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Abstract This paper proposes a nonlinear dynamic

model of angular contact ball bearings with waviness

and cage whirl motion. This original model establishes

the interaction between balls, cage and bearing rings

so that waviness can change the contacts between balls

and raceways real-timely to influence the dynamic

behaviors of the bearing system, which is a novel

solution to a known problem. On this basis, the

significance of cage whirl motion to the dynamic

mechanism of the bearing system is elaborated. Next,

the sliding of the ball with time is calculated to study

the interactions between balls, cage and bearing rings

and further investigate the dynamic mechanism of the

bearing system. Also, the effects of waviness orders

and amplitudes on the dynamic mechanism are

revealed. It is found that the abrupt change in the

sliding of the ball causes the low-frequency vibration

in the bearing system, while waviness gives rise to the

high-frequency vibration. The results show sparse

waviness with tiny amplitude should be manufactured

for improving the stability of cage motion and

mitigating the vibration of inner ring.

Keywords Cage whirl motion � Waviness � Sliding
of balls � Interaction forces � Bearing vibration

List of symbols

A Radial waviness

B Axial waviness

H Ball waviness

q Radial waviness amplitude

p Axial waviness amplitude

w Ball waviness amplitude

l Waviness order

Z The number of balls

x Angle velocity

t Time

n Initial phase angle of axial waviness

F Force vector

Q Contact force between balls and raceways

U Inner ring displacements

u Ball displacements

R Equivalent radius of curvature

a Major axis of elliptic contact area
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b Minor axis of elliptic contact area

D Balls diameter

a Contact angle between ball and raceway

dm Bearing pitch diameter

DW Relative waviness of inner and outer races

d Contact deformation

r Groove curvature radius

h Oil film thickness

q Density of lubricant

M Moment

Dv Differential slipping speed

Du Relative sliding speed

Rd Radius of centering surface of cage

G Guiding face width of cage

C Clearance

�h Eccentricity of cage center

�h0 Relative eccentricity of cage center

CD Drag coefficient

Cn Coefficient of drag moment

ga Gravity acceleration

h Deflection angle of bearing ring

u Position angle of the ball

m Mass

I Inertia moment

x/y/z Directions along three axes of global

coordinate system

x0/y0/z0 Directions along three axes of local

coordinate system

x00/y00/
z00

Directions along three axes of moving

coordinate system

Subscript

i Inner ring

o Outer ring

n Represent i or o

b Ball

c Cage

j jTh ball

l Waviness order

e Retardation effect of lubricant on balls

m Orbital revolution direction

f Friction direction

s Slide

p Cage pocket

g Guide surface

mc Unbalanced mass effect

1 Introduction

The dynamic performance of angular contact ball

bearings drastically affects the operating accuracy and

service life of rotating machines, such as high-speed

precision machine tool, aircraft engines and high-

speed electric motors. In practical applications, cage

whirl motion has significant effects on the dynamic

behaviors of ball bearings because cage is one of the

most problematic components in a rolling bearing.

Moreover, waviness occurring in balls and bearing

rings due to manufacturing inaccuracy causes unde-

sired excitations to induce the unpredictable dynamic

behaviors. To design and model the dynamic perfor-

mance accurately, a nonlinear dynamic model of ball

bearings with waviness and cage whirl motion is

essential.

Over the years, many analytical and numerical

models have been developed to study the dynamic

mechanism of ball bearings. The earlier studies carried

out by Jones [1, 2] proposed a mathematical theory to

study the ball bearing system adopting the raceway

control technique and quasi-static method. Later, an

improved model without the raceway control assump-

tion was established by Harris [3, 4]; on this basis, the

influences of centrifugal force, dynamic load distri-

bution and contact angle of balls generated through the

geometric constraint and force equilibrium were

further considered by Liao and Lin [5]. These

mentioned quasi-static/dynamic models neglected

the discontinuous contact and collision between balls

and cage causing the complexity of the dynamic

mechanisms for ball bearings. For this, the develop-

ment of dynamic model has received much attention

by some scholars. More recently, Gupta [6] provided

the differential equations of ball bearings with an

improved representation of tribological interactions

between balls, raceways, cage and lubricant medium,

based on which the effects of various parameters, such

as shaft speed, oil viscosity and combined loads on the

dynamic behaviors of ball bearings, were conducted

[7–9]. Especially, Han and Chu [10] considered the

discontinuous contact between cage and balls and

centrifugal and gyroscopic effects to establish the

dynamic model for analyzing the sliding friction

behaviors of ball bearings. Gao et al. [11] analyzed the

differential slipping, spinning and elastic hysteresis

behaviors of high-speed ball bearings by comprehen-

sively considering the effects of hydrodynamic
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lubrication, thermal generation, Hertzian contact and

kinematics of bearing components to improve the

nonlinear dynamic model. Wang et al. [12] analyzed

the influences of internal load, orbital and rotation

speeds of balls under different operating conditions on

the behavior of skidding. These researches failed to

consider the cage whirl motion, leading to the

neglection in the trajectory, impact and friction of

cage. To overcome this shortcoming, the dynamic

model of cage with whirl motion including contact

forces and friction forces of ball-pocket and cage-

guiding ring was established by Kingsbury [13].

Furthermore, the slip ratio and wear ratio of cage in

a radial loaded rolling bearing was analyzed based on

the force constraint model [14]. Liu et al. [15] studied

the skidding, impact and motion stability of cage in

microgravity environment. Cui et al. [16] conducted a

parametric evaluation of cage stability as a function of

roller dynamic unbalance by analyzing the orbit of

cage mass center, Poincaré map and velocity deviation

of cage. Deng et al. [17] investigated the influences of

structural parameters, the tolerance of trilobe-race-

way, working conditions and the outer ring installation

method on cage slip characteristics. Gao et al. [18]

explored the stability and skidding characteristics of

self-lubricated cages used in spacecraft angular con-

tact bearings by considering the ball-pocket normal,

tangential forces, ball-pocket axial collisions, ball-

raceway traction force and moment. These above-

mentioned studies are beneficial for developing the

dynamic model of ball bearings with waviness and

cage whirl motion, although they mainly focused on

the dynamic analysis of cage.

In the actual working situation, waviness produced

by the irregularities during grinding and honing

processes changes instantaneously the contact forces

between balls and wavy raceways, causing significant

dynamic fluctuation for the bearing system. In this

field, Yhland [19] firstly focused on the experimental

measurement of waviness. Subsequently, Liu et al.

[20] presented a dynamic model of ball bearings

considering the lubrication and flexible rings to study

the effects of waviness amplitudes and orders on the

internal loads of bearings and vibrations. Wang et al.

[21] improved the nonlinear dynamic model of ball

bearings by integrating preload, surface waviness and

elastohydrodynamic lubrication to analyze the

dynamic responses of angular contact ball bearings.

Liu et al. [22] established a surface waviness model to

analyze the influences of wave number, maximum

amplitude, non-uniform distribution on the dynamic

behaviors of ball bearings. Mohammed et al. [23]

employed an analytical model with five-degrees-of-

freedom to investigate the impact of dynamic response

due to waviness on the performance of spindle system

supported by angular ball bearings. However, it is

worth noting that previous researches mainly focused

on the interaction between balls and raceways due to

waviness, so that failed to highlight the effect of

waviness on the dynamic behaviors of cage. In fact,

cage whirl motion plays an important role in the

kinematics and mechanics of the bearing system.

Therefore, this paper integrates the waviness model,

dynamic model of balls, dynamic model of cage and

dynamic equilibrium of bearing rings to attain the

interaction between waviness, balls, cage and bearing

rings, resulting that a nonlinear dynamic model of

angular contact ball bearings with waviness and cage

whirl motion is developed; this improved model

overcomes the shortcomings of previous models

focusing on the interactions of partial components so

that the obtained dynamic behaviors of the bearing

system are more accurate compared with previous

researched results.

In this work, the nonlinear dynamic model of

angular contact ball bearings with waviness and cage

whirl motion is established in Sect. 2. This proposed

model is verified by cage mass center orbit, cage

rotation speed and principal vibration frequencies of

the bearing system in Sect. 3. The dynamic mecha-

nisms of angular contact ball bearings with waviness

and cage whirl motion are analyzed in Sect. 4. Finally,

some conclusions are presented in Sect. 5.

2 Dynamic model of ball bearings with waviness

and cage whirl motion

In this work, the previous studied results about

waviness model, dynamic model of balls, dynamic

model of cage and dynamic equilibrium of bearing

rings are integrated to obtain the interaction of bearing

components for getting more reliable dynamic behav-

iors of ball bearings relative to the previous models.
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2.1 Dynamic equilibrium of balls under the effect

of waviness

In the practical engineering, waviness on the bearing

raceways is generated by the irregular grinding and

honing, which changes the contacts between balls and

raceways real-timely, resulting in the instable interac-

tion among balls, cage and raceways causing the

unexpected dynamic fluctuation of ball bearings. For

this, the waviness on inner and outer raceways is

considered in this work, as shown in Fig. 1. They are

varied periodically with time and can be expressed

using the harmonic functions as follows [24]:

Aoj ¼
Plo

l¼1

qol cosðlðxo � xcÞt þ ð2plðj� 1Þ=ZÞ þ golÞ

Boj ¼
Plo

l¼1

qol cosðlðxo � xcÞt þ ð2plðj� 1Þ=ZÞ þ golÞ

Aij ¼
Pli

l¼1

pil cosðlðxi � xcÞt þ ð2plðj� 1Þ=ZÞ þ gilÞ

Bij ¼
Pli

l¼1

pil cosðlðxi � xcÞt þ ð2plðj� 1Þ=ZÞ þ gilÞ

Hij ¼
Plb

l¼1

wjl cosðlxbt þ gjlÞ

Hoj ¼
Plb

l¼1

wjl cos lxbtþ
p
xb

� �

þ gjl

� �

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

ð1Þ

When working, waviness affects significantly the

contact angle of balls and the displacement of inner

ring with time. For the sake of describing these

phenomena conveniently, four coordinate systems are

employed to describe the interactions among balls,

cage and bearing rings, as shown in Fig. 2. The global

reference system (o- xyz) is fixed at the bearing center,

in which inner ring is deflected around y and z axes and

translated along x, y and z axes. The local reference

system (o- x0y0z0) is positioned at the center of ball, and
it rotates along the x-axis of the global reference

system (o- xyz), in which the ball has three angular

velocity components xx0, xy0 and xz0 around x0, y0 and
z0, respectively. The local reference system (o- xcyczc)

is positioned at the center of cage, in which cage is

rotated around x0c axis and translated in the yczc plane.
In the elliptic contact area between balls and raceways,

the moving coordinate system (o-x00y00z00) is defined

with major axis x00, minor axis y00 and z00 axis

(a) (b)

Aoj

Hoj

Bij

Boj

Aij

Hij

Outer ring

Inner ring

Outer ring

Inner ring

Fig. 1 Schematic diagram

of bearing waviness: a radial
waviness, b axial waviness

y

O
xδ

yθ

x

'x
'z

zδ
z

''x

''yb

'y

a

zθ

yδ

cO
cx

cz

cy

Fig. 2 Definition of four coordinate systems for the interaction

of bearing components
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perpendicular to the contact patch. Outer ring is fixed

in the housing, and inner ring rotates with revolution

speed xi. Initially, it is assumed that the center of cage

is located at the center of outer ring, and balls are

located at the centers of cage pockets. When the

external load F = [Fx, Fy, Fz, My, Mz] is exerted to

inner ring, its five freedom displacement U = [Dx, Dy,
Dz, hy, hz]T is generated, causing the contact defor-

mations (dij, doj) between balls and bearing raceways

at this moment. As a result, the corresponding

displacements u = [uz0j uy0j uuj]
T of the jth ball in the

local reference system (o- x0y0z0) can be obtained. The

relationship between u and U is described as follows:

u ¼ T½ �U þ DWj ð2Þ

where [T] is the transformation matrix and DWj is the

relative waviness of inner and outer rings.

T½ � ¼
0 cosuj sinuj �Bij sinuj Bij cosuj

1 0 0 Ri þ Aij

� �
sinuj � Ri þ Aij

� �
cosuj

0 0 0 � sinuj cosuj

2

4

3

5

ð3Þ

DWj ¼ Aij � Aoj

� �
Bij � Boj

� �
0

� �T ð4Þ

where Ri denotes the distance between the curvature

center of inner ring groove and the bearing center.

Thus, u can be rewritten as follows:

u ¼
uz0j

uy0j

uuj

2

6
4

3

7
5

¼
Dx cosuj þ Dy sinuj � hyBij sinuj þ hzBij cosuj þ Aij � Aoj

Dzþ hyðRi þ AijÞ sinuj � hzðRi þ AijÞ cosuj þ Bij � Boj

�hy sinuj þ hz cosuj

2

6
4

3

7
5

ð5Þ

Under the effect of waviness, the relative positions

of ball center and raceway groove curvature centers at

unloaded and loaded states are presented in Fig. 3.

According to the geometrical relationship, the contact

angle (aij, aoj) of the jth ball can be expressed by [25]

tan aij ¼
Lij sin a0 þ uz0j � Dz0j
Lij cos a0 þ uy0j � Dx0j

tan aoj ¼
Loj sin a0 þ Dz0j
Loj cos a0 þ Dx0j

dij ¼ lij � Lij
doj ¼ loj � Loj
Lij ¼ ri � D=2� hi � Hij

Loj ¼ ro � D=2� ho � Hoj

lij ¼
Lij sin a0 þ uzj � Dz0j

sin aij

loj ¼
Loj sin a0 þ Dz0j

sin aoj

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

ð6Þ

In engineering applications, balls are subjected to

contact loads Qij and Qoj between balls and raceways,

traction forces Foy0 0 and Fiy0 0 caused by EHL, contact

force Fbcj and friction force Fbcf between pocket and

the jth ball, centrifugal force Fc, retardation torqueMe

of lubrication oil and gyroscopic moment Mgj, as

shown in Fig. 4. They are described as follows:

Fc ¼
1

2
mbx

2
m ð7Þ

Mgy0 ¼ Ixmxz0 ð8Þ

Mgz0 ¼ Ixmxy0 ð9Þ

Fig. 3 Relative positions of ball center and raceway groove

curvature centers with waviness under unloaded and loaded

states
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Mex0 ¼
1

2
qxx

0
D

2

� �5

Cn ð10Þ

Mey0 ¼
1

2
qxy

0
D

2

� �5

Cn ð11Þ

Mez0 ¼
1

2
qxz0

D

2

� �5

Cn ð12Þ

Under the EHL condition, hydrodynamic traction

force resulting from the shearing action of lubricant is

closely related to lubricant viscosity and film thick-

ness. Thus, the traction force Fnx0 0/y0 0 is illustrated as

follows:

Fnx00=y00 ¼
Z an

�an

Z bn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x00n=anð Þ2

q

�bn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x00n=anð Þ2

q g p x00n; y
00
n

� �
; T

� �Dv x00n; y
00
n

� �

h x00n; y
00
n

� � dx00ndy
00
n

ð13Þ

hn x00n ; y
00
n

� �
¼ 2:69U0:67G0:53ð1� 0:61e�0:73kÞRx

W0:067
j

ð14Þ

gðp x00n; y
00
n

� �
; TÞ ¼ g0 exp B

R0r

V=V0 � R0r
� R0

1� R0

� �� �

ð15Þ

here the calculations of hn(x
00
n, y

00
n) and g(p(x00n,

y00n), T) can be referred to the research results of

Hamrock and Dowson [26]. The relative sliding

velocities of balls on inner and outer raceways are

deduced by Wang et al. [12], as described in Fig. 5.

Through the transformation of coordinate systems,

spinning speeds of balls with respect to the z00o and z
00
i

axes are listed as follows:

xso ¼ xx0 sin aoj þ xz0 cos aoj ð16Þ

xsi ¼ xx0 sin aij þ xz0 cos aij ð17Þ

Sliding speeds in the outer raceway contact area

along x00-axis and y00-axis are inferred as:

Dvox00 x
00
o ; y

00
o

� �
¼ D

2
xy0 � xsoy

00
o ð18Þ

Fig. 4 Forces acting on the jth ball

'z
oy

ox

iy

ix

'xω

sojω'ωz

'yω

sijω

ojα

ijα

mjω

'x

'y

iωBearing

axis 

''i xvΔ
''o yvΔ ''oy jF

''ox jF

''ix jF

''i xvΔ

''i yvΔ

''iy jF

Fig. 5 Composition of velocities in the contact zone
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Dvoy00 x
00
o ; y

00
o

� �
¼ D

2
xx0 cos aoj � xz0 sin aoj
� �

þ xm cos aoj
dm

2 cos aoj
þ D

2

� �

� xsox
00
o ð19Þ

Similarly, differential slipping speeds in the inner

raceway contact area along x00-axis and y00-axis are:

Dvix00 x
00
i ; y

00
i

� �
¼ �D

2
xy0 � xsiy

00
i ð20Þ

Dviy00 x
00
i ; y

00
i

� �
¼ D

2
�xx0 cos aij þ xz0 sin aij
� �

þ xm � xið Þ cos aij
dm

2 cos aij
� D

2

� �

� xsix
00
i

ð21Þ

Therefore, the relative sliding speed4u(x00, y00) can
be obtained:

Dun x00n; y
00
n

� �
¼ Dvnx00 x

00
n; y

00
n

� �
i~
00 þ Dvny00 x00n ; y

00
n

� �
j~
00

ð22Þ

Moreover, contact force Fbcj and friction force Fbcf

between pocket and the jth ball are solved according to

the dynamic model of cage in Sect. 2.2. According to

the above analysis results, the dynamic equilibrium of

balls can be obtained, as follows:

where Fvj represents the viscous drag force acting on

the jth ball as follows:

Fvj ¼
CDpqD2 dmxmð Þ1:95

32ga
ð24Þ

where the drag coefficient CD comes from Gupta [27].

2.2 Dynamic model of cage

As one of the most problematic components in ball

bearings, cage is generally subjected to four kinds of

interactions: the interaction between balls and cage

pocket, the interaction between cage and guiding ring,

the retardation of lubrication oil on cage, and the

unbalanced force of cage. When working, contactless

state, balls driving the cage, and cage pushing balls

appear alternately between balls and cage, as illus-

trated in Fig. 6. The distance dbcj between the ball

center and the pocket center can be calculated by

Eq. (25).

dbcj ¼
pdm
Z

XZ

j¼2

x j
m þ xj�1

m

2xc

� 1

� �

� dbc1 � dcy sinuj

þ dcz cosuj

ð25Þ

where dcy is the displacement of cage mass center

along the yc axis, and dcz along the zc axis. The contact
force between balls and the cage can be expressed as:

Fbcj ¼ K 0
cdbcj dbcj �Cp ð26Þ

Fbcj ¼ K 0
cCp þ K 0

bc dbcj � Cp

� �1:5
dbcj [Cp ð27Þ

where Cp is the clearance between ball and pocket,

K0
bc is the load-deformation coefficient between balls

mD€z0j¼Qij cos aij � Qoj cos aoj � Fix00j sin aij þ Fox00j sin aoj �
Mgj

D
kij cos aij � koj cos aoj
� �

þ Fcj

mD€x0j¼Qij sin aij � Qoj sin aoj þ Fix00j cos aij � Fox00j cos aoj �
Mgj

D
kij sin aij � koj sin aoj
� �

Ib _xx0j ¼ 0:5D Foy00j cos aoj � Fiy00j cos aij � Fbcf

� �
� mij sin aij � moj sin aoj �Mejx

Ib _xy0j ¼ 0:5D Fox00j � Fix00j � Fbcj

� �
�Mejy þMgjy

Ib _xz0j ¼ 0:5D �Foy00j sin aoj þ Fiy00j sin aij � Fbcf

� �
þ mij cos aij þ moj cos aoj �Mejz �Mgjz

Ib _xmj ¼ 0:5 Foy00jdo þ Fiy00jdi � Fbcjdm � Fvjdm
� �

_uj ¼ xm

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð23Þ
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and cage, K0
c is the linear approximation constant

according to the experimental data based on research

[28]. They can be written as follows:

K 0
c ¼ 11=Cp ð28Þ

K0bc ¼ pk1E0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1e1=4:5C
3

q

ð29Þ

where k1 ¼ 1:0339 Rg=Rn
� �

, R1 ¼ RgRn= RgþRn
� �

,

Rg¼0:5D, C ¼ 1:5277þ 0:6023 ln Rg=Rn
� �

,

e1 ¼ 1:0003þ 0:5968Rn=Rg,

Rn ¼ 0:5DDp= Dp � D
� �

. For the interaction between

cage and guiding ring (as shown in Fig. 7), cage is

generally guided by outer ring at high speeds. And the

interaction forces between the guiding surface of outer

ring and that of cage are approximate to the hydro-

dynamic pressure of sliding bearings [29], which can

be calculated by:

Fcq1 ¼ � g0u1G
3�h02

C2
q 1� �h02
� �2 ð30Þ

Fcqu ¼ pg0u1G
3�h0

4C2
q 1� �h02
� �3=2 ð31Þ

Mcq ¼
2pg0Rd xo � xcð ÞG

Cq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �h02

p ð32Þ

where u1 is the drag speed of the lubricant, ⁄0 is the
relative eccentricity of cage mass center, and they can

be calculated as follows:

u1 ¼ Rd xo þ xcð Þ ð33Þ

�h0 ¼ �h=Cq ð34Þ

The forces and torques in the cage coordinate

system (o- xcyczc) need to be converted to the global

reference system (o- xyz) as follows:

Fcgy

Fcgz

Mcg

2

4

3

5 ¼
cosuc � sinuc 0

� sinuc cosuc 0

0 0 1

2

4

3

5
Fcq1

Fcqu

Mcq

2

4

3

5 ð35Þ

where uc represents the centroid offset angle of the

cage.

Also, the shear forces of lubricating fluid, oil–gas

mixture and air act on the outside column surface and

both end planes of cage to retard the rotation of cage;

thus, the drag momentMcf can be deduced as follows:

Mcf ¼ Mcfo þMcfw ¼ 1

8
g0qeAr

3
cox

2
c þ

1

2
qeCDr

5
ctx

2
c

ð36Þ

where Mcfo is the moment acting on the outside

column surface of the cage andMcfw acting on the both

end planes, the effective density of the oil qe ¼
q f2

0:4þ0:6f and f is the proportionality coefficient of the

(a)                  (b)                (c)

cω

pD pD
pD

pC 'xω

'y
'z

bcjF
bcfF

cω cω

bcfF

'xω 'xω

'z 'z
'y 'y

bcjF

Fig. 6 Contact situation between jth ball and pocket a contactless state, b balls driving cage, and c cage pushing balls

cfM

e y

z

cω

mcF

cy
cz

cqF ϕ

cqF ς

cqM

cG

Fig. 7 Interaction between cage and outer ring
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oil–gas mixture, A is the acreage of the outside column

surface, and the characteristic radius of the cage is

r5ct ¼ r3co r2co � r2ci
� �

. The drag coefficient CD is consis-

tent with that in Eq. (25).

In addition, the unbalanced force caused by the

unbalanced mass mmc of cage can be calculated as

follows:

Fmcy ¼
1

2
mmcdmxc cos ucð Þ ð37Þ

Fmcz ¼
1

2
mmcdmxc sin ucð Þ ð38Þ

Through the above analysis, the dynamic equations

of cage can be deduced as follows:

mc €yc ¼ Fcgy þ
PZ

j¼1

Fbcj sinuj � Fbcf cosuj

� �
þ Fmcy

mc€zc ¼ Fcgz þ
PZ

j¼1

�Fbcj cosuj � Fbcf sinuj

� �
þ Fmcz

Ic €uc ¼ Mcg þ
PZ

j¼1

Fbcj

dm
2

� Fbcf

D

2

� �

�Mcf

8
>>>>>>><

>>>>>>>:

ð39Þ

where _uc ¼ xc.

2.3 Dynamic equilibrium of inner ring

To solve the dynamic equilibrium of balls at high

speeds, some forces provided by balls are exerted on

inner ring, which must be equilibrated with the

combined loads. Thus, the balance of forces on inner

ring is expressed as follows:

Fx �
PZ

j¼1

Qij sin aij � Fix00 cos aij
� �

¼ miD€x

Fy �
PZ

j¼1

Qij cos aijþFix00 sin aij
� �

cosuj ¼ miD€y

Fz �
PZ

j¼1

Qij cos aijþFix00 sin aij
� �

sinuj ¼ miD€z

My �
PZ

j¼1

Qij sin aij � Fix00 cos aij
� � dm

2
� rij cos aij

� �

cosuj ¼ Iih€y

Mz �
PZn

j¼1

�Qij sin aijþFix00 cos aij
� � dm

2
� rij cos aij

� �

sinuj ¼ Iih€z

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð40Þ

Through the above dynamic analysis, these equa-

tions are solved using the fourth-order Runge–Kutta

algorithm, and the calculation point is set as 200 with

an interval of 0.03 ms in this work. The flow chart for

solving the dynamic model with waviness and cage

whirl motion is shown in Fig. 8.

3 Model validation

To validate the reliability of the proposed model,

Gupta’s representative case [27] is adopted by this

proposed model to obtain the cage mass center orbit at

axial load of 2224 N and rotation speed of 10,000

r/min. As shown in Fig. 9, it can be seen that the cage

mass center orbit in this proposed work is in good

agreement with Gupta’s research results [27]. The

discrepancy in the size of trajectory between current

simulated results and Gupta’s ones is attributed to

different cage materials and lubricating oil properties.

This suggests that the developed nonlinear dynamic

calculation program in this work is reliable for

analyzing the whirl motion of cage.

Moreover, rotational speed of cage and principal

vibration frequencies of bearings are also used to

verify the dependability of the proposed model. In this

work, 7008C angular contact ball bearing is consid-

ered as the study object, and its partial structural

parameters and lubrication parameters are listed in

Table 1. The rotation speed of inner ring xi is set as

10,000 r/min, radial force Fz is defined as 0 N, and

axial force Fx is varied from 50 to 500 N. Waviness

order is 22 and its amplitude is 0.3 lm.

As described in Fig. 10a, the perturbed cage

rotational speed fluctuates around a particular rota-

tional speed, based on which this particular rotational

speed can be obtained to exhibit the variation curve of

xc/xi versus different axial loads. From Fig. 10b, it

can be seen that the ratio xc/xi derived from the

proposed model has the same variation trend with the

tested result of Pasdari [30]. The singular values near

100 N and 150 N in the tested results do not conform

with the engineering practice because of indicating

smaller sliding of balls compared to that at larger

loads.

Many scholars [31–33] have summarized the

principal vibration frequencies of bearings stimulated

by waviness based on theoretical and experimental

methods. The comparative principal frequencies of

inner race, outer race, and balls are provided in

Table 2. For this, the calculated principal frequencies

are compared with the theoretical ones to verify this

proposed model, as listed in Table 3. It is clear that a

goodmatching of current results achieved based on the

proposed model with the theoretical ones is attained.

According to these analyses mentioned above, a

fair confidence in the present model can be established
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to study the dynamic mechanism of angular contact

ball bearings with waviness and cage whirl motion.

4 Results and discussion

To study the dynamic mechanisms of angular contact

ball bearings with waviness and cage whirl motion,

three typical conditions are detailed below.

Firstly: to elaborate the significance of cage whirl

motion on the dynamic mechanism, the dynamic

mechanism of ball bearings considering cage whirl

motion is compared with that without considering

cage whirl motion. The rotation speed of inner ring xi

is set as 10,000 r/min; radial force Fz pointing at the

azimuth of 90� is defined as 100 N and axial force Fx is

400 N. Outer raceway waviness order is 22 and its

amplitude is 0.6 lm, while other parameters remain

unchanged.

Next: outer raceway waviness orders l = {0, 11, 22,

44} are selected, and its amplitude qol = 0.3 lm is set,

while other parameters remain unchanged.

Start

Quasi-statics results

Equilibrium equations of inner ring
Equilibrium equations of ball

Calculate the waviness A,B and C

Ball/raceway contact load
Ball/raceway contact angular
Ball/raceway traction force

End

Cage pocket/ball force
Cage/ring force
Ball/raceway traction force

Quasi-dynamic results of 
the ball angular velocities

Cage differential equations
Ball differential equations
Inner ring differential equations

Cage pocket/ball force
Cage/ring force
Ball/raceway traction force
Ball and cage velocity
Acceleration of inner ring

t t Δt

Does calculation 
convergence

Does time t
reach the end

Fig. 8 Numerical solution flowchart for dynamic model
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Again: outer raceway waviness amplitudes qol-
= {0, 0.3, 0.6, 0.9} lm are defined and the order is

considered to be 22, while other parameters remain

unchanged.

In this work, the deviation ratio r of cage whirl

speed is used to evaluate the stability of cage, as

follows:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1

vyz � vyz
� �2

=N

s

vyz
ð41Þ

where N represents the number of iterations, vyz
represents velocity vector sum of cage in y and z

directions, vyz represents the average of vyz.

4.1 Comparison of dynamic behaviors

between with and without cage whirl motion

The motions of the ball under dynamic models with

and without cage whirl motion are shown in Fig. 11.

Without considering cage whirl motion, the smooth

sliding and rotation of the ball are varied periodically

with time. While considering cage whirl motion, cage

whirl motion causes small ripples in the sliding and
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Fig. 9 Comparison of cage mass center orbit between present result and Gupta’s ones: a proposed model’s result, bGupta’s calculated

result, c Gupta’s experimental result

Table 1 Parameters of the

7008C ball bearing

structure and lubrication oil

Definition Symbol Value

Bearing pitch diameter/mm dm 54

Diameter of the ball/mm D 6.35

Initial value of the contact angle/� a0 17.7

Number of the balls Z 22

Guide face width of the cage/mm G 10.1

Groove curvature radius of the outer ring/mm ro 3.302

Groove curvature radius of the inner ring/mm ri 3.493

Clearance of the pocket of the cage/mm Cp 0.175

Small diameter of the cage/mm dci 53.13

Large diameter of the cage/mm dco 57.33

Diameter of flute of the outer raceway/mm do 60.36

Diameter of flute of the inner raceway/mm di 47.62

Guide clearance of the cage/mm Cg 0.35

Dynamic viscosity/Pa�s n0 0.0467

Effective density of the lubricating oil/kg/m3 qe 860
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rotation of the ball except for the periodic fluctuation.

Moreover, the rotation of the ball with considering

cage whirl motion is slightly smaller than that without

considering cage whirl motion due to the impact force

between cage and balls (as shown in Fig. 12a), which

implies that xx0 is weakly mitigated relative to that

(a) (b)

Fig. 10 Comparison of ratio xc/xi between present result and tested one: a perturbed cage speed at Fx = 400 N, b tested and present

results

Table 2 Principal vibration

frequencies for different

waviness cases under

combined loads

Type of waviness Waviness order Principal frequencies (Hz) Type of motion

Outer race l = kZ kZfc Axial

l = kZ ± 1 kZfc Radial

Inner race l = kZ kZ(fi - fc) Axial

l = kZ ± 1 kZ(fi - fc) ± fi Radial

Ball l = 2 k 2kfb Axial

l = 2 k 2kfb ± fc Radial

Table 3 Comparison between current results and theoretical ones

Type Waviness order Principal frequencies (Hz) Type of motion

Proposed model Theoretical ones

Cage revolution frequency fc 73.54 73.96

Inner ring rotating frequency fi 166.6 166.7

Ball rotating frequency fb 702 699.7

Outer ring 21 1618 1627.2 Radial

22 1618 1627.2 Axial

23 1618 1627.2 Radial

Inner ring 21 1880 1873.6 Radial

22 2048 2040.3 Axial

23 2213 2207 Radial

Ball 2 1404 1399.4 Axial

4 2808 2798.8 Axial
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without considering cage whirl motion, and it is

opposite for xz0. The frequency spectrum of sliding

speed of the ball is further analyzed, as exhibited in

Fig. 11d and f. When considering cage whirl motion,

fc shows to be the predominant frequency of cage

revolution with gradually decreasing higher

(a) (b)

(c) (d)

(e) (f)

Fig. 11 Variation in ball movements: a xx0 and xy0, b xz0 and xm, c Vi, d Vi in frequency domain, e Vo, f Vo in frequency domain
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harmonics. Some combination frequencies (fi ? kfc)

modulated by cage revolution frequency and inner

ring rotation frequency appear, which implies the

impact between the ball and cage occurs frequently.

The sideband frequency (Z(fi- fc) ? fi ? fc) is related

to waviness order (l = 22), indicating that waviness

excites the ball to influence the impact between the

ball and cage, which means waviness and cage whirl

motion together affect the motion of the ball, whereas

without considering cage whirl motion, it is almost

hard to find the complicated impact frequencies of

cage and the excitation frequency of waviness.

As described in Fig. 12, when considering cage

whirl motion, the impact force is negative and

fluctuates continuously near a constant value, which

means cage is pushed by the ball continuously and

stably. But without cage whirl motion, the impact

force without obvious fluctuation is almost zero,

which suggests an unreal phenomenon about cage

rotating with the ball synchronously. When cage and

waviness stimulate the ball continuously, the sliding of

the ball is waved frequently, resulting that the traction

forces between balls and raceways are undulated

constantly, as illustrated in Fig. 12b and c. But without

cage whirl motion, the traction forces between balls

and raceways are varied smoothly, which is attributed

to the unreal phenomenon about cage rotating with the

ball synchronously. The difference in traction forces

with and without cage whirl motion distinctly affects

the vibration of inner ring, as represented in Fig. 13.

It is clear that the amplitude of inner ring vibration

with considering cage whirl motion is much larger

than that without considering cage whirl motion, and

the corresponding frequencies are quite different. That

(a) (b) (c)

Fig. 12 Forces acting on the ball: a Impact force between ball and cage, b traction force Fo, and c traction force Fi

(a) (b)

Fig. 13 Acceleration spectrum of inner ring: a aiy and b aiz
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is, the frequencies (fi ? kfc) of cage and the excitation

frequency (Zfc) of waviness appear in the acceleration

spectrum of inner ring when considering cage whirl

motion, confirming the crucial roles of cage whirl

motion and waviness in the bearing system, whereas

these phenomena do not occur in the vibrational

spectrum without considering cage whirl motion.

In conclusion, the significance of developing the

nonlinear dynamic model of angular contact ball

bearings with waviness and cage whirl motion is

conspicuous for analyzing the dynamic mechanism of

the bearing system.

4.2 Effect of outer raceway waviness orders

Figure 14 describes the sliding of the ball versus outer

raceway waviness orders. An abrupt change in the

sliding near the y direction occurs (as shown in

Fig. 14a and b), which results in the dominant

frequency of the sliding that is closely associ-

ated with cage revolution frequency, as shown in

Fig. 14c and d. Moreover, the excited amplitude is

gradually increased with increasing waviness order,

despite the fact that for waviness order l = 11 is

smaller than that without waviness (l = 0), which is

mainly attributed to the fact that waviness order is an

integer multiple of the ball number. The frequency

components of the sliding are also analyzed, as

presented in Fig. 14c and d. It is clear that other peaks

(a) (b)

(c) (d)

Fig. 14 Sliding of the ball on inner and outer raceways: a Vi, b Vo, c frequency spectrum of Vi, d frequency spectrum of Vo
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for the sliding on inner raceway at the harmonic

frequency (kfc) and sideband frequency (fi ? kfc) have

no significant change at different waviness orders, but

on outer raceway, they for waviness order l = 44 are

significantly enhanced. This is because the sliding on

outer raceway is about one order smaller than that on

inner raceway, meaning the influence of waviness

orders on the fluctuation of sliding on outer raceway is

more evident relative to that on inner raceway. In

addition, the peaks at the excitation frequency of

waviness (Z(fi - fc) ? fi ? fc) are strengthened when

waviness order is 44 compared to that when l = 11.

Particularly, the effect of waviness order on the

fluctuation of the sliding on outer raceway at the

excitation frequency of waviness is more obvious than

that on inner raceway. The above analyses suggest that

waviness orders play important roles in the sliding of

the ball besides the abrupt change in the sliding of the

ball.

Figure 15 gives the time domain and frequency

domain of interaction forces of cage with various

waviness orders. The apparent variation trends of

interaction forces with different waviness orders, as

shown in Fig. 15a, b and c, are the same as that with

different waviness amplitudes, indicating the steady

rotation of cage presented in Fig. 16a. The frequency

responses reveal that the undulation of interaction

forces is closely related to waviness and the abrupt

change in the sliding of the ball. For the impact force

(Fcbj) between the ball and cage, when the sliding of

the ball changes suddenly at the alternation between

the heavy-loaded zone and the light-loaded zone near

the y direction, an abrupt impact of the ball on cage

generates simultaneously; thus, the fluctuation of

impact force appears at cage revolution frequency.

Yet, in heavy- and light-loaded zones, the fluctuated

impact mainly depends on the effect of waviness; as a

result, the corresponding peak occurs at the excitation

frequency of waviness. What’s more, the effect of

waviness on the fluctuation of impact force is more

prominent compared to the abrupt change in the

sliding of the ball. For traction force (Fcqf) and impact

force (Fcqu) between cage and guiding ring, their

peaks appear at the excitation frequency of waviness

and cage revolution frequency, which is because the

fluctuated impact of the ball on cage prompts the

synchronous fluctuation of Fcqf and Fcqu, and the

sudden change in the sliding of the ball causes the

drastic fluctuation of Fcqf and Fcqu. These fluctuations

(a) (b) (c)

(d) (e) (f)

Fig. 15 Interaction forces of cage: a Fcbj, b Fcqf, c Fcqu, d frequency spectrum of Fcbj, e frequency spectrum of Fcqf, and f frequency
spectrum of Fcqu
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of interaction forces will affect the whirl motion of

cage, as shown in Fig. 16c and d.

From Fig. 16c and d, it is evident that the dominant

frequency is the excitation frequency of waviness and

its peak is very large. The other dominant frequency is

the cage revolution frequency, and its peak is almost

negligible. Moreover, the waviness order of 44

intensifies the vibration of cage compared to other

waviness orders, although the corresponding vibration

is smaller than that without waviness (l = 0). This

demonstrates waviness order has an indispensable

influence on the whirl motion of cage, as shown in

Fig. 16b. The deviation ratio of cage whirl speed is

weakened by the waviness order of 11 and 22 relative

to that without waviness (l = 0), while it is enhanced

when waviness order is 44. These above analyses

show that suitable waviness orders can improve the

stability of cage motion.

Because of the dependence of traction forces

between the ball and raceways on the sliding of the

ball, traction force on inner raceway is obviously

larger than that on outer raceway; as a result, the effect

of waviness on the fluctuation of traction force on

outer raceway is obviously relative to that on inner

raceway, as shown in Fig. 17a and b; thus, the

predominant peak for traction force on outer raceway

appears at the excitation frequency of waviness, as

described in Fig. 17d. Also, the apparent variation in

(a) (b)

(c) (d)

Fig. 16 Whirl characteristics of cage against waviness orders: a trajectories of cage center, b deviation ratio of cage whirl speed, c acy,
and d acz
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traction forces generates near the y direction due to the

abrupt change in the sliding of the ball, which results

in the noticeable fluctuation of traction forces at the

cage revolution frequency; particularly, the corre-

sponding main peak generates on inner raceway rather

than outer raceway, as illustrated in Fig. 17c. Besides,

the dominant peaks are remarkably strengthened when

waviness order is 44 and even exceeds that without

waviness (l = 0), which means sparse waviness is

beneficial for the mitigation in the fluctuation of

traction forces. In addition, the obviously random

fluctuation of traction force on inner raceway is

observed, as exhibited in Fig. 17c. These fluctuation

characteristics of traction forces must significantly

stimulate the vibration of inner ring, as shown in

Fig. 18.

From Fig. 18, it is clear that the main excitation

frequencies are cage revolution frequency and excita-

tion frequency of waviness, which is consistent with

that of traction forces. Due to the action of traction

force Fi on inner ring, its noticeable fluctuation

induced by the abrupt change in the sliding of the

ball causes the drastic vibration of inner ring at cage

revolution frequency, and the other high-frequency

vibration results from the excitation of waviness.

Further, one can see that the waviness orders of 11 and

22 significantly weaken the vibration of inner ring

relative to that when waviness order is 44, and a clear

enhancement in the vibration of inner ring with
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Fig. 17 Traction forces between the ball and raceways: a Fi, b Fo, c frequency spectrum of Fi, and d frequency spectrum of Fo
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smooth raceway (without waviness (l = 0)) is worth

noting, which suggest that sparse waviness should be

processed to reduce the vibration of bearing systems

in engineering applications.

In summary, waviness causes the small ripples in

the sliding of the ball subjecting to the alternation

between heavy- and light-loaded zones to generate the

periodic fluctuation. This sliding significantly affects

the interaction forces between balls, cage and race-

ways to produce the transient impacts at cage revo-

lution frequency (low frequency) and excitation

frequency of waviness (high frequency), of which

the interaction forces of cage obviously affect the

whirl characteristics of cage and the traction forces

acting on inner raceway contribute to the vibration of

inner ring. Particularly, the low-frequency vibration

mainly occurs in inner ring while high-frequency

vibration in cage. On this basis, sparse waviness orders

are beneficial for abating the impact of interaction

forces to improve the stability of cage motion and

mitigate the vibration of bearing systems, but wavi-

ness order, which is an integer multiple of the ball

number, can intensify the impact of interaction forces,

resulting in the deterioration for the dynamic behav-

iors of bearing systems. Surprisingly, the smooth

raceway is a disadvantage of improving the stability of

cage motion and mitigating the vibration of inner ring

compared to the sparse wavy raceway; accordingly,

sparse waviness should be manufactured in engineer-

ing applications.

4.3 Effect of outer raceway waviness amplitudes

As described in Fig. 19, the trajectories of cage are

approximate circles with tiny entanglement, implying

the stability of cage motion. Due to the impact force

(Fcbj) between the ball and cage being about one order

larger than the traction force (Fcqf) between cage and

guiding ring (as shown in Fig. 20a and b), the

continuous drive of the ball mainly maintains the

stable revolution of cage, while the constant impact

(Fcqu, as shown in Fig. 20c) between cage and guiding

ring keeps the whirl radius, and their transient and

fluctuation induce together the tiny entanglement.

Acceleration spectrums of cage are also analyzed, as

presented in Fig. 19c and d. It can be observed that the

peaks at the dominant frequency position are intensi-

fied in turn with increasing the waviness amplitude.

Specially, the vibration of cage in the y direction is

more violent than that without waviness (qol = 0),

which is closely associated with the interactions

between cage, balls and guiding ring, because the

effect of waviness amplitude on main peeks (as shown

in Fig. 20d, e and f) of interaction forces acting on

cage is similar to that on the vibration of cage.

In addition, the drastic change in the sliding of the

ball near the alternation between heavy- and light-

loaded zones occurs, as shown in Fig. 21, which

markedly affect the revolution of cage to strengthen

the vibration of cage in the y direction. The small

ripples and periodic fluctuation in the sliding of the

ball also cause the transient and periodic fluctuation of

(a) (b)

Fig. 18 Acceleration spectrum of inner ring: a aiy, and b aiz
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interaction forces of cage (as shown in Fig. 20a, b and

c). Meanwhile, the increasing waviness amplitude

induces the fluctuation of the sliding on inner raceway

to increase gradually and even exceeds that on the

smooth raceway (qol = 0 lm), as shown in Fig. 21b,

while it is opposite on outer raceway, as shown in

Fig. 21d. Obviously, the effect of waviness amplitude

on the sliding on outer raceway is negligible because

the sliding on outer raceway is about one order smaller

than that on inner raceway. Accordingly, waviness

amplitudes mainly contribute to the fluctuation of the

sliding on inner raceway. What’s more, minimal

waviness amplitudes are conducive to the reduction in

the fluctuation of the sliding except for the smooth

raceway (qol = 0 lm). This means minimal waviness

amplitudes are beneficial for the stability of cage

motion. The deviation ratios of cage whirl speed with

various waviness amplitudes exhibited in Fig. 19b

also confirm this advantage.

Due to the dependence of traction forces between

balls and raceways on the sliding of balls, the strong

traction appears on inner raceway rather than on outer

raceway, as shown in Fig. 22, which means waviness

easily causes the large fluctuation in the traction force

on outer raceway, but it is difficult on inner raceway.

Accordingly, the dominant peak of traction force on

outer raceway occurs at the excitation frequency of

waviness, while it for inner raceway at cage revolution

frequency. The same effect of waviness amplitude on

the main peaks of traction forces as that on the sliding

(a) (b)

(c) (d)

Fig. 19 Whirl characteristics of cage against waviness amplitudes: a trajectories of cage center, b deviation ratio of cage whirl speed,

c acy, and d acz
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of the ball is also observed, as shown in Fig. 22b and d,

indicating that the increase of waviness amplitude

induces the rise in the fluctuation of traction forces.

These fluctuated traction forces must cause the

vibration of inner ring, as represented in Fig. 23.

An apparent trend in the increasing vibration of

inner ring in the y direction with increasing waviness

amplitude is observed in Fig. 23a, which is attributed

to the great variation of traction forces in the y

direction, resulting from the drastic change in the

sliding of the ball simultaneously. On the contrary, the

increase in waviness amplitude is beneficial for the

reduction in the vibration in the z direction, as shown

in Fig. 23b, which is due to the relative stable sliding

of the ball near the z direction leading to the mitigation

in the fluctuated interactions between cage, balls,

raceway and guiding ring. Besides, it is clear from

Fig. 23a that only when the waviness amplitude

exceeds a certain size, can the vibration of inner ring

be intensified to exceed that on the smooth raceways

(qol = 0), which suggests that enough small waviness

amplitude is beneficial for attenuating the vibration of

the bearing system.

In a word, the small ripples and periodic fluctuation

in the sliding of the ball cause the transient and

periodic fluctuation of interaction forces of cage,

which induces the tiny entanglement in the trajectories

of cage. The drastic change in the sliding of the ball

occurs at the alternation between heavy- and light-

loaded zones to stimulate the vibration of cage and

inner ring; simultaneously, the increasing waviness

amplitude gradually intensifies their vibrations. When

the waviness amplitude exceeds a certain size, the

vibrations of cage and inner ring are intensified to

exceed that on the smooth raceway (qol = 0), which

indicates advisable small waviness amplitudes should

bemanufactured in practical applications because they

are beneficial for improving the stability of cage

motion and mitigating the vibration of inner ring.

5 Conclusions

A nonlinear dynamic model of angular contact ball

bearings with waviness and cage whirl motion was

established in this work. The significance of cage whirl

motion for the dynamic mechanism of ball bearings

(a) (b) (c)

(d) (e) (f)

Fig. 20 Interaction forces of cage: a Fcbj, b Fcqf, c Fcqu, d frequency spectrum of Fcbj, e frequency spectrum of Fcqf, and f frequency
spectrum of Fcqu
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was revealed. The generating mechanism of the

fluctuation in the sliding of the ball was analyzed,

and the effect of the interaction forces between balls,

cage and raceways on the vibration of bearing systems

was investigated. The important researched results can

be drawn as follows:

(1) When considering cage whirl motion, cage and

waviness stimulate the ball continuously to

cause small ripples in the sliding and rotation of

the ball except for the periodic fluctuation,

which further leads to the frequent undulation in

the impact forces between balls and cage and

traction forces between balls and raceways; as a

result, inner ring generates the low-frequency

vibration at cage revolution frequency and high-

frequency vibration at excitation frequency of

waviness. But without cage whirl motion, no

small ripples occur for the interactions between

balls, cage and raceways, resulting in unreal

excitation frequency and intensity on the vibra-

tion of inner ring.

(2) The abrupt change in the sliding of the ball

causes the obvious fluctuation in interaction

forces between balls, cage and raceways so that

the low-frequency vibration in the bearing

system occurs; meanwhile, waviness gives rise

(a) (b)

(c) (d)

Fig. 21 Sliding of the ball on inner and outer raceways: a Vi, b frequency spectrum of Vi, c Vo, d frequency spectrum of Vo
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to the small ripples in the sliding of the ball to

stimulate the high-frequency vibration, in this

process of which the minimal entanglement in

the trajectories of cage generates due to the

transient and periodic fluctuation of interaction

forces of cage.

(3) The vibration of the bearing system is gradually

intensified with increasing waviness amplitude

and waviness order, which is an integer multiple

of the ball number; it can deteriorate the

dynamic behaviors of bearing systems. Unex-

pectedly, the smooth raceway is a disadvantage

of improving the stability of cage motion and

mitigating the vibration of inner ring compared

to the sparse wavy raceway with tiny amplitude.

Accordingly, sparse waviness with tiny ampli-

tude should be manufactured in engineering

applications.

For future studies, this integrated dynamic model

will be improved through combining the multi-node

thermal network model to attain the study on the effect

of temperature rise on the dynamic behaviors of ball

bearings.

(a) (b)

(c) (d)

Fig. 22 Traction forces between the ball and raceways: a Fi, b frequency spectrum of Fi, c Fo, and d frequency spectrum of Fo
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