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Abstract In the continuous-time randomwalkmodel,
the time-fractional operator usually expresses an infi-
nite waiting time probability density. Different from
that usual setting, this work considers the tempered
time-fractional operator, which reflects a finite waiting
time probability density. Firstly, we analyse the solu-
tion of a tempered benchmark problem, which shows a
weak singularity near the initial time. The L1 scheme
on graded mesh and the weighted shifted Grünwald–
Letnikov formula with correction terms are adapted to
deal with the non-smooth solution, in which we com-
pare these two methods systematically in terms of the
convergence and consumed CPU time. Furthermore, a
fast calculation for the time tempered Caputo fractional
derivative is developed based on a sum-of-exponentials
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approximation, which significantly reduces the run-
ning time. Moreover, the tempered operator is applied
to the Bloch equation in nuclear magnetic resonance
and a two-layered problem with composite material
exhibiting distinct memory effects, for which both the
analytical (or semi-analytical) and numerical solutions
are derived using transform techniques and finite dif-
ference methods. Data-fitting results verify that the
tempered time-fractional model is much effective to
describe the MRI data. An important finding is that,
compared with the fractional index, the tempered oper-
ator parameter could further accelerate the diffusion.
The tempered model with two parameters α and ρ are
more flexible, which can avoid choosing a too small
fractional index leading to low regularity and strong
heterogeneity.

Keywords Tempered operator · Tempered Bloch
equation · Two-layered problem · Tempered diffusion ·
Non-smooth solution

Mathematics Subject Classification 26A33 ·
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1 Introduction

We start with a continuous-time randomwalk (CTRW)
model, which uses a waiting time probability density
function (pdf) ψ(t) and a jump length pdf η(x) to
describe the particles having different jumps (x1, x2,
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. . . , xi , . . .) at different times (t1, t2, . . . , ti , . . .).Define
a jump pdf �(x, t), then the jump length pdf and the
waiting time pdf can be expressed as [1,2]:

η(x) =
∫ ∞

0
�(x, t)dt, ψ(t) =

∫ ∞

−∞
�(x, t)dx .

We are interested in the case that the jump length
is independent of the waiting time, which leads to
�(x, t) = ψ(t)η(x). For a given ψ(t) and η(x), the
probability of finding a particle at position x and time
t satisfies the Montroll–Weiss (MW) equation [1,2],
which has the following form in the Fourier–Laplace
space:

P̂(ω, s) = 1 − ψ(s)

s

1

1 − ψ(s)η̂(ω)
,

where ψ(s) = ∫ ∞
0 estψ(t)dt and η̂(ω) = ∫ ∞

−∞ eiωxη
(x)dx . When a long-tailed waiting time pdf with the
asymptotic behaviour [2] ψ(t) ∼ Aα(Cτ /t)1+α , 0 <

α < 1, is considered, the Caputo time-fractional oper-
ator C0 D

α
t can be introduced in the setting. In this case,

the corresponding characteristic waiting time is:

T =
∫ ∞

0
tψ(t)dt ∼ AαC

1+α
τ

∫ ∞

0
t−αdt = ∞.

In the real world, since the waiting times may not be
arbitrarily long with a pure power-law distribution, the
concept of tempered waiting time pdf was proposed [3,
4], which is expected to have broader applicability [5].
Now consider a tempered long-tailed waiting time pdf
[6] ψ(t) ∼ Aα(Cτ /t)1+αe−ρt with Laplace transform
ψ(s) ∼ 1 − (Cτ (s + ρ))α , then the Caputo-tempered
time-fractional operator C0 D

(α,ρ)
t can be introduced as

C
0 D

(α,ρ)
t u(t) = e−ρt C

0 D
α
t (eρt u(t))

= e−ρt

	(1 − α)

∫ t

0

d(eρsu(s))

ds

1

(t − s)α
ds.

The corresponding characteristicwaiting time turns out
to be

T =
∫ ∞

0
tψ(t)dt ∼ AαC

1+α
τ

∫ ∞

0
t−αe−ρt dt

= AαC
1+α
τ

	(1 − α)

ρ1−α
,

which is finite. Motivated by this, we investigate the
Caputo-tempered fractional operator in this paper.

In the past twodecades, some attention has been paid
to the investigation of the tempered operator. In [3,4],
the truncated Lévy process was introduced to eliminate

the arbitrarily large flights produced by Lévy stable dis-
tributions. In [7], Cartea and del-Castillo-Negrete con-
sidered the CTRWs with exponentially truncated Lévy
jump pdf, which led to a transport equation with space-
tempered fractional derivatives to describe the inter-
action between long jumps and memory in the inter-
mediate asymptotic regime. In [5], Meerschaert et al.
proposed a novel tempered anomalous diffusion model
with exponentially tempered waiting times to capture
the natural cut-off of retention times in heterogeneous
systems. In [8], Zhang et al. presented a tempered frac-
tional mobile–immobile model with a tempered sta-
ble pdf for both particle jump length and resting time
able to explain the sediment transport involving super-
diffusive, sub-diffusive, and regular diffusive dynam-
ics. In [9], Wu et al. derived the tempered fractional
Feynman–Kac equation to describe the functional dis-
tribution of the paths of tempered anomalous dynam-
ics. In [10], Boniece et al. constructed two classes of
second-order, non-Gaussian transient anomalous dif-
fusion models to depict the tempered fractional Lévy
process.

In addition, different numerical methods were pro-
posed to deal with the tempered fractional models [11–
14], most of which are based on the spatial tempered
operator. Here, we concentrate on a numerical treat-
ment of the tempered time-fractional model. In [15],
Hanert and Piret applied a Chebyshev pseudospectral
method to discretise a time-space-tempered fractional
diffusion equation. In [16], Chen and Deng proposed
some high-order finite difference schemes for the time-
tempered fractional Feynman–Kac equation. In [17],
Ding and Li developed a tempered fractional-compact
difference formula to dealwith a timeCaputo-tempered
partial differential equation. In [18], Cao et al. con-
sidered the finite element method for a tempered time
fractional advection–dispersion equation.

Most existing numerical methods for the time-
tempered models assume a smooth solution, while the
works on numerical methods dealing with non-smooth
solutions are sparse [19,20]. The time-tempered bench-
mark problem shows that the solution has a weak sin-
gularity near the initial time, which motivates us to
develop numericalmethods to handle non-smooth solu-
tions. To observe the behaviour of the tempered opera-
tor, we adapt the tempered operator to the Bloch equa-
tion and the two-layered problem. The main contribu-
tions of the present work are as follows:

123



Analytical and numerical investigation on the tempered time-fractional operator 2043

• Beginning with a tempered benchmark problem,
the exact expression of the solution is derived,
which incorporates theMittag–Leffler function and
an exponentially tempered factor. When t → 0,
the solution shows weak singularity near the initial
time, for which most existing high-order numer-
ical schemes would fail. Based on the regularity
of the solution to the benchmark problem, a mod-
ified L1 scheme on graded mesh and the weighted
shifted Grünwald–Letnikov (WSGL) formula with
correction terms are developed, for which a sys-
tematical comparison in terms of the convergence
and consumed CPU time is presented. It finds that
for the L1 scheme on graded mesh, changing the
regularity index α does not affect the total con-
sumed CPU time too much, which facilitates the
implementation of the fast algorithm. The WSGL
scheme with correction terms shows high accuracy
and needs more correction terms when α is small,
which increases the consumed CPU time and leads
to an ill-conditioned matrix. A fast calculation for
the time-tempered Caputo fractional derivative is
developed based on a sum-of-exponentials approx-
imation, inwhich the kernel function t−β is approx-
imated under desired precision ε using three dif-
ferent quadratures. Numerical results demonstrate
that this fast method can reduce the running time
significantly.

• For the tempered Bloch equation, the analytical
solution is presented using Laplace transform. The
numerical solution is also deduced, by which the
effects of the fractional index α and tempered
parameter ρ are analysed in detail. The fractional
index delays the ‘longitudinal’ relaxation and pro-
motes the ‘transversal’ relaxation. In comparison,
the tempered parameter accelerates the ‘longitu-
dinal’ relaxation and alters the asymptotic value
and further advances the ‘transversal’ relaxation.
In addition, the classical monoexponential model,
the time-fractional model and the tempered time-
fractional model are compared to fit the MRI sig-
nal data in the human brain, of which the tempered
time-fractional model performs the best.

• For the tempered diffusion problem, the associated
mean squared displacement has one more factor
e−ρt compared to that of the pure time-fractional
diffusion problem. The analytical solution using
finite Fourier transform and numerical solution
with stability and convergence analysis are applied

to solve the problem, which is also extended to
the two-layered problem composing two different
materials. An important finding is that, compared
with the fractional index, the tempered parameter
could further accelerate the diffusion.The tempered
model with two parameters α and ρ are more flexi-
ble, which can avoid choosing a too small fractional
index leading to low regularity and strong hetero-
geneity.

The structure of this paper is as follows: In Sect. 2,
we consider a tempered benchmark problem, in which
two classical numerical schemes are applied and the
fast calculation for the time tempered Caputo fractional
derivative is developed. In Sect. 3, the tempered Bloch
equation is proposed, which is solved analytically and
numerically. In Sect. 4, the tempered diffusion problem
is presented, for which the analytical and numerical
solutions are established. In Sect. 5, a tempered two-
layered problem is introduced. Semi-analytical solu-
tion and numerical solution are derived. Finally, some
conclusions are drawn in Sect. 6.

2 Benchmark problems

In this work, we denote C as a general constant inde-
pendent of the grid size and may take distinct values in
different contexts. Firstly, we start with the following
benchmark problem:

C
0 D

(α,ρ)
t u(t) = −k0u(t), 0 < t ≤ T,

u(0) = u0, 0 < α < 1, ρ ≥ 0, (1)

where k0 and u0 are some constants. If ρ = 0, problem
(1) reduces to the fractional benchmark problem [21].

2.1 Analytical solution

Define the Laplace transform L { f (t)} = f̄ (s) =∫ ∞
0 e−st f (t)dt and the inverse Laplace transform

f (t) = L−1
{
f̄ (s)

} = 1
2π i

∫ c+i∞
c−i∞ est f̄ (s)ds. Apply-

ing the Laplace transform to (1) using the formula

L
{
C
a D

(α,ρ)
t u(t)

}
= (s + ρ)α ū(s) − (s + ρ)α−1u(0),

we have

(s + ρ)α ū(s) − (s + ρ)α−1u(0) = −k0ū(s),

123



2044 L. Feng et al.

which leads to

ū(s) = (s + ρ)α−1

(s + ρ)α + k0
u0.

Utilising the property L {
eρt f (t)

} = f̄ (s − ρ) and

L {Eα(−k0tα)} = sα−1

sα+k0
, we can derive

u(t) = u0e
−ρt Eα(−k0t

α),

where Eα(z) = ∑∞
n=0

zn
	(nα+1) is the Mittag–Leffler

function. When t → 0, using the Taylor series e−ρt =∑∞
j=0

(−ρt) j

j ! , we obtain

u(t) = u0e
−ρt Eα(−k0t

α)

= u0

∞∑
j=0

(−ρt) j

j !
∞∑
n=0

(−k0tα)n

	(nα + 1)

= u0

∞∑
j=0

∞∑
n=0

Cnj t
j+nα. (2)

We can see that, similar to the fractional benchmark
problem, the solution shows a weak singularity near
the initial time t = 0 since du(t)

dt blows up as t → 0.
We will extend two classical methods to deal with the
weak singularity problem: the L1 scheme on graded
mesh and the WSGL scheme with correction terms.

2.2 L1 scheme on graded mesh

Let N be a positive integer.Denote tn = T
( n
N

)r , r ≥ 1,
n = 0, 1, 2, . . . , N , τn = tn − tn−1, n = 1, 2, . . . , N .
When r = 1, the mesh recovers the uniform mesh.
Recall the L1 formula on graded mesh [22] to approx-
imate the Caputo derivative at t = tn :

C
0 D

α
t u(tn) = 1

	(2−α)

∑n−1
k=0

u(tk+1)−u(tk )
τk+1

[
(tn − tk)1−α

−(tn − tk+1)
1−α

] + Rn
1 .

According to the definition of the Caputo-tempered
fractional derivative, it is straightforward to derive

C
0 D

(α,ρ)
t u(tn) = e−ρtn C

0 D
α
t (eρtn u(tn))

= τ−α
n

	(2 − α)
u(tn) − τ−α

n

	(2 − α)
e−ρτn u(tn−1)

+
n−2∑
k=0

e−ρ(tn−tk+1)u(tk+1) − e−ρ(tn−tk )u(tk)

	(2 − α)τk+1

[
(tn − tk)

1−α

−(tn − tk+1)
1−α

] + Rn
1

:= C
0 D

(α,ρ)
t u(tn) + Rn

1 .

For the bound of the error term Rn
1 , we have the fol-

lowing lemma.

Lemma 1 Suppose | dudt | ≤ C(1+ tα−l) for l = 0, 1, 2
and 0 < α < 1, then the truncation error of the L1
scheme satisfies

|Rn
1 | =

∣∣∣C0 D(α,ρ)
t u(tn) − C

0 D
(α,ρ)
t u(tn)

∣∣∣
≤ Cn−min{2−α,rα}. (3)

Proof Using the definition of the derivative and inte-
gration by parts, we have

C
0 D(α,ρ)

t u(tn) − C
0 D

(α,ρ)
t u(tn)

= e−ρtn

	(1 − α)

n−1∑
k=0

∫ tk+1

tk

(
eρs [u(s) − uh(s)])′

(tn − s)α
ds

= −αe−ρtn

	(1 − α)

n−1∑
k=0

∫ tk+1

tk
(tn − s)−(α+1)

eρs [u(s) − uh(s)]ds

=
n−1∑
k=0

Tn,k ,

where uh(t) is a linear interpolation function to approx-
imate u(t) in [tk, tk+1] and

Tn,k = −αe−ρtn

	(1 − α)

∫ tk+1

tk
(tn − s)−(α+1)eρs [u(s) − uh(s)]ds.

As u(s) − uh(s) = 1
2u

′′(ξk)(s − tk−1)(tk − s), ξk ∈
[tk−1, tk], we have

|Tn,k | ≤ Cτ 2k+1 max
t∈[tk ,tk+1]

|u′′(t)|
∫ tk+1

tk

× (tn − s)−(α+1)ds.

Similar to the proof in Lemma 5.2 in [22], when 1 ≤
k ≤ n − 1, we have

∑	n/2
−1
k=1 |Tn,k | ≤

⎧⎨
⎩
Cn−r(α+1), if r(α + 1) < 2,
Cn−2 ln n, if r(α + 1) = 2,
Cn−2, if r(α + 1) > 2,

and
∑n−2

k=	n/2
 |Tn,k | ≤ Cn−(2−α).

Now we consider the bound of Tn,0. If n = 1, then

T1,0 = τ−α
1

	(2 − α)
[F(t1) − F(t0)]
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Table 1 The error and convergence order of the L1 scheme on graded mesh for the tempered ODE (1) at t = 1, where the parameters
are k0 = 2, ρ = 0.5, u0 = 1

N (α = 0.8) r = 1 r = 2−α
α

r = 2(2−α)
α

Error Order Error Order Error Order

160 6.0205E–03 1.5928E–03 9.5021E–04

320 3.4550E–03 0.80 7.3284E–04 1.12 4.1541E–04 1.19

640 1.9798E–03 0.80 3.3371E–04 1.13 1.8123E–04 1.20

1280 1.1365E–03 0.80 1.5075E–04 1.15 7.8981E–05 1.20

2560 6.5228E–04 0.80 6.7666E–05 1.16 3.4401E–05 1.20

5120 3.7444E–04 0.80 3.0218E–05 1.16 1.4979E–05 1.20

N (α = 0.4) r = 1 r = 2−α
α

r = 2(2−α)
α

Error Order Error Order Error Order

160 4.5385E–02 3.4393E−04 2.3495E−04

320 3.6943E–02 0.30 1.1842E−04 1.54 7.9816E−05 1.56

640 2.9574E–02 0.32 4.0418E−05 1.55 2.6902E−05 1.57

1280 2.3372E–02 0.34 1.3712E−05 1.56 8.9942E−06 1.58

2560 1.8287E–02 0.35 4.6283E−06 1.57 2.9968E−06 1.59

5120 1.4201E–02 0.36 1.5557E−06 1.57 9.8013E−07 1.61

− 1

	(1 − α)

∫ t1

0
(t1 − s)−αF ′(s)ds,

where F(t) = eρt u(t). As F ′(t) = eρt (ρu(t)+ u′(t)),
then |F ′(t)| ≤ Ctα−1, t ∈ (0, t1). Similar to the proof
in [22], we can obtain |T1,0| ≤ C . For n > 1, we have

|Tn,0| =
∣∣∣∣ αe−ρtn

	(1 − α)

∫ t1

t0
(tn − s)−(α+1)eρs [u(s) − uh(s)]ds

∣∣∣∣

≤ C
∫ t1

t0
(tn − s)−(α+1)|u(s) − uh(s)|ds

= C
∫ t1

t0
(tn − s)−(α+1)

∣∣∣∣
∫ s

0
(u(θ) − uh(θ))′dθ

∣∣∣∣ ds

≤ C
∫ t1

t0
(tn − s)−(α+1)

(∫ s

0
|u′(θ)|dθ

+
∫ s

0
t−1
1

∫ t1

0
|u′(η)|dηdθ

)
ds

≤ C
∫ t1

t0
(tn − s)−(α+1)(sα + stα−1

1 )ds

≤ Ctα1

∫ t1

t0
(tn − s)−(α+1)ds

≤ C

(
tn − t1
t1

)−α

≤ Cn−rα.

Finally, we consider the term Tn,n−1

|Tn,n−1| ≤ Cτ 2n max
t∈[tn−1,tn ]

|u′′(t)|
∫ tn

tn−1

(tn − s)−(α+1)ds

≤ Cτ 2n t
α−2
n−1 τ−α

n ≤ Cτ 2−α
n tα−2

n−1 ≤ Cn−(2−α).

Combining these error bounds, we can derive (3). ��

Denote un as the numerical approximation to u(tn). We
can derive the numerical scheme of (1) as

C
0 D

(α,ρ)
t un = −k0u

n .

We give an example to illustrate the effectiveness of
the numerical scheme by choosing k0 = 2, ρ = 0.5,
u0 = 1 and T = 1. The error and convergence order
of the scheme with varying N and α are presented in
Table 1. It can be seen that the L1 scheme fails for
a uniform mesh (r = 1), while the highest possible
convergence order 2 − α is obtained for the optimal
graded mesh r = 2−α

α
, which means the L1 scheme

is effective as well to approximate the time-tempered
operator. As suggested by [22], it is better to choose
r = 2(2−α)

α
when the fractional index α is unknown.
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2.3 The WSGL formula with correction terms

Generally, the analytical solution of the time-fractional
differential equation contains the term tσm , which
exhibits low regularity when σm is small. The WSGL
formulawith correction terms is a usefulmethod to deal
with the solution with low regularity term tσm , in which
the correction term can be exact or highly accurate to
approximate the term tσm [23–25]. Even when the reg-
ularity indices in the correction terms do not match
the singularity of the analytical solution exactly, the
accuracy of the WSGL formula can still be improved
significantly [24]. As shown in (2), the solution incor-
porates a similar term tσm , therefore the WSGL for-
mula could be used to handle the problem. Here we
use a uniform grid in the temporal direction. Denote
tn = nτ , n = 0, 1, 2, . . . , N , where τ = T

N is the
uniform temporal step and N ∈ Z

+. Introduce the
Riemann–Liouville fractional derivative

R
0 D

α
t v(t) = 1

	(1 − α)

d

dt

∫ t

0

v(ξ)

(t − ξ)α
dξ, 0 < α < 1.

Then, the WSGL formula to discretise the Riemann–
Liouville time-fractional derivative is

R
0 D

α
t u(tn) = τ−α

n∑
k=0

ω
(α)
n−ku(tk)

+ τ−α
m∑

k=1

W (n,α)
k u(tk), (4)

where ω
(α)
0 = 2+α

2 g(α)
0 ω

(α)
k = 2+α

2 g(α)
k − α

2 g
(α)
k−1,

g(α)
k = (−1)k

(
α
k

)
, and the starting weights W (n,α)

k
are chosen such that (4) is exact for v(t) = tσm

(m = 0, 1, 2, . . .), which leads to the system:

m∑
k=1

W (n,α)
k kσm = 	(σm+1)

	(σm+1−α)
nσm−α−

n∑
k=0

ω
(α)
n−kk

σm .

(5)

We apply the formula to the Caputo-tempered operator
at t = tn to obtain

C
0 D

(α,ρ)
t u(tn) = e−ρtn R

0 D
α
t (F(tn) − F(t0))

= e−ρtnτ−α
n∑

k=0

ω
(α)
n−k (F(tk) − F(t0))

+ e−ρtnτ−α
m∑

k=1

W (n,α)
k

× (F(tk) − F(t0)) + Rn
2

= τ−α
n∑

k=0

ω
(α)
n−ke

−ρtn−k u(tk)

− e−ρtnτ−α
n∑

k=0

ω
(α)
n−ku(t0)

+ τ−α
m∑

k=1

W (n,α)
k e−ρtn−k u(tk)

− e−ρtnτ−α
m∑

k=1

W (n,α)
k u(t0) + Rn

2

:= C
0 D

(α,ρ)
t u(tn) + Rn

2 ,

where F(t) = eρt u(t) and |Rn
2 | ≤ Cτ 2tσm+1−2−α

n . To
guarantee theWSGLformula has a global second-order
convergence, we need σm+1 ≥ 2+ α. For more details
about choosing the correction terms, one can refer to
[24]. For our problem, at t = tn , we have
C
0 D

(α,ρ)
t un = −k0u

n .

To verify the WSGL formula, we also give an example
using the same parameters k0 = 2, ρ = 0.5, u0 = 1
and T = 1, to which the numerical results are given
in Table 2. We can observe that without the correc-
tion terms (m = 0), the WSGL formula only exhibits
convergence rate O(τα). While adding the correction
terms into the WSGL formula, the second-order con-
vergence is obtained for the case α = 0.8 with m = 2.
Although the optimal second-order convergence is not
reached for the case α = 0.4 with m = 4, the accu-
racy has been improved significantly. It reveals that
the WSGL formula is also feasible to tackle the time-
fractional tempered problem.

2.4 Comparison of the two methods

In this section, we compare the L1 scheme on graded
meshwith theWSGLscheme.To avoid the error caused
by discretising the Mittag–Leffler function, we con-
sider the following example:
C
0 D

(α,ρ)
t u(t) = f (t), 0 < t ≤ T, u(0) = u0, (6)

with an exact solution u(t) = u0e−ρt
8∑

k=0
tkα . In the

calculation, we choose the parameters ρ = 0.5, u0 = 1
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Table 2 The error and convergence order of the WSGL scheme for the tempered ODE (1) at t = 1, where the parameters are k0 = 2,
ρ = 0.5, u0 = 1

N (α = 0.8) m = 0 m = 2

Error Order Error Order

160 1.2426E–02 1.4662E–05

320 7.3015E–03 0.77 3.8910E–06 1.91

640 4.2476E–03 0.78 1.0616E–06 1.87

1280 2.4573E–03 0.79 2.8079E–07 1.92

2560 1.4171E–03 0.79 7.2789E–08 1.95

5120 8.1580E–04 0.80 1.8625E–08 1.97

N (α = 0.4) m = 0 m = 4

Error Order Error Order

160 5.5856E–02 3.1630E–05

320 4.5653E–02 0.29 1.0970E–05 1.53

640 3.6675E–02 0.32 3.5479E–06 1.63

1280 2.9069E–02 0.34 1.0843E–06 1.71

2560 2.2800E–02 0.35 3.1673E–07 1.78

5120 1.7739E–02 0.36 8.9282E–08 1.83

Table 3 The error and convergence order of the L1 scheme for the example (6) at t = 1, where the parameters are ρ = 0.5, u0 = 1,
r = 2(2−α)

α

N α = 0.4 α = 0.8

Error Order CPU time(s) Error Order CPU time(s)

640 1.1327E–03 0.12 1.0984E–02 0.11

1280 3.8563E–04 1.55 0.36 4.8006E–03 1.19 0.36

2560 1.3022E–04 1.57 1.27 2.0947E–03 1.20 1.21

5120 4.3745E–05 1.57 4.75 9.1312E–04 1.20 4.64

10240 1.4672E–05 1.58 18.13 3.9780E–04 1.20 17.87

20480 4.9366E–06 1.57 70.42 1.7324E–04 1.20 69.51

and T = 1. The related numerical results are shown in
Tables 3 and 4, respectively. From Table 3, we can see
that the optimal convergence order 2 − α is obtained
using mesh grading r = 2(2−α)

α
. An important prop-

erty is that the CPU time for the cases α = 0.4 and
α = 0.8 is almost the same, which means the frac-
tional index α does not affect the CPU time too much
for a fixed N . This will facilitate the implementation
of the fast calculation of the tempered operator in the
subsequent section. Compared to the L1 scheme, the
WSGL scheme is of high order, which shows better
accuracy and convergence. However, when α is small,
we need to add more correction terms, which increases

the CPU time. In addition, the system (5) leads to an
exponential Vandermonde type matrix.When the num-
ber of the correction terms is large, the matrix will be
ill-conditioned, which may cause big round-off errors
[24]. We can conclude that both methods have merits
and drawbacks.

2.5 Fast calculation for the time-tempered Caputo
fractional derivative

In this part, based on the L1 scheme, we consider a
fast evaluation for the time-tempered Caputo fractional
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Table 4 The error and convergence order of the WSGL scheme for the example (6) at t = 1, where the parameters are ρ = 0.5, u0 = 1

N α = 0.4 (m = 4) α = 0.8 (m = 2)

Error Order CPU time(s) Error Order CPU time(s)

640 2.5706E–06 0.18 3.6710E–05 0.12

1280 6.5015E–07 1.98 0.41 9.1970E–06 2.00 0.26

2560 1.6377E–07 1.99 1.03 2.3018E–06 2.00 0.68

5120 4.1153E–08 1.99 3.27 5.7579E–07 2.00 2.06

10240 1.0325E–08 1.99 11.24 1.4399E–07 2.00 6.73

20480 2.5878E–09 2.00 39.57 3.6004E–08 2.00 24.18

derivative, in which the derivative is to be split into two
different parts: the local part and the history part. A
fast approximation will be applied to the history part.
We now give a detailed implementation. At t = tn , we
have

C
0 D

(α,ρ)
t u(t)

∣∣∣
t=tn

= e−ρt C
0 D

α
t (eρt u(t))

∣∣∣
t=tn

= e−ρtn

	(1 − α)

∫ tn

0

(eρsu(s))′

(tn − s)α
ds

= e−ρtn

	(1 − α)

∫ tn−1

0

(eρsu(s))′

(tn − s)α
ds

+ e−ρtn

	(1 − α)

∫ tn

tn−1

(eρsu(s))′

(tn − s)α
ds

:= Ch(tn) + Cl(tn),

where Ch(tn) is the history part and Cl(tn) is the local
part. For the local partCl(tn), we use the backward dif-
ference scheme to approximate the first-order deriva-
tive, which gives

Cl(tn) ≈ e−ρtn

	(1 − α)

eρtn u(tn) − eρtn−1u(tn−1)

τn

×
∫ tn

tn−1

1

(tn − s)α
ds

= u(tn) − e−ρτn u(tn−1)

τα
n 	(2 − α)

.

With regard to the history partCh(tn), using integration
by parts, we obtain

Ch(tn) = e−ρtn

	(1 − α)

∫ tn−1

0

(eρsu(s))′

(tn − s)α
ds

= e−ρtn

	(1 − α)

[
eρtn−1u(tn−1)

τα
n

− u(t0)

tαn

−α

∫ tn−1

0

eρsu(s)

(tn − s)1+α
ds

]
. (7)

Next, we approximate the kernel t−β (0 < β < 2) via
a sum-of-exponentials (SOE) approximation [26]. For
t ∈ [σ, T ], σ = min

1≤n≤N
{τn}, there exist some positive

real numbers si and ωi (i = 1, 2, . . . , Nexp) such that

∣∣∣∣∣∣t
−β −

Nexp∑
i=1

ωi e
−si t

∣∣∣∣∣∣ ≤ ε, t ∈ [σ, T ], β ∈ (0, 2),

where

Nexp = O
(
log

1

ε

(
log log

1

ε
+ log

T

σ

)

+ log
1

σ

(
log log

1

ε
+ log

1

σ

))
.

Replacing the kernel t−1−α in the history part (7) with
the SOE approximation, we obtain

α

∫ tn−1

0

eρsu(s)

(tn − s)1+α
ds = α

×
∫ tn−1

0

Nexp∑
i=1

ωi e
−si (tn−s)eρsu(s)ds

= α

Nexp∑
i=1

ωi e
ρtnUhis,i (tn),

where Uhis,i (tn) = ∫ tn−1
0 e−(ρ+si )(tn−s)u(s)ds. For the

term Uhis,i (tn), we have the following recurrence rela-
tion
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Uhis,i (tn) = e−(ρ+si )τnUhis,i (tn−1)

+
∫ tn−1

tn−2

e−(ρ+si )(tn−s)u(s)ds.

Using a linear interpolation function to approximate
u(t) on the interval [tn−2, tn−1], we can derive

∫ tn−1

tn−2

e−(ρ+si )(tn−s)u(s)ds

≈ e−(ρ+si )τn

(ρ + si )2τn−1

[
(e−(ρ+si )τn−1 − 1

+ (ρ + si )τn−1)u(tn−1)

+ (1 − e−(ρ+si )τn−1

− e−(ρ+si )τn−1(ρ + si )τn−1)u(tn−2)

]
.

Finally, the fast approximation of C0 D
(α,ρ)
t u(tn), n ≥ 2

can be written as

FC
0 D

(α,ρ)
t u(tn)

:= u(tn) − e−ρτn u(tn−1)

τα
n 	(2 − α)

+ e−ρtn

	(1 − α)

[
eρtn−1u(tn−1)

τα
n

−u(t0)

tαn
− α

Nexp∑
i=1

ωi e
ρtnUhis,i (tn)

⎤
⎦

= u(tn)

τα
n 	(2 − α)

− αe−ρτn u(tn−1)

τα
n 	(2 − α)

− e−ρtn u(t0)

	(1 − α)tαn
− α

	(1 − α)

Nexp∑
i=1

ωiUhis,i (tn). (8)

When n = 1, we have

FC
0 D

(α,ρ)
t u(t1) := u(t1) − e−ρτ1u(t0)

τα
1 	(2 − α)

. (9)

For the truncation error of the fast algorithm, similar to
the proof in [18,26], it is straightforward to conclude
the following lemma.

Lemma 2 Suppose | dudt | ≤ C(1+ tα−l) for l = 0, 1, 2
and 0 < α < 1 and let ε be the desired precision, then
we have the truncation error of the fast schemes (8)–(9)

|Rn
3 | =

∣∣∣C0 D(α,ρ)
t u(tn) − FC

0 D
(α,ρ)
t u(tn)

∣∣∣
≤ C

(
n−min{2−α,rα} + ε

)
.

In the subsequent sections, we adapt the tempered oper-
ator into different models to observe the behaviour of
the tempered models.

3 Application I: tempered Bloch equations

Ordinary matter all has nuclei with induced magnetic
moments, leading to a nuclear paramagnetic polarisa-
tion in a constant magnetic field when an equilibrium is
established. Imposing an external radiofrequency field
to the constant field at a right angle can cause the Lar-
mor precession of the moments around the constant
field, which can induce an electromotive force in a coil
[27,28]. Furthermore, the induced electromotive force
can be transferred into visible signals. This is the prin-
ciple of nuclear magnetic resonance (NMR) and mag-
netic resonance imaging (MRI). NMR has been widely
used to analyse complex biological materials in chem-
istry, medicine, and engineering. The phenomenologi-
cal Bloch equation is utilised to capture the magnetisa-
tion dynamics. The empirical vector form of the Bloch
equation is:

dM(t)

dt
= γM(t) × B(t) + M0 − Mz(t)

T1
k

− Mx (t)i + My(t)j
T2

,

whereM = [Mx , My, Mz]T is the magnetisation, B is
the static magnet field, B(t) = B0k, M0 is the equilib-
rium magnetisation, γ is the gyromagnetic ratio with
a relation to the Larmor frequency ω0 = γ B0. The
relaxation terms refer to the time return to equilib-
rium, where T1 is the ‘longitudinal’ relaxation time and
T2 is the ‘transversal’ relaxation time. To investigate
heterogeneous, porous and complex materials exhibit-
ing memory, Magin et al. [29,30] generalise the Bloch
equation to the time-fractional Bloch equation. From
the view of CTRW, the time-fractional operator relates
to an infinite waiting time. Since the waiting time for a
water proton cannot be arbitrarily long, we modify the
equation as the tempered Bloch equation with finite
waiting time, which is written in the form
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μα−1
1

C
0 D

(α,ρ)
t Mz(t) = M0 − Mz(t)

T1
,

μα−1
2

C
0 D

(α,ρ)
t Mx (t) = ω0My(t) − Mx (t)

T2
,

μα−1
2

C
0 D

(α,ρ)
t My(t) = −ω0Mx (t) − My(t)

T2
.

These equations can be recast into

C
0 D

(α,ρ)
t Mz(t) = M0 − Mz(t)

T ′
1

, (10)

C
0 D

(α,ρ)
t Mx (t) = �0My(t) − Mx (t)

T ′
2

, (11)

C
0 D

(α,ρ)
t My(t) = −�0Mx (t) − My(t)

T ′
2

, (12)

where μ1 and μ2 are constants to preserve units, α

is the fractional index, ρ is the tempered parameter,
�0 = ω0μ

1−α
2 , T ′

1 = μα−1
1 T1 and T ′

2 = μα−1
2 T2.

When ρ = 0, the system recovers the time-fractional
Bloch equation proposed in [29]. We consider the ana-
lytical and numerical solutions for the system.

3.1 Analytical solution

Applying the Laplace transform to (10) leads to

Mz(s) = (s + ρ)α−1

(s + ρ)α + k1
Mz(0) + k2

s[(s + ρ)α + k1] ,

where k1 = 1
T ′
1
and k2 = M0

T ′
1
. Using the property

L{eρt f (t)} = f̄ (s − ρ), L{tα−1Eα,α(−ktα)} = 1
sα+k

andL−1{ f̄ (s)ḡ(s)} = ∫ t
0 f (η)g(t−η)dη and applying

the inverse Laplace transform, we can derive

Mz(t) = Mz(0)e
−ρt Eα(−k1t

α)

+ k2

∫ t

0
e−ρηηα−1Eα,α(−k1η

α)dη

= Mz(0)e
−ρt Eα

(
− tα

T ′
1

)

+ M0

T ′
1

∫ t

0
e−ρηηα−1Eα,α

(
−ηα

T ′
1

)
dη. (13)

Suppose that M+(t) = Mx (t)+ iMy(t)with M+(0) =
Mx (0) + iMy(0). Combining (11) and (12) gives

C
0 D

(α,ρ)
t M+(t) = −i�0M+(t) − M+(t)

T ′
2

. (14)

Applying theLaplace transformand the inverseLaplace
transform to (14), we can obtain

M+(t) = M+(0)e−ρt Eα(−k3t
α), (15)

where k3 = i�0 + 1
T ′
2
. As the analytical solutions (13)

and (15) involve the Mittag–Leffler function and its
integral,which is very challenging to calculate,weneed
to resort to a numerical solution of the problem.

3.2 Numerical solution

We use the L1 scheme on gradedmesh to solve the tem-
pered problem (10)–(12). Define Mn as the numerical
approximation of M(tn). At t = tn , we can obtain the
following numerical scheme:

C
0 D

(α,ρ)
t Mn

z = M0 − Mn
z

T ′
1

,

C
0 D

(α,ρ)
t Mn

x = �0M
n
y − Mn

x

T ′
2

,

C
0 D

(α,ρ)
t Mn

y = −�0M
n
x − Mn

y

T ′
2

.

3.3 Numerical examples

Some numerical results are shown in Figs. 1, 2, 3. Fig-
ure 1a shows that the fractional order α enhances the
relaxation at a small time scale and then delays the
relaxation later compared to the classical case α = 1.
The smaller the fractional index is, the slower it con-
verges to its final asymptotic value. Figure 1b illus-
trates that the tempered parameter ρ can accelerate the
process to reach its asymptotic value. Contrary to the
fractional order α, the larger ρ is, the more rapid it
converges to its maximum value. In addition, with a
large α and moderate ρ (α = 0.9, ρ = 0.2), we can
obtain a similar final state by choosing small α only
(α = 0.5, ρ = 0.0). This facilitates avoiding choosing
too small α since a small fractional index means strong
heterogeneity or low regularity of the solution.

The effects of α and ρ on My(t) are presented in
Fig. 2. We can see that, for the classical case α = 1,
ρ = 0, it needs a long relaxation time to decay to zero.
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(b) Varying ρ

Fig. 1 The evolution of Mz(t) with different α (a) and different
ρ (b), where the parameters used are Mz(0) = 0, M0 = 100,
T ′
1 = 1(ms)α

The fractional order boosts the decay. The smaller α

is, the faster it decays. The tempered parameter ρ pro-
motes the decay further. We can observe that it decays
faster with α = 0.9, ρ = 0.2 than with α = 0.8,
ρ = 0.0, which is similar to the discussion above.
Figure 3 displays the effects of ρ on the evolution of
Mx (t) versusMy(t). Similarly, the tempered parameter
advances the decay process to zero.

The Bloch equation is related to the MRI sig-

nal by S(t) = A0

√
M2

x (t) + M2
y (t) + C , where

A0 is the amplitude of the signal and C is a con-
stant accounting for the background noise [31]. Fig-
ure 4 shows the voxel-level temporal fitting based on
three models, namely the classical mono-exponential
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Fig. 3 The evolution of Mx (t) versus My(t) with different ρ,
where the parameters used are T ′

2 = 20(ms)α f̃0 = �0
2π =

160Hz, Mx (0) = 0, My(0) = 100

Fig. 2 The evolution of
My(t) with different α and
ρ, where the parameters
used are T ′

2 = 20(ms)α

f̃0 = �0
2π = 160Hz,

Mx (0) = 0, My(0) = 100
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Fig. 4 Voxel-level data fittings of the classical model (Mono-
exp), time-fractional model (Fractional) and tempered time-
fractional model (Tempered). Here we consider two different
voxels (locations (a) (132, 55, 47) and (b) (80, 60, 68)) in dif-
ferent brain regions, of which the data are extracted from [32].
The mean square error (MSE) is defined as

∑n
j=1(y

′
j − y j )2/n,

where y j is the real data, y′
j is the predicted data and n is the

number of data

model (A0 exp(−t/T2)+C), the time-fractional model
(A0Eα(−tα/T2) + C) [29] and our tempered time-
fractional model. The experimental data are extracted
from the paper [32]. The ‘lsqcurvefit’ MATLAB rou-
tine is used to perform all the data fittings with a max-
imum number of iteration and a relative tolerance set
as 1 × 107 and 1 × 10−7, respectively. The specific
fitting procedure can be referred to [31]. This proce-
dure is generally followed here to determine the initial
conditions for our model with A0, T2 and C based on

the results from the exponential model and α from the
fractional model. These parameters are constrained in
ranges to 70−130% of their starting values. ω and ρ

are new parameter to the other two models, which are
initialised to 10 and 0.1 with ranges confined in 0−250
and 0−1. The mean-square error (MSE) is adopted to
measure the quality of the fitting. From Fig. 4, we can
see that for the signal at position (a), both the classical
model and the time-fractional model have a largeMSE,
while the tempered model has a clear improvement in
the accuracy of fitting the voxel-level MRI data with
less than a half MSE. For the data at position (b), the
classical model does not fit well with an MSE 558.10.
Although the time-fractionalmodel improves thefitting
little, the MSE is still large with a value of 524.59. In
comparison, the MSE for the tempered time-fractional
model reduces significantly to 132.11. We conclude
that the tempered time-fractional model is effective in
fitting the MRI signal.

4 Application II: tempered diffusion problems

In the CTRW model, when a Poissonian waiting time
pdf togetherwith aGaussian jump length pdf is applied,
the standard diffusion equation can be derived, describ-
ing the Brownian motion. When the finite waiting
time pdf is replaced with a divergent long-tailed wait-
ing time pdf, it leads to the time-fractional diffusion
equation used to characterise the anomalous diffusion
[2]. Different from the standard diffusion with mean-
squared displacement 〈x2(t)〉 ∼ t , the mean-squared
displacement of time-fractional diffusion has the prop-
erty 〈x2(t)〉 ∼ tα , where 0 < α < 1 is the fractional
order. In this section, we consider a tempered long-
tailed waiting time pdf to solve a tempered diffusion
problem

C
0 D

(α,ρ)
t u(x, t) = D

∂2u(x, t)

∂x2
+ f (x, t),

x ∈ (0, l), t ∈ (0, T ], (16)

subject to the initial and boundary conditions

u(x, 0) = ψ(x), x ∈ [0, l], u(0, t) = u(l, t) = 0,

t ∈ (0, T ]. (17)
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4.1 The mean-squared displacement

To study the mean-squared displacement of the prob-
lem, we suppose f (x, t) = 0, ψ(x) = δ(x). Applying
the Laplace transform and Fourier transform succes-
sively to obtain

û(ω, s) = (s + ρ)α−1

(s + ρ)α + Dω2 .

As − ∂2û(ω,s)
∂ω2

∣∣
ω=0 = − 2D

(s+ρ)α+1 , we derive

〈x2(t)〉 = e−ρt 2Dtα

	(1 + α)
.

Different to the mean-squared displacement of the
time-fractional diffusion in [2], one tempered factor
e−ρt is added.

4.2 Analytical solution

We first use the finite Fourier transform technique to
solve the problem (16)–(17). The associated eigenvalue
problem that needs to be solved is

−d2ϕ

dx2
= λ2ϕ, ϕ(0) = 0, ϕ(l) = 0,

to which the solution is λ2n = n2π2

l2
for n = 1, 2, . . .

and ϕn(x) =
√

2
l sin (λnx). Define the finite Fourier

transform ũ(λn, t) := 〈u, ϕn〉 = ∫ l
0 u(x, t)ϕn(x)dx .

Applying it to (16), we obtain

〈
C
0 D

(α,ρ)
t u(x, t), ϕn

〉
= D

〈
∂2u(x, t)

∂x2
, ϕn

〉
+ 〈 f (x, t), ϕn〉.

(18)

As D
〈
∂2u(x,t)

∂x2
, ϕn

〉
= −D

〈
d2ϕn
dx2

, u
〉

= −Dλ2n〈u, ϕn〉,
(18) can be recast into

C
0 D

(α,ρ)
t ũ = −Dλ2nũ + f̃ . (19)

Applying the Laplace transform to (19) and denoting
ũ(λn, s) = L{̃u(λn, t)}, we can derive

ũ = (s + ρ)α−1ũ(0)

(s + ρ)α + Dλ2n
+ f̃

(s + ρ)α + Dλ2n
. (20)

Imposing the inverse Laplace transform to (20) leads
to

ũ(ρn, t) = ũ(0)e−ρt Eα(−Dλ2nt
α)

+
∫ t

0
e−ρηηα−1Eα,α

(
−Dλ2nη

α
)
f̃ (t − η)dη.

Then the analytical solution can be derived as

u(x, t) =
√
2

l

∞∑
n=1

[
ũ(0)e−ρt Eα

(
−Dλ2nt

α
)

+
∫ t

0
e−ρηηα−1Eα,α

(
−Dλ2nη

α
)
f̃ (t − η)dη

]
sin

(nπx

l

)
, (21)

where ũ(0) = 〈ψ, ϕn〉, f̃ = 〈 f, ϕn〉.

4.3 Numerical solution

4.3.1 Numerical scheme

Now we consider the numerical solution to (16)–(17).
Firstly, we denote a uniform mesh in space domain.
Define h = l

M , xi = ih, i = 0, 1, 2, . . . , M , where
M is a positive integer. For the space Laplacian opera-
tor, we use the standard second-order central difference
scheme to approximate:

∂2u(xi , tn)

∂x2
= u(xi−1, tn) − 2u(xi , tn) + u(xi+1, tn)

h2

+ O(h2)

:= δ2xu(xi , tn) + O(h2).

Let uni be the numerical solution to u(xi , tn). Then, the
numerical scheme to (16)–(17) is

C
0 D

(α,ρ)
t uni = Dδ2xu

n
i + f ni ,

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N , (22)

un0 = unM = 0, for 0 < n ≤ N , (23)

u0i = ψ(xi ), for 0 ≤ i ≤ M. (24)

And the fast numerical scheme to (16)–(17) is

FC
0 D

(α,ρ)
t uni = Dδ2xu

n
i + f ni ,

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N , (25)
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un0 = unM = 0, for 0 < n ≤ N , (26)

u0i = ψ(xi ), for 0 ≤ i ≤ M. (27)

4.3.2 Stability

Theorem 1 The numerical scheme (22) is uncondi-
tional stable, and it holds that

||un||∞ ≤ ||u0||∞ + τα
n 	(2 − α)

n∑
j=1

θn, j || f j ||∞,

where θn,n = 1, θn, j = ∑n− j
k=1 τα

n−k(dn,k − dn,k+1)

θn−k, j .

Proof According to Lemma 4.2 in [22], it is straight-
forward to derive

||eρtn un||∞ ≤ ||u0||∞ + τα
n 	(2 − α)

n∑
j=1

θn, j ||eρt j f j ||∞,

which leads to

||un||∞ ≤ e−ρtn ||u0||∞ + e−ρtnτα
n 	(2 − α)

n∑
j=1

θn, j ||eρt j f j ||∞

≤ ||u0||∞ + τα
n 	(2 − α)

n∑
j=1

θn, j || f j ||∞.

The proof is completed. ��

4.3.3 Convergence

Theorem 2 Define un andUn as the exact and numer-
ical solution vector, respectively. Then, there exists a
positive constant C independent of τ and h such that

||un −Un||∞ ≤ C(h2 + T αN−min{2−α,rα}).

Proof The truncation error of (22) at (xi , tn) is

|Rn| ≤ C(h2 + T αn−min{2−α,rα}).

Invoking Theorem 1, we have

max |u(xi , tn) − uni | ≤ Cτα
n 	(2 − α)

n∑
j=1

θn, j ||R j ||∞

≤ Cτα
n 	(2 − α)

n∑
j=1

θn, j (h
2

+ T α j−min{2−α,rα})
≤ CT α(h2 + N−min{2−α,rα}),

where the following inequality [22] has been used

τα
n

n∑
j=1

j−βθn, j ≤ T αN−β

1 − α
.

The proof is completed. ��
Similarly, we can obtain the convergence of the fast

numerical scheme (25)–(27).

Theorem 3 Define un andUn as the exact and numer-
ical solution vector, respectively. Then, there exists a
positive constant C independent of τ and h such that

||un −Un||∞ ≤ C(h2 + T αN−min{2−α,rα} + ε).

4.3.4 Numerical examples

In this section, for problem (16)–(17), we consider the
case f (x, t) = 0, u(x, 0) = sin(x) in the domain
[0, π ]. Using (21), it is straightforward to derive the
analytical solution u(x, t) = e−ρt Eα(−Dtα) sin(x).
We apply the numerical scheme (22)–(24) and the fast
numerical scheme (25)–(27) to solve the problem. All
of the computations were conducted using MATLAB
R2018a on a DELL desktop with the configuration:
Intel(R) Core(TM) i7-6700 CPU3.40GHz and RAM
16.0 GB. Firstly, a comparison between the numeri-
cal solution and the exact solution at different times
is plotted in Fig. 5, where the parameters chosen are
M = 40, N = M2, D = 0.5, α = 0.8, ρ = 0.5. It can
be observed that the numerical solution agrees with the
exact solution very well.

Next, we compare the convergence of the two
numerical schemes. Table 5 shows the maximum error
and convergence order of the two numerical schemes
for different α and N at t = 1, where the parameters
used are M = 211, D = 2, ρ = 0.5, r = 2(2−α)

α
,
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Fig. 5 The comparison between the numerical solution and the
exact solution at different times, where the parameters chosen
are M = 40, N = M2, D = 0.5, α = 0.8, ρ = 0.5

ε = 10−9. It can be seen that the optimal 2 − α order
is obtained, which illustrates the effectiveness of the
L1 scheme on the graded mesh to solve the tempered
problem. Table 6 presents the error and CPU time com-
parison between the normal numerical scheme (22) and
the fast numerical scheme (25) for different α and M

with N = M2 at t = 1, where the parameters utilised
are D = 2, ρ = 0.5, r = 2(2−α)

α
, ε = 10−9. We can

observe that the L1 scheme on the gradedmesh is time-
consuming for a large M and the amount of time for
α = 0.4 and α = 0.8 is not too much different. In con-
trast to the normal numerical scheme, the fast numerical
scheme can reduce the CPU time significantly without
losing accuracy, and there is a clear difference for the
total time between the cases α = 0.4 and α = 0.8.
This demonstrates the strong feasibility and applicabil-
ity to adapt the fast method to deal with the tempered
problem. Furthermore, we analyse the impacts of the
fractional index α and tempered parameter ρ. Figure 6a
shows that for the general anomalous diffusion ρ = 0,
the fractional order can boost the diffusion compared
to the classical diffusion (α = 1). The smaller the frac-
tional order is, the faster it diffuses. Compared to the
fractional order α, the tempered parameter ρ (Fig. 6b)
can accelerate the diffusion further. The larger ρ is, the
more rapid it decays, and with a large α and a moder-
ate ρ (α = 0.9, ρ = 3.0) it diffuses faster than with a
single fractional order α (α = 0.6), which affirms the
discussion aforementioned again.

Table 5 The error and convergence order of the L1 scheme (22) and the fast numerical scheme (25) for different α and N at t = 1,
where the parameters used are M = 211, D = 2, ρ = 0.5, r = 2(2−α)

α
, ε = 10−9

N (L1 scheme) α = 0.4 α = 0.8

Error Order Error Order

80 2.0069E–04 1.0678E–03

160 6.7734E–05 1.57 4.6677E–04 1.19

320 2.2806E–05 1.57 2.0363E–04 1.20

640 7.6305E–06 1.58 8.8752E–05 1.20

1280 2.5381E–06 1.59 3.8676E–05 1.20

2560 8.3418E–07 1.61 1.6861E–05 1.20

N (Fast scheme) α = 0.4 α = 0.8

Error Order Error Order

80 2.3540E—04 1.1033E—03

160 8.2692E—05 1.51 4.8357E—04 1.19

320 2.8682E—05 1.53 2.1130E—04 1.19

640 9.8370E—06 1.54 9.2195E—05 1.20

1280 3.3412E—06 1.56 4.0201E—05 1.20

2560 1.1159E—06 1.58 1.7532E—05 1.20
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Table 6 The error and CPU time comparison between the L1 scheme (22) and the fast numerical scheme (25) for different α and M
with N = M2 at t = 1, where the parameters utilised are D = 2, ρ = 0.5, r = 2(2−α)

α
, ε = 10−9

M (L1 scheme) α = 0.4 α = 0.8

Error Order CPU time(s) Error Order CPU time(s)

20 3.4560E–04 0.09 5.5454E–04 0.10

40 8.4137E–05 2.04 1.03 1.2924E–04 2.10 1.04

80 2.0748E–05 2.02 15.92 3.0522E–05 2.08 15.28

160 5.1245E–06 2.02 257.62 7.2913E–06 2.07 256.84

320 1.2457E–06 2.04 4836.06 1.7585E–06 2.05 4949.47

M (Fast scheme) α = 0.4 α = 0.8

Error Order CPU time(s) Error Order CPU time(s)

20 3.4995E–04 0.30 5.6048E–04 0.18

40 8.4708E–05 2.05 1.45 1.3041E–04 2.10 0.69

80 2.0799E–05 2.03 6.50 3.0747E–05 2.08 3.04

160 5.0624E–06 2.04 34.64 7.3341E–06 2.07 16.11

320 1.0722E–06 2.24 209.33 1.7667E–06 2.05 95.86

5 Application III: tempered two-layered problems

It is well known that the diffusion-induced MRI signal
attenuation curve diverges from the mono-exponential
decay at high b-values for human brain tissues. A
stretched exponential model [33] was proposed to
describe the diffusion-induced signal attenuation effec-
tively, which proves to be a fundamental extension
of the fractional Bloch–Torrey equation [34]. In [35],
Zhou and co-workers applied the fractional models to
analyse the diffusion images of human brain tissues
in vivo, in which there was a clear contrast between
the grey matter and white matter for the diffusivity
(D) and fractional index (β). For example, the dif-
fusivity and fractional index for the white matter are
D ≈ (0.41±0.008)×10−3 andβ ≈ 0.64±0.01, while
those for the greymatter are D ≈ (0.66±0.007)×10−3

and β ≈ 0.82± 0.01. It means different tissues exhibit
distinct memory or heterogeneity in a heterogeneous
medium, which motives us to generalise the fractional-
order model to consider the anomalous diffusion in a
composite material. To date, Zeng et al. [36] used a
discrete least squares collocation method to deal with a
coupled system of time-fractional diffusion equations
with different fractional indices in an irregularly shaped
region. Feng et al. [21,37] proposed a two-dimensional
time-fractional model to study the underlying transport

phenomena in a binarymedium based on the Riemann–
Liouville fractional derivative, in which it showed that
the generalised transport model could exhibit the cor-
rect physical solution behaviour and produce a more
accurate overall mass balance. In this section, we focus
on a two-layered problemwith a tempered operator (see
Fig. 7):

C
0 D

(α1,ρ1)
t X1(x, t) = D1

∂2X1(x, t)

∂x2
+ Sa1 + Sb1X1,

x ∈ (l0, l1), (28)

C
0 D

(α2,ρ2)
t X2(x, t) = D2

∂2X2(x, t)

∂x2
+ Sa2 + Sb2X2,

x ∈ (l1, l2), (29)

subject to the initial and boundary conditions

X1(x, 0) = X1,0(x), X2(x, 0) = X2,0(x), (30)

X1(l0, t) = fL(t), X2(l2, t) = fR(t), (31)

where Di is the diffusivity coefficients, Sai and Sbi are
some constants. To guarantee the flux exchange at the
interface x = l1 is consistent with intrinsic physics, we
define the following boundary conditions
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Fig. 6 The impacts of the fractional index α (Figure a) and
tempered parameter ρ (Figure b) on the diffusion profile at t =
0.1 with D = 2.5, M = 40, N = M2

X1(l1, t) = X2(l1, t), D1
∂X1(l1, t)

∂x

= D2
∂X2(l1, t)

∂x
. (32)

5.1 Semi-analytical solution

Problem (28)–(32) will be solved using the finite
Fourier and Laplace transforms. Define di = li −
li−1, i = 1, 2, λi,n be the eigenvalues and ϕi,n(x) be
the corresponding eigenfunctions. Then, the Sturm–
Liouville system in each layer reads:

Fig. 7 An illustration of a two-layered problem

− d2ϕ1,n(x)

dx2
= λ21,nϕ1,n(x),

ϕ1,n(l0) = 0,
ϕ1,n(l1)

dx
= 0,

− d2ϕ2,n(x)

dx2
= λ22,nϕ2,n(x),

ϕ2,n(l1)

dx
= 0, ϕ2,n(l2) = 0.

It is straightforward to derive that λ1,n = (2n+1)π
2d1

,

ϕ1,n =
√

2
d1

sin[λ1,n(x − l0)] and λ2,n = (2n+1)π
2d2

,

ϕ2,n =
√

2
d2

sin[λ2,n(l2 − x)]. Define the finite Fourier
transform X̃i (λi,n, t) := 〈Xi , ϕi,n〉 = ∫ li

li−1
Xi (x, t)

ϕi,n(x) dx within the i th layer. We apply the finite
Fourier transform to obtain

C
0 D

(αi ,ρi )
t X̃i = Di

〈
∂2Xi

∂x2
, ϕi,n

〉
+ Sai

〈
1, ϕi,n

〉

+ Sbi X̃i , i = 1, 2. (33)

Integrating by parts the first term on the right-hand side
yields

Di

〈
∂2Xi

∂x2
, ϕi,n

〉
= −Di

{〈
− d2

dx2
ϕi,n, Xi

〉

+
[
Xi (li , t)

dϕi,n

dx
(li )

−Xi (li−1, t)
dϕi,n

dx
(li−1)

− ∂Xi

∂x
(li , t)ϕi,n(li )

+ ∂Xi

∂x
(li−1, t)ϕi,n(li−1)

]}
.

(34)
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Next, define D1
∂X1(l1,t)

∂x = D2
∂X2(l1,t)

∂x := v12(t). Sub-
stituting (31), (32) and (34) into (33), the transformed
layer equations are then given by

C
0 D

(α1,ρ1)
t X̃1 = −D1λ

2
1,n X̃1 + D1 fL(t)

dϕ1,n(l0)

dx
+ v12(t)ϕ1,n(l1) + Sa1〈1, ϕ1,n〉 + Sb1 X̃1,

C
0 D

(α2,ρ2)
t X̃2 = −D2λ

2
2,n X̃2 − v12(t)ϕ2,n(l1)

− D2 fR(t)
dϕ2,n(l2)

dx
+ Sa2〈1, ϕ2,n〉 + Sb2 X̃2,

together with the transformed initial conditions
X̃i (λi,n, 0) = 〈Xi,0(x), ϕi,n〉 := X̃i,0, i = 1, 2. We
now apply the Laplace transform in time and denote

X̃ i (λi,n, s) = L {
X̃i (λi,n, t)

}
, i = 1, 2 to obtain

(s + ρ1)
α1 X̃1 − (s + ρ1)

α1−1 X̃1,0

= −D1λ
2
1,n X̃1 + D1 f̄L(s)

dϕ1,n(l0)

dx

+ v̄12(s)ϕ1,n(l1) + Sa1I1,n
s

+ Sb1 X̃1,

(s + ρ2)
α2 X̃2 − (s + ρ2)

α2−1 X̃2,0

= −D2λ
2
2,n X̃2 − v̄12(s)ϕ2,n(l1) − D2 f̄ R(s)

dϕ2,n(l2)

dx

+ Sa2I2,n
s

+ Sb2 X̃2,

which can be rearranged into the form

X̃1(λ1,n , s) = (s + ρ1)
α1−1 X̃1,0

η1,n(s)

+ 1

η1,n(s)

[
D1 f̄L (s)

dϕ1,n(l0)

dx
+ v̄12(s)ϕ1,n(l1)

]

+ Sa1 I1,n
sη1,n(s)

, (35)

X̃2(λ2,n , s) = (s + ρ2)
α2−1 X̃2,0

η2,n(s)

− 1

η2,n(s)

[
v̄12(s)ϕ2,n(l1) + D2 f̄ R(s)

dϕ2,n(l2)

dx

]

+ Sa2 I2,n
sη2,n(s)

, (36)

where Ii,n = 〈1, ϕi,n〉 and ηi,n(s) = (s + ρi )
αi +

Diλ
2
i,n−Sbi , i = 1, 2. In order to calculate the unknown

interfacial flux value v̄12(s), we need the boundary con-
dition at the interface:

X1(l1, s) = X2(l1, s).

Noting that Xi (x, s) = ∑∞
n=0 X̃ i (λi,n, s)ϕi,n(x), i =

1, 2, then we have

∞∑
n=0

X̃1(λ1,n, s)ϕ1,n(l1) =
∞∑
n=0

X̃2(λ2,n, s)ϕ2,n(l1).

(37)

Substituting expressions (35) and (36) into (37), (37)
can be rearranged into the following form:

∞∑
n=0

{
ϕ2
1,n(l1)

η1,n(s)
+ ϕ2

2,n(l1)

η2,n(s)

}
v12(s)

= −
∞∑
n=0

(
(s + ρ1)

α1−1 X̃1,0

η1,n(s)
+ D1 f̄L(s)

η1,n(s)

dϕ1,n(l0)

dx

+ Sa1I1,n
sη1,n

)
ϕ1,n(l1)

+
∞∑
n=0

(
(s + ρ2)

α2−1 X̃2,0

η2,n(s)
− D2 f̄ R(s)

η2,n(s)

dϕ2,n(l2)

dx

+ Sa2I2,n
sη2,n(s)

)
ϕ2,n(l1),

which can be solved for v12(s) at a given value of s.
Applying the inverse Laplace transform and solved the
solutions numerically within each layer, we can obtain

X̃i (λi,n, t) = L−1
{
X̃ i (λi,n, s)

}

= 1

2π i

∫
	

est X̃ i (λi,n, s) ds

= 1

2π i

∫
	

ez

t
X̃ i (λi,n, z/t) dz ≈

− 2�
⎛
⎝

K/2∑
k=1

c2k−1
X̃ i (λi,n, z2k−1/t)

t

⎞
⎠ ,

where z = st , c2k−1 and z2k−1 are the residues and
poles of the near-best minimax approximation of ez

on the negative real line by rational functions of type
(K , K ) as computed by the Carathéodor–Fejér method
[38]. The final solution in each layer can be written as

Xi (x, t) =
∞∑
n=0

X̃(λi,n, t)ϕi,n(x), i = 1, 2.
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5.2 Numerical solution

Firstly, we do the grid partition. Define tn = T
( n
N

)r ,
r = min

{
2(2−α1)

α1
,
2(2−α2)

α2

}
, n = 0, 1, 2, . . . , N , τn =

tn − tn−1, n = 1, 2, . . . , N . Define xi = l0 + ih,
i = 0, 1, 2, . . . , M , where h = l2−l0

M is the uni-
form spatial step. Divide the grid points into two
parts: on layer 1 {x0, x1, . . . , xM1} and on layer 2
{xM1 , xM1+1, . . . , xM }. Applying the L1 scheme and
central difference scheme, we can obtain the numeri-
cal solution of the two-layered problem:

C
0 D

(α1,ρ1)
t Xn

1,i = D1δ
2
x X

n
1,i + Sa1 + Sb1X

n
1,i ,

1 ≤ i ≤ M1, 1 ≤ n ≤ N ,

C
0 D

(α2,ρ2)
t Xn

2,i = D2δ
2
x X

n
2,i + Sa2 + Sb2X

n
2,i ,

M1 ≤ i ≤ M, 1 ≤ n ≤ N .

Exploiting the boundary conditions (32) to overlap the
value in x = l1, the matrix form in terms of the solution
on [l0, l2] can be derived, which can be solved using
the general iterative method.

5.3 Numerical examples

We consider the two-layered problem on a domain
[0, 1] with l1 = 0.5 and initial conditions X1,0(x) =
X2,0(x) = 1 and boundary conditions fL(t) =
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Fig. 8 The comparison between the numerical solution and the
semi-analytical solution at different times for problem (28)–(32),
where the parameters chosen are α1 = 0.9, α2 = 0.8, ρ1 = 0.1,
ρ2 = 0.5, D1 = 0.25, D2 = 0.5, Sa1 = Sa2 = 0.1, Sb1 = Sb2 =
−0.1

fR(t) = 0. Figure 8 shows a comparison between the
semi-analytical solution and the numerical solution at
different times, from which there is perfect agreement
between the semi-analytical solution and the numeri-
cal solution. It demonstrates that both methods work
well. Next, we consider a scenario where one layer is
normal material characterised by α1 = 1, ρ1 = 0,
while the other layer exhibits memory (α2 �= 1). Fig-
ure 9a presents the effects of the fractional index α2 on
the solution profile. It can be seen that a small α2 can
accelerate the diffusion. Figure 9b displays the impacts
of the tempered parameter ρ2 on the solution profile.
Similarly, the tempered parameter ρ2 can further pro-
mote the decay and with a moderate parameter pair

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

2=1.0

2=0.9

2=0.8

2=0.7

2=0.6

α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

2=0.0

2=0.5

2=1.0

2=2.0

2=5.0

(a) Varying

(b) Varying ρ

Fig. 9 The impacts of the fractional index α (Figure a) and
tempered parameter ρ (Figure b) on the diffusion profile at t =
0.1 with D1 = 0.25, D2 = 0.5, Sa1 = Sa2 = 0.1, Sb1 = Sb2 =
−0.1, a α1 = 1, ρ1 = 0, ρ2 = 0.0, b α1 = 1, ρ1 = 0, α2 = 0.9
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α2 = 0.9, ρ2 = 0.5; it decays faster than that only with
a small α2. We can see that the influence of the tem-
pered parameter on the two-layered problem is similar
to that on a homogeneous medium.

6 Conclusions

In this paper, we extend two classical numerical
schemes, theL1 schemeongradedmesh and theWSGL
formula with correction terms, to deal with the bench-
mark problem with a tempered operator. Both schemes
are effective. In addition, a fast algorithm for the time
tempered Caputo derivative is developed to reduce the
running time significantly. Furthermore, the tempered
operator is applied to different models to investigate
the tempered solution behaviour. An important finding
is that, compared with the fractional index, the tem-
pered parameter could further accelerate the diffusion,
and the tempered model with two parameters α and ρ

is more flexible. In the future, we will explore high-
dimensional tempered diffusion problems in heteroge-
neous media.
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