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Abstract Gas turbine generator sets are widely used

in IGCC system, gas-steam combine cycle, distributed

energy system et al. for its advantages of low

pollution, high efficiency, quick start and stop. The

structure of gas turbine rotor can be divided into

integral rotor and rod-fastened rotor. Experimental

study shows that the vibration signal, especially the

displacement signal, of the rod-fastened rotor will

increase/decrease greatly in a small interval of rotating

speed. The reason for this phenomenon is the unique

structure of the rod-fastened rotor, namely the inter-

faces between discs. In this paper, based on the

Lagrange equation, the equation of motion of a rod-

fastened rotor-bearing system considering the damp-

ing of the contact interface is established. The

bistable behaviour and hysteretic cycle, also called

the jumping phenomenon in engineering, are revealed.

In addition, a test bench of the rod-fastened rotor-

bearing system is built. The bistable behaviour and

hysteretic cycle are experimentally proven, and the

effect of the eccentric distance of the rotor on the

bistable behaviour is experimentally explored.

Keywords Rod-fastened rotor-bearing system �
Damping of interface � Nonlinear oil film �
Bistable behaviour � Hysteretic cycle

1 Introduction

A rotor-bearing system is the core component of a

rotating machine, and its dynamic behaviour affects

the efficiency, vibration, and stability of the system

[1]. Studies on the dynamic behaviour of integral

rotor-bearing systems are listed in the literature [2–6].

Rod-fastened rotors are widely used in light-duty aero

engines and heavy-duty gas turbines due to their high

strength, light weight, and easy assembly and disas-

sembly. Unlike the integral rotor, the rod-fastened

rotor is not a whole in the structure, and all discs are

tied together by rods [7]. A typical rod-fastened rotor-

bearing system is shown in Fig. 1. However, due to the

discontinuity of the rotor, the dynamic behaviour

would become more complicated.

The bistable behaviour of rod-fastened rotor is a

phenomenon of the difference of dynamic behaviour

during acceleration and deceleration. It can be known
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fromLi [9], themain reasons for the bistable behaviour

include nonlinear oil film force, nonlinear stiffness,

damping of the interface, etc.

In terms of the nonlinear oil film, Hei et al.

modelled a rod-fastened rotor-hydrodynamic journal-

bearing system [10], rod-fastened rotor-fixed-tilting

pad journal-bearing system [11] and rod-fastened

rotor-finite length-bearing system [12], and the numer-

ical method was applied to reveal the nonlinear

dynamic behaviours of these systems. These studies

presented period-1, period-2, period-4, quasiperiodic

motion, etc. nonlinear behaviours. Li et al. [13]

deduced the equation of motion of a rod-fastened

rotor-ball-bearing system considering bearing clear-

ance, gyroscopic moment, initial deformation, and

other factors. The Runge–Kutta–Fehlberg method was

used to explore the nonlinear dynamic behaviour of

the system. This research held that a larger bearing

clearance and initial deflection might decrease the

speed at which the system enters chaotic motion. Sun

et al. [14] studied the effect of the temperature of the

lubricating oil film on the pressure distribution and

also the influence of the temperature of the lubricating

oil film on the dynamic characteristics of rotor-bearing

systems. Haslam et al. [15] proposed a novel method

combining the Jeffcott rotor-detailed bearing model

with the generalized harmonic balance method. The

effect of radial oil clearance of bearing on the

unbalance response and stability of system was

studied. Alves et al. [16] experimentally explored the

effect of the oil film nonlinearity in bearings on the

rotor balancing. Zhao et al. [17] proposed a dynamic

model of hydrodynamic journal bearings under large

perturbations.

From the perspective of the nonlinear stiffness and

damping of the interface, Zhuo et al. [18] proposed the

equivalent model of the bending stiffness of the

contact interface of a rod-fastened rotor, which laid a

foundation for subsequent studies. Qian et al. [19]

established a finite element model of an aero-engine

rotor considering the nonlinear stiffness of the contact

interface, and the hard stiffness characteristic was

revealed by the harmonic balance method. Zhang et al.

[20] set up a dynamic model of a rod-fastened rotor

considering the time-varying stiffness of the interface.

The unbalanced response was calculated by the

harmonic balance method. This research argued that

the rod-fastened rotor presents soft stiffness charac-

teristics considering the stiffness time-varying char-

acteristics. Cheng et al. [21] calculated the vibration

response of rod-fastened rotors by the harmonic

balance method combined with the prediction-correc-

tion and homotopy algorithms. The effect of nonlinear

stiffness, eccentricity and eccentric phase angle on the

bistable vibration characteristics was studied. How-

ever, this pioneering work did not involve the study of

the damping of the interface. Wang et al. [22, 23]

devised a dynamic model of the rod-fastened rotor

considering the nonlinear restoring force at the contact

interface, the internal damping of the disc and the

nonlinear oil film force. The theoretical analysis of the

bistable vibration behaviour was explored. However,

this work did not involve the damping of the interface

and experimental research. Li et al. [24] presented the

experimental and numerical studies on the stiffness

and damping properties of rod-fastened rotor with

interference fits under different preloads.

Besides, in some cases, the machining error of rotor

[25–31], rub-impact force and other nonlinear cou-

pling forces [32–40] would also lead to bistable be-

haviour of rotor.

Despite recent developments in nonlinear excita-

tion and the response of rod-fastened rotors, the

nonlinear behaviour of damping of interfaces is rarely

considered, and the bistable test is even less involved.

Thus, the main objective of this paper is to reveal the

effect of damping of the interface on the nonlinear

behaviour of the system. As a basic step, the equation

of motion of the system considering the damping of

the interface is set up based on the Lagrange equation.

On this basis, the fourth-order Runge Kutta method is

employed to analyse the dynamic behaviour of the

Fig. 1 A typical rod-fastened rotor structure [8]
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system, and the bistable behaviour and hysteretic cycle

are revealed. Moreover, a test bench of rod-fastened

rotor-bearing system was built, which is a step further

from the previous work. The bistable behaviour and

hysteretic cycle were experimentally indicated, and

the influence of the eccentric distance of the rotor on

the bistable behaviour was experimentally studied.

The research in this paper can provide theoretical

guidance for bistable behaviour and hysteresis cycle in

rod rotor test, and the experimental results can provide

a basis for reducing the bistable vibration.

2 Model of the rod-fastened rotor-bearing system

with damping of the interface

The inherent structural features of a rod-fastened rotor

include fastening rods and interfaces between discs.

Due to the discontinuity of the rotor, the interface

would produce additional damping, further compli-

cating the dynamic behaviour of the system. In this

paper, a dynamic model of the rod-fastened rotor

considering interface damping is set up (depicted in

Fig. 2), and the nonlinear behaviour is explored via a

numerical method.

The rod-fastened rotor-bearing system is highly

complex, and the assumptions below are proposed to

simplify the system.

1. The bearings on both sides are identical.

2. The phase angle of mass eccentricity at each disc

is the same.

3. There is no separation of discs during the

operation.

The sketch of simplified system is shown in Fig. 3.

The equation of motion of rod-fastened rotor-

bearing system will be deduced in this section, the

flowchart of deriving is shown in Fig. 4.

2.1 Equation of motion

mi (i = 1–5) is the lumpedmass of the rotor, kshaft is the

stiffness of the shaft, kin is the bending stiffness of the

interface, c1 is the damping coefficient of the bearing,

c2 is the damping coefficient of the disc, and c3 is the

damping coefficient of the interface. The equation of

motion can be deduced by the Lagrange equation.

The Lagrange equation can be expressed as:

d

dt

oL

o _qi

� �
� oL

o _qi
þ oD

o _qi
¼ fiði ¼ 1; 2; :::; nÞ; ð1Þ

where L is the Lagrange function, and L = V - U. V is

the kinetic energy of the system, U is the potential

energy of the system,D is the dissipation energy of the

system, qi and _qi are generalized coordinates and

velocities of the system, and fi is the generalized force

in the direction of qi.

The total kinetic energy of the system can be

expressed as:

V ¼ 1

2
m1 _x21 þ _y21
� �

þ 1

2
m2 _x22 þ _y22
� �

þ 1

2
m3 _x23 þ _y23
� �

þ 1

2
m4 _x24 þ _y24
� �

þ 1

2
m5 _x25 þ _y25
� �

;

ð2Þ

Fig. 2 The rod-fastened

rotor model

Fig. 3 The sketch of simplified system
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The total potential energy of the system is gener-

ated as a result of the elastic deformation of rotor as

well as the gravity [41], which can be expressed as:

U ¼ 1

2
kshaft x1 � x2ð Þ2þ 1

2
kshaft y1 � y2ð Þ2

þ 1

2
kin x2 � x3ð Þ2þ 1

2
kin y2 � y3ð Þ2þ 1

2
kin x3 � x4ð Þ2

þ 1

2
kin y3 � y4ð Þ2þ 1

2
kshaft x4 � x5ð Þ2

þ 1

2
kshaft y4 � y5ð Þ2þm1gy1 þ m2gy2 þ m3gy3

þ m4gy4 þ m5gy5;

ð3Þ

The total dissipation energy of the system can be

expressed as:

D ¼ 1

2
c21 _x21 þ _y21
� �

þ 1

2
c22 _x22 þ _y22
� �

þ 1

2
c23 _x2 � _x3ð Þ2þ _y2 � _y3ð Þ2
h i

þ 1

2
c22 _x23 þ _y23
� �

þ 1

2
c23 _x3 � _x4ð Þ2þ _y3 � _y4ð Þ2
h i

þ 1

2
c22 _x24 þ _y24
� �

þ 1

2
c23 _x4 � _x5ð Þ2þ _y4 � _y5ð Þ2
h i

þ 1

2
c21 _x25 þ _y25
� �

;

ð4Þ

Taking qi = (x1, y1, x2, y2, x3, y3, x4, y4, x5, y5)
T and

substituting Eqs. (2)–(4) into Eq. (1), the equation of

motion can be expressed as:

m1 €x1þc1 _x1þkshaftðx1�x2Þ¼Fx1

m1 €y1þc1 _y1þkshaftðy1�y2Þ¼Fy1�m1g

m2 €x2þc2 _x2þc3 _x2� _x3ð Þþkin x2�x3ð Þ¼m2e1x
2cos xtþu1ð Þ

m2 €y2þc2 _y2þc3 _y2� _y3ð Þþkin y2�y3ð Þ¼m2e1x
2 sin xtþu1ð Þ�m2g

m3 €x3þc2 _x3þc3 _x3� _x4ð Þþkin x3�x4ð Þ¼m3e2x
2cos xtþu2ð Þ

m3 €y3þc2 _y3þc3 _y3� _y4ð Þþkin y3�y4ð Þ¼m3e2x
2 sin xtþu2ð Þ�m3g

m4 €x4þc2 _x4þc3 _x4� _x5ð Þþkin x4�x5ð Þ¼m4e3x
2cos xtþu3ð Þ

m4 €y4þc2 _y4þc3 _y4� _y5ð Þþkin y4�y5ð Þ¼m4e3x
2 sin xtþu3ð Þ�m4g

m5 €x5þc2 _x5þkshaftx5¼Fx2

m5 €y5þc2 _y5þkshafty5¼Fy2�m5g

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

:

ð5Þ

where ei (i = 1, 2, 3) is the eccentric distance of the

rotor, ui (i = 1, 2, 3) is the phase angle of mass

eccentricity, and Fx1, Fy1, Fx2, and Fy2 are the

nonlinear oil film forces in the x direction and

y direction.

Fig. 4 The flowchart of deriving the equation of motion

Fig. 5 Model of the nonlinear oil film force
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2.2 Nonlinear oil film force

The sliding bearing, which is provided in the design to

the supporting rotor, is a main nonlinear source of

vibration with strong nonlinearity. The model of the

nonlinear oil film force model is shown in Fig. 5.

The Capone nonlinear oil film force model [42] is

applied to illustrate the oil film force of the sliding

bearing. The oil film force can be expressed as Eq. (6)

when the lubricating oil meets the following

conditions:

1. The lubricating oil is an isothermal, laminar flow

incompressible fluid.

2. The lubricant dynamic viscosity is constant.

fx

fy

 !
¼ 1

dPf

Fbx

Fby

( )
; ð6Þ

where d is the Sommerfeld correction coefficient,

and d¼ gxRL
�
Pf

� �
� R=cð Þ2� L=2Rð Þ2. Pf is the

external mass of the bearing. In this paper, Pf is the

half of mass of rotor, Pf = 40 kg.

Fbx ¼ �
X � 2 _Y
� �2þ Y þ 2 _X

� �2h i1=2
3XV � sin aG� 2 cos aSð Þ

1� X2 � Y2

Fby ¼ �
X � 2 _Y
� �2þ Y þ 2 _X

� �2h i1=2
3YV þ cos aG� 2 sin aSð Þ

1� X2 � Y2
;

ð7Þ

where X = x/c, Y = y/c, c is the bearing clearance,

and V, S, G, and a can be expressed as:

V ¼ 2þ Y cos a� X sin að Þ � G

1� X2 � Y2
; ð8Þ

S ¼ X cos aþ Y sin a

1� X cos aþ Y sin að Þ2
; ð9Þ

G ¼
2 p

2
þ arctan Y cos a�X sin a

1�X2�Y2ð Þ1=2

h i

1� X2 � Y2ð Þ1=2
; ð10Þ

a¼ arctan
Y þ 2 _X

X � 2 _Y
� p

2
sign

Y þ 2 _X

X � 2 _Y

� �

� p
2
sign Y þ 2 _X

� �
;

ð11Þ

2.3 Dimensionless transform of the equation

of motion

The dimensionless transform of the equation of

motion is given as Eq. (12).

Xi ¼
xi
c
; Yi ¼

yi
c
; s ¼ xt; ð12Þ

Table 1 The parameters of the rod-fastened rotor

Parameters Value

Lumped mass m1/kg 4

Lumped mass m2/kg 24

Lumped mass m3/kg 24

Lumped mass m4/kg 24

Lumped mass m5/kg 4

Stiffness of shaft kshaft/(N/m) 2.5 9 107

Bending stiffness of interface kin/(Nm/rad) 1.0 9 108

Damping of bearing c1/(Ns/m) 2100

Damping of disc c2/(Ns/m) 3500

Damping of interface c3/(Ns/m) 1050

Eccentric distance of disc e1, e2, e3/mm 0.05

Eccentric phase u1, u2, u3/rad 0

Bearing radius R/mm 48

Bearing length Lb/mm 25

Bearing clearance c/mm 0.18

Lubricant viscosity l/(Pa s) 0.018

Fig. 6 The modal structure of the rotor [22, 23]

123

Study on the bistable vibration behaviour 613



Substituting Eq. (12) into Eq. (5), the dimension-

less equation of motion can be expressed as:

€X1þ
c1
m1x

_X1þ
kshaft
m1x2

ðX1�X2Þ¼
Fx1

m1cx2

€Y1þ
c1
m1x

_Y1þ
kshaft
m1x2

ðY1�Y2Þ¼
Fy1

m1cx2
� g

cx2

€X2þ
c2
m2x

_X2þ
c3
m2x

_X2� _X3

� �
þ kin
m2x2

X2�X3ð Þ¼e1
c
cos sþu1ð Þ

€Y2þ
c2
m2x

_Y2þ
c3
m2x

_Y2� _Y3
� �

þ kin
m2x2

Y2�Y3ð Þ¼e1
c
sin sþu1ð Þ� g

cx2

€X3þ
c2
m3x

_X3þ
c3
m3x

_X3� _X4

� �
þ kin
m3x2

X3�X4ð Þ¼e2
c
cos sþu2ð Þ

€Y3þ
c2
m3x

_Y3þ
c3
m3x

_Y3� _Y4
� �

þ kin
m3x2

Y3�Y4ð Þ¼e2
c
sin sþu2ð Þ� g

cx2

€X4þ
c2
m3x

_X4þ
c3
m3x

_X4� _X5

� �
þ kin
m3x2

X4�X5ð Þ¼e3
c
cos sþu3ð Þ

€Y4þ
c2
m4x

_Y4þ
c3
m4x

_Y4� _Y5
� �

þ kin
m4x2

Y4�Y5ð Þ¼e3
c
sin sþu3ð Þ� g

cx2

€X5þ
c2
m5x

_X5þ
kshaft
m5x2

X5¼
Fx2

m5cx2

€Y5þ
c2
m5x

_Y5þ
kshaft
m5x2

Y5¼
Fy2

m5cx2
� g

cx2

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

:

ð13Þ

2.4 Numerical method

It can be known from Eqs. (6)–(11). The expression of

oil film force contains X, Y, X2, Y2 and arc-

tan(Y ? 2X) et al. Hence, Eq. (13) has a strong

nonlinear characteristic. In this paper, the fourth-order

Runge–Kutta method [43, 44] is employed to solve

Eq. (13).

Table 2 The modal result Result in this paper SAMCEF result Relative error/%

1st natural frequency/Hz 313.40 318.33 1.55

2nd natural frequency/Hz 1343.33 1387.88 3.21

3rd natural frequency/Hz 2611.49 2761.73 5.44

Fig. 7 The flowchart for bifurcation diagram

Fig. 8 The bifurcation

diagram of X1 without

damping of the interface
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3 Numerical simulation result

The parameters of the rod-fastened rotor-bearing

system are shown in Table 1. To verify the model,

the first three-order natural frequencies of the rotor are

calculated by eigenvalue analysis. The results are,

respectively, 313.40, 1343.33, 2611.49 Hz. Mean-

while, the natural frequencies of this model are

calculated by the business software SAMCEF. It

should be noted that in the process of modelling, the

shaft is simplified as a massless elastic shaft, and the

discs are simplified as concentrated masses. The two

adjacent discs were connected by a bearing unit, and

the bending stiffness of the bearing was

1.0 9 108 Nm/rad. The modelling structure of the

rotor is shown in Fig. 6. The results of natural

frequencies are shown in Table 2. The relative error

is small, and the program of this paper can be used in

further nonlinear research.

The nonlinear dynamic behaviour of the system is

determined by the fourth-order Runge–Kutta method

and implemented in MATLAB. The bifurcation

diagram, time series, phase trajectory, frequency

domain and Poincare map are given to illustrate the

nonlinear characteristics of the system.

3.1 Stability behaviour

The phenomenon of the difference of the dynamic

behaviour during acceleration and deceleration is

called bistable behaviour. In this section, the bifurca-

tion diagrams during acceleration and deceleration are

calculated to explore this behaviour. The flowchart for

bifurcation diagram is shown in Fig. 7.

Based on the assumption 1 and the national

standard of China (Ref. [45]), when the rotating speed

does not exceed 942 rad/s (9000 rpm), the displace-

ment signal of bearing must be paid special attention

to. So, the X1 is chosen for stability analysis.

Figure 8a is the bifurcation diagram of X1 during

acceleration without damping of the interface. When

the rotating speed is low, i.e. x\ 614 rad/s, the

system maintains periodic-1 motion, and the main

excitation source is the imbalance of the rotor.

Fig. 9 Numerical analysis

results at x = 400 rad/s
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Figure 9 is the numerical solution of the rotor with

x = 400 rad/s, where there is a closed loop in Fig. 9b

and one isolated point in Fig. 9d.

It should be noted that the dimensionless frequency

St is introduced to simplify the frequency analysis:

St = f/fn, where fn = n/60. Because the time series of

X1 are different during acceleration and deceleration,

the horizontal and vertical coordinates of X1 are

different too. Therefore, unifying the horizontal and

vertical coordinates of Poincaré diagram under differ-

ent conditions would make the motion analysis more

intuitive. Based on the method in [46], the X1 is

applied to ensure that the horizontal and vertical

coordinates of Poincaré map are in the range of [- 1,

1], X1 ¼ X1=X1ðmaxÞ.

The system enters periodic-2 motion at

614\x\ 768 rad/s. The numerical solution of the

rotor at x = 700 rad/s is shown in Fig. 10. The main

vibration occurs at St = 1/2 and St = 1, which indi-

cates that the main excitation source is the nonlinear

oil film force and imbalance of the rotor. With

increasing rotating speed, the system returns to

periodic-1 motion when x[ 768 rad/s.

Figure 8b is the bifurcation diagram of X1 during

deceleration without damping of the interface. The

bifurcation behaviour is the same as its counterpart of

acceleration when x\ 2358 rad/s. When the rotating

speed exceeds 2358 rad/s, the system passes through

quasiperiodic motion at 2358\x\ 2606 rad/s and

chaotic motion at x[ 2786 rad/s. This progress is

different from the progress in Fig. 8a. Figure 11 is the

numerical result at x = 2600 rad/s. The phase trajec-

tory presents one closed loop during acceleration and a

series of closed loops during deceleration. There is one

isolated point during acceleration and a closed loop

during deceleration. When the rod-fastened rotor

accelerates, the system maintains periodic-1 motion,

and when the rotor decelerates, the system maintains

quasiperiodic motion. Figure 12 is the numerical

analysis result at x = 3000 rad/s under acceleration

and deceleration conditions. When the rod-fastened

rotor accelerates, the system maintains periodic-1

motion, and when it decelerates, the system maintains

Fig. 10 Numerical analysis

results at x = 700 rad/s
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chaotic motion, and the chaotic motion contains three

strange attractors.

Figure 13a is the bifurcation diagram of X1 during

acceleration with damping of the interface. This

bifurcation behaviour is more complex than the

bifurcation behaviour in Fig. 8a. When x\ 388 rad/

s, the system maintains periodic-1 motion, and with

the increase of rotating speed, the system enters

periodic-2 motion at 388\x\ 541 rad/s. The main

excitation source is the nonlinear oil film force and

imbalance of the rotor, which are the same as the

periodic-2 motion in Fig. 8a, b. With increasing

rotating speed, the system returns to periodic-1 motion

at 384\x\ 1472 rad/s. The system bifurcates to

periodic-2 motion at x = 2420 rad/s and then to

periodic-4 motion at x = 2807 rad/s.

Figure 13b is the bifurcation diagram of X1 during

deceleration with damping of the interface. When

x\ 2324 rad/s, the bifurcation behaviour is the same

as that of its counterpart in Fig. 13a. When

x[ 2324 rad/s, the system passes through quasiperi-

odic motion and chaotic motion in turn. Figure 14

shows the numerical result at x = 2700 rad/s under

acceleration and deceleration conditions. The phase

trajectory presents two closed loops while accelerating

and a series of closed loops while decelerating. There

are two peaks while accelerating and a frequency band

while decelerating. This proves that the system

maintains periodic-2 motion under acceleration and

quasiperiodic motion during deceleration. Figure 15

shows the numerical result at x = 2900 rad/s under

acceleration and deceleration conditions. This numer-

ical result can provide evidence that the system

maintains perodic-4 motion when accelerating and

chaotic motion when decelerating.

The damping of the interface plays a great role in

the bifurcation behaviour. The bifurcation behaviours

are arranged in Table 3. When the damping of the

interface is considered, there are three instabilities,

while there are only two instabilities if the damping of

the interface is ignored. Compared with the condition

of neglecting damping of the interface, when damping

of the interface is considered, the first two unsta-

ble speeds increase significantly, the first unstable in-

terval increases, and the second unstable interval

decreases.

Fig. 11 Numerical analysis

results at x = 2600 rad/s
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3.2 Transient response

To investigate the bistable behaviour of the rod-

fastened rotor-bearing system, the transient response

without damping of the interface is shown in Fig. 16a,

and the transient response with damping of the

interface is shown in Fig. 16b.

There is an amplitude in the region of

614\x\ 768 rad/s. With increasing rotating speed,

the displacement increases gradually. The displace-

ment curve during the deceleration is also shown in

this figure. This curve is the same as the curve of

acceleration in the region of x\ 2358 rad/s. When

x[ 2358 rad/s, the vibration displacement of the

Fig. 13 The bifurcation diagram of X1 with damping of the interface

Fig. 12 Numerical analysis

results at x = 3000 rad/s

123

618 J. Li et al.



system decreases gently with decreasing rotating

speed. When the rotating speed is close to 2358 rad/

s, the hysteretic cycle occurs, and the displacement of

the system decreases rapidly over a very small

interval. The bistable region is at x[ 2358 rad/s,

the periodic-2 motion region is at 614\x\ 768 rad/

s, and the jumping rotating speed is x = 2358 rad/s.

These behaviours are identical to their counterparts in

Sect. 2.1.

Figure 16b is the vibration curve of the rotor with

the damping of the interface. This curve is like the

curve in Fig. 16a. The periodic-2 motion region is at

388\x\ 541 rad/s, the bistable region is at

x[ 1472 rad/s, and the jumping rotating speed is

x = 1472 rad/s. In addition, there is a slight difference

in that when the damping of the interface is consid-

ered, the curve of the displacement is steeper during

the hysteretic cycle.

3.3 Sensitivity analysis

Taking the damping of discs, damping of interface and

damping of bearing as the uncertain parameters. The

fluctuating values of uncertain parameters are 10%.

The sampling results of uncertain parameters are

shown in Table 4.

The rotating speed at which bistable phenomena

occur, xn1, is calculated. The multinomial expansion

of xn1 for uncertain parameters is obtained.

xn1 ¼ 780:97� 0:2n1 � 1:12n2 þ 0:973n3; ð14Þ

where n1, n2, n3 are the standard normal distribution

samples of damping of disc, damping of interface and

damping of bearing, respectively. The sensitivity

analysis is shown in Fig. 17, based on the method

proposed in literature [47].

It can be known that the sensitivity of damping of

discs to xn1 is very small, which means that xn1 is

almost constant with the changes of the damping of

Fig. 14 Numerical analysis

results at x = 2700 rad/s
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discs. The sensitivity of damping of interface to xn1 is

- 0.7481, which means that the xn1 decrease with the

decrease of damping of interface. The sensitivity of

damping of bearing toxn1 is 0.6499, which means that

the xn1 increases with the decrease of damping of

bearing. Hence, the effects of damping of interface and

bearing on xn1 should be noted.

Fig. 15 Numerical analysis

results at x = 2900 rad/s

Table 3 Nonlinear behaviours of rotor

Type Condition Instability

time

1st

threshold

speed/(rad/

s)

2nd

threshold

speed/(rad/

s)

3rd

threshold

speed/(rad/

s)

Nonlinear Behaviour Bistable Region/

(rad/s)

Without

interface

damping

Acceleration 1 614 – – P-1 ? P-2 ? P-1 2358–3000

Deceleration 2 614 2358 – P-1 ? P-2 ? P-1 ? P-

qua ? Chaotic

With

interface

damping

Acceleration 3 388 1472 2420 P-1 ? P-2 ? P-1 ? P-

qua ? P-1 ? P-

2 ? P-4

2324–3000

Deceleration 3 388 1472 2324 P-1 ? P-2 ? P-1 ? P-

qua ? P-1 ? P-

qua ? Chaotic
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4 Rod-fastened rotor-bearing bench

A rod-fastened rotor-bearing bench is set up to verify

the bistable behaviour revealed in Chapter 2. The

structure of the rod-fastened rotor is shown in Fig. 18.

This rotor contains 9 compressor discs, 3 turbine

discs and a torque tube. All discs and the torque tube

are fixed together by eight rods, which are evenly

distributed across the circumferential direction. The

maximum axial length is 1077 mm, the maximum

diameter is 172 mm, the rod diameter is 12 mm, the

material of the discs and torque tube is 1Cr11Ni2W2-

MoV, and the material of the rods is GH4169. The

main material properties are shown in Table 5.

4.1 The dynamic parameter of the rod-fastened

rotor

Based on the finite element method, the dynamic

parameter of the rod-fastened rotor is calculated. In the

calculation process, the damping property of the oil

film force is ignored, only the stiffness is considered,

and the rod is omitted. The effect of the preload is

simplified to the bending spring of the interface

[16, 48–50]. According to our previous study [20, 51],

when the preload is 8 kN, the bending stiffness of the

spring is 1.5 9 109 Nm/rad. The relation between the

Fig. 16 Transient response of X1

Table 4 Sampling result Damping of disc/(Ns/m) Damping of interface/(Ns/m) Damping of bearing/(Ns/m)

1 2310 1155 3850

2 2310 1155 3150

3 2310 945 3850

4 2310 945 3150

5 1890 1155 3850

6 1890 1155 3150

7 1890 945 3850

8 1890 945 3150

Fig. 17 Sensitivity analysis results

123

Study on the bistable vibration behaviour 621



first four orders of critical speeds and supporting

stiffness is shown in Fig. 19.

With increasing stiffness, the first two orders of

critical speeds increase rapidly. When the stiffness

increases from 1 9 106 N/m to 1 9 107 N/m, the

first-order critical speed increases from 168.76 to

475.15 rad/s, increasing by 181.54%. The second-

order critical speed increases from 334.83 to

1036.26 rad/s, increasing by 209.48%. The third-

order critical speed and fourth-order critical speed

increase slightly, while the stiffness increases from

1 9 106 N/m to 1 9 107 N/m, and the third-order

critical speed increases from 2694.27 to 3002.70 rad/

s, increasing by 11.50%. The fourth-order critical

speed increases from 6204.59 to 6388.19 rad/s,

increasing by 2.95%. Figure 20 shows the first four

orders of mode shapes of the rod-fastened rotor-

bearing system, with a bearing stiffness of 5 9 106 N/

m. The first two-order mode shapes are the vibration

type of the rigid body, which presents the dynamic

behaviour of the bearing, and this vibration is caused

by the bearing. The third- and fourth-order mode

shapes are bending modes that reveal the dynamic

behaviour of the rotor. Hence, with increasing sup-

porting stiffness, the first two orders of critical speeds

increase greatly, and the third- and fourth-order

critical speeds increase slightly. The dynamic

Fig. 18 Rod-fastened rotor model for the test

Table 5 Material properties

1Cr11Ni2W2MoV GH4169

Density/(kg/m3) 7800 8240

Young’s modulus/Pa 196 9 109 204 9 109

Shear modulus/Pa 73 9 109 79 9 109

Poisson’s ratio 0.33 0.30

Fig. 19 The relation between the critical speeds and supporting

bearing

Fig. 20 Mode shape of the rotor
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parameters of the rod-fastened rotor can provide a

basis for the experimental research in Sect. 4.

4.2 The arrangement of sensors

The vibration signals of the rotor are collected by

seven displacement sensors and four acceleration

sensors. The collected signals are transmitted to the

DASP data-acquisition instrument and transmitted to

the computer through filtering to complete the data

storage and online monitoring.

The arrangement of the sensors is shown in Fig. 21,

where A1–A4 are acceleration sensors, which are used

to monitor the vibration acceleration signal of the

horizontal and vertical directions of the bearing seats.

A1 and A2 are used to monitor the acceleration signal

of bearing seat-1, and A3 and A4 are used to monitor

the acceleration signal of bearing seat-2. D1–D7 are

displacement sensors that are used to monitor the

displacement signal of the horizontal and vertical

directions of the rotor. D1 is used to monitor the

displacement signal of the shaft coupling to ensure the

safety of the experiment, D2 and D3 are used to

monitor the displacement signal of bearing seat-1, D4

and D5 are used to monitor the displacement signal of

the torque tube, and D6 and D7 are used to monitor the

Fig. 21 The schematic

diagram of sensor

arrangement

Table 6 The main parameters of sensors

Sensor Main dimensions Sensitivity Range Sensor Main dimensions Sensitivity Range

A1 M5 0.495 mV/m/s2 30 g A2 M5 0.522 mV/m/s2 30 g

A3 M5 0.522 mV/m/s2 30 g A4 M5 0.532 mV/m/s2 30 g

D1 U8 12.0 V/mm 2.1 mm D2 U8 12.0 V/mm 2.1 mm

D3 U8 12.0 V/mm 2.1 mm D4 U8 10.7 V/mm 3.5 mm

D5 U8 10.7 V/mm 3.5 mm D6 U8 12.0 V/mm 3.5 mm

D7 U8 10.7 V/mm 3.5 mm NAN NAN NAN NAN

Fig. 22 Rod-fastened rotor-bearing system bench
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displacement signal of bearing seat-2. All sensors

were calibrated by the 304 Institute of Aviation

Industry Corporation of China. The major dimensions,

sensitivity and measuring range of the sensors are

shown in Table 6.

5 Experimental results

The rod-fastened rotor-bearing system was designed

and built with the purpose of reproducing and

verifying the bistable behaviour and hysteretic cycle

Fig. 23 Vibration curve of

the rotor

Fig. 24 FFT results of rotor
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of the system (Fig. 22). The foundation is a cast iron of

aluminium profiles supporting the rotor, an 80-kW

asynchronous motor, a speed variator and a shaft

coupling. The maximum rotating speed was designed

between the first-order and second-order critical speed

of the system at approximately 116 Hz (733 rad/s).

Each disc contains 30 threaded drilled holes radially

distributed with a radius of 160 mm for rotor balanc-

ing. Before beginning the test, the imbalance of the

rod-fastened rotor is approximately 7 g mm, and the

phase of the imbalance is approximately 330�. The
angular acceleration is 15 rad/s2 during acceleration

and 30 rad/s2 during deceleration.

Fig. 25 Orbit results of rotor

123

Study on the bistable vibration behaviour 625



Figure 23a is the curve of displacement. It can be

known that the bistable behaviour appears in two

regions, 366–418 and 555–576 rad/s.

In the first region, there is a peak at 387.46 rad/s

during acceleration, while there is no peak during

deceleration. The frequency results, which are shown

in Fig. 24a, b, illustrate that the system maintains

periodic-2 motion during acceleration and periodic-1

motion during deceleration.

In the region of 555–576 rad/s, both the bistable be-

haviour and hysteretic cycle appear. The frequency

results show that the system maintains periodic-2

motion during acceleration and quasiperiodic motion

during deceleration, as shown in Fig. 24c, d. This

experiment can provide proof of the bistable behaviour

and hysteretic cycle revealed in Sect. 2.2.

It should be noted that in Fig. 24c, there are more

than 2 peaks. But it can be known from the orbit result,

Fig. 25c, and phase space reconstruction result,

Fig. 26c, the system maintains periodic-2 motion

under this condition. The excess peaks should be

caused by ambient interference.

In addition, this experiment also found that when

the eccentric distance of the rotor decreases, both the

first and second bistable region decrease, and the

hysteretic cycle weakens gradually. When the eccen-

tric distance is smaller than the critical value (for this

rotor, the critical value is 2 g mm), the bistable be-

haviour and hysteretic cycle almost disappear, as

shown in Fig. 23b–d.

6 Conclusion

This manuscript built a dynamic model of a rod-

fastened rotor considering damping of the interface.

The fourth-order Runge–Kutta method was applied to

illustrate the effect of damping of the interface on the

Fig. 26 Phase space

reconstruction
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nonlinear dynamic behaviour of the rod-fastened

rotor. The following conclusions can be obtained

from the above analysis.

1. Due to the nonlinear oil film force, the rod-

fastened rotor-bearing system presents bistable be-

haviour and hysteretic cycle. The damping of the

interface has a great influence on this

characteristic.

2. In terms of the bifurcation behaviour, when the

damping of the interface is ignored, there are two

instability behaviours: periodic-2 motion and

quasiperiodic and chaotic motion, where the

periodic-2 motion corresponds to the peak of the

transient response, and quasiperiodic and chaotic

motion corresponds to the hysteresis cycle beha-

viour of the transient response. Once the damping

of the interface is considered, the first two

unstable speeds increase significantly, the first

unstable interval increases, and the second unsta-

ble interval decreases. In addition, a third insta-

bility behaviour occurs, which includes periodic-2

and periodic-4 motion. Among them, the first

unstable behaviour corresponds to the peak of the

transient response, and the second unstable be-

haviour corresponds to the hysteresis cycle

behaviour of the transient response.

3. In the aspect of transient response, when damping

of the interface is ignored, there is no hysteretic

cycle behaviour in the process of acceleration, and

the hysteretic cycle in the process of deceleration

is relatively gentle. When damping of the interface

is considered, the hysteretic cycle occurs in both

the acceleration and deceleration progress, and the

vibration curve during hysteretic cycle is rela-

tively steeper.

4. A rod-fastened rotor-bearing test bench is set up to

verify the bistable behaviour and hysteretic cycle.

In addition, it is found that the eccentric distance

of the rotor has a great effect on the bistable be-

haviour. When the eccentric distance is small

enough, the bistable behaviour and hysteretic

cycle disappear.
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