
Nonlinear Dyn (2022) 110:1437–1453
https://doi.org/10.1007/s11071-022-07682-2

ORIGINAL PAPER

Finite-time tracking control for nonholonomic wheeled
mobile robot using adaptive fast nonsingular terminal
sliding mode

Hao Xie · Jinchuan Zheng · Zhe Sun ·
Hai Wang · Rifai Chai

Received: 27 January 2022 / Accepted: 28 June 2022 / Published online: 10 July 2022
© The Author(s) 2022

Abstract System uncertainties and external distur-
bances are the major causes of the trajectory tracking
performance degradation in nonholonomic wheeled
mobile robots (NWMRs). In this article, an adap-
tive fast nonsingular terminal sliding mode dynamic
control (AFNTSMDC) method is proposed to pro-
vide enhanced robust and finite-time tracking perfor-
mance for the NWMR. The proposed AFNTSMDC
is a systematic design method based upon both the
kinematic and dynamic model of the NWMR. The
proposed controller has a simple form without sin-
gularity issue in the control input, which makes it
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practically implementable. The finite-time stability of
the proposed tracking-error function is also proved
using the Lyapunov function. Finally, circular trajec-
tory tracking experiments are conducted to validate
the robustness and convergence rate of the proposed
AFNTSMDC scheme in comparison with the exist-
ingmethods including classic kinematic control, robust
sliding mode kinematic control, and conventional slid-
ingmode dynamic control in the presence of uncertain-
ties and external disturbances.

Keywords Trajectory tracking · Mobile robot ·
Finite-time control · Sliding mode control

1 Introduction

Trajectory tracking control of nonholonomic wheeled
mobile robots (NWMRs) has attracted much attention
in past decades due to their wide use in various applica-
tions [1]. In addition, they pose a challenge to control
practitioners since the mechanism of NWMRs is char-
acterized by nonholonomic constraints and the inher-
ent nonlinearity limits the effectiveness of linear con-
trollers [2].

Achieving a more robust and faster trajectory track-
ing performance is a challenging task due to the system
nonlinearities, model uncertainties and disturbances,
and many efforts have been devoted to this research
field [3–7]. Fast response and strong robustness against
systemuncertainties anddisturbances are crucial objec-
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tives in tracking control taskswhich are also the key fea-
tures of sliding mode control (SMC) techniques [8,9].
Although many studies on applying SMC techniques
for tracking control of theNWMRhave been published,
it is worth paying attention to the question of how to
utilize more advanced SMC to achieve better control
performance. The work in [10] proposed an SMC law
for trajectory tracking of an NWMR using computed
torque technique and representing the posture in polar
coordinate, which is subjected to constraints on the
heading angle and desired velocities. This was further
extended in [11], which loosened the constraint of the
former study in regard to heading angles and desired
velocities for the mobile robot by designing three sepa-
rate controllers under three operating conditions. How-
ever, there is an inherent drawback of the control input
singularity around the origin in both aforementioned
papers.

Meanwhile, attempts have been made to apply SMC
law in Cartesian coordinates [12–18]. Among those
studies, cascaded control systems, namely inner-outer
loop control structures [13–15], are adopted. The inner
loop controller is targeted at velocity following con-
trol for the NWMR while the outer loop focuses on
designing a model-free kinematic controller. Accord-
ing to the posture tracking errors, the outer loop con-
troller generates corresponding velocity commands to
the inner loop which guarantees actual velocities to
converge to the velocity commands. The capability for
the NWMR to achieve the desired performance is built
upon the assumption of perfect velocity tracking [19]
which, however, may not hold in practice depending on
the accuracy of the inner-loop control. In [13], a super-
twistingSMCmethod is developedwith a proportional-
derivative (PD) controller which increases the robust-
ness bymitigating the influence of neglected dynamics,
but singularity issue also arises based on the designed
sliding surface. With a similar PD controller, the work
[14] proposed an adaptive fuzzy SMC method that
reduces the system chattering by replacing the adaptive
fuzzy logicwith the traditional discontinuous portion in
SMC. By combining an event-triggered structure with
a robust SMC, the control input singularitywas avoided
in [15].

Note that most of the aforementioned papers only
guarantee the asymptotic stability of the mobile robot
system which means that they may achieve conver-
gence in infinite settling time and a fast convergence
rate may not be accomplished. Finite-time tracking

control of nonholonomicmobile robots quickly became
an emerging topic [20–22]. In [21], a cascaded con-
trol system is formed by splitting the error dynamics
of the mobile robot into two subsystems. Based on the
controller developed, a finite-time convergence is guar-
anteed but only when the velocities and their deriva-
tives are within a limited range. Additional modeling
parameters are considered in the work [22] to improve
the control accuracy. Likewise, two subsystems are
formed with two adaptive sliding mode controllers to
strengthen the robustness. However, the control system
only guarantees that the tracking errors can converge to
a region instead of zero and the desired angular veloc-
ity cannot reach zero, which means that a straight-path
following task is not achievable. In addition, both stud-
ies [21,22] only illustrated simulation results and thus
the practical effectiveness of their controllers is still
questionable.

Motivated by [15,22,23], we proposed an
AFNTSMDCmethod in this paper, whose main contri-
bution is to provide a unified control scheme compared
to the classic cascaded control structure. Thus, the
assumption of perfect velocity tracking is not needed.
This also simplifies the design process as there is no
need to design a kinematic controller and a dynamic
velocity controller separately. This also leads to a
reduction in the number of tuning parameters and tun-
ing processes. In addition, the AFNTSMDC method
guarantees finite-time convergence of the tracking error
towards zero. It is also more robust against model
uncertainties and external disturbances. By properly
designing the tracking-error function, an alternative
solution to eliminating the control input singularity is
also proposed.

The remaining part of the paper is organized as
follows. The plant model of the NWMR system con-
sisting of parametric uncertainties and external distur-
bances is formulated in Sect. 2. Section 3 describes
the AFNTSMDC design method, the stability analysis
and parameters selection are also elaborated. Section
4 presents the experimental performance of the devel-
oped controller on the NWMR platform in comparison
with other existing methods. The conclusion is drawn
in Sect. 5.

The following notations are used in paper: for
� ∈ R

f , sgn(�) denotes
[
sign(ψ1), . . . , sign(ψ f )

]T ;

sig(�) represents
[|ψ1|sign(ψ1), . . . , |ψ f |sign(ψ f )

]T ,
and diag([�]) denotes the diagonal matrix with diag-
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Fig. 1 Top view of a nonholonomic wheeled mobile robot

onal elements of ψ1, . . . , ψ f . For � ∈ R
f ×q , ���

denotes the element-wise absolute value of matrix �.

2 Problem formulation

In this section, the dynamics andkinematics ofNWMRs
are discussed. A schematic top view is shown in Fig. 1,
where the mass center of the mobile robot is denoted
by Om and the distance from Om to the middle of the
two front driving wheels Ol is denoted as h. Thus,
{OgXgYg} is the reference coordinate system, whereas
{Ol XlYl} is the coordinate system fixed to the mobile
robot. The position of the robot is completely specified
by the vector p = [xg, yg, φg]T . Then, a dynamic
model for the NWMR can be described as [22]

M̄(p) p̈ + V̄ (p, ṗ) ṗ + τd = B̄(p)τ − AT (p)λ (1)

where M̄(p) ∈ R
3×3 is a positive symmetric definite

inertia matrix; τd ∈ R
2 denotes the lumped compo-

nents including surface friction, external disturbances,
and unmodeled dynamics; τ ∈ R

2 is the input vec-
tor. V̄ (p, ṗ) ∈ R

3×3 is the centripetal and coriolis
matrix; AT (p) ∈ R

3×1 is the matrix associated with
constraints, and λ ∈ R is the vector of Lagrange mul-
tipliers. The matrices M̄(p), AT (p), B̄(p), V̄ (p, ṗ) ,

τ , τd and λ are given as follows:

M̄(p) =
⎡

⎣
m 0 m̄1

0 m −m̄2

m̄1 −m̄2 I

⎤

⎦ , AT (p) =
⎡

⎣
−sin(φg)

cos(φg)

0

⎤

⎦

B̄(p)= 1

r

⎡

⎣
cos(φg) cos(φg)

sin(φg) sin(φg)

b −b

⎤

⎦ , V̄ (p, ṗ)=
⎡

⎣
0 0 m̄2φ̇g

0 0 m̄1φ̇g

0 0 0

⎤

⎦

λ = −m
(
ẋgcos(φg) + ẏgsin(φg)

)
φ̇g,

τ =
[
τ1
τ2

]
, τd =

[
τd1
τd2

]

m̄1 = mhsin(φg), m̄2 = mhcos(φg) (2)

wherem is the total mass of the NWMR including load
uncertainty; I is the moment of inertia of the mobile
robot; τ1 and τ2 indicate the torques generated by the
right and left wheel; τd1 and τd2 denote the external
disturbances.

Thenonholonomickinematic constraints are described
by

A(p) ṗ = 0. (3)

The kinematic model for the NWMR can be described
as

ṗ = S(p)z (4)

where

S(p) =
⎡

⎣
cos(φg) 0
sin(φg) 0

0 1

⎤

⎦ , z =
[
v

ω

]
(5)

with v and ω denote the forward velocity and angular
velocity, respectively. From (4), it follows that

p̈ = S(p)ż + Ṡ(p)z. (6)

Substituting (6) into (1) yields

M̄(p)
(
S(p)ż + Ṡ(p)z

) + V̄ (p, ṗ)S(p)z + τd

= B̄(p)τ − AT (p)λ. (7)

Multiplied (7) by ST (p) on the left, the system dynam-
ics (1) can be rewritten as

Mż = Bτ + d (8)
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where

M =
[
m 0
0 I

]
, B = 1

r

[
1 1
b −b

]
, d =

[
d1
d2

]

= −ST (p)τd . (9)

In addition, the following parametric uncertainties are
considered:

M = M0 + �M (10)

with

M0 =
[
m0 0
0 I0

]
, �M =

[
�m 0
0 �I

]

wherem0 and I0 denote the nominal model parameters
and �m and �I denote the corresponding uncertain-
ties, respectively.

Combining (10) and (9), we can obtain the dynamic
model for the NWMR as follows:

M0 ż = Bτ − δ (11)

where δ = [δ1, δ2]T = �Mż+ d represents the refor-
matted uncertainty to system (9).

Assumption 1 In the following, the lumped uncer-
tainty δ is assumed to be bounded by

|m−1
0 δ1| < c1 + c3|v| (12)

|I−1
0 δ2| < c2 + c4|ω| (13)

where ci (i = 1, 2, 3, 4) are unknown but bounded
positive numbers. The terms c1 and c3 denote the upper
bound of the external disturbance and surface friction.
Meanwhile, c2 and c4 denote the upper bound of the
dynamic impact caused by modeling imprecision.

In the sequel, the control design for the AFNTSMDC
will be constructed according to the kinematic model
in (4) and dynamic model in (11) formulated for the
NWMR.

3 Control design

In this section, the AFNTSMDC designmethod will be
presented such that the NWMR can track the desired

trajectory command accurately in the presence of sys-
tem uncertainties and external disturbances in a finite
time. To achieve this goal, we will first define a
tracking-error function. Then, a fast nonsingular ter-
minal sliding surface with an adaptive reaching law
will be developed, based on which the finite-time con-
vergence is achieved, the singularity issue is resolved,
and the unified control scheme is developed. Thus, the
AFNTSMDC law is constructed with both the velocity
and position as feedback signals and the motor torques
as the control input.

3.1 Construction of the AFNTSMDC

First, define a tracking error vector [19] for the NWMR
as

pe =
⎡

⎣
xe
ye
φe

⎤

⎦ =
⎡

⎣
cos(φg) sin(φg) 0
−sin(φg) cos(φg) 0

0 0 1

⎤

⎦ (pr − p) (14)

where pr = [xr , yr , φr ]T is the desired trajectory
posture and its kinematics can be modeled as

ṗr = S(pr )zr (15)

where zr = [vr , ωr ]T is the desired velocity,vr denotes
the desired forward velocity, andωr denotes the desired
angular velocity which can be calculated by

vr =
√
ẋ2r + ẏ2r (16)

ωr = φ̇r = ẋr ÿr − ẍr ẏr
ẋ2r + ẏ2r

. (17)

Combining (14) and the kinematic model described in
(4), one can obtain the error model for the trajectory
tracking control as

ṗe = F + Gz (18)

in which

F =
⎡

⎣
vrcos(φe)

vr sin(φe)

wr

⎤

⎦ , G =
⎡

⎣
−1 ye
0 −xe
0 −1

⎤

⎦ . (19)
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Differentiating (14), we have

p̈e = Ḟ + Ġz + Gż. (20)

Combining (11) with (20), we obtain

p̈e = Ḟ + Ġz + GM−1
0 (Bτ − δ). (21)

Second, we shall introduce a new tracking-error
function

ξ =
[
ξ1
ξ2

]
=

[
xe

φe + ρ
|xe|+ρ

tan−1ye

]
(22)

where 0 < ρ < 1 is the control parameter to be tuned.
Note that for 0 < ρ < 1 and any xe ∈ R, the expression

ρ
|xe|+ρ

∈ (0, 1], which can be regarded as a weighting
parameter to adjust the convergence rate of ye and φe.
It will be shown later that once ξ converges to zero, the
tracking error vector pe will converge to zero accord-
ingly. Hence, our control objective is now converted to
enabling the finite-time convergence of ξ through the
proposed method.

Taking the first-order derivative of the tracking-error
function (22) yields

ξ̇ = H ṗe (23)

with

H =
[

1 0 0
−ρ(|xe| + ρ)−2sgn(xe)tan−1ye

ρ

(|xe|+ρ)(1+y2e )
1

]

.

(24)

Based on (23), we can obtain

ξ̈ = Ḣ ṗe + H p̈e. (25)

Substituting (21) into (25) yields the tracking-error
dynamic equation as follows:

ξ̈ = Ḣ ṗe + H
(
Ḟ + Ġz + GM−1

0 (Bτ − δ)
)
. (26)

Furthermore, we define a sliding surface s as

s = ξ̇ + αξ + βsig(ξ)γ (27)

where α = diag([α1, α2]) > 0, β = diag([β1, β2]) >

0, and 1 < γ < 2. It has been proved in Appendix B
that when the sliding variable s reaches to zero, for any
initial values of ξ and ξ̇ , the tracking-error function ξ

can converge to zero in a finite time tξ bounded by

tξ ≤ max{η−1
1 |ξ1(0)| 12 , η−1

2 |ξ2(0)| 12 } (28)

with η = [η1, η2]T = α�ξ� + β�ξ�γ . Meanwhile,
taking derivative of the sliding surface s, one has

ṡ = ξ̈ + αξ̇ + βγ �ξ�γ−1ξ̇ . (29)

Substitute (26) into (29), we obtain

ṡ = Ḣ ṗe + H
(
Ḟ + Ġz + GM−1

0 (Bτ − δ)
)

+ αξ̇ + βγ �ξ�γ−1ξ̇ . (30)

Last, theAFNTSMDC lawwill be constructed based
on the tracking-error function and sliding surface pro-
posed above. Let δ = 0 and replace τ with τeq . Then,
solving (30) for ṡ = 0 leads to

τeq = −(HGM−1
0 B)−1(Ḣ ṗe + H(Ḟ + Ġz) + αξ̇

+βγ �ξ�γ−1ξ̇
)
. (31)

Furthermore, a reaching control input τr is designed as

τr = −(HGM−1
0 B)−1

(
K1s + K2sig(s)

μ
)

−B−1M0LĈ (32)

with

L = diag([sgn(s1), sgn(s2)]) (33)

C = [ĉ1 + ĉ3|v|, ĉ2 + ĉ4|ω|]T (34)

K1 = diag([k1, k2]) (35)

K2 = diag([k3, k4]) (36)

where ki (i = 1, 2, 3, 4) are positive control param-
eters, 0 < μ < 1; and the adaption gain ĉi (i =
1, 2, 3, 4) is updated by the following adaptive law:

˙̂c1 = ζ1|s1|, ˙̂c2 = ζ2|s2| (37)

˙̂c3 = ζ3|v||s1|, ˙̂c4 = ζ4|ω||s2| (38)

with ζi ≥ 0, ĉi (0) ≥ 0 (i = 1, 2, 3, 4) are control
parameters to be designed. Thus, the complete form of
the AFNTSMDC law can be obtained as

τ = τeq + τr (39)

where τeq and τr are given in (31) and (32), respectively.

3.2 Stability analysis

The result for the proposed AFNTSMDC law is sum-
marized in the following lemma and stability analysis
is provided.
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Lemma 1 Given the NWMR system in (4) and (11),
and the control law (39), ĉi has an upper bound and
there exists a positive value ci in (12) such that ĉi ≤
ci (i = 1, 2, 3, 4) always holds.

Proof Supposing the sliding surfaces s1 and s2 have
not arrived at zero and ĉi is increasing and there exists
time instances t1 and t2 such that:

ĉ1(t1) + ĉ3(t1)|v| > |m−1
0 δ1 + k1s1 + k3sig(s1)

μ|
(40)

ĉ2(t2) + ĉ4(t2)|ω| > |I−1
0 δ2 + k2s2 + k4sig(s2)

μ|.
(41)

Based on (12), when t3 = max{t1, t2}, ĉi will be large
enough to make the sliding surfaces s1 and s2 reach to
zero in a finite time ts . Then, the value of ĉi (t)will hold
at ĉi (t3 + ts) finally.

Under Assumption 1 and the continuity property of
ĉi , it is clear that t3 + ts is finite and for all t, ĉi (t) has
an upper bound. Therefore, there exists such a positive
value ci in (12) satisfying ĉi ≤ ci .

This completes the proof of Lemma1. ��
Lemma 2 Consider the NWMR system in (4) and (11),
then under the AFNTSMDC law (39) the tracking error
vector pe converges to zero in a finite time.

Proof Firstly, by substituting the control law (39) into
(30), one can obtain

ṡ = −K1s − K2sig(s)
μ − HG

(
LĈ − M−1

0 δ
)
. (42)

Define the adaptive estimation error c̄i = ĉi − ci (i =
1, 2, 3, 4) and choose the Lyapunov function as

V = 1

2
sT s + 1

2

4∑

i=1

c̄2i (43)

Using (42) and evaluating the derivative of V along
this system trajectory with the proposed AFNTSMDC
input yields

V̇ = sT ṡ +
4∑

i=1

c̄i ˙̂ci

= −K1�s� − K2�s�μ+1 − sT HG
(
LĈ − M−1

0 δ
)

+
4∑

i=1

c̄i ˙̂ci

≤−�s�T �HG�(Ĉ − �M−1
0 δ�) +

4∑

i=1

c̄i ˙̂ci

= −�s�T �HG�(Ĉ − �M−1
0 δ�)

+
4∑

i=1

c̄i ˙̂ci + �s�T �HG�C − �s�T �HG�C

= −�s�T �HG�(C − �M−1
0 δ�) − �s�T �HG��C − Ĉ�

+
4∑

i=1

c̄i ˙̂ci .

Following ci > ĉi from Lemma 1, we have

V̇ ≤ −�s�T �HG�(C − �M−1
0 δ�) − �s�T �HG��C − Ĉ�

−
4∑

i=1

|c̄i | ˙̂ci

= −�s�T Q − ζ1|s1||c̄1| − ζ2|s2||c̄2| − ζ3|v||s1||c̄3|
− ζ4|w||s2||c̄4| (44)

where

C = [
c1 + c3|v|, c2 + c4|ω|]T

Q = [q1, q2]T = �HG�(C − �M−1
0 δ� + �C − Ĉ�).

To make the expression compact, the following sym-
bols are defined:

ε1 = ζ1|s1|, ε2 = ζ2|s2|
ε3 = ζ3|v||s1|, ε4 = ζ4|w||s2|.

It is obvious that εi > 0 (i = 1, 2, 3, 4), thus (44)
can be rewritten as

V̇ ≤ −√
2

(
q1

|s1|√
2

+ q2
|s2|√
2

+ ε3
|c̄1|√
2

+ ε4
|c̄2|√
2

+ ε5
|c̄3|√
2

+ ε6
|c̄4|√
2

)

≤ −√
2η3

( |s1|√
2

+ |s2|√
2

+ |c̄1|√
2

+ |c̄3|√
2

+ |c̄3|√
2

+ |c̄4|√
2

)

≤ −√
2η3V

1
2 (45)

and

η3 = min{q1, q2, ε1, ε2, ε3, ε4}. (46)

Therefore, according to the result in Appendix A, the
inequality (45) satisfies the finite-time stability crite-
rion. More specific, V will converge from any initial
condition V (0) to zero in a finite time ts shown in the
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following equation:

ts ≤
√
2V

1
2 (0)

η3
. (47)

This implies that the sliding variable s and the esti-
mation error c̄i will converge to zero in a finite time
ts .

When sliding surface is first arrived (i.e., s = 0
and ξ̇ = −αξ − βsig(ξ)γ ), the finite-time converging
condition of ξ is met. After a finite time tξ when ξ = 0,
according to the definition of ξ in (22), we have
{
xe = 0

φe = −tan−1ye.
(48)

Substituting the condition (48) into (18), the dynamics
of ye can be written as

ẏe = −vr sin(tan
−1ye)

= − vr ye√
1 + y2e

. (49)

To investigate the stability of the dynamics of ye, we
choose a Lyapunov candidate Vye = 1

2 y
2
e . Thus, V̇ye

can be expressed as

V̇ye = − vr y2e√
1 + y2e

≤ − vr |ye|√
1 + y2e

√
2
|ye|√
2

= −√
2η4V

1
2
ye (50)

where η4 = vr |ye|√
1+y2e

and vr > 0. According to

Appendix A, ye converges to zero in the finite time
satisfying

tye ≤ −
√
2V

1
2 (0)

η4
. (51)

Recall the condition in (48). When ye reaches zero,
φe reaches zero at the same time. Therefore, under the
proposed AFNTSMDC law, the x-axis tracking error
xe converges from any initial condition to zero in a
finite time of txe = ts + tξ and it takes additional finite
time tye for ye and φe to reach zero.

The proof is thus completed. ��

Remark 1 The controller (39) requires the inverse of
the matrix HGM−1

0 B. Similar issue has appeared in
[13,15] while examining the singularity of the con-
trol laws. In our method, the singularity issue can be
resolved by the proposed tracking-error function (22).
This can be straightly justified by the determinant of
the matrix HGM−1

0 B as follows:

|HGM−1
0 B| = − 2b

rm0 I0

(
ρ

(|xe| + ρ)(1 + y2e )
xe + 1

)
.

(52)

It can be seen that for 0 < ρ < 1, the func-
tion ρ

(|xe|+ρ)(1+y2e )
xe 
= −1 because of the functions

ρxe|xe|+ρ
∈ (−1, 1) and 1

1+y2e
∈ (0, 1]. Therefore, the

inverse of HGM−1
0 B is finite.

Remark 2 In the adaptation law (37)–(38) , the sliding
variable s is generally chattering around zero due to
systemuncertainties andmeasurement noises, resulting
in overly large estimations of ci causing control input
saturation. Hence, the dead zone technique [24] can
be employed in practice to moderate this issue. More
specifically, the following rules are implemented:

{ ˙̂c1 = ζ1|s1|, ˙̂c3 = ζ3|v||s1|, for |s1| > ε

˙̂c1 = ˙̂c3 = 0, for |s1| ≤ ε
(53)

{ ˙̂c2 = ζ2|s2|, ˙̂c4 = ζ4|ω||s2|, for |s2| > ε

˙̂c2 = ˙̂c4 = 0, for |s2| ≤ ε
(54)

where ε is a small positive threshold value selected
as 0.05 in our case. It is clear that when s is within
the region ε, ĉ1 and ĉ2 will not increase but retain the
present values. One can easily verify that when both
|s1| < ε and |s2| < ε, (45) still holds. Therefore, the
finite-time stability property is still retained in practice.

Remark 3 The boundary layer technique can be used
to compromise between control accuracy and the chat-
tering induced by the reaching control. This can be
accomplished by replacing sgn(·) in the reaching law
(32) with a saturation function given by

sat(ϑ) =
{
sgn(ϑ), for |ϑ | > �

ϑ�−1, for |ϑ | ≤ �
(55)

where � denotes the boundary layer thickness and
� = diag([0.04, 0.04]) is chosen in our case to reach
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Fig. 2 Block diagram of
the proposed unified control
structure for NWMR
systems

a balance between chattering reduction and acceptable
tracking errors.

Remark 4 To emphasize the advantage of the proposed
control scheme which is shown in Fig. 2, a comparison
is made between the AFNTSMDC method and a clas-
sic control scheme that is presented in Fig. 3. In Fig. 3,
the inner velocity controller and anouter loop controller
are designed based on the dynamic model and the kine-
matic model separately, whereas the AFNTSMDC is
the controller that integrates the control requirements
for both the kinematic and dynamic model. Thus, the
proposed control scheme simplifies the system struc-
ture which potentially leads to more reliable perfor-
mances, a reduction in the number of tuning parame-
ters and tuning processes, and less computational and
hardware cost. Further comparisons and statistical val-
idations regarding the practical performance will be
presented in Sect. 4.

3.3 Control parameters selection

During the implementation, trade-offs between the
desired tracking performance and other factors such as
control input saturation, control command smoothness,
and measurement noises are expected. In the follow-
ing, we will discuss the controller parameters selection
guideline for the proposed AFNTSMDC law and give
their values for the NWMR under study.

(1) Selection of α, β, γ : The parameters in α, β, and γ

affect the dynamic behaviors of the sliding surface
s in (27). An increment of these parameters can
lead to faster convergence of ξ towards zero but
may incur a rising in the amplitude of the tracking-
error overshoots. For the NWMR constructed for
the experiment,α = diag([7, 7]),β = diag([7, 6])
and γ = 1.67 are chosen.

(2) Selection of ρ: Before xe reaches zero, a smaller
value of ρ in the tracking-error function (22) can
increase the convergence rate of ye and φe. How-
ever, itmay invoke oscillations in transient response
of φe. Thus, ρ is set to be 0.8.

(3) Selection of K1, K2,μ: The control parameters K1,
K2, andμ in the reaching law (32) dominate the sys-
tem robustness. Increasing the values of K1 and K2

strengthens the system robustness at the cost of con-
trol signal smoothness. Meanwhile, μ can balance
the control signal chattering and the robustness. In
our case, K1 = diag([9, 4]), K2 = diag([15, 5]),
and μ = 0.8 are chosen in the implementation.

(4) Selection of ci (0) and ζi (i = 1, 2, 3, 4): ci (0)
denote the initial values of ci . Proper selected of
values of ci (0)will reduce the adaptation time. The
adaptive gains ζi in (37)–(38) determine the conver-
gence rate of the adaptive estimation error, whereas
a large value of them may cause control input sat-
uration and overshoots. Thus, we find c1(0) = 14,
c2(0) = 14, c3(0) = 8, c2(0) = 6, ζ1 = 0.3,
ζ2 = 0.4, ζ3 = 0.4, ζ4 = 0.5 are sufficient for the
experiments.

4 Experimental results

To demonstrate the effectiveness of the proposed
AFNTSMDC method in the presence of external dis-
turbances and load variations, experiments are con-
ducted on the NWMR shown in Fig. 4. In addition,
experimental comparisons are made with other exist-
ing control methods, i.e., a classic kinematic control
(CKC) method [19], a recently proposed robust sliding
mode kinematic control (RSMKC) method [15], and a
conventional sliding mode dynamic control (CSMDC)
method.

123



Finite-time tracking control for nonholonomic wheeled mobile robot 1445

Fig. 3 Block diagram of an
inner-outer control structure
for the NWMR system [12]

4.1 Control methods for comparison

Classic kinematic control (CKC) As shown in Fig. 3,
an outer loop CKC law is given in the following form
[19]:

zd = KE pe + KD (56)

with

zd =
[
vd
ωd

]
, KE =

[
ke1 0 0
0 vr ke2 0

]
,

KD =
[

vrcosφe

vr ke3sinφe + ωr

]
(57)

where ke1, ke2, and ke3are all positive constants which
are set to be 1.7, 1.7, and 1.5 in this experiment.

Robust Sliding Mode Kinematic Control (RSMKC):
Similarly, an RSMKC method is proposed in [15]
⎧
⎪⎨

⎪⎩

sr =
[
kr1φe + vr tan−1ye

xe

]

zd = −B−1
r

(
Ar Fr + Dr + Kr sgn(sr )

)
(58)

where

Ar =
[
0 vr

1+y2e
kr1

1 0 0

]

, Br =
[

0 −(kr1 + vr xe
1+y2e

)

−1 ye

]

Fr =
⎡

⎣
vr cosφe

vr sinφe

ωr

⎤

⎦ , Dr =
[
v̇r tan−1ye

0

]
, Kr =

[
kr2 0
0 kr3

]

where kr1, kr2, and kr3 are tuning parameters which are
set to 0.40, 0.02, and 0.02, respectively.

It isworth noting that both kinematic controllers pre-
sented above are coupled with an inner velocity con-
troller which is designed for the actual velocity to fol-
low the desired velocity generated by the kinematic
controller. A PI velocity controller is used in experi-
ments, and it can be described as

u = kP ze(T ) + kI

∫ T

0
ze(t) dt (59)

Fig. 4 Experimental platform of a nonholonomic wheeled
mobile robot

where u = [u1, u2]T denotes the output of the PI
velocity controller; ze = zd − z which is the velocity
tracking error; kP and kI are tuning parameters and
they are set to 30 and 250 in our case, respectively.

Conventional Sliding Mode Dynamic Control
(CSMDC): For comparison, a CSMDCmethod is listed
below whose control scheme is the same as the one
discussed in Sect. 2. However, the sliding surface and
reaching law are designed based on the conventional
SMC method which is given as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

scsm = λcξ + ξ̇

τeq2 = −(HGM−1
0 B)−1(λc ξ̇ + Ḣ ṗe + H(Ḟ + ĠV )

)

τr2 = −(HGM−1
0 B)−1Kcsgn(scsm)

τ2 = τeq2 + τr2

(60)

with

Kc =
[
kc1 0
0 kc2

]
, λC =

[
λc1 0
0 λc2

]

where ξ is with (22); kc1, kc2, λc1, and λc2 are positive
control parameters which are chosen as 21, 16, 3 and
4, respectively.

123



1446 H. Xie et al.

Table 1 Model parameters of the NWMR

Parameter Symbol Nominal value

Mass of the NWMR m0 4.500 kg

Moment of inertia of the NWMR I0 0.560 kgm2

Wheel radius r 0.042 m

Distance between the driving wheels 2b 0.372 m

Distance between Om and Ol h 0.110 m

4.2 Experimental platform

Our experimental setup for the NWMR is shown in
Fig. 4 with its nominal physical parameters listed in
Table 1. It consists of two dcmotors (Maxon)which are
integrated with encoders to measure the rotary angles.
Twomotor drivers (Maxon ESCON-36/2) are also used
to control the motor power. Two caster wheels are
located at the rear of the robot. The data acquisition and
controller are implemented with the real-time micro-
controller (NI myRIO). The sampling period is set to
0.01 seconds for all controllers implemented. The feed-
back posture signals of the NWMR are obtained by
using a posture estimator with the motor encoder sig-
nals as the system input.

4.3 Circular path tracking performance with initial
posture offset

A circular path is typically used for testing the track-
following performance of mobile robots. In the exper-
iments conducted, the desired circular path is config-
ured with an angular speed of 0.70 rads/s and a radius
of 0.60 m. In addition, the initial posture offset is set to
be (−0.10, −0.10, 0).

Experimental results on the trajectory and tracking
error profiles are shown in Fig. 5. We can see that the
AFNTSMDCmethod achieves the fastest convergence
rate and the least oscillations. Meanwhile, the track-
ing results in Fig. 5 are also summarized in Table 2,
where the root-mean-square (RMS), the maximum
value (MAX), and the settling time of tracking errors
are listed. Figure 5a, b shows that all controllers guaran-
tee to converge to the desired trajectory. In particular,
Fig. 5c shows that the convergence of X -axis track-
ing error under AFNTSMDC is with a settling time of
0.684 s which is 788%, 603%, and 249% faster than
that of the CKC, RSMKC, and CSMDC, respectively.

In addition, theAFNTSMDCobtains the smallest RMS
with a value of 1.918 cm in X -axis tracking error. There
is no significant lead for the AFNTSM regarding RMS
and MAX, the transition in Y -axis is the smoothest
shown in Figure 5d. Figure 6 presents the control inputs
of all controllers, where the AFNTSMDC exhibits per-
sistently smooth control signals without singularity
issue that matches the theoretical design. Nevertheless,
due to the impact of measurement noise, there is still
a small level of chattering in the control input, which
is inevitable in the experiments but has not caused any
implementation issue in our case.

4.4 Circular path tracking performance with load
uncertainty and disturbance

To further verify the performance robustness in the
presence of modeling uncertainties, we place a 3.60-
kg cylindrical payload on the mass center of the mobile
robot, i.e., making �M = diag([3.60, 0.01]). Mean-
while, the circular path reference is still used on the
control system with an initial posture offset set on
the robot. Compared with the previous experiment,
various performance degradation can be observed in
Fig. 7c–e. However, the AFNTSMDC maintains its
advantages with the shortest settling time with a value
of 1.128 s and the smallest RMS of 2.806 cm in the
X -axis tracking error listed in Table 3 because the pay-
load uncertainties have been explicitly considered dur-
ing the design process as shown in (11). Meanwhile,
the fast convergence feature and the smoothness of
the AFNTSM are observed in Fig. 7d, whereas the
kinematic controllers (i.e., CKC and RSMKC) suffer
from severe performance degradation due to their weak
robustness against system uncertainties. From the con-
trol input in Fig. 8, it can be observed that there is a
significant increment in the amplitude and the number
of spikes in control input signals except those under
CSMDC and AFNTSMDC. The increased amplitudes
in Fig. 8b are 39.54%, 40.83%, 35.41%, and 24.05%
for the CKC, RSMKC, CSMDC, and AFNTSMDC,
respectively. Hence, this experiment validates that the
proposed controller is more robust against modeling
uncertainties in comparison with other control meth-
ods.

Later the disturbances d1 and d2 as shown in Figs. 2
and 3 are set as shock disturbances acting on thewheels
of the NWMR. The disturbance behaves as a half-sine
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Fig. 5 Circular tracking with initial posture offset. a Trajectory profiles. bOrientation angles. c Tracking errors of X -axis displacement.
d Tracking errors of Y -axis displacement. e Tracking errors of orientation angle

Table 2 Tracking performance summary of circular trajectory with initial offset

Tracking errors Performance metrics CKC RSMKC CSMDC AFNTSMDC

xe RMS (cm) 3.298 3.288 3.304 1.918

MAX (cm) 11.604 12.115 17.524 13.019

Settling time (s) 6.070 4.810 2.380 0.680

ye RMS (cm) 2.436 2.528 3.754 3.159

MAX (cm) 10.021 10.014 10.684 10.210

Settling time (s) 7.520 7.590 9.360 8.870

φe RMS (rad) 0.015 0.023 0.047 0.030

MAX (rad) 0.032 0.064 0.215 0.172

Settling time (s) 5.930 7.390 3.980 4.460
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Fig. 6 Control input with
initial posture offset. a
Right motor voltage input. b
Left motor voltage input
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waveform with a duration of 0.5 s and an amplitude of
6.0 V. The disturbance can be modeled as{

d1 = d2 = 6|sin(2π t)| 12 s ≤ t ≤ 12.5 s

d1 = d2 = 0 Other time.
(61)

The disturbances occur at the 12th second when all the
controllers reach steady state and last for another 0.5 s.
Thus, the data collected from the 11th to 18th are inter-
cepted from a 20-second experiment and it is shown in
Fig. 9 for better readability. One of the most notable
features of the AFNTSMDC is the fast convergence
rate and robustness in response to an external distur-
bance. It can be seen from Fig. 9a that the tracking
error under the AFNTSMDC has aMAX peak value of
1.624 cm, which is 74%, 66%, and 25% smaller than
the MAX peaks values under the CKC, RSMKC, and
CSMDC. In addition, the settling time of the X -axis
tracking error is 0.525 s under AFNTSMDC in com-
parison with 0.520 s, 0.870 s, and 0.670 s under the
CKC, RSMKC, and CSMDC listed in Table 4. While
obtaining stronger robustness, only the same level of
control inputs is required under AFNTSMDC, which
can be seen from Fig. 10. Thus, the results verify that
the AFNTSMDC is more robust and faster in terms of
disturbance rejection capability and settling-time con-
vergence.

In summary, the proposed AFNTSMDC controller
performs the most robustly and fastest in the trajectory
tracking control for the NWMR. It is also worth noting
that the tracking errors under all controllers still contain
a small amount of steady-state error in practice due
to the coarse sensor resolution and the trade-off for
reducing the control chattering,whichwill be improved
in our future work.

5 Conclusion

In this paper, we developed an AFNTSMDC method
for the NWMR system to accomplish trajectory track-
ing control in a finite time. The AFNTSMDC method
resolves the singularity issue presented in previous
research and possesses strong robustness against exter-
nal disturbances and modeling uncertainties. Compar-
isons are made with existing techniques such as the
CKC, RSMKC, and CSMDC methods under a series
of circular trajectory tracking experiments. It has been
validated that the proposed control method possesses
stronger robustness and a faster convergence rate when
compensating for initial posture offset, load uncer-
tainty, and external disturbances. In addition, the pro-
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Fig. 7 Circular tracking with the load. a Trajectory profiles. bOrientation angles. c Tracking errors of X -axis displacement. d Tracking
errors of Y -axis displacement. e Tracking errors of orientation angle

Table 3 Tracking performance summary of circular trajectory with load uncertainty

Tracking errors Performance metrics CKC RSMKC CSMDC AFNTSMDC

xe RMS (cm) 3.224 3.883 4.740 2.806

MAX (cm) 12.165 12.248 21.436 15.229

Settling time (s) 6.490 6.280 1.810 1.120

ye RMS (cm) 2.148 3.408 3.933 2.587

MAX (cm) 10.046 10.015 10.727 10.015

Settling time (s) 8.380 9.270 6.330 7.180

φe RMS (rad) 0.017 0.035 0.065 0.024

MAX (rad) 0.041 0.075 0.285 0.125

Settling time (s) 6.120 9.640 5.350 3.860
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Fig. 8 Control input with
the load. a Right motor
voltage input. b Left motor
voltage input
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Fig. 9 Circular tracking
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Table 4 Tracking performance summary of circular trajectory with disturbance

Tracking errors Performance metrics CKC RSMKC CSMDC AFNTSMDC

xe RMS (cm) 3.227 3.887 4.748 2.805

MAX (cm) 2.827 2.695 2.035 1.624

Settling time (s) 1.830 0.870 0.670 0.520

ye RMS (cm) 2.144 3.407 3.937 2.682

MAX (cm) 0.785 0.901 1.234 1.004

Settling time (s) 2.370 2.660 2.280 2.090

φe RMS (rad) 0.004 0.006 0.008 0.003

MAX (rad) 0.013 0.025 0.026 0.011

Settling time (s) 1.070 1.310 1.080 1.120

Fig. 10 Control input
under external disturbances.
a Right motor voltage input.
b Left motor voltage input
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posed control scheme simplifies the control structure
and unifies the design process in comparison with the
classic cascaded control scheme. Thus, the design pro-
cess has been simplified since there is no need to
design two individual controllers for different objec-
tives, which also potentially leads to more reliable per-
formances, reduction in control parameters, tuning pro-
cess, and computational and hardware requirements.

In our futurework,wewill investigate the chattering-
free reaching law to inherently eliminate the chattering
phenomenon without sacrificing tracking accuracy.
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Appendix A

Given the following first-order nonlinear differential
inequality:

V̇ (x) + ιV ϕ(x) ≤ 0 (A1)

where V (x) represents a positive Lyapunov function
with respect to the state x ∈ R, ι > 0, 0 < ϕ < 1,
then for any given initial condition V (x(0)) = V (0),
the function V (x) converges to the origin in the finite
time given by

tv ≤ V 1−ϕ(0)

ι(1 − ϕ)
. (A2)

The derivation is referred to [25,26] and references
therein.

Appendix B

For the system ξ̇1 = −α1ξ1 − β1sig(ξ1)μ, define the
Lyapunov function Vξ1 = 1

2ξ
2
1

V̇ξ1 = ξ1ξ̇1

= − α1ξ
2
1 − β1|ξ1|μ+1

≤ − (α1|ξ1| − β1|ξ1|μ)
√
2
|ξ1|√
2

= − √
2η1V

1
2 (t) (B3)

where η1 = α1|ξ1| − β1|ξ1|μ. According to Appendix
A, ξ converges to zero in the finite time satisfying

tξ1 ≤
√
2V

1
2

ξ1
(0)

η1
(B4)

Similarly, we can have tξ2 ≤ η−1
2

√
2V

1
2

ξ2
(0) by defining

Vξ2 = 1
2ξ

2
2 for the system ξ̇2 = −α2ξ2 − β2sig(ξ2)μ.

Thus, we can conclude that the tracking-error function
ξ can converge to zero in a finite time tξ given as

tξ = max{tξ1, tξ2}. (B5)
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