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Abstract This paper proposes a nonlinear dynamic
model of angular contact ball bearings with waviness
and cage whirl motion. This original model establishes
the interaction between balls, cage and bearing rings
so that waviness can change the contacts between balls
and raceways real-timely to influence the dynamic
behaviors of the bearing system, which is a novel
solution to a known problem. On this basis, the
significance of cage whirl motion to the dynamic
mechanism of the bearing system is elaborated. Next,
the sliding of the ball with time is calculated to study
the interactions between balls, cage and bearing rings
and further investigate the dynamic mechanism of the
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bearing system. Also, the effects of waviness orders
and amplitudes on the dynamic mechanism are
revealed. It is found that the abrupt change in the
sliding of the ball causes the low-frequency vibration
in the bearing system, while waviness gives rise to the
high-frequency vibration. The results show sparse
waviness with tiny amplitude should be manufactured
for improving the stability of cage motion and
mitigating the vibration of inner ring.

Keywords Cage whirl motion - Waviness - Sliding
of balls - Interaction forces - Bearing vibration

List of symbols

Radial waviness

Axial waviness

Ball waviness

Radial waviness amplitude

Axial waviness amplitude

Ball waviness amplitude

Waviness order

The number of balls

Angle velocity

Time

Initial phase angle of axial waviness
Force vector

Contact force between balls and raceways
Inner ring displacements

Ball displacements

Equivalent radius of curvature
Major axis of elliptic contact area
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Minor axis of elliptic contact area

Balls diameter

Contact angle between ball and raceway

Bearing pitch diameter

Relative waviness of inner and outer races

Contact deformation

Groove curvature radius

Oil film thickness

Density of lubricant

Moment

Differential slipping speed

Relative sliding speed

Radius of centering surface of cage

Guiding face width of cage

Clearance

Eccentricity of cage center

Relative eccentricity of cage center

Drag coefficient

Coefficient of drag moment

Gravity acceleration

Deflection angle of bearing ring

Q@ Position angle of the ball

m Mass

1 Inertia moment

xXN/zZ Directions along three axes of global
coordinate system

x/y'/7 Directions along three axes of local
coordinate system

xX'/y'"/  Directions along three axes of moving

7’ coordinate system
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Subscript

i Inner ring

Outer ring

Represent i or o

Ball

Cage

JjTh ball

Waviness order
Retardation effect of lubricant on balls
Orbital revolution direction
Friction direction

Slide

Cage pocket

Guide surface

Unbalanced mass effect
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1 Introduction

The dynamic performance of angular contact ball
bearings drastically affects the operating accuracy and
service life of rotating machines, such as high-speed
precision machine tool, aircraft engines and high-
speed electric motors. In practical applications, cage
whirl motion has significant effects on the dynamic
behaviors of ball bearings because cage is one of the
most problematic components in a rolling bearing.
Moreover, waviness occurring in balls and bearing
rings due to manufacturing inaccuracy causes unde-
sired excitations to induce the unpredictable dynamic
behaviors. To design and model the dynamic perfor-
mance accurately, a nonlinear dynamic model of ball
bearings with waviness and cage whirl motion is
essential.

Over the years, many analytical and numerical
models have been developed to study the dynamic
mechanism of ball bearings. The earlier studies carried
out by Jones [1, 2] proposed a mathematical theory to
study the ball bearing system adopting the raceway
control technique and quasi-static method. Later, an
improved model without the raceway control assump-
tion was established by Harris [3, 4]; on this basis, the
influences of centrifugal force, dynamic load distri-
bution and contact angle of balls generated through the
geometric constraint and force equilibrium were
further considered by Liao and Lin [5]. These
mentioned quasi-static/dynamic models neglected
the discontinuous contact and collision between balls
and cage causing the complexity of the dynamic
mechanisms for ball bearings. For this, the develop-
ment of dynamic model has received much attention
by some scholars. More recently, Gupta [6] provided
the differential equations of ball bearings with an
improved representation of tribological interactions
between balls, raceways, cage and lubricant medium,
based on which the effects of various parameters, such
as shaft speed, oil viscosity and combined loads on the
dynamic behaviors of ball bearings, were conducted
[7-9]. Especially, Han and Chu [10] considered the
discontinuous contact between cage and balls and
centrifugal and gyroscopic effects to establish the
dynamic model for analyzing the sliding friction
behaviors of ball bearings. Gao et al. [11] analyzed the
differential slipping, spinning and elastic hysteresis
behaviors of high-speed ball bearings by comprehen-
sively considering the effects of hydrodynamic
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lubrication, thermal generation, Hertzian contact and
kinematics of bearing components to improve the
nonlinear dynamic model. Wang et al. [12] analyzed
the influences of internal load, orbital and rotation
speeds of balls under different operating conditions on
the behavior of skidding. These researches failed to
consider the cage whirl motion, leading to the
neglection in the trajectory, impact and friction of
cage. To overcome this shortcoming, the dynamic
model of cage with whirl motion including contact
forces and friction forces of ball-pocket and cage-
guiding ring was established by Kingsbury [13].
Furthermore, the slip ratio and wear ratio of cage in
a radial loaded rolling bearing was analyzed based on
the force constraint model [14]. Liu et al. [15] studied
the skidding, impact and motion stability of cage in
microgravity environment. Cui et al. [16] conducted a
parametric evaluation of cage stability as a function of
roller dynamic unbalance by analyzing the orbit of
cage mass center, Poincaré map and velocity deviation
of cage. Deng et al. [17] investigated the influences of
structural parameters, the tolerance of trilobe-race-
way, working conditions and the outer ring installation
method on cage slip characteristics. Gao et al. [18]
explored the stability and skidding characteristics of
self-lubricated cages used in spacecraft angular con-
tact bearings by considering the ball-pocket normal,
tangential forces, ball-pocket axial collisions, ball-
raceway traction force and moment. These above-
mentioned studies are beneficial for developing the
dynamic model of ball bearings with waviness and
cage whirl motion, although they mainly focused on
the dynamic analysis of cage.

In the actual working situation, waviness produced
by the irregularities during grinding and honing
processes changes instantaneously the contact forces
between balls and wavy raceways, causing significant
dynamic fluctuation for the bearing system. In this
field, Yhland [19] firstly focused on the experimental
measurement of waviness. Subsequently, Liu et al.
[20] presented a dynamic model of ball bearings
considering the lubrication and flexible rings to study
the effects of waviness amplitudes and orders on the
internal loads of bearings and vibrations. Wang et al.
[21] improved the nonlinear dynamic model of ball
bearings by integrating preload, surface waviness and
elastohydrodynamic lubrication to analyze the
dynamic responses of angular contact ball bearings.
Liu et al. [22] established a surface waviness model to

analyze the influences of wave number, maximum
amplitude, non-uniform distribution on the dynamic
behaviors of ball bearings. Mohammed et al. [23]
employed an analytical model with five-degrees-of-
freedom to investigate the impact of dynamic response
due to waviness on the performance of spindle system
supported by angular ball bearings. However, it is
worth noting that previous researches mainly focused
on the interaction between balls and raceways due to
waviness, so that failed to highlight the effect of
waviness on the dynamic behaviors of cage. In fact,
cage whirl motion plays an important role in the
kinematics and mechanics of the bearing system.
Therefore, this paper integrates the waviness model,
dynamic model of balls, dynamic model of cage and
dynamic equilibrium of bearing rings to attain the
interaction between waviness, balls, cage and bearing
rings, resulting that a nonlinear dynamic model of
angular contact ball bearings with waviness and cage
whirl motion is developed; this improved model
overcomes the shortcomings of previous models
focusing on the interactions of partial components so
that the obtained dynamic behaviors of the bearing
system are more accurate compared with previous
researched results.

In this work, the nonlinear dynamic model of
angular contact ball bearings with waviness and cage
whirl motion is established in Sect. 2. This proposed
model is verified by cage mass center orbit, cage
rotation speed and principal vibration frequencies of
the bearing system in Sect. 3. The dynamic mecha-
nisms of angular contact ball bearings with waviness
and cage whirl motion are analyzed in Sect. 4. Finally,
some conclusions are presented in Sect. 5.

2 Dynamic model of ball bearings with waviness
and cage whirl motion

In this work, the previous studied results about
waviness model, dynamic model of balls, dynamic
model of cage and dynamic equilibrium of bearing
rings are integrated to obtain the interaction of bearing
components for getting more reliable dynamic behav-
iors of ball bearings relative to the previous models.
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2.1 Dynamic equilibrium of balls under the effect
of waviness

In the practical engineering, waviness on the bearing
raceways is generated by the irregular grinding and
honing, which changes the contacts between balls and
raceways real-timely, resulting in the instable interac-
tion among balls, cage and raceways causing the
unexpected dynamic fluctuation of ball bearings. For
this, the waviness on inner and outer raceways is
considered in this work, as shown in Fig. 1. They are
varied periodically with time and can be expressed
using the harmonic functions as follows [24]:

Ao = 3 aacosllws — )t + Qe — 1)/2) + 1)
By = 3 qucos(ion = )+ (all— 1)/2) + 1)
Ay = 3 prcosi(, — o0)t+ (2alli = 1)/2) + 1)
By = 3 pucos(io — 00+ el ~ 1)/2) + )

I
Hij = Z wil cos(la)bt + njl)
=1

I -
Hy = > wjicos ( (lwbt+ —) + ’1j1)
=1 Wp

(1)

When working, waviness affects significantly the
contact angle of balls and the displacement of inner
ring with time. For the sake of describing these
phenomena conveniently, four coordinate systems are
employed to describe the interactions among balls,
cage and bearing rings, as shown in Fig. 2. The global
reference system (o- xyz) is fixed at the bearing center,

Fig. 1 Schematic diagram
of bearing waviness: a radial
waviness, b axial waviness

Inner ring

(a)
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Outer ring Boj

0 E
x,
0

Fig. 2 Definition of four coordinate systems for the interaction
of bearing components

in which inner ring is deflected around y and z axes and
translated along x, y and z axes. The local reference
system (o0- x'y'7’) is positioned at the center of ball, and
it rotates along the x-axis of the global reference
system (o- xyz), in which the ball has three angular
velocity components w,, o, and w, around x’, y’ and
7, respectively. The local reference system (0- x.y.z.)
is positioned at the center of cage, in which cage is
rotated around X', axis and translated in the y.z. plane.
In the elliptic contact area between balls and raceways,
the moving coordinate system (0-x"'y’z’’) is defined
with major axis x”, minor axis y” and 7’ axis

Outer ring

Inner ring Bj

(b)
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perpendicular to the contact patch. Outer ring is fixed
in the housing, and inner ring rotates with revolution
speed o;. Initially, it is assumed that the center of cage
is located at the center of outer ring, and balls are
located at the centers of cage pockets. When the
external load F = [F,, F\, F,, M,, M_] is exerted to
inner ring, its five freedom displacement U = [Ax, Ay,
Az, Oy, 0z]" is generated, causing the contact defor-
mations (4, d,;) between balls and bearing raceways
at this moment. As a result, the corresponding
displacements u = [uy; uy; u(,,j]T of the jth ball in the
local reference system (o- x'y'z’) can be obtained. The
relationship between u and U is described as follows:

u = [TU + AW, 2)

where [T is the transformation matrix and AW; is the
relative waviness of inner and outer rings.

0 cosg; sing; —Bjj sin ¢ Bjj cos ¢;
=11 0 0 (Ri + Aij) sin @ 7(Ri +Aij) oS @;
0 0 0 — sin @; oS @;
(3)
T
AW; = [ (4 —Ag)  (Bij — By) O] (4)

where R; denotes the distance between the curvature
center of inner ring groove and the bearing center.
Thus, u can be rewritten as follows:

Axcos @; + Aysin ¢; — 0,Bjj sin @; + 0.Bj; cos ¢; + Ajj — Agj
= Az + Hy(Ri +Aij) sin (pj — GZ(Ri +Aij) Ccos (Pj + Bij — Boj
—0y sin @; + 0 cos @;

(5)

Under the effect of waviness, the relative positions
of ball center and raceway groove curvature centers at
unloaded and loaded states are presented in Fig. 3.
According to the geometrical relationship, the contact
angle (o4, %) of the jth ball can be expressed by [25]

Final position of
inner raceway

Initial position of inner
raceway groove
curvature center
initial position of

ball center

final position of
ball center

fix position of outer
raceway groove
curvature center

Fig. 3 Relative positions of ball center and raceway groove
curvature centers with waviness under unloaded and loaded
states

Lij sin oy + Uzyj — AZJ,
Lij COS o + Uyj — AXJ/
Lo sin o + Azjf

Loj cos o + ij’

o = lj — Ly

Ooj = Loj — Loj

Lij =rn 7D/2 7]/11 7Hij

Loj =Ty —D/Z—ho —Hoj

Lij sin oo + sz — AZ{

. ]
1]

tan o5 =

tan o =

sin 0lij
Lyj sinag + Azj

o] —

sin a;

In engineering applications, balls are subjected to
contact loads Qj; and Q,; between balls and raceways,
traction forces F,,~ and Fj, caused by EHL, contact
force Fyj and friction force F,.r between pocket and
the jth ball, centrifugal force F,, retardation torque M.
of lubrication oil and gyroscopic moment M,; as
shown in Fig. 4. They are described as follows:

1
F.= Embwfn (7)
Mgy = Ionwy (8)
My = logwy 9)
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of

Fig. 4 Forces acting on the jth ball

M _! b 5C
ex’—zpwx’ D) n

(12)

Under the EHL condition, hydrodynamic traction
force resulting from the shearing action of lubricant is
closely related to lubricant viscosity and film thick-
ness. Thus, the traction force F,4 is illustrated as
follows:

ran by lf(xfj/an)2 AV(X" y,,)
Fujyr = non) T) SR dgdyy
P /7/4; 17(,4/(,")2"@()( ) )h(x;;,y'n/) "
(13)

2.69U%7GO3(1 — 0.61e "73%)R,

a3 1) = (0067 )
W]j .

(14)

Rol" R()
"N T = B N
n(p(xn?yn)7 ) ’70 CXp( (V/V() —R()r 1 _R()))
(15)

here the calculations of h,(x",, ¥',) and n(p(x",,
vy, T) can be referred to the research results of
Hamrock and Dowson [26]. The relative sliding

@ Springer

velocities of balls on inner and outer raceways are
deduced by Wang et al. [12], as described in Fig. 5.

Through the transformation of coordinate systems,
spinning speeds of balls with respect to the 7, and 7”;
axes are listed as follows:

Wso = Wy SIN Oloj + W COS Ol

(16)
(17)

Sliding speeds in the outer raceway contact area
along x"'-axis and y"’-axis are inferred as:

Wsj = Wy SIN 0 + W COS o

D
" /" "
Avoer (xoayo) = Ewy’ — WsoY,

v A,
a)y,
|l
x\
>
Av, .
Dy
ix"
Vi )
: Av,,
Bearing X; a)mj ,
. L .
axis < <

Fig. 5 Composition of velocities in the contact zone
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Avoy (X, 1) = g (o cO8 o) — @y sin o)

+ D
W €O8 g | 5—— + —
"\2cosay 2

— Wgox! (19)

Similarly, differential slipping speeds in the inner
raceway contact area along x'’'-axis and y"’-axis are:

D
Aviyr (x{,,y;/) = - Ewy’ - wsiy;/ (20)
! i D -
Aviyr (X, y]) = 5 (—wy cos oij + w sin o)
dn D
+ (0om — i) cos i (ZCOW - 2)

— wsixi'
(21)
Therefore, the relative sliding speed Au(x”, y'") can

be obtained:

-

Auy (x;',y;’) = Avpe (xg,y;')f” + Avpyr (xg,y;')j
(22)

Moreover, contact force Fi,cj and friction force Fyr
between pocket and the jth ball are solved according to
the dynamic model of cage in Sect. 2.2. According to

the above analysis results, the dynamic equilibrium of
balls can be obtained, as follows:

Ibd)y’j - O.5D F()X”j - Fix’/j - FbCJ) - Mejy + ngy

Ibd)mj =0.5 (Foy//jdo + Fiyr/jdi — Fbcjdm — ijdm)
(Pj = Wm

B CpnpD? (dpnwn) 195
v 328,

(24)
where the drag coefficient Cp comes from Gupta [27].
2.2 Dynamic model of cage

As one of the most problematic components in ball
bearings, cage is generally subjected to four kinds of
interactions: the interaction between balls and cage
pocket, the interaction between cage and guiding ring,
the retardation of lubrication oil on cage, and the
unbalanced force of cage. When working, contactless
state, balls driving the cage, and cage pushing balls
appear alternately between balls and cage, as illus-
trated in Fig. 6. The distance dy; between the ball
center and the pocket center can be calculated by
Eq. (25).

Ty~ (0], + ol .

Opej = 712:2: (Z—wc — 1) — Obel — Ocy Sin ?;
+ Ocz COS ]

(25)

where J., is the displacement of cage mass center

along the y. axis, and J., along the z. axis. The contact
force between balls and the cage can be expressed as:

Focj = K\Obej Obcj < Cp (26)

» . .
mAZ=Qjj cos aj — Qoj COS dloj — Fiyrj 8N tij + Forj sin otgj —

M,

o (Zij cOs 0ij — Aoj €OS 0ty ) + Fj

M .
.y . . g (1 . .
mij:Qij sin o — Qoj 81N 0toj + Fiprj €OS 0t — Floyrj COS tloj — D (Aij sin o5 — Agj sin oc(,j)

Ibd)xfj =0.5D Foy/fj COS Xpj — Fiy/fj COS & — Fbcf) — my; sin Oij — Mo sin Oloj — Mej (23)

[bd)z’j =0.5D —Foyj sin Ooj + Fiyr sin o — Fbcf) + mij COS aljj + Mo; COS Uoj — Mej; — Myj,

where F; represents the viscous drag force acting on
the jth ball as follows:

1.5

Foij = K.Cp + Ky (On; — Gp) 7 00 > Gy (27)

where C, is the clearance between ball and pocket,
K’y is the load-deformation coefficient between balls
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Fig. 6 Contact situation between jth ball and pocket a contactless state, b balls driving cage, and ¢ cage pushing balls

Fig. 7 Interaction between cage and outer ring

and cage, K'. is the linear approximation constant
according to the experimental data based on research
[28]. They can be written as follows:

K. =11/C, (28)

Kty = mkiEl\/ Ry, /4.5T3 (29)

where k; = 1.0339(R,/R:), Ri = RyR:/(R,+R:),
R,=0.5D, I' = 1.5277 + 0.6023 In(R, /R:),
&1 = 1.0003 + 0.5968R¢ /Ry,

R: = 0.5DD, /(D, — D). For the interaction between
cage and guiding ring (as shown in Fig. 7), cage is
generally guided by outer ring at high speeds. And the
interaction forces between the guiding surface of outer
ring and that of cage are approximate to the hydro-
dynamic pressure of sliding bearings [29], which can
be calculated by:

@ Springer

u; G

Fege = —% (30)
Cq(l —h )
nou1 G

ch(p - ﬁ (31)
4C2(1 - 1?)

_ 27-“/’ORH’(COO - wC)G (32)

M. —
“ V1 — 1>

where u; is the drag speed of the lubricant, i’ is the
relative eccentricity of cage mass center, and they can
be calculated as follows:

U = Rd(wo + 0)0) (33)
W= h/cC, (34)

The forces and torques in the cage coordinate
system (o0- x.y.z.) need to be converted to the global
reference system (o- xyz) as follows:

Fegy cosp, —sing, 0| Fey
Feor | = | —sing, cosq, O | Fegp (35)
M, 0 0 1] | M

where ¢ represents the centroid offset angle of the
cage.

Also, the shear forces of lubricating fluid, oil-gas
mixture and air act on the outside column surface and
both end planes of cage to retard the rotation of cage;
thus, the drag moment M ¢ can be deduced as follows:

1 1
M = Mcgo + Mgy = gﬂoPeA"go(Uz + EpeCDrS,wi
(36)

where M, is the moment acting on the outside
column surface of the cage and M., acting on the both

end planes, the effective density of the oil p, =

0 ﬁzo.“ and ( is the proportionality coefficient of the
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oil-gas mixture, A is the acreage of the outside column
surface, and the characteristic radius of the cage is
ro=r (rf0 - rczi). The drag coefficient Cp, is consis-
tent with that in Eq. (25).

In addition, the unbalanced force caused by the
unbalanced mass m,,. of cage can be calculated as

follows:

1

chy = Emmcdmwc COS(@C) (37)

1 .
= Mimedm®c sin(@,) (38)

chz:2

Through the above analysis, the dynamic equations
of cage can be deduced as follows:

mc).].c cg\ + Z (qu sin (PJ Fbcf Ccos (Pj) + chy

/,

meZe = Feg; + Z (becj CO8 @j — Fiet Sin (pj) + Frnez

D
(qu 2 Fbcf 2) - Mcf

[\]

le@e = Meg +
J

I
—_

(39)

where ¢, = ..
2.3 Dynamic equilibrium of inner ring

To solve the dynamic equilibrium of balls at high
speeds, some forces provided by balls are exerted on
inner ring, which must be equilibrated with the
combined loads. Thus, the balance of forces on inner
ring is expressed as follows:

z
Fo—3Y (Q,J sin o — Fip cos UU) = m;AX
j=1
z
Fy—3 (Qjj cos oyj+Fiy sin o) cos @5 = mAy

e
|
M~ T

(Q,J cos ajj+Fiy sin O(U) sin @; = mAZ

§
MN\‘_‘.

dn
(Qj sin i — Fipr cOS tif) ( 5~ Ficos ozU) cos ¢; = L0y

g\lT\

=
|

dm
( Qjj sin aj5+Fi cos “u) < é rij COS °’u> sin 0 = Loz

.
Il

(40)

Through the above dynamic analysis, these equa-
tions are solved using the fourth-order Runge—Kutta
algorithm, and the calculation point is set as 200 with
an interval of 0.03 ms in this work. The flow chart for
solving the dynamic model with waviness and cage
whirl motion is shown in Fig. 8.

3 Model validation

To validate the reliability of the proposed model,
Gupta’s representative case [27] is adopted by this
proposed model to obtain the cage mass center orbit at
axial load of 2224 N and rotation speed of 10,000
r/min. As shown in Fig. 9, it can be seen that the cage
mass center orbit in this proposed work is in good
agreement with Gupta’s research results [27]. The
discrepancy in the size of trajectory between current
simulated results and Gupta’s ones is attributed to
different cage materials and lubricating oil properties.
This suggests that the developed nonlinear dynamic
calculation program in this work is reliable for
analyzing the whirl motion of cage.

Moreover, rotational speed of cage and principal
vibration frequencies of bearings are also used to
verify the dependability of the proposed model. In this
work, 7008C angular contact ball bearing is consid-
ered as the study object, and its partial structural
parameters and lubrication parameters are listed in
Table 1. The rotation speed of inner ring w; is set as
10,000 r/min, radial force F, is defined as O N, and
axial force F, is varied from 50 to 500 N. Waviness
order is 22 and its amplitude is 0.3 pm.

As described in Fig. 10a, the perturbed cage
rotational speed fluctuates around a particular rota-
tional speed, based on which this particular rotational
speed can be obtained to exhibit the variation curve of
w/w; versus different axial loads. From Fig. 10b, it
can be seen that the ratio w./w; derived from the
proposed model has the same variation trend with the
tested result of Pasdari [30]. The singular values near
100 N and 150 N in the tested results do not conform
with the engineering practice because of indicating
smaller sliding of balls compared to that at larger
loads.

Many scholars [31-33] have summarized the
principal vibration frequencies of bearings stimulated
by waviness based on theoretical and experimental
methods. The comparative principal frequencies of
inner race, outer race, and balls are provided in
Table 2. For this, the calculated principal frequencies
are compared with the theoretical ones to verify this
proposed model, as listed in Table 3. It is clear that a
good matching of current results achieved based on the
proposed model with the theoretical ones is attained.

According to these analyses mentioned above, a
fair confidence in the present model can be established
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o)

<
y

A

Quasi-statics results

A 4

Quasi-dynamic results of
the ball angular velocities

Calculate the waviness 4,8 and C

A 4

Equilibrium equations of inner ring
Equilibrium equations of ball

:

Cage pocket/ball force
Cage/ring force
Ball/raceway traction force

v

.

Does calculation
convergence

Ball/raceway contact load

Ball/raceway traction force

Cage differential equations
Ball differential equations
Inner ring differential equations

Ball/raceway contact angular ||

A 4

Cage pocket/ball force
Cage/ring force
Ball/raceway traction force
Ball and cage velocity
Acceleration of inner ring

Fig. 8 Numerical solution flowchart for dynamic model

to study the dynamic mechanism of angular contact
ball bearings with waviness and cage whirl motion.

4 Results and discussion

To study the dynamic mechanisms of angular contact
ball bearings with waviness and cage whirl motion,
three typical conditions are detailed below.

Firstly: to elaborate the significance of cage whirl
motion on the dynamic mechanism, the dynamic

@ Springer

Does time ¢

reach the end

1=t+At

mechanism of ball bearings considering cage whirl
motion is compared with that without considering
cage whirl motion. The rotation speed of inner ring w;
is set as 10,000 r/min; radial force F, pointing at the
azimuth of 90° is defined as 100 N and axial force F is
400 N. Outer raceway waviness order is 22 and its
amplitude is 0.6 pm, while other parameters remain
unchanged.

Next: outer raceway waviness orders [ = {0, 11, 22,
44} are selected, and its amplitude g, = 0.3 pumiis set,
while other parameters remain unchanged.
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result, ¢ Gupta’s experimental result

Table 1 Parameters of the
7008C ball bearing

structure and lubrication oil

Definition Symbol Value
Bearing pitch diameter/mm dm 54
Diameter of the ball/mm D 6.35
Initial value of the contact angle/° o 17.7
Number of the balls z 22
Guide face width of the cage/mm G 10.1
Groove curvature radius of the outer ring/mm o 3.302
Groove curvature radius of the inner ring/mm ri 3.493
Clearance of the pocket of the cage/mm (O 0.175
Small diameter of the cage/mm d; 53.13
Large diameter of the cage/mm deo 57.33
Diameter of flute of the outer raceway/mm d, 60.36
Diameter of flute of the inner raceway/mm d; 47.62
Guide clearance of the cage/mm Ce 0.35
Dynamic viscosity/Pa-s o 0.0467
Effective density of the lubricating oil/kg/m’ Pe 860

Again: outer raceway waviness amplitudes g,
= {0, 0.3, 0.6, 0.9} um are defined and the order is
considered to be 22, while other parameters remain
unchanged.

In this work, the deviation ratio ¢ of cage whirl
speed is used to evaluate the stability of cage, as
follows:

where N represents the number of iterations, vy,
represents velocity vector sum of cage in y and z
directions, vy, represents the average of v,,.

4.1 Comparison of dynamic behaviors
between with and without cage whirl motion

The motions of the ball under dynamic models with
and without cage whirl motion are shown in Fig. 11.
Without considering cage whirl motion, the smooth
sliding and rotation of the ball are varied periodically
with time. While considering cage whirl motion, cage
whirl motion causes small ripples in the sliding and
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Fig. 10 Comparison of ratio w./w; between present result and tested one: a perturbed cage speed at F, = 400 N, b tested and present

results

Table 2 Principal vibration

. . Type of waviness
frequencies for different

Waviness order

Principal frequencies (Hz) Type of motion

waviness cases under

Outer race I=kzZ kZf. Axial

combined loads l=kZ+ 1 K7, Radial
Inner race l=kZ kZ(f; — fo) Axial

I=kZ+1 kZ(f, — f) £ fi Radial

Ball =2k 2kfy, Axial

=2k 2kfy, £ f. Radial

Table 3 Comparison between current results and theoretical ones

Type Waviness order

Principal frequencies (Hz)

Type of motion

Proposed model

Theoretical ones

Cage revolution frequency fe 73.54 73.96

Inner ring rotating frequency fi 166.6 166.7

Ball rotating frequency fo 702 699.7

Outer ring 21 1618 1627.2 Radial
22 1618 1627.2 Axial
23 1618 1627.2 Radial

Inner ring 21 1880 1873.6 Radial
22 2048 2040.3 Axial
23 2213 2207 Radial

Ball 2 1404 1399.4 Axial
4 2808 2798.8 Axial

rotation of the ball except for the periodic fluctuation.
Moreover, the rotation of the ball with considering
cage whirl motion is slightly smaller than that without
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considering cage whirl motion due to the impact force
between cage and balls (as shown in Fig. 12a), which
implies that w, is weakly mitigated relative to that
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Fig. 11 Variation in ball movements: a wy and wy, b w, and wy,, ¢ Vi, d V; in frequency domain, e V,, f V,, in frequency domain

without considering cage whirl motion, and it is Fig. 11d and f. When considering cage whirl motion,
opposite for w,. The frequency spectrum of sliding f. shows to be the predominant frequency of cage
speed of the ball is further analyzed, as exhibited in revolution with gradually decreasing higher
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Fig. 12 Forces acting on the ball: a Impact force between ball and cage, b traction force F,, and ¢ traction force F;

harmonics. Some combination frequencies (f; + kf.)
modulated by cage revolution frequency and inner
ring rotation frequency appear, which implies the
impact between the ball and cage occurs frequently.
The sideband frequency (Z(f; — f.) + fi + f.) isrelated
to waviness order (/ = 22), indicating that waviness
excites the ball to influence the impact between the
ball and cage, which means waviness and cage whirl
motion together affect the motion of the ball, whereas
without considering cage whirl motion, it is almost
hard to find the complicated impact frequencies of
cage and the excitation frequency of waviness.

As described in Fig. 12, when considering cage
whirl motion, the impact force is negative and
fluctuates continuously near a constant value, which
means cage is pushed by the ball continuously and
stably. But without cage whirl motion, the impact

0.4 f. —— With cage whirl motion
T — Without cage whirl motion
03}
E
= 02}
Si
2 / i+,
0.0 MMl . .
0 1000 2000 3000 4000 5000
Frequency (Hz)
(@

Fig. 13 Acceleration spectrum of inner ring: a a;, and b a;,
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force without obvious fluctuation is almost zero,
which suggests an unreal phenomenon about cage
rotating with the ball synchronously. When cage and
waviness stimulate the ball continuously, the sliding of
the ball is waved frequently, resulting that the traction
forces between balls and raceways are undulated
constantly, as illustrated in Fig. 12b and c. But without
cage whirl motion, the traction forces between balls
and raceways are varied smoothly, which is attributed
to the unreal phenomenon about cage rotating with the
ball synchronously. The difference in traction forces
with and without cage whirl motion distinctly affects
the vibration of inner ring, as represented in Fig. 13.
It is clear that the amplitude of inner ring vibration
with considering cage whirl motion is much larger
than that without considering cage whirl motion, and
the corresponding frequencies are quite different. That

0.35
f —— With cage whirl motion
0.30F|"¢ —— Without cage whirl motion
0.25}F
fg 0.20F
E
~ 0.15F
S
0.10F
0.05F L 22,
0.00 |, : n N i
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Frequency (Hz)
(b)
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Fig. 14 Sliding of the ball on inner and outer raceways: a V;, b V,,, ¢ frequency spectrum of V;, d frequency spectrum of V,,

is, the frequencies (f; + kf.) of cage and the excitation
frequency (Zf,) of waviness appear in the acceleration
spectrum of inner ring when considering cage whirl
motion, confirming the crucial roles of cage whirl
motion and waviness in the bearing system, whereas
these phenomena do not occur in the vibrational
spectrum without considering cage whirl motion.

In conclusion, the significance of developing the
nonlinear dynamic model of angular contact ball
bearings with waviness and cage whirl motion is
conspicuous for analyzing the dynamic mechanism of
the bearing system.

4.2 Effect of outer raceway waviness orders

Figure 14 describes the sliding of the ball versus outer
raceway waviness orders. An abrupt change in the
sliding near the y direction occurs (as shown in
Fig. 14a and b), which results in the dominant
frequency of the sliding that is closely associ-
ated with cage revolution frequency, as shown in
Fig. 14c and d. Moreover, the excited amplitude is
gradually increased with increasing waviness order,
despite the fact that for waviness order [ = 11 is
smaller than that without waviness (I = 0), which is
mainly attributed to the fact that waviness order is an
integer multiple of the ball number. The frequency
components of the sliding are also analyzed, as
presented in Fig. 14c and d. It is clear that other peaks
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Fig. 15 Interaction forces of cage: a Fepj, b Feyr, € Feges
spectrum of F,,

for the sliding on inner raceway at the harmonic
frequency (kf.) and sideband frequency (f; + kf.) have
no significant change at different waviness orders, but
on outer raceway, they for waviness order [ = 44 are
significantly enhanced. This is because the sliding on
outer raceway is about one order smaller than that on
inner raceway, meaning the influence of waviness
orders on the fluctuation of sliding on outer raceway is
more evident relative to that on inner raceway. In
addition, the peaks at the excitation frequency of
waviness (Z(f; — f.) + f; + f.) are strengthened when
waviness order is 44 compared to that when / = 11.
Particularly, the effect of waviness order on the
fluctuation of the sliding on outer raceway at the
excitation frequency of waviness is more obvious than
that on inner raceway. The above analyses suggest that
waviness orders play important roles in the sliding of
the ball besides the abrupt change in the sliding of the
ball.

Figure 15 gives the time domain and frequency
domain of interaction forces of cage with various
waviness orders. The apparent variation trends of
interaction forces with different waviness orders, as
shown in Fig. 15a, b and c, are the same as that with
different waviness amplitudes, indicating the steady
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d frequency spectrum of Fy;, € frequency spectrum of F

40> and f frequency

rotation of cage presented in Fig. 16a. The frequency
responses reveal that the undulation of interaction
forces is closely related to waviness and the abrupt
change in the sliding of the ball. For the impact force
(Fcpj) between the ball and cage, when the sliding of
the ball changes suddenly at the alternation between
the heavy-loaded zone and the light-loaded zone near
the y direction, an abrupt impact of the ball on cage
generates simultaneously; thus, the fluctuation of
impact force appears at cage revolution frequency.
Yet, in heavy- and light-loaded zones, the fluctuated
impact mainly depends on the effect of waviness; as a
result, the corresponding peak occurs at the excitation
frequency of waviness. What’s more, the effect of
waviness on the fluctuation of impact force is more
prominent compared to the abrupt change in the
sliding of the ball. For traction force (F,;) and impact
force (F.4,) between cage and guiding ring, their
peaks appear at the excitation frequency of waviness
and cage revolution frequency, which is because the
fluctuated impact of the ball on cage prompts the
synchronous fluctuation of F., and F,, and the
sudden change in the sliding of the ball causes the
drastic fluctuation of F,; and F,,. These fluctuations
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Fig. 16 Whirl characteristics of cage against waviness orders: a trajectories of cage center, b deviation ratio of cage whirl speed, ¢ a,,

and d ac,

of interaction forces will affect the whirl motion of
cage, as shown in Fig. 16¢ and d.

From Fig. 16c¢ and d, it is evident that the dominant
frequency is the excitation frequency of waviness and
its peak is very large. The other dominant frequency is
the cage revolution frequency, and its peak is almost
negligible. Moreover, the waviness order of 44
intensifies the vibration of cage compared to other
waviness orders, although the corresponding vibration
is smaller than that without waviness (I = 0). This
demonstrates waviness order has an indispensable
influence on the whirl motion of cage, as shown in
Fig. 16b. The deviation ratio of cage whirl speed is
weakened by the waviness order of 11 and 22 relative

to that without waviness (I = 0), while it is enhanced
when waviness order is 44. These above analyses
show that suitable waviness orders can improve the
stability of cage motion.

Because of the dependence of traction forces
between the ball and raceways on the sliding of the
ball, traction force on inner raceway is obviously
larger than that on outer raceway; as a result, the effect
of waviness on the fluctuation of traction force on
outer raceway is obviously relative to that on inner
raceway, as shown in Fig. 17a and b; thus, the
predominant peak for traction force on outer raceway
appears at the excitation frequency of waviness, as
described in Fig. 17d. Also, the apparent variation in
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Fig. 17 Traction forces between the ball and raceways: a F;, b F,, ¢ frequency spectrum of F;, and d frequency spectrum of F,

traction forces generates near the y direction due to the
abrupt change in the sliding of the ball, which results
in the noticeable fluctuation of traction forces at the
cage revolution frequency; particularly, the corre-
sponding main peak generates on inner raceway rather
than outer raceway, as illustrated in Fig. 17c. Besides,
the dominant peaks are remarkably strengthened when
waviness order is 44 and even exceeds that without
waviness (I = 0), which means sparse waviness is
beneficial for the mitigation in the fluctuation of
traction forces. In addition, the obviously random
fluctuation of traction force on inner raceway is
observed, as exhibited in Fig. 17c. These fluctuation
characteristics of traction forces must significantly
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stimulate the vibration of inner ring, as shown in
Fig. 18.

From Fig. 18, it is clear that the main excitation
frequencies are cage revolution frequency and excita-
tion frequency of waviness, which is consistent with
that of traction forces. Due to the action of traction
force F; on inner ring, its noticeable fluctuation
induced by the abrupt change in the sliding of the
ball causes the drastic vibration of inner ring at cage
revolution frequency, and the other high-frequency
vibration results from the excitation of waviness.
Further, one can see that the waviness orders of 11 and
22 significantly weaken the vibration of inner ring
relative to that when waviness order is 44, and a clear
enhancement in the vibration of inner ring with
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Fig. 18 Acceleration spectrum of inner ring: a a;y, and b a;,

smooth raceway (without waviness (I = 0)) is worth
noting, which suggest that sparse waviness should be
processed to reduce the vibration of bearing systems
in engineering applications.

In summary, waviness causes the small ripples in
the sliding of the ball subjecting to the alternation
between heavy- and light-loaded zones to generate the
periodic fluctuation. This sliding significantly affects
the interaction forces between balls, cage and race-
ways to produce the transient impacts at cage revo-
lution frequency (low frequency) and excitation
frequency of waviness (high frequency), of which
the interaction forces of cage obviously affect the
whirl characteristics of cage and the traction forces
acting on inner raceway contribute to the vibration of
inner ring. Particularly, the low-frequency vibration
mainly occurs in inner ring while high-frequency
vibration in cage. On this basis, sparse waviness orders
are beneficial for abating the impact of interaction
forces to improve the stability of cage motion and
mitigate the vibration of bearing systems, but wavi-
ness order, which is an integer multiple of the ball
number, can intensify the impact of interaction forces,
resulting in the deterioration for the dynamic behav-
iors of bearing systems. Surprisingly, the smooth
raceway is a disadvantage of improving the stability of
cage motion and mitigating the vibration of inner ring
compared to the sparse wavy raceway; accordingly,
sparse waviness should be manufactured in engineer-
ing applications.
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4.3 Effect of outer raceway waviness amplitudes

As described in Fig. 19, the trajectories of cage are
approximate circles with tiny entanglement, implying
the stability of cage motion. Due to the impact force
(Fevj) between the ball and cage being about one order
larger than the traction force (F,) between cage and
guiding ring (as shown in Fig. 20a and b), the
continuous drive of the ball mainly maintains the
stable revolution of cage, while the constant impact
(Feqq» as shown in Fig. 20c) between cage and guiding
ring keeps the whirl radius, and their transient and
fluctuation induce together the tiny entanglement.
Acceleration spectrums of cage are also analyzed, as
presented in Fig. 19c and d. It can be observed that the
peaks at the dominant frequency position are intensi-
fied in turn with increasing the waviness amplitude.
Specially, the vibration of cage in the y direction is
more violent than that without waviness (g, = 0),
which is closely associated with the interactions
between cage, balls and guiding ring, because the
effect of waviness amplitude on main peeks (as shown
in Fig. 20d, e and f) of interaction forces acting on
cage is similar to that on the vibration of cage.

In addition, the drastic change in the sliding of the
ball near the alternation between heavy- and light-
loaded zones occurs, as shown in Fig. 21, which
markedly affect the revolution of cage to strengthen
the vibration of cage in the y direction. The small
ripples and periodic fluctuation in the sliding of the
ball also cause the transient and periodic fluctuation of
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Fig. 19 Whirl characteristics of cage against waviness amplitudes: a trajectories of cage center, b deviation ratio of cage whirl speed,

¢ dgy, and d a,

interaction forces of cage (as shown in Fig. 20a, b and
¢). Meanwhile, the increasing waviness amplitude
induces the fluctuation of the sliding on inner raceway
to increase gradually and even exceeds that on the
smooth raceway (g, = 0 pm), as shown in Fig. 21b,
while it is opposite on outer raceway, as shown in
Fig. 21d. Obviously, the effect of waviness amplitude
on the sliding on outer raceway is negligible because
the sliding on outer raceway is about one order smaller
than that on inner raceway. Accordingly, waviness
amplitudes mainly contribute to the fluctuation of the
sliding on inner raceway. What’s more, minimal
waviness amplitudes are conducive to the reduction in
the fluctuation of the sliding except for the smooth
raceway (g, = 0 pum). This means minimal waviness
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amplitudes are beneficial for the stability of cage
motion. The deviation ratios of cage whirl speed with
various waviness amplitudes exhibited in Fig. 19b
also confirm this advantage.

Due to the dependence of traction forces between
balls and raceways on the sliding of balls, the strong
traction appears on inner raceway rather than on outer
raceway, as shown in Fig. 22, which means waviness
easily causes the large fluctuation in the traction force
on outer raceway, but it is difficult on inner raceway.
Accordingly, the dominant peak of traction force on
outer raceway occurs at the excitation frequency of
waviness, while it for inner raceway at cage revolution
frequency. The same effect of waviness amplitude on
the main peaks of traction forces as that on the sliding
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of the ball is also observed, as shown in Fig. 22b and d,
indicating that the increase of waviness amplitude
induces the rise in the fluctuation of traction forces.
These fluctuated traction forces must cause the
vibration of inner ring, as represented in Fig. 23.

An apparent trend in the increasing vibration of
inner ring in the y direction with increasing waviness
amplitude is observed in Fig. 23a, which is attributed
to the great variation of traction forces in the y
direction, resulting from the drastic change in the
sliding of the ball simultaneously. On the contrary, the
increase in waviness amplitude is beneficial for the
reduction in the vibration in the z direction, as shown
in Fig. 23b, which is due to the relative stable sliding
of the ball near the z direction leading to the mitigation
in the fluctuated interactions between cage, balls,
raceway and guiding ring. Besides, it is clear from
Fig. 23a that only when the waviness amplitude
exceeds a certain size, can the vibration of inner ring
be intensified to exceed that on the smooth raceways
(go1 = 0), which suggests that enough small waviness
amplitude is beneficial for attenuating the vibration of
the bearing system.

In a word, the small ripples and periodic fluctuation
in the sliding of the ball cause the transient and
periodic fluctuation of interaction forces of cage,
which induces the tiny entanglement in the trajectories
of cage. The drastic change in the sliding of the ball
occurs at the alternation between heavy- and light-
loaded zones to stimulate the vibration of cage and
inner ring; simultaneously, the increasing waviness
amplitude gradually intensifies their vibrations. When
the waviness amplitude exceeds a certain size, the
vibrations of cage and inner ring are intensified to
exceed that on the smooth raceway (g, = 0), which
indicates advisable small waviness amplitudes should
be manufactured in practical applications because they
are beneficial for improving the stability of cage
motion and mitigating the vibration of inner ring.

5 Conclusions
A nonlinear dynamic model of angular contact ball
bearings with waviness and cage whirl motion was

established in this work. The significance of cage whirl
motion for the dynamic mechanism of ball bearings
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Fig. 21 Sliding of the ball on inner and outer raceways: a V;, b frequency spectrum of V;, ¢ V,,, d frequency spectrum of V,,

was revealed. The generating mechanism of the
fluctuation in the sliding of the ball was analyzed,
and the effect of the interaction forces between balls,
cage and raceways on the vibration of bearing systems
was investigated. The important researched results can
be drawn as follows:

(1) When considering cage whirl motion, cage and
waviness stimulate the ball continuously to
cause small ripples in the sliding and rotation of
the ball except for the periodic fluctuation,
which further leads to the frequent undulation in
the impact forces between balls and cage and
traction forces between balls and raceways; as a

@ Springer

result, inner ring generates the low-frequency
vibration at cage revolution frequency and high-
frequency vibration at excitation frequency of
waviness. But without cage whirl motion, no
small ripples occur for the interactions between
balls, cage and raceways, resulting in unreal
excitation frequency and intensity on the vibra-
tion of inner ring.

(2) The abrupt change in the sliding of the ball
causes the obvious fluctuation in interaction
forces between balls, cage and raceways so that
the low-frequency vibration in the bearing
system occurs; meanwhile, waviness gives rise
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to the small ripples in the sliding of the ball to
stimulate the high-frequency vibration, in this
process of which the minimal entanglement in
the trajectories of cage generates due to the
transient and periodic fluctuation of interaction
forces of cage.

The vibration of the bearing system is gradually
intensified with increasing waviness amplitude
and waviness order, which is an integer multiple
of the ball number; it can deteriorate the
dynamic behaviors of bearing systems. Unex-
pectedly, the smooth raceway is a disadvantage

of improving the stability of cage motion and
mitigating the vibration of inner ring compared
to the sparse wavy raceway with tiny amplitude.
Accordingly, sparse waviness with tiny ampli-
tude should be manufactured in engineering
applications.

For future studies, this integrated dynamic model
will be improved through combining the multi-node
thermal network model to attain the study on the effect
of temperature rise on the dynamic behaviors of ball
bearings.
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