Rivlin, and

Yeoh models

Euler–Bernoulli beam theory,

Hamilton’s principle

Galerkin’s

scheme,

Extended

Hamiltonian

method

Nonlinear free

vibrations of

hyperelastic tubes

Wang et al.

[109, 112]

2018,

2019

Neo-Hookean model The leading order model for finite

deformation,

Hamilton’s principle

Multi-scale

perturbation

techniques

Galerkin’s

method

Nonlinear vibrations of

axially moving

hyperelastic beams

Khaniki

et al.

[113]

2020 Arruda–Boyce (Eight-

Chain), neo-Hookean,

Gent, and Yeoh

models

Experimental analysis,

Euler–Bernoulli beam theory,

Hamilton’s principle,

von Kármán theory

Galerkin’s

scheme,

Dynamic

equilibrium

technique

Nonlinear forced

vibrations of axially

moving hyperelastic

beams

Mirparizi

and

Fotuhi

[114]

2020 Mooney-Rivlin strain

energy model

Helmholtz’s free energy function Direct

iteration

method

Wave propagation in

thermo-hyperelastic

beams

Khaniki

et al.

[115]

2021 Mooney-Rivlin model Experimental analysis,

Euler–Bernoulli beam theory,

Hamilton’s principle,

von Kármán theory

Galerkin’s

scheme,

Dynamic

equilibrium

technique

Nonlinear forced

vibration of porous-

hyperelastic beams

Khaniki

et al.

[120]

2022 Mooney-Rivlin strain

energy model

Euler–Bernoulli, Timoshenko, third-

order, trigonometric and exponential

beam theories, von Kármán theory,

Hamilton’s principle

Galerkin’s

scheme,

Dynamic

equilibrium

technique

Nonlinear forced

vibration of

sandwich thick

hyperelastic beams

Wang and

Zhu

[121, 122]

2021,

2021

Neo-Hookean model Euler–Bernoulli beam theory,1

Hamilton’s principle

Harmonic

balance

method,

Galerkin’s

scheme

Nonlinear vibrations of

axially loaded

hyperelastic beams

Alibakhshi

et al.

[127]

2021 Gent model Euler–Bernoulli beam theory,

Hamilton’s principle,

modified couple stress theory,

von Kármán theory

Multiple

Scales

Method

Nonlinear vibrations of

small-scale

hyperelastic beams
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Fig. 22 Amplitude–

frequency response and

backbone curves of the first

mode of vibration of a

rectangular hyperelastic

plate with two peaks

associated with the 2:1 in-

plane resonance [133].

(Permission obtained from

ELSEVIER)

Fig. 23 a Bifurcation diagram and b Poincaré sections of a thin-walled Mooney–Rivlin cylindrical shell for different excitation forces

[135]. (Permission obtained from Springer Nature)
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thin and thick hyperelastic cylindrical shells subjected

to a time-dependant thermal load. It was shown that

the single-mode model of such structures gives

inaccurate results and the diameter-to-length ratio

has a significant influence in the internal resonance

phenomena. Figure 24 shows the nonlinear response

of the cylindrical shell with different temperature

loads for the axisymmetric and asymmetric modes.

Breslavsky et al. [44, 138] investigated the free and

forced nonlinear responses of circular cylindrical

hyperelastic shells and square hyperelastic plates in

the framework of large deformations. Hyperelasticity

was modelled using the neo-Hookean model in

conjunction with the Fung model, while the shell

was assumed to be made of arterial bio-tissues. It was

shown that the single-mode response is weak; how-

ever, the resonant response considering both compan-

ion and driven modes, was found with nonlinear

complicated dynamics.

In the case of analysing electrostrictive–hyperelas-

tic structures, Tripathi and Bajaj [139, 140] studied the

internal resonances due to transverse vibration when

designing hyperelastic and electrostrictive–hyperelas-

tic plates. The Mooney–Rivlin and neo-Hookean

hyperelastic strain energy models were investigated,

while the plate was modelled using Kirchhoff plate

theory. These showed that for nearly incompressible

structures, the level of nonlinearity in the strain energy

model of neo-Hookean is insufficient to lead to 1:2

internal resonances. A visco-hyperelastic model was

presented by Zhao et al. [141] for modelling the

chaotic motion of spherical shells. Other studies on the

dynamic behaviour of hyperelastic plates and shells

can be found in refs [142–148], emphasising the

importance of considering hyperelasticity in studying

the dynamic response of such structures. Studies on

the nonlinear dynamics of hyperelastic plates and

shells are summarised in Table 2.

5 Nonlinear dynamics of hyperelastic membranes

and balloons

Comprehending the nonlinear dynamics of hyperelas-

tic membranes and balloons has been a challenging

task for researchers in the past few years. For circular

membranes, Goncalves et al. [149, 150] studied the

nonlinear vibration behaviour of isotropic homoge-

neous circular hyperelastic membranes stretched

radially. Hyperelasticity was modelled using the

neo-Hookean strain energy density model, and the

motion equations were derived via Hamilton’s prin-

ciple. Natural frequencies were obtained analytically

and compared with finite element modelling. It was

revealed that all the hyperelastic models, namely the

Arruda–Boyce model, Ogden model, Yeoh model and

Mooney–Rivlin model, present similar nonlinear fre-

quency–amplitude responses, qualitatively. The influ-

ence of the pre-stretch ratio on the nonlinear

Fig. 24 The nonlinear response of the cylindrical shell with different temperature loads for the (a) axisymmetric and (b) asymmetric

modes [136]. (Permission obtained from WSPC)
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amplitude–frequency response of the circular hyper-

elastic membrane can be seen in Fig. 25.

The nonlinear breathing motion of hyperelastic

spherical membranes has been examined by Soares

et al. [151] using an incompressible isotropic

Mooney–Rivlin strain energy density model. It was

shown that the linear viscous damping term has a

significant effect in changing the nonlinear resonance

behaviour of the spherical membranes (Fig. 26).

Since it was shown by Mangan and Destrade [152]

that the hyperelastic Gent–Gent model shows a good

accuracy in modelling the nonlinear elasticity of

inflated balloons, Alibakhshi and Heidari [59] used

this model for studying the chaotic motion of dielectric

elastomer balloons; it was shown that the chaotic

motion of the dielectric elastomer balloons could be

suppressed by the presence of the second invariant

term in the Gent–Gent model (Fig. 27). Ilssar and Gat

[153] examined the fluid–structure interaction of

liquid-filled balloons using the incompressible

Mooney–Rivlin strain energy density model. By

verifying the model with results obtained from the

finite element scheme, it was shown that the simplified

presented model was capable of studying the static and

dynamic behaviour of such structures. Other studies

on the dynamic behaviour of hyperelastic membranes

and balloons can be found in refs [19, 154–156].

Studies on the nonlinear dynamics of hyperelastic

balloons and membranes are summarised in Table 3.

6 Summary and conclusions

Over the past few decades, accurately modelling the

hyperelastic behaviour of polymeric structures has

been a challenging task in terms of the complexity in

both material and structural nonlinearities. Dozens of

constitutive hyperelastic models have been presented

by researchers for different materials, which some of

the most practical and well-known isotropic models

are presented and formulated, and the characteristics

of each model are discussed. In terms of the case

studies, each of these models has advantages and

disadvantages in terms of accurate and inaccurate

modelling for material nonlinearity and computational

time cost.

Hyperelastic structures, such as rubbers and elas-

tomers, have been analysed in different shapes and

mechanical conditions. Most studies into these types

of structures have been published over the past few

years, since their applications are only now becoming

understood. Recently, novel outcomes from rubbery

Fig. 25 Amplitude–frequency responses of hyperelastic circu-

lar membranes for different pre-stretch ratios [149]. (Permission

obtained from ELSEVIER)

Fig. 26 The nonlinear resonance response of hyperelastic

spherical membranes for different linear damping parameters

[151]. (Permission obtained from Springer Nature)
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structures in soft robotics have moved forward such

study significantly, notably in terms of achieving

smooth deformations and higher the degrees of

freedom. The high potential for the application of

soft-based structures helped researchers to realise the

importance of modelling the dynamic behaviour of

hyperelasticity accurately. To demonstrate the

achievements and investigations made into hyperelas-

tic structures, a comprehensive review was presented

for different structures types (beams, plates, shells,

membranes and balloons) in the frameworks of

nonlinear dynamics. It was shown that there has been

progress in simulating the hyperelastic dynamic

response using various continuum mechanic tech-

niques in conjunction with hyperelastic strain energy

density models. Since the theoretical modelling of

such structures could require highly complex and long

theoretical models, many studies in this field are based

on simplified models ignoring the higher terms of

displacement and strain. Furthermore, since soft

Fig. 27 Variation of the motion from a chaotic motion to b quasiperiodic vibration by increasing the second invariant parameter of the

Gent–Gent model in the dielectric elastomer balloons [59]. (Permission obtained from ELSEVIER)
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structures largely deform when subjected to external

loads, the importance of using appropriate nonlinear

large-deformation modelling is undeniable.

In summary, by analysing more than 150 research

works related to this field from basic analysis to

specified simulations, it can be seen that although

there have been several studies on each subject of

hyperelastic structure behaviour, the field is under-

researched and requires further investigations to

model and analyse hyperelastic structures.
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Table 3 Studies on the nonlinear dynamics of hyperelastic membranes/balloons

Study Year Hyperelastic strain energy

density model

Formulation methods/

Experiments

Solution

methods

Analysis

Goncalves

et al. [149]

2009 Neo-Hookean, Mooney–Rivlin,

Yeoh, Arruda–Boyce, and

Ogden models

Lagrange function,

Halmilton’s principle

Galerkin

method,

Reduced order

models,

Floquet theory

Nonlinear dynamics of

hyperelastic circular

membranes

Soares and

Goncalves

[150]

2012 Neo-Hookean model Lagrange function Shooting

method,

Galerkin

method

Instability and nonlinear

oscillation of hyperelastic

circular membranes

Soares et al.

[151]

2020 Neo-Hookean and Mooney–

Rivlin models

Lagrange function Continuation

techniques,

Floquet theory

Nonlinear dynamics of

hyperelastic spherical shells

Alibakhshi

and Heidari

[59]

2020 Gent-Gent model Euler–Lagrange energy

method

Time

integration-

based solver

Chaotic motion of

hyperelastic balloons

Ilssar and

Gat [153]

2020 Mooney–Rivlin model Reduced order model Finite-element

simulations,

semi-analytical

model

Deflation and inflation of

fluid filled hyperelastic

balloons

Dong et al.

[19]

2016 Yeoh model Generic lumped

parameter model,

Experimental

analysis

Finite element

software,

analytical

solutions

Nonlinear dynamics of

hyperelastic membrane

energy harvesters

Verron et al.

[154]

1999 Mooney–Rivlin model Conservation of

momentum equation

sixth-order

Runge–Kutta

method

Nonlinear inflation behaviour

of spherical hyperelastic

membranes

Li et al.

[155]

2018 Gent model Principle of virtual

work

Theory of dielectric

elastomers

Analytical

solution

Nonlinear vibrations of

dielectric hyperelastic

membranes

Chaudhuri

and

DasGupta

[156]

2014 Mooney–Rivlin model Perturbation dynamics

Lagrange function

Iterative Ritz

method

Wrinkling in inflated circular

hyperelastic membranes

123

A review on the nonlinear dynamics of hyperelastic structures 989



Declarations

Conflict of interest The authors declare that there is no con-

flict of interest with respect to the research, authorship and/or

publication of this paper.

Open Access This article is licensed under a Creative Com-

mons Attribution 4.0 International License, which permits use,

sharing, adaptation, distribution and reproduction in any med-

ium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in

the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds

the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this licence, visit

http://creativecommons.org/licenses/by/4.0/.

References

1. Chen, L., et al.: Design and modeling of a soft robotic

surface with hyperelastic material. Mech. Mach. Theory

130, 109–122 (2018)

2. Case, J.C., White, E.L., Kramer, R.K.: Soft material

characterization for robotic applications. Soft Rob. 2(2),
80–87 (2015)

3. Vignali, E., et al.: Modeling biomechanical interaction

between soft tissue and soft robotic instruments: impor-

tance of constitutive anisotropic hyperelastic formulations.

Int. J. Rob. Res. 40(1), 224–235 (2021)

4. Polygerinos, P., et al.: Soft robotic glove for combined

assistance and at-home rehabilitation. Robot. Auton. Syst.

73, 135–143 (2015)

5. Yap, H.K., et al.: Design and preliminary feasibility study

of a soft robotic glove for hand function assistance in

stroke survivors. Front. Neurosci. 11, 547 (2017)

6. Wang, B., et al. Design and development of a glove for

post-stroke hand rehabilitation. In: 2017 IEEE interna-

tional conference on advanced intelligent mechatronics

(AIM). 2017. IEEE

7. Proulx, C.E., et al.: Review of the effects of soft robotic

gloves for activity-based rehabilitation in individuals with

reduced hand function and manual dexterity following a

neurological event. J Rehabil Assist Technol Eng 7,
2055668320918130 (2020)

8. Polygerinos, P., et al.: EMG controlled soft robotic glove

for assistance during activities of daily living. In 2015

IEEE international conference on rehabilitation robotics

(ICORR), IEEE

9. Antol, J. and J.F. P Calhoun, Low CostMars Surface
Exploration: the Mars Tumbleweed. Washington DC:

National Aeronauticsand Space Administration. NASA/

TM-2003–212411

10. Trivedi, D., Lotfi, A., Rahn, C.D.: Geometrically exact

models for soft robotic manipulators. IEEE Trans. Rob.

24(4), 773–780 (2008)

11. Kumar, V., et al.: Supporting information for microengi-

neered materials with self-healing features for soft robot-

ics. Authorea Preprints, (2021)
12. Liu, J., et al.: Current research, key performances and

future development of search and rescue robots. Front.

Mech. Eng. China 2(4), 404–416 (2007)

13. Kumar, V., et al.: Dragonfly inspired smart soft robot.

bioRxiv, (2020)

14. Wallin, T., Pikul, J., Shepherd, R.: 3D printing of soft

robotic systems. Nat. Rev. Mater. 3(6), 84 (2018)

15. Schaffner, M., et al.: 3D printing of robotic soft actuators

with programmable bioinspired architectures. Nat. Com-

mun. 9(1), 878 (2018)

16. Yap, H.K., Ng, H.Y., Yeow, C.-H.: High-force soft

printable pneumatics for soft robotic applications. Soft

Rob. 3(3), 144–158 (2016)

17. He, L., et al.: Variational modeling of plane-strain hyper-

elastic thin beams with thickness-stretching effect. Acta

Mech. 229(12), 4845–4861 (2018)

18. Chen, Y., Jin, L.: Snapping-back buckling of wide

hyperelastic columns. Extreme Mech. Lett. 34, 100600
(2019)

19. Dong, L., et al.: Application of mechanical stretch to tune

the resonance frequency of hyperelastic membrane-based

energy harvesters. Sens. Actuators, A 252, 165–173 (2016)
20. Tang, X., et al.: A soft crawling robot driven by single

twisted and coiled actuator. Sens. Actuators, A 291, 80–86
(2019)

21. Chen, T., Lee, D., Sung, C.-K.: An experimental study on

transmission efficiency of a rubber V-belt CVT. Mech.

Mach. Theory 33(4), 351–363 (1998)

22. Bertini, L., Carmignani, L., Frendo, F.: Analytical model

for the power losses in rubber V-belt continuously variable

transmission (CVT). Mech. Mach. Theory 78, 289–306
(2014)

23. Kolosov, A.: The stress-strain state of the belt in the

operating changes of the burdening conveyor parameters.

In: Theoretical and Practical Solutions of Mineral

Resources Mining, pp. 585–590. CRC Press (2015)

24. Esse, R., Flexible packaging end-use market analysis.
Linthicum, Md.: Flexible Packaging Assn, (2002)

25. Brody, A.L., et al.: Innovative food packaging solutions.

J. Food Sci. 73(8), 107–116 (2008)

26. Siracusa, V., et al.: Biodegradable polymers for food

packaging: a review. Trends Food Sci. Technol. 19(12),
634–643 (2008)

27. Dilkes-Hoffman, L.S., et al.: Environmental impact of

biodegradable food packaging when considering food

waste. J. Clean. Prod. 180, 325–334 (2018)
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77. Latorre, M., Montáns, F.J.: Material-symmetries congru-

ency in transversely isotropic and orthotropic hyperelastic

materials. Eur. J. Mech.-A/Solids 53, 99–106 (2015)

78. Motevalli, M., et al.: Geometrically nonlinear simulation

of textile membrane structures based on orthotropic

hyperelastic energy functions. Compos. Struct. 223,
110908 (2019)

79. Bonet, J., Burton, A.: A simple orthotropic, transversely

isotropic hyperelastic constitutive equation for large strain

computations. Comput. Methods Appl. Mech. Eng.

162(1–4), 151–164 (1998)

80. Itskov, M., Aksel, N.: A class of orthotropic and trans-

versely isotropic hyperelastic constitutive models based on

a polyconvex strain energy function. Int. J. Solids Struct.

41(14), 3833–3848 (2004)

81. Diani, J., et al.: Directional model for isotropic and ani-

sotropic hyperelastic rubber-like materials. Mech. Mater.

36(4), 313–321 (2004)

82. Sun, S. and W. Chen: An anisotropic hyperelastic consti-

tutive model with bending stiffness interaction for cord-

rubber composites: comparison of simulation results with

experimental data. Math. Probl. Eng., 2020. 2020
83. Gültekin, O., Dal, H., Holzapfel, G.A.: On the quasi-in-

compressible finite element analysis of anisotropic

hyperelastic materials. Comput. Mech. 63(3), 443–453

(2019)

84. Chaimoon, K., Chindaprasirt, P.: An anisotropic hypere-

lastic model with an application to soft tissues. Eur.

J. Mech.-A/Solids 78, 103845 (2019)

85. Cai, R., et al.: A new hyperelastic model for anisotropic

hyperelastic materials with one fiber family. Int. J. Solids

Struct. 84, 1–16 (2016)

86. Nolan, D.R., et al.: A robust anisotropic hyperelastic for-

mulation for the modelling of soft tissue. J. Mech. Behav.

Biomed. Mater. 39, 48–60 (2014)

87. Chen, Z.-W., Joli, P., Feng, Z.-Q.: Anisotropic hypere-

lastic behavior of soft biological tissues. Comput. Methods

Biomech. Biomed. Engin. 18(13), 1436–1444 (2015)

88. Guerin, H.L., Elliott, D.M.: Quantifying the contributions

of structure to annulus fibrosus mechanical function using

a nonlinear, anisotropic, hyperelastic model. J. Orthop.

Res. 25(4), 508–516 (2007)

89. Peng, X., et al.: A simple anisotropic hyperelastic consti-

tutive model for textile fabrics with application to forming

simulation. Compos. B Eng. 52, 275–281 (2013)

90. Fernández, M., et al.: Anisotropic hyperelastic constitutive

models for finite deformations combining material theory

and data-driven approaches with application to cubic lat-

tice metamaterials. Comput. Mech. 67(2), 653–677 (2021)

91. De Marco, C., et al.: Indirect 3D and 4D printing of soft

robotic microstructures. Adv. Mater. Technol. 4(9),
1900332 (2019)

92. Yang, Y., et al.: Hybrid jamming for bioinspired soft

robotic fingers. Soft Rob. 7(3), 292–308 (2020)

93. Lee, J.-H., Chung, Y.S., Rodrigue, H.: Long shape mem-

ory alloy tendon-based soft robotic actuators and imple-

mentation as a soft gripper. Sci. Rep. 9(1), 1–12 (2019)

94. Ji, X., et al.: An autonomous untethered fast soft robotic

insect driven by low-voltage dielectric elastomer actua-

tors. Sci. Robot. 4(37), 6451 (2019)

95. Irschik, H., Gerstmayr, J.: A hyperelastic Reissner-type

model for non-linear shear deformable beams. Proc.

Mathmod. 9, 1–7 (2009)

96. Irschik, H., Gerstmayr, J.: A continuum-mechanics inter-

pretation of Reissner’s non-linear shear-deformable beam

theory. Math. Comput. Model. Dyn. Syst. 17(1), 19–29
(2011)

97. Jiang, F., Yu, W.: Nonlinear variational asymptotic sec-

tional analysis of hyperelastic beams. AIAA J. 54(2),
679–690 (2015)

98. Lanzoni, L., Tarantino, A.M.: Finite anticlastic bending of

hyperelastic solids and beams. J. Elast. 131(2), 137–170
(2018)

99. Wang, R., et al.: Radially and axially symmetric motions

of a class of transversely isotropic compressible hypere-

lastic cylindrical tubes. Nonlinear Dyn. 90(4), 2481–2494
(2017)

100. Ogden, R.W.: Non-linear elastic deformations. Courier

Corporation, United States (1997)

101. Forsat, M.: Investigating nonlinear vibrations of higher-

order hyper-elastic beams using the Hamiltonian method.

Acta Mech. 231, 125–138 (2019)

102. Lotfan, S., et al.: Nonlinear resonances of axially func-

tionally graded beams rotating with varying speed

including Coriolis effects. Nonlinear Dyn. 107(1),
533–558 (2022)

103. Tian, Y., Daeichin, M., Towfighian, S.: Dynamic behavior

of T-beam resonator with repulsive actuation. Nonlinear

Dyn. 107(1), 15–31 (2022)

104. Ghayesh, M.H.: Dynamical analysis of multilayered can-

tilevers. Commun. Nonlinear Sci. Numer. Simul. 71,
244–253 (2019)

105. Ghayesh, M.H.: Asymmetric viscoelastic nonlinear

vibrations of imperfect AFG beams. Appl. Acoust. 154,
121–128 (2019)

106. Mirjavadi, S.S., Forsat, M., Badnava, S.: Nonlinear mod-

eling and dynamic analysis of bioengineering hyper-elas-

tic tubes based on different material models. Biomech.

Model. Mechanobiol. 19, 971–983 (2019)

107. Pham, P.-T., Hong, K.-S.: Dynamic models of axially

moving systems: a review. Nonlinear Dyn. 100(1),
315–349 (2020)

108. Chen, L.-Q., Tang, Y.-Q., Lim, C.W.: Dynamic stability in

parametric resonance of axially accelerating viscoelastic

Timoshenko beams. J. Sound Vib. 329(5), 547–565 (2010)
109. Wang, Y., Ding, H., Chen, L.-Q.: Vibration of axially

moving hyperelastic beam with finite deformation. Appl.

Math. Model. 71, 269–285 (2019)

110. Zhu, X., Wang, Y., Lou, Z.: A study of the critical strain of

hyperelastic materials: a new kinematic frame and the

123

992 H. B. Khaniki et al.



leading order term. Mech. Res. Commun. 78, 20–24

(2016)

111. Chen, W., Wang, L., Dai, H.: Nonlinear free vibration of

hyperelastic beams based on neo-Hookean model. Int.

J. Struct. Stab. Dyn. 20(01), 2050015 (2020)

112. Wang, Y., Ding, H., Chen, L.-Q.: Nonlinear vibration of

axially accelerating hyperelastic beams. Int. J. Non-Linear

Mech. 99, 302–310 (2018)

113. Khaniki, H.B., et al.: Experimental characteristics and

coupled nonlinear forced vibrations of axially travelling

hyperelastic beams. Thin-Wall. Struct. 170, 108526 (2022)
114. Mirparizi, M., Fotuhi, A.: Nonlinear coupled thermo-hy-

perelasticity analysis of thermal and mechanical wave

propagation in a finite domain. Physica A 537, 122755
(2020)

115. Khaniki, H.B., et al.: Large amplitude vibrations of

imperfect porous-hyperelastic beams via a modified strain

energy. J. Sound Vib. 513, 116416 (2021)
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