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Abstract The global pandemic due to the outbreak
of COVID-19 ravages the whole world for more than
two years in which all the countries are suffering a lot
since December 2019. In this article characteristics of
a multi-wave SIR model have been studied which suc-
cessfully explains the features of this pandemic waves
in India. Origin of the multi-wave pattern in the solu-
tion of this model is explained. Stability of this model
has been studied by identifying the equilibrium points
as well as by finding the eigenvalues of the correspond-
ing Jacobian matrices. In this model, a finite probabil-
ity of the recovered people for becoming susceptible
again is introduced which is found crucial for obtain-
ing the oscillatory solution in other words. Which on
the other hand incorporates the effect of new variants,
like delta, omicron, etc in addition to the SARS-CoV-2
virus. The set of differential equations has been solved
numerically in order to obtain the variation of suscepti-
ble, infected and removed populationswith time. In this
phenomenological study, some specific sets of parame-
ters are chosen in order to explain the nonperiodic vari-
ation of infected population which is found necessary
to capture the feature of epidemiological wave prevail-

K. Ghosh
Department of Chemistry, Charuchandra College, 22 Lake
Place Road, Kolkata 700029, India

A. Kumar (B)
Department of Physics, Jadavpur University, 188 Raja
Subodh Chandra Mallik Road, Kolkata 700032, India
e-mail: asimk.ghosh@jadavpuruniversity.in

ing in India. The numerical estimations are compared
with the actual cases along with the analytic results.
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1 Introduction

The outbreak of COVID-19 in December 2019, due to
the spreading of infectious coronavirus named SARS-
CoV-2 finally triggered to a global pandemic in which
all the countries are suffering a lot till to date. This
highly contagious disease has been transmitted to mil-
lions of people globally where a fraction of infected
people is succumbed to it eventually. Most of the
countries witnessed multiple peaks of epidemiological
infections in its evolution which is counted as number
ofwaves.Among themost affected countries, for exam-
ple, countries in European union (CEU), USA, Russia
and Canada experienced five successive epidemiolog-
ical waves while the third wave is going on in India,
Indonesia and Brazil. Which means that five peaks of
the epidemiological infections are found in CEU,USA,
Russia and Canada, while three distinct peaks are noted
in India, Indonesia and Brazil. However, peaks of epi-
demiological infections in India are sharper than those
found in Brazil. So, it is obvious that characteristics of
these epidemiological waves found in different coun-
tries are not similar. Widths and heights of the peaks
are different as well as the separation between them
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are not equal. It is observed that the same individual
gets infected multiple times during this pandemic in
all countries. This is due to fact that new variants of
SARS-CoV-2 virus emerge in due course.

In order to study the dynamics of the pandemic in
a deterministic approach, several models have been
proposed based on the classic SIR model introduced
by Kermack and Mckendrick in 1927 [1]. This model
yields only a single peak for infection in its evolution,
so, henceforth it is referred to as the single-wave SIR
(SWSIR) model. Most of the previously studied mod-
els are mainly formulated to explain the characteristics
of the solitary wave of the pandemic. Those are known
as SEIR, SIQR and their hybrids which are all derived
from the SWSIRmodel [2–6]. In those attempts, effects
of quarantine, isolation, latent time of infection and
other factors are taken into account where several pre-
dictions and forecasts are available [7,8]. Nonetheless,
periodic outbreak of disease in terms of SIR, SIQR, and
SEIQR models are studied analytically in great details
[9–11]. Evolution of the COVID-19 pandemic for dif-
ferent countries have been studiedwith the help of those
models where origin of differences in its features are
explained. Case studies on few countries are available
[12–21]. However, generation of multi-wave pattern in
the COVID-19 pandemic evolution in a deterministic
approach through a single model is not reported before.

Hence, a multi-wave SIR (MWSIR) model is for-
mulated by modifying the SWSIR model in order to
explain the dynamics of epidemiological infections
including the origin of multiple waves found in the
infection pattern. This is a fact that the same individ-
ual has been infected repeatedly during this pandemic
period. So in this model, probability of the same indi-
vidual for getting infected multiple times after curing
is taken into account [22]. Time delay between succes-
sive infections of the same individual is introduced in
the MWSIR model. In this work, periodic outbreak of
COVID-19 in India will be studied, and so, the daily
new cases in terms of seven-day moving average in
India during January 30, 2020 to March 14, 2022 (775
days) are shown in Fig. 1. It reveals that the duration
of those waves are different, so, it is not at all periodic.
The approximate duration of first and second waves
are T1 = 370 and T2 = 300 days, respectively, while
the third wave crosses 105 days (T3 = 105). Hence,
separation between adjacent peaks are different, and in
addition, width and height of the peaks are unequal.

In Sect. 2 aMWSIRmodel is consideredwhich gives
rise to almost periodic epidemiological oscillation. The
stability of this model is studied in Sect. 3 analyti-
cally while its periodic feature is studied numerically
in Sect. 4. In order to produce nonperiodic oscillation,
thismodel has beenmodified further. The epidemiolog-
ical oscillation produced in this study is compared with
the daily new COVID-19 cases in India. A discussion
based on those results is available in Sect. 5.

2 Multi-wave SIR model

In order to explain the epidemiological waves of infec-
tion due to the spreading of COVID-19 in India, a
MWSIR model is formulated where the total popu-
lation is divided into three dynamic sub-populations,
those are known as susceptible, infected and removed.
Susceptible population is constituted by the individu-
als those are otherwise healthy but have a probability
for having infected at any time in future. The interme-
diate stage is comprised of infected population where
the individual is instantaneously contagious. In the ter-
minal stage individuals are either recovered or suc-
cumbed to the disease, however, they jointly referred
to as removed population. As the ongoing COVID-
19 pandemic exhibits periodic outbreak of the disease
globally, a modified version of SWSIR model is nec-
essary to study the dynamics of this pandemic.

Therefore, in order to understand the nature of peri-
odic outbreak, a MWSIR model has been formulated
by modifying the primitive version of SIR model as
describedbelow. In thismodel the recoveredpopulation
has a nonzero probability for getting infected again. As
a result, the susceptible population gets enriched with
time which is measured in terms of infected population
with a time delay, τ . Thus, theMWSIRmodel is defined
by a set of coupled first-order nonlinear differential Eq.
(1):

dS

dt
= μN − α S(t) I (t) + γ I (t−τ) − μS(t), (1a)

d I

dt
= α S(t) I (t) − β I (t) − μI (t), (1b)

dR

dt
= β I (t) − γ I (t−τ) − μR(t), (1c)

where S(t), I (t), and R(t) are the number of suscepti-
ble, infected and removed people at time t . The positive
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Fig. 1 Daily new
COVID-19 cases in terms of
seven-day moving average
in India during January 30,
2020 to March 14, 2022
(775 days). The regions for
first, second and third waves
are demarcated by different
colors

μN

μS(t) μI(t) μR(t)

βIαSI

γI(t−τ)

S(t) I(t) R(t)

Fig. 2 Flowchart for the MWSIR model

constants μ, α, β and γ are the rates of birth, transmis-
sion (or infection) per individual, removed and resus-
ceptibility, respectively. The model incorporates the
fact that the recovered people become susceptible again
after the mean period τ [22]. However, I (t − τ) = 0,
when t < τ . The SWSIR model will be restored
when μ = 0, and γ = 0. The system in this for-
mulation is closed in a sense that the total population,
N = S(t) + I (t) + R(t), does not change with time,
which means the rate at which individual suffers natu-
ral mortality is also given by the parameter μ. In other
words, mean lifespan of individual turns out to be 1/μ.
In the same way, 1/β can be regarded as the mean
recovery time for the infected individual. The flowchart
of this model is shown in Fig. 2.

Now it is pertinent to explain how does this MWSIR
model yield multiple peaks in its evolution. However,
looking back on to the SWSIR model (μ = 0, γ = 0),
Eq. (1a) leads to the fact that Ṡ < 0 for all t . Itmeans the
number of susceptible individuals is always decreasing
irrespective of the initial value, S(0). S(t) is monotone
and positive which corresponds to limt→∞ S(t) = S∞.
On the other hand, Eq. (1c) corresponds to Ṙ > 0 for all

t , which means the number of removed individuals is
always increasing.Although R(t) possessesmonotonic
behaviour irrespective of the initial conditions but it is
bounded by total population N , which corresponds to
limt→∞ R(t) = R∞.

Equation (1b) reveals that the number of infected
individuals increases monotonically as long as β <

αS(t) up to some maximum value and decreases to
zero since the opposite condition, β > αS(t), is being
satisfied beyond a certain time and thereafter. So, the
epidemic dies out finally as limt→∞ I (t) = I∞ → 0.
Thus it yields a solitary broad peak in the evolution
for the number of infected individuals. Equation (1b)
further predicts when this maximum will be attained
as it can be determined by the condition İ = 0, which
corresponds to the relation, S(t) = β/α. Further it
can be shown that the value of the maximum can be
expressed as [5],

Imax = S(0)+ I (0)−β(ln S(0)−ln (β/α)+1)/α. (2)

On the other hand, for theMWSIRmodel (μ = 0, γ �=
0), different picture is observed since Eq. (1a) could be
decomposed along the time domain as

Ṡ < 0, when γ I (t−τ) < α S(t) I (t), and, (3a)

Ṡ > 0, when γ I (t−τ) > α S(t) I (t), (3b)

where the two opposite conditions are successively
satisfied with the increase of time. To understand this
point, let us start from t = 0. As in the beginning
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I (t − τ) = 0, for 0 < t < τ , Eq. (3a) is satis-
fied, so, Ṡ < 0. Hence, the number of susceptible
individuals decreases monotonically up to some min-
imum value. Obviously Ṡ > 0 after some time since
I (t − τ) > 0 when t > τ , so, Eq. (3b) is fulfilled and
as a consequence, S(t) increases afterwards. However,
Eq. (3a) reveals that there is a possibility for the con-
dition, Ṡ < 0, to be satisfied again at a certain time
when S(t) becomes very large. Thus the conditions,
Ṡ < 0 and Ṡ > 0, are found to be valid alternately
with the time leading to oscillations in its evolution.
As a result, number of infected and removed individ-
uals also show oscillatory behavior maintaining some
phase difference between themselves. So eventually the
populations altogether exhibit multiple peaks in their
respective evolutionwhich is shown Fig. 3. Positions of
the extrema for the infected population could be deter-
mined easily by using Eq. (1b), as this one remains
the same both for the SWSIR and MWSIR models.
Therefore, positions of the extrema for the infected
population could be determined using the same rela-
tion, S(t) = β/α, also in this case. So, on the other
hand, value of α can be found by locating the position
of the peak for the infected population by plotting both
the variations of S(t) and I (t) in the same scale and
this geometrical method will be described later while
confirming the value of α. In addition, value of the first
peak has been determined using Eq. (2).

The basic reproduction number, R0 plays an impor-
tant role in epidemiology, which is defined as aver-
age number of new infections per infected individual.
So, in this three-compartment system, it is equal to the
transmission rate multiplied by the infectious period,
R0 = α/(β + μ) [4,11]. The value of R0 is crucial to
have an idea about how does the disease flow in the
whole population and at the same time it provides clue
to control its spreading.

3 Stability analysis of multi-wave SIR model

Theorem: Every solution of the MWSIR model along
with its initial conditions is a subset in the inter-
val [0,∞) and {S(t), I (t), R(t)} ≥ 0 for all values
0 ≤ t < ∞. In order to prove this, Eq. (1a),

dS

dt
= μN − α S(t) I (t) + γ I (t−τ) − μS(t),

has been expressed as

d

dt

[
Se

(
μt+α

∫ t
0 I (t ′)dt ′

)]

= (μN + γ I (t−τ)) e

(
μt+α

∫ t
0 I (t ′)dt ′

)
.

Hence, upon integrating

S(t)e

(
μt+α

∫ t
0 I (t ′)dt ′

)
− S(0)

=
∫ t

0
(μN + γ I (x−τ)) e(μx+α

∫ x
0 I (t ′)dt ′)dx .

As S(0) > 0,

S(t)e

(
μt+α

∫ t
0 I (t ′)dt ′

)

≥
∫ t

0
(μN + γ I (x−τ)) e(μx+α

∫ x
0 I (t ′)dt ′)dx .

Thus,

S(t) ≥ e
−

(
μt+α

∫ t
0 I (t ′)dt ′

)
∫ t

0
(μN + γ I (x−τ)) e

(
μx+α

∫ x
0 I (t ′)dt ′

)
dx > 0.

As a result, S(t) > 0 at any time. Similarly, it can be
shown that I (t) > 0, and R(t) > 0, which complete
the proof.

In order to determine the stable equilibrium points,
the rate of change of S(t), I (t) and R(t) with time are
made zero. The trivial solution leads to I (t) = 0 at
any time, which corresponds to disease-free equilib-
rium (DFE). Mathematically, this point is expressed as
(S∗, I ∗, R∗)tr = (N , 0, 0), where the entire population
becomes susceptible but no infected individual. This is
true for both t < τ and t ≥ τ . Anyway, this DFE is
insignificant as it does not correspond to dynamics of
epidemic by any means.

The nontrivial solution leads to I (t) �= 0, at finite
time, but, I (t → ∞) → 0, which corresponds to
endemic equilibrium and that is observed in SWSIR
model. However, in this MWSIR model, nontrivial
solutionsmean I (t) > 0, at any time. So these dynamic
equilibrium points appear periodically with time with-
out showing any signature of ending if there is no
damping. These equilibrium points are marked by

(S∗, I ∗, R∗)ntr =
(

β+μ
α

,
μN
β+μ

− μ
α
,

βN
β+μ

− β+μ
α

+ μ
α

)
,

when t < τ , however, for t ≥ τ , (S∗, I ∗(t), R∗(t))ntr
=

(
β+μ

α
,

μN
β+μ

+ γ I (t−τ)
β+μ

− μ
α
,

βN
β+μ

− β+μ
α

− γ I (t−τ)
β+μ

+ μ
α

)
.

Hence, equilibrium points are static when t < τ , but
dynamic when t ≥ τ .
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Fig. 3 Four successive
waves are shown here those
are generated numerically
by solving MWSIR model
(Eq 1). Values of the
parameters: S(0) =
10, I (0) = 1, R(0) =
0, N = 11, α = 0.5, β =
1, γ = 1, τ = 10, μ = 0.
Time period of oscillation is
marked by T

In order to understand the dynamics close to the
equilibria, Jacobian matrix (J ) is constructed which
can be expressed at the respective equilibrium points.
Jacobian matrix has the form

J =
⎡
⎣−(α I ∗ + μ) −αS∗ 0

α I ∗ αS∗ − β − μ 0
0 β −μ

⎤
⎦ . (4)

The eigenvalues of Jacobian matrix (λ0, λ±) can be
given as{

λ0 = −μ,

λ± = − α(I∗−S∗)+β+2μ
2 ±

√
α2(I∗−S∗)2+β2−2αβ(S∗+I∗)

2 .
(5)

For the DFE, (S∗, I ∗, R∗)tr = (N , 0, 0), the eigen-
values are

⎧⎨
⎩

λ0 = −μ,

λ+ = αN − β − μ,

λ− = −μ.

(6)

As a result, it will behave like a stable point when α <

(β + μ)/N , which is similar to the SWSIR model. It
is obvious that the eigenvalues will be complex for the
general case when

αβ >
α2(I ∗ − S∗)2 + β2

2(S∗ + I ∗)
.

It is expected that variations of S(t), I (t), and R(t)will
be oscillatory around these points [4]. The solutions for
S(t), I (t), and R(t) in this linearized model could be
found in terms of the eigenvalues and eigenvectors of
J , however, they are not necessary at this moment.

4 Numerical results

As the values of S(t), I (t), and R(t) cannot be deter-
mined analytically by solving the set of Eqs. (1), they
have been solved numerically. The oscillations of S(t),
I (t), and R(t) are noted for long time and it is observed
that all are oscillating with almost constant amplitude.
Four successive waves are shown in Fig. 3, where it is
observed that the mean time period of oscillations, T ,
is always greater than τ . The reason behind this oscil-
lation can be understood in terms of Eqs. (3) which was
explained before. As no damping factor is introduced
here, amplitudes of the respective waves for S(t), I (t),
and R(t) do not decay with time.

The time period of oscillations for S(t), I (t), and
R(t) are obviously the same, although it decreases with
the number of cycles. However the difference, T −τ

vanishes with the increase of τ . This feature is shown
in Fig. 4 where variations of time period T along with
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Fig. 4 Variation of T and (T−τ)/τ with τ , in theMWSIRmodel
for S(0) = 10, I (0) = 1, R(0) = 0, N = 11, α = 0.5, β =
1, γ = 1, μ = 0

Fig. 5 Variation of T withα andβ, when τ = 10, in theMWSIR
model for S(0) = 10, I (0) = 1, R(0) = 0, N = 11, γ =
1, μ = 0

relative difference between T and τ or (T −τ)/τ with
τ are plotted.

The variation of T with α and β for fixed value of τ

is shown in Fig. 5. It clearly indicates that T > τ , for
any values of α and β. Moreover, the difference, T−τ

steadily decreases with α but increases gradually with
β.

Features of the ongoing COVID-19 epidemiological
waves observed in India are shown in Fig. 1. It reveals
that the duration of successive waves are decreasing as
T1 > T2 > T3. On the other hand, amplitude of the sec-
ond wave is the maximum while that of the first wave
is the smallest. These features suggest that the prevail-
ing pandemic wave is not periodic. Hence, theMWSIR
model is further modified in order to explain its nonpe-
riodic behavior. One can remember that transformation

of SWSIR to MWSIR is accomplished by introducing
two parameters γ and τ , where γ is the rate at which
the recovered people become susceptible again, while
τ is the time delay introduced during the estimation of
susceptible population in terms of infected population.

In order to capture this specific nonperiodic feature
in the most simple way, the value of τ , α and γ have
been split up in the MWSIR model as shown below,

τ =
⎧⎨
⎩

τ1,

τ2,

τ3,

(7)

α =
{

α1, 0 < t < τ2,

α2, t ≥ τ2,
(8)

γ =
⎧⎨
⎩
0, 0 < t < τ1,

γ1, τ1 ≤ t < τ2,

γ2, t ≥ τ2,

(9)

where τ1 = 173, τ2 = 440, τ3 = 457, α1 = 1.48 ×
10−7, α2 = 8.7 × 10−7, γ1 = 0.055, and γ2 = 0.08.
The value of recovery rate, β = 1/14 per day, is kept
fixed as it corresponds to the mean recovery period
of COVID-19 infection or 1/β = 14 days. Values of
those constants are estimated with respect to the single
infected people, I (0) = 1. The numerical data obtained
by solving the MWSIR model is drawn in red dashed
line and compared with the daily new COVID-19 cases
(seven-daymoving average) in India drawn in blue sold
line, which is shown in Fig. 6. A very good agreement
is found besides the fact that height of the first peak is
higher and the width of the second peak is narrow in
this estimation with respect to the actual values. The
relation, α2 > α1 may attribute to the fact that trans-
mission rate of new variants, like delta and omicron is
higher than the primitive SARS-CoV-2 virus.

In order to confirm the values of α1 and α2 geometri-
cally both S(t) and I (t) are drawn in Fig. 7. As the posi-
tions of peak of I (t) could be identified by the relation,
S(t) = β/α, the crossing point of S(t) and the horizon-
tal lineβ/α1 = 1/(14×1.48×10−7) = 4.82625×105,
appears over the first peak of I (t) in other words. Sim-
ilarly, crossing points of S(t) and the horizontal line
β/α2 = 1/(14 × 8.7 × 10−7) = 8.21018 × 104, must
appear below the second and third peaks of I (t). Hence,
the MWSIR model accurately identified the dates of
first, second and third peaks of the infected population
which occurred on Sep 16, 2020, May 8, 2021 and Jan-
uary 25, 2022, respectively. Height of the first peak of
I (t) can be estimated approximately by using Eq. (2),
with α1 = 1.48 × 10−7, β = 1/14, S(0) = 8.8 ×
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Fig. 6 Daily new
COVID-19 cases in terms of
seven-day moving average
in India during January 30,
2020 to March 14, 2022
(775 days) is compared with
the numerical results
obtained by the MWSIR
model. Values of the
populations when t = 0 are
S(0) = 8.8 × 105, I (0) =
1, R(0) = 0

105, I (0) = 1, which gives I (1)
max = 1.07471 × 105.

This value is 13.35% higher than the actual one. Simi-
larly, heights of second and third peaks given by Eq. (2)
are I (2)

max = 3.88941× 105 and I (3)
max = 2.57270× 105,

respectively. Those are lower than actual observa-
tion by 0.58% and 17.52%, respectively. However, the
numerical estimation is much better.

This phenomenological study predicts that 5.5% of
individuals infected during January 30, 2020 to April
14, 2021 become susceptible again for another infec-
tion. Similarly, 8.0% of individuals infected during
later periodbecome susceptible again for the next infec-
tion. These predictions are made in accordance to the
estimated values of γ1 = 0.055, and γ2 = 0.08 in
the different time domain. The difference, γ1 �= γ2,
may account the effects of quarantine, isolation, vac-
cination and other preventive measures along with the
presence of new variants like delta and omicron those
are regarded as more infectious. However, as the solu-
tions of the nonlinear equations are highly sensitive to
the initial conditions, like S(0), I (0), and R(0), esti-
mated values of the parameters, α, γ , and τ are likely
to change accordingly with the change of initial values.
Which on the other handwill change the predictions for
obvious reason.

5 Discussion

In order to study the behaviour of ongoing pandemic
of COVID-19 in India mathematically, a modified ver-
sion of SWSIRmodel termed asMWSIRmodel is pro-

posed here which is found successful to reproduce the
emergence of the multiple peaks in epidemiological
wave prevailed in this country. The model is deigned
in such a fashion that it is able to yield periodic as
well as nonperiodic epidemiological waves with vary-
ing widths and heights by tuning its parameters. Equa-
tion 1a reveals that the sign of Ṡ is determined by the
factor α S(t) I (t) − γ I (t − τ), when μ = 0. So it
depends on the values of both S(t) and I (t) and as a
result the opposite relations, Ṡ < 0 and Ṡ > 0 are
being satisfied alternately with the increase of time.
This property ultimately leads to oscillatory solutions.

As the SARS-CoV-2 virus responsible for the
COVID-19 is highly infectious, the spreading of this
disease cannot be controlled easily by means of simple
preventive measures like quarantine, isolation, lock-
down and even vaccination. In addition, emergence of
super-spreading new variants, for example, delta and
omicron makes the situation worse at later time. As a
result, in due course, a sizable fraction of recovered
people gets infected multiple times leading to multi-
ple waves of the epidemiological infection. In order to
explain this particular feature, the SIR model has been
modified where a finite probability of the recovered
people for becoming susceptible again after their recov-
ery is taken into account. Thewaves of epidemiological
evolution witnessed in India during January 30, 2020
to March 14, 2022 (775 days) have been reproduced
satisfactorily in this formulation. SARS-CoV-2 virus
was transmitted into India by a number of COVID-19
patients who entered this country mainly via air-travel
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Fig. 7 Variation of S(t),
I (t), R(t) obtained in
MWSIR model along with
the horizontal lines
β/α1 = 4.82625 × 105 and
β/α2 = 8.21018 × 104, are
shown. It reveals that all the
populations, S(t), I (t) and
R(t) are always positive in
the parameter regime in
accordance to the theorem

0

mode through different airports of India continuously
by the end of January 2020. Testing facility of COVID-
19 infection was not adequate at that time. So the true
number of infected individual for that time is not avail-
able. Therefore, this study is carried out with respect
to the minimum number of infected individual, which
means I (0) = 1. Estimated values of the parameters
obtained in this study might be useful for imposing
restrictions to control the pandemic in future. It will
become helpful even for making accurate forecast and
prediction.

However, in this simple model no time delay for the
incubation period of the pathogens within the human
body is considered, and the effect of quarantine, isola-
tion, vaccination and other macroscopic measures are
not take into account. So, it is expected that more accu-
rate prediction can be made with the help of this model
by accommodating the effect of quarantine, isolation,
vaccination, lock-down andother factors in itsmodified
version. Which means that the discrepancy between
theoretical estimation and actual daily new cases can
be removed further by formulating multi-wave SEIR,
SIQR, SEIQR and other hybridmodels. Obviously, this
model can be employed for examining the characteris-
tics of epidemiological waves found in other countries
as well.
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