## CORRECTION



## Correction to: Method of experimentally identifying the complex mode shape of the self-excited oscillation of a cantilevered pipe conveying fluid

Eisuke Higuchi 💿 · Hiroshi Yabuno 💿 · Kiyotaka Yamashita 💿

Published online: 31 May 2022 © The Author(s), under exclusive licence to Springer Nature B.V. 2022

## **Correction to: Nonlinear Dyn**

https://doi.org/10.1007/s11071-022-07460-0

This correction stands to correct the original article, published with an error in Eq. 2 (Eq. 2) and errors in Figs. 3b, 9b and d, 10b and d, and 11b and d.

The authors ask readers to consider the correct equation for Eq. 2 where, the first term, 3rd line from the end of equation 2, the error appears:  $\int_{0^s} 1/2v^{s'2} ds$ .

The correct notation for this part of the equation should be noted as:  $\int_{0}^{s} \frac{1}{2} v^{s'2} ds$ .

Additionally, provided herein are revised figures: Figs. 3b, 9b and d, 10b and d, and 11b and d.

The original article can be found online at https://doi.org/10.1007/s11071-022-07460-0.

E. Higuchi (⊠) · H. Yabuno University of Tsukuba, 1-1-1, Tennodai, Tsukuba City, Ibaraki Prefecture, Japan e-mail: s2120762@s.tsukuba.ac.jp

K. Yamashita Fukui University of Technology, 3-6-1, Gakuen, Fukui City, Fukui Prefecture, Japan Fig. 3 Theoretical third complex mode shape of the pipe in the case that  $\beta =$ 0.388 and  $\gamma =$  74.2 (**a** Real component of the mode and **b** imaginary component of the mode). Each mode shape is normalized by the

absolute value  $\sqrt{\Phi_r^2 + \Phi_i^2}$  of the complex number  $\Phi$  at the end point (s = 1)







Fig. 11 Comparison of the experimental mode shape with the theoretical mode shape for Pipe 3: **a** and **b** shapes of the experimental real and imaginary modes and **c** and **d** shapes of the theoretical real and imaginary modes



Noting these corrections, the original article has been corrected.

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.