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Abstract In previous studies of linear rotary systems
with active magnetic bearings, parametric excitation
was introduced as an open-loop control strategy. The
parametric excitation was realized by a periodic, in-
phase variation of the bearing stiffness. At the dif-
ference between two of the eigenfrequencies of the
system, a stabilizing effect, called anti-resonance, was
found numerically and validated in experiments. In this
work, preliminary results of further exploration of the
parametric excitation are shared. A Jeffcott rotor with
two active magnetic bearings and a disk is investigated.
Using Floquet theory, a deeper insight into the dynamic
behavior of the system is obtained. Aiming at a further
increase of stability, a phase difference between exci-
tation terms is introduced.
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called parametric excitation, have been studied for a
long time. The first occurrence of parametric excitation
can be found in Mathieu and Hill equations, formu-
lated in the nineteenth century. Initially, research con-
centrated mainly on undesirable destabilization from
resonances caused by parametric excitation. It was as
late as the 1970s that a phenomenon resulting in the
stabilization of the trivial solution was discovered by
Tondl [11]. Later this was named anti-resonance and
understood as an energy transfer from a mode with
lower damping to one with higher damping, causing an
increase in effective damping of vibrations [4]. With
the discovery of anti-resonance, increasing vibration
mitigation via a deliberate introduction of parametric
excitation became possible. This was proven to be fea-
sible in real systems through various simulations and
experiments as described in [4].

Another field of study on parametric excitation
emerged from Cesari’s examination of asynchronous
excitation through a phase shift between the excitation
terms [2]. This was first seen as an undesired property,
leading to the so-called total instability. Asynchronous
excitation in combination with non-uniform damping
was first studied by Schmieg [10]. In his work, he also
introduced the use of Lyapunov characteristic expo-
nents (LCEs), which allow for an analysis of destabi-
lizing and stabilizing effects at the same time. From his
results, a stabilizing effect in the case of non-uniform
damping can already be deducted. However, because
anti-resonance was not known at that time, Schmieg
focused on instability only. In [4], the stabilizing effect
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depicted by the LCEs, also called equivalent damp-
ing, was studied for the cases of in-phase and anti-
phase excitation. Later, in [8], a systematic investiga-
tion of combination resonance effects in parametrically
excited, two-dimensional systems with a general phase
shift as well as circulatory and gyroscopic terms was
conducted. The largest LCE, sufficient for exploring all
considered effects, was derived both numerically with
Floquet method and through semi-analytical approxi-
mation with themethod of normal forms. The results of
[3] were confirmed that asynchronous excitation with
a phase shift of π in the coupling terms of bimodal sys-
tems may lead to swapping of the frequencies at which
resonance and anti-resonance occur.

Active magnetic bearings (AMBs) are a broad
research topic in recent years and due to their lack of
mechanical friction especially interesting for applica-
tion in high-speed rotors. Most research concentrates
on stability boundaries and resonant system response
for different stator configurations using nonlinear mod-
els. For an overview of the literature, see [9] and ref-
erences. In [13], the influence of parametric excita-
tion by time-periodic stiffness variation on resonances
in a nonlinear model was investigated, using a semi-
analytical perturbation approach. In [5], the effect of
anti-resonance in a rotor with linearly modeled AMBs
was found in numerical simulation and experiment.
However, anti-resonance effects in AMBs are yet to
be investigated in a more systematic way. In prepara-
tion for the analysis with semi-analytical approaches,
it has to be shown that the anti-resonance is reflected
in the LCEs, which are used as indicators for stability
when applying approximation methods.

It is common practice to refer to the largest LCE
for stability analysis (e.g., [4,8]). Approaches, where
all characteristic multipliers are utilized, can be found
in the literature (e.g., [1]), but not with application to
parametric excitation. However, this work will show
that in order to gain insight into anti-resonance effects
inmulti-dimensional, coupled systemswith parametric
excitation, an analysis of only the largest LCE is not
sufficient and a new, extended approach is needed. As
an example that illustrates the necessity to consider all
LCEs, the Jeffcott rotor described in [5,12] will be ana-
lyzed. The focus of the investigation via all LCEs will
be the effects of asynchronous excitation and coupling
through parametric excitation, aiming at an enhance-
ment of vibration mitigation caused by anti-resonance.
The investigated effects and methods are, however, not

limited to this example, but can be expected to be appli-
cable to more general systems as well.

2 Stability of parametrically excited systems

Since parametric excitation can have a profound effect
on the stability of the trivial solution, stability analy-
sis is the main objective when analyzing systems with
time-periodic coefficients. Unlike for differential equa-
tionswith constant coefficients, an analytical derivation
of solutions is generally not possible. Instead, either
semi-analytical or numerical methods are employed
to assess stability. Semi-analytical methods, such as
normal forms or multiple scales, are ideal for gener-
ating deep insight into the underlying effects of phe-
nomena in systems with few degrees of freedom (DoF)
but become impractical when system complexity rises.
Numerical methods, on the other hand, are better suited
for the analysis of complex, multi-dimensional sys-
tems, albeit being constrained to initial conditions that
need to be defined in advance. In the scope of this con-
tribution, the Floquet method, which is described in
detail in [7], will be applied. Numerical integration for
a complete set of linear independent initial conditions
over one period of the parametric excitation results in
the monodromy matrix. The eigenvalues of the mon-
odromy matrix, also called Floquet multipliers ρi , are
indicators of the stability of the system. For every ρi ,
with the index i running from 1 to the number of DoF,
the LCE λi is defined as:

λi = 1

T
ln |ρi | (1)

When all λi ≤ 0, the trivial solution is stable in the
sense of Lyapunov, and λi < 0 assures asymptotic sta-
bility. It is a common approach to observe the change in
the largest LCE Λ = max(λi ) under variation of sys-
tem parameters. Often, only the zero-crossingΛ = 0 is
of interest, to divide the range of varied parameters into
stable (Λ ≤ 0) and unstable (Λ > 0) areas, resulting
in so-called stability maps. Stability maps, however,
are not apt for analyzing anti-resonance when positive
damping is present. Anti-resonance is characterized by
a local minimum in the LCEs. When positive damping
is present, the system without parametric excitation is
already stable. Likewise, the system with parametric
excitation is stable when not excited with a resonance
frequency, resulting in Λ < 0. Therefore, a further
reduction of Λ, as caused locally by an anti-resonance,
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is not visiblewhen viewing only the zero-crossing ofΛ.
Consequently, when examining anti-resonances, often
the magnitude of Λ is used instead. Apart from denot-
ing stability, Λ indicates the speed of decay as well,
therefore also being called equivalent damping. This
property will be used in the following to evaluate sta-
bilization caused by parametric excitation.

3 System under consideration

For the following analysis, the Jeffcott rotor shown in
Fig. 1will be used as an example.Adetailed description
of the rotor can be found in [5] and [12]. It consists
of an elastic shaft, supported by two AMBs, holding
a stiff disk and being driven by a motor. The AMBs
are controlled by a PID controller, operating separately
in two orthogonal directions y and z, which form an
orthogonal coordinate system with the axis x along the
shaft.

In accordance with [12], the system is modeled with
three finite elements. The derived equations of motion
are linear with time-periodic stiffness and formulated
in dimensional form. Parameter values are given in [5].
As the focus of this work lies in the exploration of
effects resulting from parametric excitation, nonlinear-
ities, which are often found in models of AMBs in lit-
erature, are not considered. The resulting equations of
motion are

[
My 0
0 Mz

]16×16 [
ÿ
z̈

]
+ . . .

. . .+
[−PT

L kifkdPL −GΩr

GΩr −PT
L kifkdPL

][
ẏ
ż

]
+ . . .

. . .+
[
PT
L kifkp (1 + εC)PL + Ky 0

0 PT
L kifkp (1 + εC)PL + Kz

]

[
y
z

]
= 0, (2)

C =
[
cos (Ωt) 0

0 cos (Ωt + ϕ)

]2×2

,

PL =
[
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0

]
.

The matricesMi andKi denote the mass and stiffness.
The matrix G contains gyroscopic terms, which are
small compared to the other coefficients of the system.
The vectors y and z consist of displacements and angles
in y- and z-direction of all four knots of the three finite

elements. The matrix PL is used to transform the four
knots’ DoF y and z to the DoF (y1, y2)T = PLy and
(z1, z2)T = PLz. The PID controller operates in y1, z1
(AMB 1) and y2, z2 (AMB 2). All damping of the sys-
tem is introduced by the differential path of the PID
controller with gain kd . The constant kif describes the
proportionality between current and force in theAMBs.
Parametric excitation is introduced into the system by
the addition of amatrixC, containing periodic terms, to
the proportional path with gain kp. The excitation with
circular frequency Ω is independent from the rotors’
angular velocity Ωr and scaled by a (small) parameter
ε. Additionally, a phase shift between the parametric
excitation terms of both bearings, ϕ, is added. Since the
controller allows for a free choice of damping terms as
well as manipulation of the stiffness, the system is well
suited for exploring the effects of parametric excita-
tion. Numerical simulation shows that the integral path
of the PID controller has no significant effect on the
results, so it was neglected for the sake of brevity.

4 Stability analysis of the system under
consideration

As in [5], the stability of the Jeffcott rotor is explored
in a MATLAB/Simulink model that is integrated over
time. As initial condition, the whole shaft is displaced
by 1mm in z-direction. The phase shift between para-
metric excitation terms isϕ = 0. To assess the systems’
response to the perturbation, the mean square of radial
shaft deflections over time t and excitation frequency
Ω is analyzed (see Fig. 2). As mean deflections fall
below a certain threshold, they are considered negligi-
bly small and omitted from the plot. The time needed
until the threshold is reached is used as a measure-
ment for vibration decay. For most of the frequency
spectrum, the parametric excitation has a slight influ-
ence only. Thus, the time after which the threshold is
reached does not significantly differ from the unexcited
system, which is indicated by a densely dashed line. At
the fundamental resonance frequencies 2ω1 ≈ 330 rads
and 2ω2 ≈ 545rads , as well as the combination fre-

quency Σ31 = ω3 + ω1 ≈ 500 rads , the trivial solution
is unstable and the deflections increase over time. How-
ever, at Δ31 ≈ 170 rads , the deflections decrease much
faster compared to the unexcited system, hinting at the
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Fig. 1 Jeffcott rotor with
two active magnetic
bearings, studied in [5]

AMB 1 disk AMB 2 coupling

motor

680 mm

2ω1 2ω2 2ω3200 400 600
0

1

2

0.68

Δ21 Δ31Δ32 Σ21 Σ31 Σ32
Ω [ rads ]

t [s]

Fig. 2 Contour plot of mean radial shaft deflections over time
t and excitation frequency Ω . Deflections are given relative to a
uniform perturbation in z-direction at t = 0, with lighter shade
indicating larger deflections. Sum and difference frequencies of

ωi and ω j are denoted with Σi j and Δi j , respectively. Deflec-

tions at the anti-resonance atΔ31 ≈ 170 rads fall below threshold

after 0.68 s, indicated by loosely dashed line . Reference
time for unexcited system shownwith densely dashed line

existence of an anti-resonance. This anti-resonancewas
also found and validated in experiments in [5].

For stability analysis without the limitation of being
bound to a certain initial condition, in previous work
on bimodal systems (e.g., [8]), the largest LCE Λ was
derived, revealing not only stable and unstable regions
but resonance and anti-resonance phenomena as well.
In this contribution, LCEs are computed numerically
with Floquet analysis in a custom Python code. Floquet
theory applied to the investigated equations of motion
in Eq. (2) with a variation of the excitation frequency
Ω reveals Λ as shown with a dotted line in Fig. 3.
The fundamental resonances at 2ω1 and 2ω3 as well as
the sum resonance at Σ31 = ω3 + ω1 are visible. The
effect of the anti-resonance atΔ31 = ω3−ω1, however,
cannot be observed in the largest LCE. Instead, Λ is
just below 0 for all frequencies where the destabilizing
resonances have no effect. This does not match with

both the results from the numerical simulation in Fig. 2
and the observations in experiments conducted in [5].

The assumption previous work on parametric exci-
tation was based on that the largest LCE Λ is sufficient
to show all resonance effects obviously cannot be gen-
eralized to multi-dimensional systems such as Eq. (2).
Therefore, an extended perspective is proposed in this
contribution to obtain deeper insight into the system’s
dynamic response behavior. Instead of only the largest
LCE Λ, all LCEs λi are examined. For the given sys-
tem, the LCEs are shown with solid lines in Fig. 3. A
tracking algorithm based on the magnitude and phase
of the complex Floquet multipliers is implemented to
connect the LCEs across Ω , using the assumption that
for the continuous change of an LCE the real and imag-
inary parts of the corresponding Floquet multiplier do
not include any discontinuities.

Using this new approach to consider all LCEs, it
becomes apparent that there are multiple LCEs indi-
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Fig. 3 LCEs λi of system
in Eq. (2) over excitation
frequency Ω from 40 to

800 rads , ε = 0.15, largest
LCE Λ shown with dotted
line

2ω1 2ω2 2ω3200 400 600

−30

−20

−10

0

Δ21 Δ31Δ32 Σ21 Σ31 Σ32
Ω [ rads ]

λ [ 1s ]

cating resonance phenomena that are obscured when
evaluating only the largest LCE. The anti-resonance
expected at the difference frequency Δ31 is located in
LCEs with lower magnitudes. Additionally, in these
LCEs, all other fundamental and combination reso-
nances are revealed near their expected frequencies. At
fundamental as well as combination resonances, pairs
of LCEs split up symmetrically, with one decreasing
equally to the other increasing in magnitude. For fun-
damental resonances, the pairs are formed by adjacent
LCEs, which are observed to differ slightly if gyro-
scopic terms G �= 0 are present. These pairs are col-
ored with similar color shades in Fig. 3 with fundamen-
tal resonances of first (2ω1), second (2ω2), and third
order (ω3) clearly visible. At combination resonances,
i.e., at Σ31, LCEs which are not in close vicinity to
each other form pairs. This holds true also for the anti-
resonance, around which the LCEs do not split up but
move toward each other, crossing at Δ31.

From the observations made, it could be conjec-
tured to draw a connection between the three pairs of
LCEs involved in the resonance phenomena and the
first three modes of the unexcited system in both direc-
tions y and z. When ε → 0 for Ω beyond fundamental
resonances, the LCEs in question indeed approach the
real parts of the first modes’ eigenvalues. A direct con-
nection between modes and LCEs ,however, cannot be
made. It would contradict with the order the fundamen-
tal resonances appear in the LCEs. Considering the nth
eigenfrequency, the mth-order resonance at Ω = mωn

2
appears in the nth smallest LCE. This even holds true
when the LCEs swap places at anti-resonances, as can
be seen in the higher-order resonances of the first eigen-
frequency in Fig. 3. The fundamental resonance at 2ω1

appears in the orange-colored LCEs but second and
third order at ω1 and 3

2ω1 in the LCEs with a red shade.

5 Modification of the system to increase vibration
mitigation

If Ω is far away from fundamental or combination
resonances, the value of the i th-smallest LCE is − δi

2
with δi being the i th-largest damping coefficient of the
modes of the unexcited system. If the damping δi of
the modes coupled by parametric excitation differs,
anti-resonance emerges for ε > 0. Whether it appears
at the sum and/or difference of the modes’ eigenfre-
quencies depends on the phase shift between excitation
terms and if the excitation is displacement- or velocity-
proportional. At the anti-resonance frequency, the dis-
tance between the corresponding LCEs decreases as
ε increases, strengthening the stabilizing effect. When
a certain εcrit is reached, the LCEs cross each other.
The value of LCEs at the crossing point is found to
be − δi+δ j

4 in [4], exactly between the LCEs unaffected
by resonances. Amplitudes ε > εcrit of the parametric
excitation do not lead to further amplification of the
anti-resonance. Thus, as the LCEs cross, the point of
highest stabilization is reached. Further enhancement
of damping properties at the point of highest stabiliza-
tion can only be achieved by modifying either the sys-
tem’s parameters or the structure of parametric excita-
tion.

Apart from the intensity of the stabilizing effect, the
width of an anti-resonance is another aspect of interest
for vibrationmitigation. Thewider the frequency range
where the influence of anti-resonance is noticeable, the
more robust against variations in excitation frequency
Ω it is. In search of an increase in stability and robust-
ness, the effects of a phase shift ϕ on anti-resonance
will be explored next.

In [3,8], a phase shift ϕ between parametric excita-
tion terms on the main diagonal of a bimodal system
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Fig. 4 All LCEs λi of the
system in Eq. (2) over Ω ,
ε = 0.15, ϕ = π

2 (a) and
ϕ = π (b)

(b)
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showed not to affect combination resonance phenom-
ena, as long as there is no coupling through the under-
lying systems’ matrices. Only between the coupling,
off-diagonal terms of the parametric excitation will a
phase shift influence resonances and anti-resonances.
Viewing all LCEs (Fig. 4), it can be observed that this
property found in two-dimensional systems cannot be
applied to the multi-dimensional system in Eq. (2).
Despite the absence of coupling between the excited
DoF, a phase shift on the main diagonal of C affects
the occurrence of resonances and anti-resonances. The
combination resonances at Σ31 and Δ31 disappear for
ϕ = π ; instead new resonances at the combinations of
ω1 and ω2 as well as ω2 and ω3 emerge. Fundamen-
tal resonances are far less pronounced, which is favor-
able for the enhancement of equivalent damping, con-
sidering that they may only lead to destabilization. In
comparison with the anti-resonance for ϕ = 0, the two
newly found anti-resonances seem to be slightly advan-
tageous regarding vibration mitigation: The LCEs at
the crossing points are reduced, as now other LCEs
with larger mean damping are coupling. Furthermore,
the width of the anti-resonance effect is increased due
to the two anti-resonances being in close vicinity to
each other. Along with the two new anti-resonances,
two resonances emerge at the corresponding frequen-
cies. This, however, does not pose a problem regarding
vibration mitigation, asΩ can be set arbitrarily, e.g., to
Δ21, allowing for maximum stabilization at all operat-
ing points of the Jeffcott rotor.

As the parameters of the PID controller in the sys-
tem in Eq. (2) are fully accessible for modification,
other forms of parametric excitations are possible as
well. In [8], it was found that a phase shift between

the DoF coupled through parametric excitation leads
to swapping of the resonance phenomena at Σi j and
Δi j . To replicate the effect in the investigated system,
the parametric excitation is modified to be

C =
[

0 cos (Ωt)
cos (Ωt + ϕ) 0

]
, (3)

keeping the phase shift and introducing coupling
between the AMBs. The LCEs for this configuration
are shown in Fig. 5. As expected, resonance and anti-
resonance swap frequencies. The resonances lie at Δ21

and Δ32, whereas the anti-resonances are at Σ21 and
Σ32. At Σ21, both the width and stabilization effect
of the anti-resonance are increased compared to the
system without coupling. Whether the second anti-
resonance at Σ32 possesses any meaningful effect,
which can be utilized for enhancing vibration mitiga-
tion, is not apparent from Fig. 5, as the exact relation
of all LCEs at resonance phenomena and equivalent
damping is yet to be fully understood.

To verify the discussed effects of parametric excita-
tion with coupling and phase shift between the AMBs,
shown in Fig. 5, numerical simulation of the deflec-
tions over time is used. The results are illustrated in
Fig. 6. At Σ21, the anti-resonance is observable. Com-
paring with uncoupled excitation without phase shift
(Fig. 2), the increased stabilization becomes apparent,
with t = 0.55 s instead of t = 0.68 s needed for the
deflections to decay below the threshold. The second
anti-resonance atΣ32 is also visible, albeit only barely.
This shows the approach to derive all LCEs from Flo-
quet analysis can indeed be used to locate parameter
configurations that lead to anti-resonance, providing a
simple but insightful tool to gain deep insight into para-
metrically excited systems.
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Fig. 5 All LCEs λi of
system in Eq. (2) over Ω ,
coupling between bearings
ε = 0.15, ϕ = π
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Δ21 Δ31Δ32 Σ21 Σ31 Σ32
Ω [ rads ]

λ [ 1s ]

Fig. 6 Contour plot of
mean radial shaft deflections
over time t and frequency Ω

after uniform perturbation
of shaft in z-direction,
ε = 0.15. Amplitudes at
anti-resonance get
negligible small after 0.55 s,
indicated by dashed line

2ω1 2ω2 2ω3200 400 600
0

1

2

0.55

Δ21 Δ31Δ32 Σ21 Σ31 Σ32
Ω [ rads ]

t [s]

For the described approach to be applicable, all rel-
evant eigenvalues of the monodromy matrix have to be
identified and calculated. This might limit the applica-
tion when studying very large systems as they occur
in large finite element models. Further limitations to
the feasibility of the presented results might stem from
the model in Eq. 2 being linear. To gain a better under-
standing of if nonlinearities cause substantial changes
to the anti-resonances found, either further experiments
to validate the anti-resonances as done in [5] could be
conducted, or Eq. 2 could be extended to include non-
linear terms. In the case of the latter, however, the pro-
posed approach of using Floquet theory to calculate all
LCEs is still applicable, so the general methodology
would not change.

Another interesting subject for deeper exploration
is to use the understanding obtained in this contri-
bution to further optimize vibration mitigation. For
instance, the existence of two adjacent anti-resonances
as shown in Fig. 5 leads to the question of whether
their location can be influenced by changing param-
eters of the parametric excitation, possibly even com-
bining them to further increase the stabilizing effect. To
depict the effect of parameter variation, it is practical

to employ semi-analytical methods like normal forms
or multiple scales, as they lead to analytical expres-
sions that directly show each parameter’s influence.
The method of normal forms was successfully applied
to two-dimensional parametrically excited systems in
[8]. It will have to be extended by calculation of all
LCEs in future work to utilize the presented results.

6 Conclusion

Floquet analysis of a 16-DoF model of a Jeffcott rotor
showed that examination of all LCEs, instead of only
the largest, is necessary to investigate anti-resonance
phenomena caused by parametric excitation in multi-
dimensional systems. With this in mind, the effects of
modifications to the parametric excitation were ana-
lyzed. A phase shift between AMBs produced two new
anti-resonances, which were swapped with the corre-
sponding resonances by coupling the bearings through
parametric excitation. Both robustness and the stabi-
lizing effect are increased at the newly found anti-
resonances. The observations were verified in a simula-
tion of the system’s amplitudes after an initial displace-
ment. The investigation of all LCEs proves to give deep
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insight into stabilizing effects of parametric excitation
in multi-dimensional systems, which is a powerful tool
for precise enhancement of vibration mitigation.

Acknowledgements This paper was recommended for sub-
mission by the DSTA 2021 committee.

Author contributions AK, ZK, FD, and PH contributed to
conceptualization and writing—review and editing; ZK was
involved in data curation, formal analysis, investigation, valida-
tion, project administration, visualization, and writing—original
draft; AK and PH contributed to funding acquisition; AK, ZK,
and FD were involved in methodology; ZK, PH, and FD con-
tributed to supervision; FD was involved in resources; and ZK
and FD provided software.

Funding Open Access funding enabled and organized by Pro-
jekt DEAL. Open Access funding enabled and organized by Pro-
jekt DEAL. The support of the German Research Foundation
(DFG) throughDFGHA1060/60-01 is gratefully acknowledged.

Data availability Data sharing is not applicable to this article as
no datasets were generated or analyzed during the current study.

Declarations

Conflict of interest The authors declare that they have no con-
flict of interest.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References

1. Awrejcewicz, J.: Biforcation Portrait of the human vocal
cord oscillations. J. Sound Vib.136, 151–156 (1990)

2. Cesari, L.: Sulla stabilità delle soluzioni dei sistemi di
equazioni differenziali lineari a coefficienti periodici (On the
stability of systems of linear differential equations with peri-
odic coefficients) Reale Accademia d’Italia, Rome (1940)

3. Dohnal, F.: General parametric stiffness excitation: anti-
resonance frequency and symmetry. ActaMech. 196, 15–31
(2008)

4. Dohnal, F.: A contribution to the mitigation of transient
vibrations, parametric anti-resonance: theory, experiment
and interpretation Habilitation thesis. Technical University
of Darmstadt, Darmstadt (2012)

5. Dohnal, F., Chasalevris, A.: Inducing modal interaction dur-
ing run-upof amagnetically supported rotor In: 13th Interna-
tional Conference in Dynamical Systems Theory and Appli-
cations DSTA (2015)

6. El-Shourbagy, S.M., Saeed, N.A., Kamel, M., Raslan, K.R.,
Aboudaif, M.K., Awrejcewicz, J.: Control performance, sta-
bility conditions, and bifurcation analysis of the twelve-pole
active magnetic bearings system. Appl. Sci. 11(22), 10839
(2021)

7. Hale, J.: Ordinary Differential Equations. Pure and Applied
Mathematics. Robert E. Krieger Publishing Company, Mal-
abar (1980)

8. Karev, A., Hagedorn, P.: Asynchronous Parametric Excita-
tion inDynamical Systems PhD thesis, Technical University
of Darmstadt, Darmstadt (2021)

9. Saeed, N.A.,Mahrous, E., Nasr, E.A., Awrejcewicz, J.: Non-
linear dynamics and motion bifurcations of the rotor active
magnetic bearings system with a new control scheme and
rub-impact force. Symmetry 13(8), 1502 (2021)

10. Schmieg, H.: Kombinationsresonanz bei Systemen mit all-
gemeiner harmonischer Erregermatrix (Combination reso-
nance in systems with general harmonic excitation matrix).
PhD thesis, University of Karlsruhe, Karlsruhe (1976)

11. Tondl, A.: To the problem of self-excited vibration suppres-
sion. Eng. Mech. 15(4), 297–307 (2008)

12. Zhang, X.: Aktive Regel- und Kompensationsstrategien
für magnetgelagerte Mehrfreiheitsgrad-Rotoren. (Active
control and compensation strategies for multi-degree-
of-freedom rotors with magnetic bearings) GCA-Verlag,
Herdecke (2003)

13. Zhang, W., Wu, R.Q., Siriguleng, B.: Nonlinear vibrations
of a rotor-active magnetic bearing system with 16-pole legs
and two degrees of freedom. Shock Vib. 2020 (2020)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Enhancing vibration mitigation in a Jeffcott rotor with active magnetic bearings through parametric excitation
	Abstract
	1 Introduction
	2 Stability of parametrically excited systems
	3 System under consideration
	4 Stability analysis of the system under consideration
	5 Modification of the system to increase vibration mitigation
	6 Conclusion
	Acknowledgements
	References




