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Abstract In the context of nonhyperbolic chaotic
scattering, it has been shown that the evolution of the
KAM islands exhibits four abrupt metamorphoses that
strongly affect the predictability of Hamiltonian sys-
tems. It has been suggested that these metamorphoses
are related to significant changes in the structure of
the KAM islands. However, previous research has not
provided an explanation of the mechanisms under-
lying the metamorphoses. Here, we show that they
occur due to the formation of a homoclinic or hete-
roclinic tangle that breaks the internal structure of the
main KAM island.We obtain similar qualitative results
in a two-dimensional Hamiltonian system and a two-
dimensional area-preserving map. The equivalence of
the results obtained in both systems suggests that the
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1 Introduction

Chaotic scattering problems are important in nonlinear
science since they appear in a wide variety of physical
phenomena [1]. They often take place in openHamilto-
nian systems [2], which are conservative systems char-
acterized by a time-independent potential that exhibits
different exits through which trajectories can escape
towards infinity and never come back. Before escap-
ing, trajectories can describe transient chaotic motions,
so the characteristics of the escape (e.g., the escape
times) have sensitive dependence on initial conditions.
Furthermore, typical open Hamiltonian systems are
nonhyperbolic [3], which means that chaotic saddles
and KAM islands coexist in phase space. Since KAM
islands are sets of initial conditions confined to invari-
ant tori [4], trajectories belonging to a KAM island
never escape.As the energy increases, theKAMislands
are eventually destroyed once the system becomes
hyperbolic. However, their path of destruction is quite
complex and irregular, as shown in Refs. [5,6].

In a previousmanuscript [7], the authors have shown
that the evolution of KAM islands exhibits four main
metamorphoses insofar as the energy increases. These
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phenomena are characterized by a sudden fragmen-
tation of the main KAM island, which in turn gen-
erates a decrease in its area. These metamorphoses
have important consequences on the overall dynam-
ical behavior of the system. In particular, the unpre-
dictability increases as a consequence of a metamor-
phosis. In the context of chaotic scattering, we under-
stand unpredictability as the difficulty in predicting
the asymptotic behavior of a given initial condition.
In the case of open Hamiltonian systems, the asymp-
totic behavior is the exit through which the trajectory
escapes. Under this consideration, the basin entropy
of the exit basins offers quantitative information about
the unpredictability of a system (for further informa-
tion see Ref. [7] and the references contained therein).
The KAM islands appear embedded in the exit basins,
forming compact regions of regular motion where a
small perturbation in the initial condition cannot gen-
erate an escape. Therefore, KAM islands contribute
to enhance the predictability of a system. A sudden
reduction in the size of the KAM islands leads to an
increase in the size of the basin, which constitutes the
main obstruction to predictability. Therefore, a meta-
morphosis increases the unpredictability by reducing
the size of the KAM islands. Since the metamorphoses
affect the KAM islands, they do not appear within the
hyperbolic regime, where the unpredictability of the
system exhibits a monotonous decrease. Therefore, the
different evolution of the unpredictability allows us to
discern whether the regime is hyperbolic or nonhyper-
bolic.

In another vein, in a recent manuscript [8] the
authors have demonstrated through computer-assisted
proofs that typical Hamiltonian systems exhibit differ-
ent types of bifurcations in their main families of peri-
odic orbits. Since the KAM islands appear surround-
ing stable periodic orbits, we have conjectured that
these bifurcations should be somehow related to the
metamorphoses that appear within the nonhyperbolic
regime of open Hamiltonian systems.

Confirming our conjecture, in this manuscript we
show that the bifurcations of periodic orbits play an
important role in these four metamorphoses. Although
the metamorphoses are a consequence of the bifurca-
tions, they do not occur for the same energy value. At
each bifurcation, a chain of resonant islands and unsta-
ble periodic orbits is created around the main stable
periodic orbit. Looking into an appropriate Poincaré
section, we observe that the unstable fixed points cor-

responding to the unstable periodic orbits are connected
through two smooth homoclinic orbits. In this situation,
if the energy slightly increases, one of the homoclinic
orbits becomes a homoclinic tangle, generating ameta-
morphosis where the KAM island fragments and its
area is reduced. Depending on whether there is a single
fixed point or several, the curve connecting them can
be homoclinic or heteroclinic. Since the processes are
identical in both situations, for the sake of grammatical
simplicity, hereinafter we will refer the curve as homo-
clinic. Nonetheless, in cases where the nature of the
curve is relevant, we will make a distinction between
homoclinic and heteroclinic.

The organization of this paper is as follows. In
Sect. 2, we describe the Hénon–Heiles system as a
paradigmatic model in chaotic scattering. The expla-
nations of the bifurcations and the metamorphoses
that appear in the nonhyperbolic regime are shown
in Sect. 3. Section 4 shows the different mechanism
for which the metamorphoses take place. Besides, we
generalize the previous results for a discrete system in
Sect. 5. Finally, Sect. 6 summarizes the main results of
this work and also provides some discussion of them.

2 Model description

In this work, we use as a paradigmatic model the
Hénon–Heiles system [9] as in Refs. [7,8]. This two-
dimensional system is given by the following Hamil-
tonian:

H = 1

2
(ẋ2 + ẏ2) + 1

2
(x2 + y2) + x2y − 1

3
y3. (1)

As a consequence, the equations of motion read:

ẋ = px ,

ẏ = py,

ṗx = −x − 2xy,

ṗy = −y − x2 + y2. (2)

Since there is no time dependence in the Hamil-
tonian function, the energy is a conserved quantity,
H(x, y, px , py) = E . Above the threshold Ee = 1/6,
known as escape energy, the potential exhibits three
symmetrical exits separated by an angle of 2π/3 radi-
ans, as can be seen in Fig. 1. For energies below
E ≈ 0.23 the system is nonhyperbolic [7], so KAM
islands appear in phase space. Therefore, this is the
energy regime that interests us.
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Fig. 1 Isopotential curves of the Hénon–Heiles system for dif-
ferent values of the energy from E = 0.01 to E = 0.5. The
color of the curves indicates the value of the energy, according
to the color bar. For E < 1/6 the isopotential curves are closed,
while for E > 1/6 the potential presents three symmetrical exits
through which trajectories can escape towards infinity. (Color
figure online)

Fig. 2 Fraction fk of initial conditions belonging to a KAM
island as a function of the energy of the Hénon–Heiles system.
The red dots are located at four main metamorphoses where the
size of the KAM islands decreases abruptly. (Color figure online)

To visualize the four main metamorphoses in the
Hénon–Heiles system, we show the evolution of the
fraction fk of initial conditions belonging to KAM
islands as a function of the energy in Fig. 2. Metamor-
phoses are labeled with red dots. Although the non-
hyperbolic regime remains until E ≈ 0.23, the last
metamorphosis occurs at E = 0.1947, and the main
KAM island loses its stability at E = 0.2063. There-
fore, for E > 0.2063 only small scattered KAM tori
can be found. Consequently, in Fig. 2 the maximum
value of the studied energy is E = 0.21.

3 Bifurcations and metamorphoses

We have already mentioned that KAM islands undergo
several metamorphoses that strongly affect the pre-
dictability of the system. Every KAM island surrounds
a stable periodic orbit. However, it is known that in typ-
ical Hamiltonian systems these periodic orbits exhibit
several bifurcations involving the creation of new sta-
ble and unstable periodic orbits [10]. According to the
Poincaré-Birkhoff theorem [11,12], the ratio of wind-
ing frequencies n/m of the new stable periodic orbits is
a rational number (i.e., n,m ∈ N). As a consequence,
the stable orbits produce resonant islands around the
mainKAM island [13,14]. In this section, we show that
the bifurcations of periodic orbits play an important role
in the metamorphoses of KAM islands and the subse-
quent effects on the dynamical behavior of the system.

Due to the triangular symmetry of theHénon–Heiles
system, its periodic orbits are also symmetric and can
be obtained by following the systematic search for sym-
metric periodic orbits detailed in Ref. [15]. For com-
pleteness, we briefly explain the method here. Every
symmetric periodic orbit must cross the y-axis perpen-
dicularly. Any of the other symmetry axes could be also
considered, but here for conveniencewe search for peri-
odic orbits that are symmetric about the y-axis. Bear-
ing this in mind, if a trajectory starts from (0, y0, ẋ0, 0)

(we recall that ẋ0 =
√
2E − y20 + 2y30/3 is fixed by the

energy) and eventually it returns perpendicularly to the
y-axis, then it is a symmetric periodic orbit. Periodic
orbits appear in families of different multiplicity m,
wherem is the number of times the orbit crosses the y-
axis before returning to it perpendicularly. Therefore,
the period T of the symmetric periodic orbit is twice
the time between perpendicular intersections.

To visualize the periodic orbits, we show in Fig. 3
two examples with multiplicities 1 and 2. The peri-
odic orbit with m = 1 is unstable and belongs to
a family of periodic orbits that loses its stability at
E = 0.1487 < Ee (shown in Fig. 3a). The loss of
stability occurs through a period-doubling bifurcation
where two families of stable periodic orbits withm = 2
appear. These families are surrounded by the main
KAM islands that appear within the open nonhyper-
bolic regime of the system, so hereinafter we will refer
them as the main families. The periodic orbit of m = 2
(depicted in Fig. 3b) belongs to one of the main fami-
lies.
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Fig. 3 Symmetric periodic orbits of the Hénon–Heiles system
with E = 0.2. The multiplicity of the orbits is a m = 1 and b
m = 2.The green (red) dots denote that the periodic orbit is stable
(unstable) and are located at the perpendicular intersections of
the periodic orbit with the y-axis. (Color figure online)

The evolution of the KAM islands and the main
family of periodic orbits as the energy increases can
be conveniently represented in the (y, E) plane, as
shown in Fig. 4. To generate this figure we consider
ẏ = x = 0, so the initial conditions are launched per-
pendicularly to the y-axis. The main family of periodic
orbits is represented in a different color depending on
whether it is stable (green) or unstable (red). As we are
above the escape energy, the KAM islands have been
obtained fromagrid of initial conditionswherewe have
labeled the trapped trajectories in blue and the escap-
ing trajectories inwhite. Thehorizontal dashed lines are
located at the energy values where the metamorphoses
occur. As we can see, the evolution of the KAM islands
exhibits a fractal tree-like structure, where metamor-
phoses precede the appearance of self-similar branches.
As we show in the next section, each branch cor-
responds to a resonant island that recedes into the
chaotic sea, following its own path of destruction. For

Fig. 4 Evolution of the y coordinate of the main KAM island as
a function of the energy of the Hénon–Heiles system. The solid
line along the KAM island corresponds to the main family of
periodic orbits. The color of the line indicates its stability, being
green for stable and red for unstable. The horizontal dashed lines
are located at the energy values where the metamorphoses occur.
(Color figure online)

E = 0.2063, themainKAM island undergoes a period-
doubling bifurcation where it becomes unstable, while
two stable periodic orbits with m = 4 appear. For E =
0.2105, these two branches again undergo a period-
doubling bifurcation where a total of 4 periodic orbits
with m = 8 arise. This chain of period-doubling bifur-
cations continues until E = 0.2111, where all KAM
islands associated with the main family are destroyed.

In the following, we study individually the bifurca-
tions of periodic orbits near the energy values where
every metamorphosis occurs. The main branches of
periodic orbits, overlapped with the KAM islands in
the (y, E) plane, are depicted in Fig. 5. Each panel cor-
responds to a metamorphosis. The lower dark dashed
line is located at the energy value where a bifurcation
occurs, while the upper dark dashed line indicates the
energy value of the metamorphosis.

The first metamorphosis (Fig. 5a) occurs for E =
0.1721 and is preceded by a period-doubling island
chain bifurcation for E = 0.1689. This bifurcation
is characterized by the creation of a chain of periodic
orbits of double period around the main family, that
does not change its stability (see [15] for a description
of the main bifurcations of periodic orbits in Hamilto-
nian systems). In this case, 3 stable and 3 unstable peri-
odic orbits of double period (m = 4) appear. From these
6 periodic orbits, only two stable branches appear in the
figure since the rest do not fall into our Poincaré sec-
tion. Therefore, this representation allows us to detect
the energy value where a bifurcation occurs, but for a
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Fig. 5 Bifurcation
diagrams showing the main
bifurcations of the family of
stable periodic orbits with
m = 2, for energy values
close to the a first, b second,
c third, and d fourth
metamorphosis. The color
of the curves indicates the
stability of the periodic
orbits, being red for unstable
and green for stable. The
lower dashed line indicates
the bifurcation that precedes
the metamorphosis, which is
indicated by the upper dark
dashed line. For comparison
purposes, the KAM islands
are represented in blue color
in the background of the
image. The red dashed line
appearing in panel (d)
represents a bifurcation that
is not directly associated
with any of the
metamorphoses. (Color
figure online)

deeper understanding and visualization of the bifurca-
tions we must resort to Poincaré sections in the (y, ẏ)
plane, as we show in the next section. On the other
hand, the second metamorphosis (Fig. 5b) occurs for
E = 0.1771 and is preceded by a period-quintupling
island chain bifurcation for E = 0.1754. Therefore,
one unstable and one stable periodic orbit emerge at
the bifurcation point, each one with quintuple period
(m = 10).

The third metamorphosis (Fig. 5c) occurs for E =
0.1846 and is preceded by a saddle-node bifurcation
for E = 0.1844, where a pair of stable and unstable
periodic orbits with m = 8 are created. This bifurca-
tion is not strictly a bifurcation of the main family,
since the new periodic orbits are not created at the
same location of the main stable periodic orbit. The
third metamorphosis also differs from the others for
another reason: it corresponds exactly to a bifurcation.
For E = 0.1846 the main family undergoes a fourth-
order touch-and-go bifurcation. When the energy is
increased from E = 0.1844, the newly created unsta-
ble periodic orbits approach the main family and they
“bounce,” after which they appear rotated an angle of
π/2 radians. This rotation generates that none of them

fall in the x = 0 and ẏ = 0 Poincaré section, so they
disappear from our diagram.

Finally, the fourth metamorphosis (Fig. 5d) occurs
for E = 0.1947 and is preceded by a saddle-node
bifurcation for E = 0.1945. At the bifurcation point,
three pairs of stable and unstable periodic orbits with
m = 2 are created. Similar to the previous case, the
newly created unstable periodic orbits approach to the
main family. However, here the metamorphosis does
not correspond to a bifurcation. After the metamor-
phosis has occurred, the unstable periodic orbits con-
tinue approaching to the main family. Once the energy
reaches E = 0.1967, a third-order touch-and-go bifur-
cation occurs (see red dashed line in Fig. 5d). After the
bifurcation, the unstable periodic orbits appear rotated
an angle of π radians. At the bifurcation point the area
of the main KAM islands is momentarily zero.

4 The mechanism explaining the metamorphoses

The results of the previous section served as numerical
evidence for the complex set of bifurcations exhibited
by the main family of periodic orbits. It is clear that the
metamorphoses takeplace for energyvalues close to the
bifurcations. However, the bifurcations are not directly
responsible for the metamorphoses, but they provide
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Fig. 6 KAM islands in the (y, ẏ) Poincaré section for values
of the energy near the first (a–c) and second (d–f) metamorpho-
sis. Green (red) dots indicate the position of elliptic (hyperbolic)
fixed points. Homoclinic (e, f) and heteroclinic (b, c) orbits are
represented with dark dots and labeled as H1 and H2. In all pan-

els, the main stable fixed point is separated from the chaotic sea
by a last KAM curve, labeled as LK . Finally, the red dashed line
indicates ẏ = 0, which is the line on which we have computed
the periodic orbits. The value of the energy is a 0.1689, b 0.1715,
c 0.1735, d 0.1753, e 0.1766, and f 0.1780. (Color figure online)

the systemwith the chains of periodic orbits involved in
the process. To shed light on the mechanisms explain-
ing the metamorphoses, we study in this section the
structure of KAM islands in both situations before and
after the bifurcations and the metamorphoses.

The results are shown in Figs. 6 and 7, where the
main KAM island is represented in the (y, ẏ) Poincaré
section for different values of the energy. Each ver-
tical series of panels corresponds to the KAM island
before the bifurcation, after the bifurcation, and after

themetamorphosis. Panels (a–c) and (d–f) in Fig. 6 cor-
respond to the path to the first and secondmetamorpho-
sis, respectively. On the other hand, panels (a–c) and
(d–f) in Fig. 7 correspond to the path to the third and
fourth metamorphosis, respectively. Red (green) dots
denote unstable (stable) fixed points, that correspond
to crosses of periodic orbits with the Poincaré section.
The red dashed line is located at ẏ = 0, so it corre-
sponds to the line on which we compute the periodic
orbits. Only the fixed points that fall on the line ẏ = 0
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A mechanism explaining the metamorphoses 1129

are detected by the algorithm for computing periodic
orbits. Therefore, only the fixed points with coordinate
ẏ = 0 appeared in the bifurcation diagrams of Fig. 5.

The mechanism that explains the metamorphosis is
the same for all cases. Before the bifurcation, there is a
single stable fixed point surrounded by KAM tori (see
Figs. 6a, d and 7a, d). After the stable fixed point under-
goes a bifurcation, a chain of stable (elliptic) and unsta-
ble (hyperbolic) fixed points surrounding the main sta-
ble fixed point appears (see Figs. 6b, e and 7b, e). Each
elliptic point generates a resonant island. On the other
hand, the stable and unstable manifolds of the hyper-
bolic points are smoothly connected, generating in each
case two different homoclinic or heteroclinic orbits.
In Figs. 6e and 7b there is only one hyperbolic point
with quintuple and quadruple period, respectively, so
the orbits are homoclinic. In Figs. 6b and 7e there are
three hyperbolic points of double and same period of
the main stable point, respectively. Therefore, in these
cases the connection orbits are heteroclinic.

In all these situations, the homoclinic orbits are
represented in the figures with dark dots. As we can
see, one homoclinic orbit, labeled as H1, surrounds
the resonant islands, while the other, labeled as H2,
surrounds only the main elliptic point. Therefore, the
resonant islands are completely surrounded by homo-
clinic orbits. Furthermore, they are inside the struc-
ture of the main KAM island, that is separated from
the chaotic sea by a last KAM curve, labeled as LK .
There is a complicated structure inside the last KAM
curve. In addition to the KAM curves and the main
resonant islands, the destruction of small islands has
generated an inner chaotic domain. Being in this situ-
ation, if we slightly increase the energy, the stable and
unstable manifolds of the hyperbolic fixed points inter-
sect one another transversally at an infinite number of
points. Therefore H1 becomes a homoclinic tangle and
a metamorphosis occurs.

Without the “protection” provided by the smooth
nature of H1, part of the structure of the KAM island is
broken and the inner and outer chaotic domains merge.
Now, the last KAMcurve is defined by H2 and the reso-
nant islands, once confined inside the last KAM curve,
are located in the chaotic sea, as shown in Figs. 6c, f
and 7c, f. As a matter of fact, a large number of initial
conditions whose trajectories were confined inside the
last KAM curve, now generate trajectories that move
in the chaotic sea and eventually escape from the scat-
tering region. This abrupt change in the structure of

the KAM island is what generates the metamorpho-
sis. Briefly, the mechanism explaining the metamor-
phoses is the transition of a homoclinic orbit, which
changes from smooth to a homoclinic tangle. The con-
sequence is a reduction of the fraction of initial condi-
tions whose trajectories do not escape from the scat-
tering region. The fragmentation of the structure of
the KAM island converts extensive regions of regular
behavior into chaotic regions. If we continue increas-
ing the energy, the resonant islands move away from
themain island, each of them exhibiting the samemeta-
morphoses of the main island. For example, the reso-
nant islands shown in Fig. 6c just experienced the sec-
ond metamorphosis. This process is what generates the
branches that can be observed in Fig. 5. Since the res-
onant islands exhibit the same metamorphoses as the
main island, the tree-like structure is self-similar.

This process does not occur just four times, but
infinite metamorphoses take place, involving a differ-
ent number of resonant islands and hyperbolic fixed
points. Nevertheless, most of these processes do not
significantly affect the area of the KAM islands, so
they are not responsible from abrupt changes on the
overall dynamical behavior of the system. Note that
the four main metamorphoses are related with the
biggest chains of islands created at the lowest reso-
nances (m = 2 creating 6 islands due to the symmetry
of the system, m = 3, 4, and 5.)

After the fourth metamorphosis (Fig. 7f), the three
hyperbolic points approach the main elliptic point until
a collision that generates a third-order touch-and-go
bifurcation. After the bifurcation the island appears
rotated an angle of π radians, as shown in Fig. 8. For
higher energy values, the main KAM island contin-
ues its path of destruction characterized by a period-
doubling cascade.

5 Results for a discrete dynamical system

The above results have been obtained in the context of
chaotic scattering in open Hamiltonian systems. How-
ever, KAM islands appear in a wide variety of conser-
vative systems, so the metamorphoses could play an
important role in different physical situations. In gen-
eral, the presence of KAM islands has deep implica-
tions on the global properties of the system, such as
transport [16] and decay correlations [17].
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Fig. 7 KAM islands in the (y, ẏ) Poincaré section for values
of the energy near the third (a–c) and fourth (d–f) metamorpho-
sis. Green (red) dots indicate the position of elliptic (hyperbolic)
fixed points. Homoclinic (b, c) and heteroclinic (e, f) orbits are
represented with dark dots and labeled as H1 and H2. In all pan-

els, the main stable fixed point is separated from the chaotic sea
by a last KAM curve, labeled as LK . Finally, the red dashed line
indicates ẏ = 0, which is the line on which we have computed
the periodic orbits. The value of the energy is a 0.1842, b 0.1845,
c 0.1850, d 0.1945, e 0.1947, and f 0.1950. (Color figure online)

To reveal the generality of these results, and in par-
ticular to show that the four metamorphoses are ubiq-
uitous in conservative systems, we have carried out an
analysis of the evolution of the KAM islands in the
standardmap [18], which is a two-dimensional discrete

dynamical system whose equations are given by:

θn+1 = θn + Jn+1 mod 2π,

Jn+1 = Jn + K sin θn, (3)

where K > 0 is a constant whose effect is to increase
the intensity of the nonlinear perturbation. The modulo
operation is necessary as the coordinate is cyclic.
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Fig. 8 KAM islands in the (y, ẏ) Poincaré section for values of
the energy a before (E = 0.1966) and b after (E = 0.1968) the
third-order touch-and-go bifurcation. Green (red) dots indicate
the position of elliptic (hyperbolic) fixed points. The heteroclinic
orbit, which coincides with the last KAM curve, is represented
with dark dots. The red dashed line indicates ẏ = 0, which is
the line on which we have computed the periodic orbits. (Color
figure online)

For K < 4 the standard map has a main KAM
island around a stable periodic orbit located at (θ, J ) =
(π, 0). For K = 4 the main periodic orbit undergoes a
period-doubling bifurcation where it loses its stability
and two stable periodic orbits of double period appear.
This bifurcation is equivalent to the one that occurs in
the Hénon–Heiles system for E = 0.1487, so for com-
parative purposes here we focus our attention on one of
these two new main KAM islands existing for K > 4.
We represent the fraction fk of the plane (θ, J ) that is
occupied by KAM islands as a function of the param-
eter K in Fig. 9. This figure is qualitatively identical
to Fig. 2 and exhibits four metamorphoses (red dots in
the figure).

The metamorphoses that can be observed in Fig. 9
are precededby the same typeof bifurcations as the case
of the Hénon–Heiles system. The mechanism explain-

Fig. 9 Fraction fk of initial conditions belonging to a KAM
island as a function of the parameter K of the standard map
θn+1 = θn + Jn+1 (mod 2π ); Jn+1 = Jn + K sin θn . The red
dots are located at four metamorphoses where the size of the
KAM islands decreases abruptly. (Color figure online)

ing the metamorphoses is also identical. To show this,
in Fig. 10 we represent themain KAM island for values
of K immediately after the metamorphoses. As in the
Hénon–Heiles system, the chains of resonant islands
move away in the chaotic sea after the formation of
the homoclinic tangle. Although Fig. 10 and panels
(c, f) in Figs. 6 and 7 have been obtained in different
systems, it is clear that they correspond to the same
phenomenon. This fact suggests that, regardless of the
system, the chains consisting of 3, 4, 5 and 6 reso-
nant islands are always themain ones involved inmeta-
morphoses. Chains with different number of resonant
islands do not affect noticeably the size of the KAM
islands.

6 Conclusions and discussion

In summary, in this work we have elucidated the
mechanisms that explain the four mainmetamorphoses
appearing within the nonhyperbolic regime of open
Hamiltonian systems. Before each metamorphosis, a
bifurcation takes place at or near themain family of sta-
ble periodic orbits. We have characterized these bifur-
cations, which correspond to period-doubling island
chain, period-quintupling island chain and saddle-node
types. After the bifurcation, a chain of resonant islands
and unstable fixed points appear inside the structure
of the main KAM island. As long as the homoclinic
orbits connecting the unstable fixed points (periodic
orbits) are smooth, the resonant islands and the inner
chaotic domain coexist harmonically inside the main
KAM region, which is delimited by a last KAM curve.
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1132 A. R. Nieto et al.

Fig. 10 Main KAM island
and resonant islands in the
standard map
θn+1 = θn + Jn+1 (mod
2π ); Jn+1 = Jn + K sin θn
for values of the parameter
K immediately after the a
first (K = 4.65), b second
(K = 4.83), c third
(K = 5.12), and d fourth
(K = 5.57) metamorphosis.
Green (red) dots indicate the
position of elliptic
(hyperbolic) fixed points.
Homoclinic (a, c) and
heteroclinic (b, d) orbits
define the last KAM curve
and are represented with
dark dots. (Color figure
online)

The metamorphoses correspond to the formation of a
homoclinic tangle that breaks the internal structure of
the KAM island. As a consequence, the inner and outer
chaotic domains join, and the resonant islands recede in
the chaotic sea. This phenomenon generates an abrupt
decrease in the area of the KAM islands, and therefore
an increase in the area occupied by the chaotic regions.
The main numerical evidence supporting our findings
is based on bifurcation diagrams and on detailed rep-
resentations of KAM islands, fixed points, and homo-
clinic orbits for energy values close to the metamor-
phoses.

We have shown our results in the Hénon–Heiles
system, which is a paradigmatic example of two-
dimensional time-independent Hamiltonian system.
Likewise, we have generalized the results using the
standardmap,which is a general two-dimensional area-
preserving map. Therefore, we expect that the mech-
anisms discussed here may appear in many different
systems and physical situations. For example, the exis-
tence of KAM islands is a necessary condition for
plasma confinement in tokamaks [19]. On the other
hand, the stickiness phenomenon [20,21] is relevant in
chaotic transport of particles advected by fluid flows
[22] and in conductance fluctuations in chaotic cavities
[23], among other physical phenomena. Regardless of

the possible applications, we hope that this work could
contribute to the general understanding of the effects
of KAM islands in Hamiltonian systems.
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