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Abstract In this paper, we introduce a SEIATR

compartmental model to analyze and predict the

COVID-19 outbreak in the Top 5 affected countries

in the world, namely the USA, India, Brazil, France,

and Russia. The officially confirmed cases and death

due to COVID-19 from the day of the official

confirmation to June 30, 2021 are considered for each

country. Primarily, we use the data to make a

comparison between the cumulative cases and deaths

due to COVID-19 among these five different coun-

tries. This analysis allows us to infer the key param-

eters associated with the dynamics of the disease for

these five different countries. For example, the anal-

ysis reveals that the infection rate is much higher in the

USA, Brazil, and France compared to that of India and

Russia, while the recovery rate is found almost the

same for these countries. Further, the death rate is

measured higher in Brazil as opposed to India, where it

is found much lower among the remaining countries.

We then use the SEIART compartmental model to

characterize the first and second waves of these

countries, as well as to investigate and identify the

influential model parameters and nature of the virus

transmissibility in respective countries. Besides esti-

mating the time-dependent reproduction number (Rt)

for these countries, we also use the model to predict

the peak size and the time occurring peak in respective

countries. The analysis demonstrates that COVID-19

was observed to bemuchmore infectious in the second

wave than the first wave in all countries except France.

The results also demonstrate that the epidemic took off

very quickly in the USA, India, and Brazil compared

to two other countries considered in this study.

Furthermore, the prediction of the epidemic peak size

and time produced by our model provides a very good

agreement with the officially confirmed cases data for

all countries expect Brazil.
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1 Introduction

1.1 COVID-19 and its characteristics

The coronavirus disease (COVID-19) from China has

spread globally since January 2020 and has become a

pandemic. Currently, there are around 222 countries
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that report laboratory-confirmed cases across the

World (WHO). Cumulative data of confirmed cases

(182,688,695), recovered (167,288,083), and deaths

(3,956,008) are taken from the beginning to June 30,

2021 (Johns Hopkins University). An infectious

disease is the episode of an illness that is not generally

expected in a particular group of people, geographical

region, or time. Due to the relatively new nature of this

disease, proper control measures and therapeutic

interventions are still under development, which in

turn is creating tremendous tension and panic around

the World. Not only is the COVID-19 pandemic

threatening our social and personal life and the broader

aspects, such as our economy, health, and develop-

ment in both the national and global sense. Due to

uncertainties of the disease, investigators have used

several models to forecast the characteristics of

transmission parameters, primary reproduction num-

ber (R0), time-depended reproduction number (Rt), the

time of peak (tp), etc.

1.2 Related works

The researches on mathematical modeling are playing

a key role in understanding the epidemics, and it may

help to predict the intensity of pandemics in the early

stages. This also demonstrates a significant role in

making the right decision during outbreak control [1].

In this regard, several researchers have developed

mathematical models for the COVID-19 epidemic

[2–13]. Very recently, Kuddus and Rahman [2] have

used the improved SLIR model with nonlinear inci-

dence, and they have observed that the transmission

rate of each parameter had a significant impact on

COVID-19. Lobato et al. [3] proposed a dynamic data

segmentation approach to provide reasonable esti-

mates for all parameters. A three-party differential

game model including epidemic prevention and risk

coefficient was proposed by [14], and results were

presented based on theoretical and numerical analysis.

Toda [4] estimated the COVID-19 transmission rates

for several countries based on the SIR model for

regular data of confirmed cases. Tang et al. [15]

proposed a compartmental model with a clinical

progress compartment and epidemiological compart-

ment, and they showed that the isolation compartment

could successfully reduce the transmission hazard.

Biswas et al. [16] formulated a deterministic com-

partmental model to estimate the model parameters

and compared these against the reported data. Wu

et al. [5] used a four-compartment (SEIR) model to

explain the transmission rates and forecast the coun-

trywide and worldwide feast of the COVID-19

epidemic based on published data from December

31, 2019, to January 28, 2020. They also determined

the basic reproduction number for COVID-19, and it

was nearly 2.68 for China. COVID-19 outbreaks on

human-to-human transmission based on the computa-

tional modeling of probable epidemic trajectories

were estimated by Imai et al. [17]. They focused that

the control actions needed to block over 60% of

transmission to control the outbreak effectively.

Ahmed et al. [18] developed a SEIR time-fractional

model to investigate the nature of coronavirus in

Pakistan and discussed the stability analysis. Pedersen

et al. [19] proposed the SIQR model to discuss the

dynamics of COVID-19 in Italy. Hoertel et al. [20]

represented a stochastic agent-based microsimulation

model of COVID-19 to examine the impact of mask-

wearing, physical distancing, and shielding individu-

als and showed that those were slowing the spread of

the epidemic and reducing the mortality rate.

In epidemiology, the average basic reproduction

number (R0) is defined as the average number of

secondary cases that would be generated by a primary

infectious disease in a susceptible population [21].

Determining R0 is often stimulating for the involve-

ment of numerous factors and a deficiency of unbiased

data. In most cases, secondary infections cannot be

estimated precisely, particularly for COVID-19,

where asymptomatic patients are barely recognized.

There are many techniques to calculate R0 [22], some

of them agree with each other, and some are developed

based on the secondary infections. In general, if R0 is

greater than 1, the disease has a spreading potential

with a tendency to increase the number of new cases.

On the other hand, the value of R0 is equal and below 1

indicates that it is a threshold disease, and the infection

will spread slowly, and the disease dies out, respec-

tively. To effectively eliminate an epidemic disease

from a population, R0 needs to be less than unity. It is

thus of interest to estimate the value ofR0 for emerging

diseases.

Estimating the reproduction number in the early

stages of the spread of the COVID-19 have helped to

understand essential aspects of the pandemic. In this

context, Marimuthu et al. [12] estimated the introduc-

tory reproduction number rate (R0) at 1.379 using the
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exponential growth method for India. They also

estimated R0 with CI at different states (1.450 for

Maharashtra, 1.444 for Gujarat, 1.297 for Delhi, and

1.405 for Tamil Nadu) in India and observed the

disease is pandemic type. Read et al. [23] determined

the value of R0 as 3.1 fitting data with the SEIR model

and Poisson-distributed theory with daily time incre-

ments. Beenstock and Dai [24] computed the values of

the effective reproduction number regularly in several

countries applying the perpetual register technique.

Hong et al. [25] considered a dynamical epidemiology

model developing overtime in which the effective

reproduction number was estimated subject to the

stochastic shocks. Chaves et al. [26] estimated the R0

for COVID-19 based on the susceptible–infectious–

removed model, and they observed the value of R0 in

the range of 2.58–2.43. Hong and Li [27] estimated the

time-dependent reproduction number based on the

Poisson model with transmission and removal rates

and reported probable arbitrary errors. Khosravi et al.

[28] determined the value of R0 by a maximum-

likelihood method which was 2.7 for the COVID-19

pandemic in the first 14 days and reduced to 1.13 by 42

days in Iran.

Some relevant works [7, 15, 29] applied the various

techniques to predict the peak time and size. Accord-

ing to [7], the epidemic peak and size were estimated

for COVID-19 by using confirmed data, and he

expected that it could reach the early-middle summer

in Japan. According to Tang et al. [15], the predicted

peak could be found within two weeks from January

23, 2020 (China), but this result did not satisfy the

accurate picture. Zahiri et al. [29] determined the

predictions of the COVID-19 pandemic, such as the

actual number of victims, infection rate, and peak time

in Iran. Ranjan et al. [30] studied the COVID-19

spreads in the ongoing second wave in India and its

several cities up to April 19, 2021. They learned the

dynamic advancements of the epidemic parameters

from the beginning of the outbreak.

Recently, many researchers have studied mathe-

matical modeling of COVID-19 for second waves

(Iftimie et al., [31]; Vasconcelos et al., [32]; Salyer

et al., [33]; Lobato et al., [3]). The so-called second

wave of COVID-19 is characterized by an expressive

increase in the number of confirm cases after a

significant drop in the number of new infections

during the first wave. In this context, Iftimie et al. [31]

discussed the comparative study of first and second

waves of COVID-19 in Spain and showed that the

fatality rate was lower in the case of second wave.

Vasconcelos et al. [32] introduced a generalized

logistic model with time-dependent parameters to

analyze the dynamics of the COVID-19 fatality curves

for several countries and the intensity of the standard

second wave was less than the first wave. Salyer et al.

[33] studied the first and second waves of the COVID-

19 pandemic in Africa and showed that the second

wave appeared to more aggressive compared to first

wave. These studies have made significant contribu-

tions to investigate the COVID-19 in different aspects.

1.3 Study regions and objective

Though COVID-19 affected many countries at differ-

ent magnitudes, the TOP 5 countries based on WHO

till June 30, 2021, are considered in this study. The

present study focuses on the six-compartmental

model, with treatment individuals, to estimate the

impact of treatment and isolation on the COVID-19

pandemic. Our aim is to determine the parameters of

the SEIATR model that best describe the behavior of

the first and second waves in USA, India, Brazil,

France, and Russia. This study also will focus the

nonlinear dynamics of the system which will give

more information on the dynamics of the epidemic

system.

2 Models and data

2.1 Physical descriptions

SIR model and its modified version, such as Suscep-

tible-Exposed-Infectious-Recovered (SEIR) model,

were widely used to analyze and investigate the

COVID-19 outbreak [34–37]. Most of these models

were developed or investigated based on the assump-

tion that the transmission and removal rates were

constant, which might not hold authenticity [27]. In

the present model (SEIATR), we subdivide the total

number of population into six deterministic compart-

ments: the susceptible (denoted by S), the exposed

(denoted by E), the infected (denoted by I), the

asymptomatic (represented by A), the treatment (de-

noted by T) and the recovered (denoted by R). The

diagram of SEIATR in Fig. 1 (Corona Tracker) shows

how an entity moves through each compartment in the
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model. In this study, the natural recruitment and

mortality rates are not considered, because these are

negligible compared to the total population. But the

death rate due to COVID-19 is considered to be

constant in this study.

There are three main parameters to estimate the

new infective individuals across the hazard scale

affected by the COVID-19. These are: (1) Transmis-

sion rate (b), (2) Average incubation period (1/c), and
(3) Fraction p of exposing compartment (E) proceeds

to the infective compartment (I). Commonly, the

incubation period (1/c) is taken to be constant for the

sake of simplicity in each country (Table 1).

2.2 Model equations

We introduce the following SEIATR compartmental

model (modification of SEIR well-known model) for

forecasting of the COVID-19 outbreak of Top 5

affected countries in the World. The SEIATR model

equations are described in below:

dSðtÞ
dt

¼ �bðtÞSðtÞðIðtÞ þ e1ðtÞAðtÞ þ e2ðtÞTðtÞÞ ð1Þ

dEðtÞ
dt

¼ bðtÞSðtÞðIðtÞ þ e1ðtÞAðtÞ þ e2ðtÞTðtÞÞ
� pcðtÞEðtÞ � ð1� pÞcðtÞEðtÞ ð2Þ

dIðtÞ
dt

¼ pcðtÞEðtÞ � ð1� qÞaðtÞIðtÞ � qaðtÞIðtÞ ð3Þ

Fig. 1 The figure represents

a diagram of the model

described by the Eqs. (1–6).

Interventions including

intensive contact tracing

followed by asymptomatic

(A) and treatment (T) are

indicated

Table 1 Parameter values for model Eqs. (1–6)

Country/wave Values of the parameters

b/million e1 e2 p c a f/million e r d

First wave

USA 202.80 (95% CI, 180.68–224.91) 0.40 0.20 0.12 1/6 0.9 3.75 0.5 0.05 0.627

India 20.67(95%CI: 18.62 22.72) 0.40 0.20 0.22 1/6 0.9 0.33 0.5 0.05 0.972

Brazil 104.43(95% CI: 93.63, 115.24) 0.40 0.20 0.17 1/6 0.9 3.32 0.5 0.05 0.883

France 22.54(95%CI: 13.03, 32.05) 0.40 0.20 0.35 1/6 0.9 2.92 0.5 0.05 0.945

Russia 31.75(95%CI: 28.41 35.09) 0.40 0.20 0.20 1/6 0.9 0.71 0.5 0.05 0.871

Second wave

USA 322.29(95%CI:295.55, 349.03) 0.40 0.20 0.15 1/6 0.9 4.81 0.5 0.05 0.492

India 110.20(95%CI: 93.66 126.74) 0.40 0.20 0.23 1/6 0.9 1.35 0.5 0.05 0.645

Brazil 247.76(95%CI:233.63, 261.90) 0.40 0.20 0.35 1/6 0.9 6.81 0.5 0.05 0.645

France 228.96(95%CI:193.31, 264.61 0.40 0.20 0.18 1/6 0.9 3.21 0.5 0.05 0.965

Russia 98.66(95%CI: 92.93 104.39) 0.40 0.20 0.12 1/6 0.9 2.54 0.5 0.05 0.699

References * ** ** * *** ** * ** ** *

*Worldometer, **Estimated and ***WHO
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dAðtÞ
dt

¼ ð1� pÞcðtÞEðtÞ � ð1� rÞgðtÞAðtÞ
� rgðtÞAðtÞ ð4Þ

dTðtÞ
dt

¼ qaðtÞIðtÞ þ rgðtÞAðtÞ � dðtÞTðtÞ ð5Þ

dRðtÞ
dt

¼ dðtÞTðtÞ þ ð1� rÞgðtÞAðtÞ ð6Þ

dNðtÞ
dt

¼ �ð1� qÞaðtÞIðtÞ ð7Þ

The rate of change of susceptive is described in

Eq. (1) which is influenced by infected, expose and

treatment compartments, where e1ðtÞ and e2ðtÞ are the
relative horizontal transmissions of the diseases due to

asymptomatic and treatment individuals, respectively.

This amount of individuals goes to expose compart-

ment at a rate bðtÞ at time t. The rate of change of

exposed individuals is represented by Eq. (2) which is

reduced at a rate cðtÞ at t. p-fraction of the expose

compartment goes to the infected compartment and

the remaining fraction (1-p) proceed to the asymp-

tomatic compartment. The rate of change infected

individuals is given by Eq. (3) which is increased by

the individuals of expose compartment at a rate of cðtÞ
and reduce at a rate aðtÞ to the asymptomatic and

treatment compartments, respectively. The parameters

q and r are fractions of the infective and asymptomatic

populations that proceed to the treatment compartment

at a rate a ðtÞ and g ðtÞ, respectively, and 1/d ðtÞ is the
average treatment period. The rate of change of

asymptomatic and treatment compartments are pre-

sented in Eq. (4) and Eq. (5), respectively. The rate of

change of removal compartment is obtained in Eq. (6)

which is increased at a rate of gðtÞ and dðtÞ from the

asymptomatic and treatment compartments.

For solving Eqs. (1) to (7), the following initial

conditions are required:

Sð0Þ ¼ S0; Eð0Þ� 0; Ið0Þ
¼ I0; Að0Þ� 0; Tð0Þ� 0; Rð0Þ� 0 ð8Þ

and

SðtÞ þ EðtÞ þ IðtÞ þ AðtÞ þ TðtÞ þ RðtÞ ¼ N
¼ S0 þ I0: ð9Þ

For disease-free equilibrium, an equilibrium solu-

tion of model Eqs. (1–6) is obtained with E ¼ I ¼ 0:

Then by solving the equilibrium system, it has been

found A ¼ T ¼ R ¼ 0 and let S ¼ S0: Thus, disease-

free equilibrium is ðS0; 0; 0; 0; 0; 0Þ.
Diseases compartments are found from the system

using Eqs. (2–5) as

dE

dt
¼ bSðI þ e1Aþ e2TÞ � pcE � ð1� pÞcE ð10Þ

dI

dt
¼ pcE � ð1� qÞaI � qaI ð11Þ

dA

dt
¼ ð1� pÞcE � ð1� rÞgA� rgA ð12Þ

dT

dt
¼ qaI þ rgA� dT ð13Þ

In general, the above model equations can be

expressed in the following tensor form

oxi
ot

¼ fiðxi; yiÞ � viðxi; yiÞ; ð14Þ

where f i denotes the secondary infection rate that

increases the i th disease compartment and vi shows

the other progression or transition rate (such as death,

recovery) that decreases the i th disease compartment.

Mathematically, the new infection matrix f and

transition matrix v can be written, respectively,

f ¼

bS I þ e1Aþ e2Tð Þ
0

0

0

2
6664

3
7775 and

v ¼

cE

�pcE þ aI

�ð1� pÞcE þ gA

�qaI þ rgAþ dT

2
6664

3
7775;

ð15Þ

The time-dependent reproduction number (Rt) can

be estimated by the method of next-generation matrix

k ¼ F=V1 suggested by van den Driessche et al. [38],

and it displays the positive eigenvalue (Rt) of the

matrix k at the disease-free equilibrium. Applying the

above technique, it is found as

F ¼ ofi
oxj

ð0; y0Þ andV1 ¼
ovi
oxj

ð0; y0Þ ð16Þ

where
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F ¼

0 bS0 be1S0 be2S0
0 0 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775 and

V1 ¼

c 0 0 0

�pc a 0 0

�ð1� pÞc 0 g 0

0 �qa �rg d

2
6664

3
7775:

Following van den Driessche et al. [38], the time-

varying reproduction number (Rt) is then found based

on the spectral radius or positive eigenvalue of FV�1.

After simplification, the time-dependent reproduc-

tion number can be derived as

RtðtÞ ¼ bðtÞS0
p

aðtÞ þ
e1ðtÞð1� pÞ

gðtÞ þ e2ðtÞðr þ pq� prÞ
dðtÞ

� �

ð17Þ

The time-varying reproduction number (Rt) is an

important term that provides a real-time picture of an

outbreak [12]. Rt is proportional to the contact rate for

the SIR model and will vary according to the local

situation. In contrast, for the SEIATRmodel, Rt can be

obtained as the spectral radius of a next-generation

matrix of the transmission of the diseases, and the

time-varying reproduction number is determined for a

disease-free equilibrium [39].

2.3 Computational method

COVID-19 breaks out all over the World, and various

public health measures, treatments with some drugs,

immunity, guard, etc., are only the control measures

for this virus yet. To predict and determine the

intensity of the COVID-19 pandemic, model Eqs. (1–

6) are applied as the fundamental equations and are

solved numerically with the help of the Runge–Kutta

method. The incidence data between starting date for

each country and June 30, 2021, have been considered

to get the best-fit parameters in the proposed model.

The initial values of susceptible, exposed, infectious,

and recovered cases are taken for each country based

on the human population and confirmed cases data

fromWHO,Worldometer, and Johns Hopkins Univer-

sity’s database. Based on the WHO, the incubation

period of COVID-19 is about 6 days, hence r ¼ 1=6

was set up in the calculation. The values of the several

parameters of the proposed model are taken for

COVID-19 from several published papers, reports,

and reviews of preceding, which are stated in Table 1.

The outbreak data mentioned in Table 1 would usually

have dual uncertainty. These are: (a) asymptomatic

infected people could spread the infection and (b) in-

sufficient diagnostic tests. This investigation has

accumulated such delay to a SEIATR proposed model

to predict the epidemic peak and size.

2.4 Data

The COVID-19 has been thoroughly observed by

several recognized societies such as the World Health

Organization (WHO), Worldometer, and Johns Hop-

kins University’s database. Currently, there are around

222 countries that reported laboratory-confirmed cases

for COVID-19 across the World (WHO). Although it

was better to include the most affected countries in our

analysis, it was tedious to work with such big data,

model limitation, data initialization, parameter selec-

tion, data accuracy, and keeping track to achieve our

objectives. That is why the work has kept analyzing

with Top 5 affected countries, namely USA, India,

Brazil, France, and Russia, where the first case in each

country was reported on January 21, 2020; January 30,

2020; February 26, 2020; January 24, 2020; and

January 31, 2020, respectively (Worldometer). For

analyzing the COVID-19 pandemic, the data were

taken from the starting date to June 30, 2021, for each

country. The governmental websites of many coun-

tries also have been following these numbers starting

from several time points. The websites mentioned

above have become valuable capitals to help advance

the thoughtfulness of the feast of the virus.

3 Results and discussion

3.1 Cumulative reported cases

In Fig. 2, the cumulative confirmed cases, deaths, and

recoveries for COVID-19 are compared among the

Top 5 affected countries. These countries are most

affected by the maximum number of cumulative

points as of June 30, 2021. The USA has leading

cumulative cases and death among the countries

shown, with about 34.52 million and 0.62 million,

respectively. In Fig. 2, it can be seen that the outbreak
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started to move in the USA, India, and Brazil, with a

relatively fast spread of the disease. The spreading

patterns are almost the same for France and Russia.

Furthermore, many deaths are observed in the USA,

Brazil, and India, where fewer deaths can be seen both

in France and Russia. In addition, the data of recovery

for the USA is not available from the Worldometer

(from 14/12/2020 to ongoing), so we could not

compare here.

The infected, death, and recovery rates are com-

pared in Fig. 3. It can be seen that the infected rates are

much higher in the case of the USA, Brazil, and

France, and the recovery rates are almost the same for

all the countries. Furthermore, the death rate is

measured higher in Brazil, whereas it is found lower

in India.

3.2 Model-implied reproduction number

Figure 4 demonstrates the variations in daily con-

firmed cases and the normalized time-varying

reproduction number (Rt) for the Top 5 affected

countries. The curves show the growing trends of the

epidemic for each country, and virtually all the

countries showed a significant change in (Rt) from

starting dates to June 30, 2021. Rt was estimated in a

15 days interval from the starting date, taking the

reported median incubation period of 6 days. In Fig. 4,

the (Rt) remains almost constant from starting date to 3

to 6 months for the Top 5 countries suggesting a

stabilization of the transmissibility rate. Rt starts

increasing and reaches a maximum of around 1.85,

1.12, 9.33, 1.44, and 0.22 in the first wave for the USA,

India, Brazil, France, and Russia, respectively. After

this relatively long quiet interval, Rt started rising

maximum 22.24, 19.46, 27.11, 10.32, and 1.55 in the

USA, India, Brazil, France, and Russia, respectively,

which can be considered an indicator of the arrival

date of the second wave. In Fig. 4, the high reproduc-

tion number with Brazil at the beginning and India on

May 05, 2021, indicates that the infectious disease

transmission was not well managed. In addition, our

results show good agreement with those determined by

Khailaie et al. [40] using the SECIR model. It is

concluded that the proposed model is capable of

obtaining good estimations for the model parameters

and, subsequently, for Rt, as illustrated in Fig. 5.

On the other hand, the average basic reproduction

numbers (R0) of (Rt) are calculated based on the

arithmetic mean formula for the Top 5 affected

countries. The values of average R0 are measured

3.24 (95% CI: 2.289, 4.2), 6.75 (95% CI: 5.5, 8.0),

1.37 (95% CI: 0.70, 204), 1.57 (95% CI: 1.14, 2.01),

and 0.37 (95% CI: 0.30, 0.45) for the USA, Brazil,

India, France and Russia, respectively. The smallest

Fig. 2 Comparisons among the cumulative a confirmed cases

and b deaths due to COVID-19 among the Top 5 affected

countries in the world. The x-axis denotes the number of months

since the first laboratory-confirmed case in the representative

countries

Fig. 3 Graphs for COVID-19 infected, recovery and death rate.

Infected rate = Infectious cases/Total population; Death rate =

Total death/Infectious cases; Recovery rate = Total recovery/

Infectious cases
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R0 is observed in Russia (0.37), while the highest is in

Brazil (6.75). From these estimations of R0, it can be

concluded that COVID-19 has an epidemic nature (R0

[[ 1) for all countries. The estimated R0 is an

important factor in infectious disease epidemiology

because 1- 1/R0 could reduce the force of infection to

eliminate the disease outbreak. For example, at R0 =

4.40 this fraction is 77%, but at R0 = 5.40 this fraction

is 81%. With the increase in R0, the fraction 1 - 1 /R0

increases, which may help decide to force the

pandemic’s control.

3.3 Peak prediction analysis

We define the epidemic peak by tP in the first wave and

assume it will occur within 36 months from the

beginning of the COVID-19 pandemic. As an exam-

ple, we discuss the procedure to estimate the epidemic

peak and size for the USA. For identification rate p =

0.12, we obtain Fig. 5 on the long time behavior for b =
224.92, 202.80, and 180.68 per million. Under the

current situation, it is seen in Fig. 6 that the

predictable epidemic peak is tp = 6.3 months (95%

CI, 6.0–6.6) for the USA. That is, starting from

January 21 (t = 0), the estimated infected individuals

(peak size) is (I(t)) = 74,500, while the real peak size

was 62,000 (Table 2) for USA and the estimated

epidemic peak period is tP = 6.3 month (July 30) with

the uncertainty range is from tp = 6.0 month (July 21)

to tp = 6.6 month (August 9) (Fig. 6). We obtain an

estimation of b = 202.80 (95% CI, 180.68–224.92) for

p = 0.12, where the parameter p is calculated so that

the curve approaches fit with the real data in Fig. 6.

Similarly, as shown in Table 2, the epidemic peaks

were estimated for India, Brazil, France, and Russia.

3.4 Characterization of first and second waves

and model results

The epidemic peaks and sizes have been investigated

for the USA, Brazil, India, France, and Russia

mentioned in Table 2 and Fig. 4. It can be seen that

the estimated peak sizes of infectious individuals are

closed to the actual dimensions of data (Fig. 4, Table 2)

bFig. 4 Shows the variations in daily confirmed cases and time-

dependent reproduction number Rt for Top 5 affected countries
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for all the countries in the case of first and second wave

data. The second wave of COVID-19 has hit the Top 5

affected countries very hard, with the daily confirm

Fig. 4 continued

Fig. 4 continued

Fig. 5 Comparisons of the time-depedent reproduction number

of the COVID-19 in USA, in the period between February 15

and November 25, 2020. The values of Rt are calculated using

Eq. (17)
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issues are reaching almost triple the first peak values

for the USA, India, and Russia. Estimating peak sizes

of infectious individuals fit on recent data demonstrate

that the infection case is much higher than the first

wave for all the Top 5 affected countries. The actual

data of Brazil fluctuates near the second wave, and the

calculated result of the confirmed case shows a slight

difference from the existing data in the case of France

(Fig. 4). It is noted that the third wave also appears in

France. The accuracy of the data accumulated from

Worldometer and Johns Hopkins University’s data-

base is a matter of trust for representing the entire

study.

3.5 Evolutions of the system with parameters

The system’s evolutions with parameters, such as

susceptible, exposed, infected, asymptomatic, treat-

ment, and recovered, are shown in Fig. 7, which shows

how all the system classes affect the dynamics of an

epidemic. Mainly, all the individual compartment

increases first except susceptible S. After that; these

converge to zero except the recovered compartment

R. The patterns of the curves of the evolution

parameters are all most similar types of the USA,

India, Brazil, France, and Russia, so for the conve-

nient, we have discussed these only for the USA and

Russia. Since there is no evidence that the recovered

compartment is resistant to the virus, this makes the

system hard to converge. Furthermore, it is also seen

that the asymptomatic and expose parameters are very

effective compared to other parameters, and both link

to zero slowly. Similar evolutions were done by He

et al. [41].

3.6 Nonlinearilty of the transmission dynamics

Nonlinearity during the entire course of a pandemic

disease arises due to a number of factors. For example,

seasonality, age structure of a population, variation in

immunity strength across different countries, mass

isolation imposed by the policy makers, self-regulated

awareness of the community when the spread of the

virus hikes and the rate of virus mutation, to name a

few [41–43]. The fluctuations in transmission

observed in different countries during the course of

the pandemic are presumably due to one or more of

these factors. Similar nonlinear effects are observed in

other biological phenomena. For example, in the case

of a secondary or tertiary infection caused by a

different strain of the dengue virus. In most cases, the

primary infection causes a mild self-limiting illness in

the majority of individuals [44–46]. However, aber-

rant immune response in the initial stages of infection

in the case of secondary or tertiary infection caused by

different strains of the virus often leads to severe

dengue by inducing a vascular leak and excessive

inflammation due to high levels of inflammatory

cytokines. Similar phenomena are also observed in

within-host dynamics of the SARS-COV transmission

between cells caused by different strains of the virus

[47].

4 Conclusions

In this paper, a SEIATR model was developed for the

COVID-19 pandemic, and the model parameters were

estimated by using the Runge–Kutta method. Using

the estimated parameter values, the predictions for

both the first and second wave for five different

countries were produced. In addition, the model was

used to investigate how the parameters affect the

dynamics of the disease. The obtained results of

epidemiological insights are briefly summarized

below:

(1) The cumulative confirmed cases and deaths due

to COVID-19 considering 15 days interval is

presented and then a comparison is made among

five different countries. The officially confirmed

cases and death due to COVID-19 from the day

of the official confirmation to June 30, 2021 are

considered for each country. It was observed

that in the case of USA, India, and Brazil, the

epidemic spread took off very quickly. Further-

more, higher cumulative deaths were observed

in the USA, Brazil, and India. The intensity of

COVID-19 infections and deaths patterns were

found almost the same for France and Russia.

(2) The time-dependent reproduction number (Rt)

was estimated for all five countries, and it

suggested that the COVID-19 was much more

infectious in the second wave than the first

wave. Further, the estimated value of R0 in

Russia was found to be as lowest as 0.37 (95%

CI: 0.30, 0.45) while in Brazil it was found as

high as 6.75 (95% CI: 5.5, 8.0).
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(3) The peak sizes and times of the confirmed cases

satisfied the model results for five different

affected countries. It did not mean that our

analyses had provided exact but erroneous

estimations for all five countries instead of

more minor errors obtained for France.

(4) The patterns of the curves of the epidemic

evolution parameters were determined almost

similar types for the USA and Russia. It was

observed that all the compartments except the

recovered compartment were converged to zero.

(5) Finally, the high reproduction number sug-

gested that the outbreak might be more severe

than that has been officially reported. We

obtained peak time and size when a pandemic

had already happened for the first and second

waves. However, the pandemic peak time and

size for a third or so on the waves are yet to be

learned.

Fig. 6 Time-variation of

the infective individuals’ for

the USA are identified at

peak time tp in a month for

identification rate p = 0.12.

The blue circles show active

reported cases. The red lines

are the model results, and

the vertical blue lines show

the epidemic peak. The

values of b are 180.68,

202.80, and 224.92,

respectively
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Overall, our findings suggest that the dramatical

reduction in total outbreak size and peak prevalence is

possible by decreasing the transmission rate. In future

work in this direction, the proposed model can be

expanded by considering some other compartments as

well as can be used in investigating optimal control

strategies. Besides, this research work may become

useful for health professionals and policy makers to

take necessary measures against the future impact of

coronavirus even when the vaccine is available. The

insights of the fluctuations across different countries

and different waves of the epidemic may help to

understand different scenarios of the epandemic, as

well as to define policies to successfully mitigate the

disease spread.

A sophisticated study considering the temperature

condition of the country, demographic information,

the strength of public health facilities and the govern-

mental interventions taken to suppress the transmis-

sion may provide more useful information in tackling

and designing more effective control strategies against

any future epidemic threat. Our work should encour-

age any such future works in this direction. Further,

estimated epidemic parameters during the first and

second waves, as well as, the insights of the fluctu-

ations across different countries and different waves of

the epidemic are expected to be useful in post Covid-

19 analysis for respective countries’ policy makers in

designing more effective control strategies in future.
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Table 2 Estimated COVID-19 pandemic peak times and peak sizes

Country First

identified

date

First wave Second wave

tp

month

Peak

period

Estimated

peak size

Real

peak

size

tp

month

Peak

period

Estimated

peak size

Real

peak

size

USA 21-01- 2020 6.3 30 July, 20 74,500 62,000 11.03 17 Dec, 20 254,000 239,900

India 30-01-2020 7.5 11 Sept., 20 98,000 97,570 15.4 05 May, 21 412,520 412,431

Brazil 26-02-2020 5.1 30 July, 20 70,000 51,000 14.26 28 Apr, 21 79,726 80,000

France 24-01-2020 2.3 01 April, 20 4820 4844 9.63 07 Nov, 21 86,000 86,655

Russia 02-02-2020 4.3 12 June, 20 12,000 10,500 10.53 11 Dec, 21 29,000 28,206

Fig. 7 Evolutions of the system with parameters of the Model

Eqs. (1–6). The parameters p and d are used 0.12 and 0.627 for

the USA and 0.20 and 0.871 for Russia, respectively
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