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Graph analysis of nonlinear fMRI connectivity dynamics
reveals distinct brain network configurations for integrative
and segregated information processing
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Abstract The human brain is organized into func-

tional networks, whose spatial layout can be described

with functional magnetic resonance imaging (fMRI).

Interactions among these networks are highly dynamic

and nonlinear, and evidence suggests that distinct

functional network configurations interact on different

levels of complexity. To gain new insights into

topological properties of constellations interacting

on different levels of complexity, we analyze a resting

state fMRI dataset from the human connectome

project. We first measure the complexity of correla-

tional time series among resting state networks,

obtained from sliding window analysis, by calculating

their sample entropy. We then use graph analysis to

create two functional representations of the network:

A ‘high complexity network’ (HCN), whose inter-

node interactions display irregular fast changes, and a

‘low complexity network’ (LCN), whose interactions

are more self-similar and change more slowly in time.

Graph analysis shows that the HCNs structure is

significantly more globally efficient, compared to the

LCNs, indicative of an architecture that allows for

more integrative information processing. The LCNs

layout displays significantly higher modularity than

the HCNs, indicative of an architecture lending itself

to segregated information processing. In the HCN,

subcortical thalamic and basal ganglia networks

display global hub properties, whereas cortical net-

works act as connector hubs in the LCN. These results

can be replicated in a split sample dataset. Our findings

show that investigating nonlinear properties of resting

state dynamics offers new insights regarding the

relative importance of specific brain regions to the

two fundamental requirements for healthy brain

functioning, that is, integration and segregation.

Keywords Sample entropy � fMRI � Resting state �
Sliding window � Graph analysis � Complexity

1 Introduction

Fluctuations of the blood oxygen level-dependent

(BOLD) signal from the human brain display spa-

tiotemporally organized patterns of functional con-

nectivity (FC) during rest, forming so-called resting

state networks (RSNs) [1, 2]. Recently, there has been

increased interest in the temporal dynamics of FC

[3, 4], which have been quantified with complexity

measures (inter alia), like approximate entropy (AE)

[5], Hurst exponent [6], and sample entropy (SampEn)

[7]. In studies relevant to the present investigation, the
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nonlinear dynamics of correlational time series (CTS),

obtained with a sliding window (SW) [8], were

assessed by computing their SampEn [9–11]. These

studies were either focused on differences in SampEn

between schizophrenic patients and healthy controls

[10, 11], or the spatial overlap between the SampEn

gradient across the brain and established RSNs [9].

However, this methodology has yet to be employed to

investigate topological features of different network

constellations, dissociated based on the degree of

nonlinearity governing the interactions among their

constituent parts.

We therefore combined this approach with graph-

theoretic measures (GMs) used extensively to describe

topological features of brain networks [12, 13]. In

most graph-based approaches, the edges/connections

between two given nodes (corresponding to brain

regions) to be included in a graph are selected

according to correlation-strength, and the edges falling

below some cutoff are being discarded [14]. Here, we

created two subgraphs of the fully connected graph,

with nodes corresponding to RSNs, and the edges to

the SampEn of the CTS between them. Our choice to

use SampEn as a complexity index was motivated by

the fact that it has been used extensively as an analysis

tool for physiological time series (TS) [15–18]. More

importantly for the purposes of our study, its param-

eter choices (see Sect. 2.5) have been validated for

(raw) BOLD time series [7] and CTS derived from SW

analysis [9–11].

We kept edges with the highest and lowest

SampEn, respectively, to obtain a high complexity

graph (HCG) and a low complexity graph (LCG).

Compatible with the formal definition of SampEn, our

subgraphs can be interpreted as representations of

distinct functional configurations of the same network

forming at different temporal scales: Higher SampEn

of the CTS among two given nodes indicates faster

dynamics, reflected by the irregularity of the CTS. On

the other hand, lower SampEn (more self-similarity of

the CTS) corresponds to slower dynamics. This

procedure was motivated by the fact that the impor-

tance of a node in a brain network (its ‘hubness’)

seems to be frequency-dependent [19, 20], and

depends on the temporal resolution of the methodol-

ogy employed [21]. In line with these and further

results indicating the temporal specificity of intra- and

inter-RSN interactions [22–24], we expected

significant differences in topology between HCGs

and LCGs, at the node as well as the global level.

To test our hypothesis, we used resting state data of

healthy subjects from the human connectome project

(HCP) [25].

Short summary:

• Human connectome project resting state time

series

• Sliding window analysis of the BOLD time series

• Sample entropy calculation of the sliding window

time series

• Derivation of high complexity and low complexity

graphs from the sample entropy matrices

• Topological analysis with global and local graph

measures

2 Methods

2.1 Participants

The whole sample was made up of 812 (N = 812) (410

women; n = 410) healthy subjects from the HCP

between the ages of 22 to 37 years. The sample was

then split into two sets of 406 participants each to

obtain a replication dataset.

2.2 Resting state fMRI data

The subjects imaging data consisted of a subset of the

high-level resting state connectivity analyses outputs,

based on the 2017 HCP data release. BOLD TS

contained 2400 time-points, corresponding to two

concatenated 15 min sessions, to control for any

influences of the phase-encoding direction, which

was left to right, and right to left, respectively, for the

two sessions. The data were collected with the

following parameters: gradient-echo EPI sequence,

TR = 720 ms, TE = 33.1 ms, flip angle = 52�, field
of view = 208 9 180 (RO x PE), matrix 104 9 90

(RO x PE), slice thickness = 2 mm, 72 slices, 2.0 mm

isotropic voxels, multiband factor = 8, echo spacing

0.58 ms, and bandwidth = 2290 Hz/Px. Then data

were (pre)processed according to the minimal prepro-

cessing pipeline of the HCP [26, 27] as well as

subjected to artifact removal [28, 29]. Subsequently, a

group-based principal component analysis (PCA) was

carried out [30]. The group PCA output was used as
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input for group ICAs to obtain parcellations at

different dimensionalities based on data from the

whole sample [27]. This was done with the help of

FSL’s MELODIC toolbox [31, 32]. Finally, individual

TS for the ICA components were reconstructed with a

dual regression technique [33], resulting in one

representational BOLD TS per ICA component for

every subject.

2.3 RSN selection

The RSN selection from the 50 components was

carried out in an automatized way by using the

component labeler of the GIFT toolbox (https://

trendscenter.org/software/gift/), which uses the tem-

plates from the Functional Imaging in Neuropsychi-

atric Disorders Lab at Stanford University, USA

(https://findlab.stanford.edu/functional_ROIs.html)

[34]. Each components’ spatial map was correlated

with these templates and subsequently assigned to the

best fitting template (i.e., the corresponding RSN),

based on the maximum correlation value (only fits

above r = 0.15 were included). This resulted in 23

(N = 23) cortical/subcortical components, corre-

sponding to the following networks (NW): Auditory

NW (AUD; n = 1), basal ganglia NW (BG; n = 1),

sensorimotor NW (SM; n = 2), visual NW (VIS;

n = 5), visuospatial NW (VSP; n = 2), DMN (n = 2),

executive control NW (EXC; n = 3), language NW

(LNG; n = 2), precuneus NW (PREC; n = 1), and

salience NW (SAL; n = 3). VIS was further divided

into one pVIS (n = 1) and four higher visual NWs

(hVIS; n = 4). The DMN was split up into one dorsal

(dDMN; n = 1) and one ventral (vDMN; n = 1) sub-

component. The EXC was partitioned into one right-

lateralized (rEXC; n = 1) and two left-lateralized

NWs (lEXC; n = 2). Finally, SAL was divided into

two anterior NWs (aSAL; n = 2) as well as one pos-

terior NW (pSAL; n = 1). Components with extensive

cerebellar activations were excluded from the

analysis.

The component labeled vDMN by the GIFT

toolbox (r = 0.39) also displayed considerable activa-

tions in the precuneus and was therefore denoted

vDMN/PC, upon visual inspection. The component

labeled PRE by the GIFT toolbox (r = 0.33) displayed

considerable activations in the cuneus and was there-

fore denoted PREC/CUN. One component was iden-

tified as a thalamic NW (TH; n = 1) upon visual

inspection and included in the analysis as such. The

abbreviations for the components associated with their

corresponding RSNs will be used as proxies for the

components from now on. For example, vDMN/PC

stands for the IC associated with the vDMN/PC. For a

depiction of the RSNs spatial maps, see Fig. 1.

2.4 Sliding window

We used a 60-s tapered window (rectangle convolved

with a Gaussian: standard deviation [SD] = 1TR),

after filtering the BOLD TS from 0.017 to 0.1 Hz to

remove frequencies lower than 1/w, where w is the

window size. This was done to limit the influence of

temporal spurious fluctuations in FC [35]. The win-

dow was slid forward in steps of 1TR, resulting in a

series of 2317 correlation matrices of size 23 9 23,

i.e., in 253 (23 9 22/2) CTS. See Fig. 2 for a graphical

description of the workflow described in Sects. 2.4–

2.6.

2.5 Sample entropy

To compute the SampEn of a given CTS x = [

x1; x2;���; xn] with length N, one creates an embedding

vector with m running data points from x:

vi ¼ xi; xiþ1; . . .; xiþm�1½ �, withm being the embedding

dimension. Then, for each i (1 B i B N – m) define

Cm
i ¼ 1

n� m� 1

X

j¼1;j6¼m

H r � kvi � vjk1
� �

;

where r = erx is a tolerance value, e a scaling

parameter, and rx the SD of x. H(�) is the Heaviside

function.

H xð Þ ¼ 0; x\0

1; x� 0

�
;

and k � k1 is the Chebyshev distance, i.e.,

kvi � vjk1 ¼ maxðj xi� xj j; j xi� xj j; j . . . j;
j xiþ m� xjþ m� 1 jÞ:

Subsequently, for each i (1 B i B N – m) define.

Cmþ1
i ¼ 1

n� m� 1

XN�m

j¼1;j 6¼i

H r � kvi � vjk1
� �

:

Averaging over all m embedding vectors, we have

that.
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Um ¼ 1

N � m

XN�m

i¼1

Cm
i ;

and

Umþ1 ¼ 1

N � m

XN�m

i¼1

Cmþ1
i :

Then, the SampEn is defined as.

�ln Umþ1U2215;Um
� �

;

resulting in a nonnegative number, with higher

values indicative of more complexity, and lower

values indicative of more regularity of the underlying

CTS. We did this for every CTS of every subject,

resulting in a 406 9 253 SampEn matrix. We choose

the standard parameter values that are used in the

literature, i.e.,m = 2 and e = 0.20 [9, 10, 36], to ensure

comparability of our results with these past

investigations.

To validate our choice of complexity measure

(SampEn), we also calculated an alternative, ampli-

tude based, complexity index, namely AE (for a

detailed description/derivation of AE, see [36, 37]).

Subsequently, the 253 SampEn indices were corre-

lated with their corresponding AE counterparts for

every subject, with Pearson’s r. The correlations were

generally high (range: 0.77–0.93, mean correlation:

r = 0.87 [first fisher-z and then back transformed]),

and statistically significant for every subject (Bonfer-

roni corrected), as well as statistically different from

zero (one-sample T test).

Since basic BOLD signal properties can influence

complexity measures [38], we calculated the temporal

signal-to-noise ratio (tSNR) (mean relative to SD)

from the (pre-processed) unfiltered BOLD TS, as well

as for the filtered version (bandpass from 0.017 to

Fig. 1 Components chosen from the results of the independent

component analysis with dimensionality 50 (ICA-50). ICA

maps were dual regressed into subjects 3d data and then

averaged across subjects; the images show the activations (red)

at the most relevant axial, coronal, and sagittal slices of

Montreal Neurological Institute (MNI) 152 space. Below the

slices are the corresponding resting state networks and

components: Auditory network (AUD; n = 1), basal ganglia

network (BG; n = 1), thalamic network (TH; n = 1),

sensorimotor networks (SM; n = 2), visuospatial networks

(VSP; n = 2), language networks (LNG; n = 2), pre-

cuneus/cuneus network (PREC/CUN, n = 1), primary visual

network (pVIS; n = 1), higher visual networks (hVIS; n = 4),

dorsal default mode network (dDMN; n = 1), ventral default

mode/precuneus network (vDMN/PC; n = 1), right executive

control network (rEXC; n = 1), left executive control network

(lEXC; n = 2), anterior salience network (aSAL; n = 2), and

posterior salience network (pSAL; n = 1). (Color figure online)
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0.1 Hz) for every RSN (node), for every subject.

These values were then correlated with the 253

SampEn values of the CTS with Pearson’s r. There

was only one correlation among SampEn and tSNR

that reached significance (Bonferroni corrected),

namely between hVIS4 and the SampEn for the CTS

hVIS4 aSAL1, with r(404) = - 0.16, p\ 0.001.

2.6 Graph measures

To create the two graphs of the network (high

complexity vs. low complexity), we binarized the

SampEn matrices after selecting the highest (HCG)

and lowest (LCG) SampEn connections, respectively.

To avoid that the values of our graph measures (GMs)

would be biased by a specific threshold, we computed

all GMs for a range of density values. The reported

results were averaged across thresholds, following the

approach for correlation-based graph analyses sug-

gested by [39]. For a graphical description of our

workflow, see Fig. 2.

2.6.1 Global efficiency

Global efficiency (GE) is an index measuring the

efficiency of information exchange in a network, i.e.,

its functional integration [40], and is defined as the

inverse average shortest path length:

GE ¼ 1

N N � 1ð Þ
X

i;j2N;i 6¼j

1

dij
;

where dij represents the shortest path from node i to

node j [41]. We computed the average GE of every

subject, for the HCG and LCG, respectively. We then

compared their means with a T test for dependent

samples.

2.6.2 Betweenness centrality

To assess the importance of a given node, we

computed its betweenness centrality (BC) [14],

defined by the following expression:

BC vð Þ ¼ 2

n� 1ð Þ n� 2ð Þ
X

i 6¼j 6¼v

rij vð Þ
rij

;

where rij is the total number of shortest paths from

node i to node j, rij vð Þ is the number of those paths

passing through v, and n is the number of nodes in the

graph. We did this for all 23 nodes of the HCG and

LCG, respectively, for every subject. As null models

we computed 1000 random graphs with the same node

Fig. 2 Graphical description of the workflow for a single

subject. a: A 60-s tapered window was slid over the filtered

BOLD time series (TS) to obtain the time-resolved functional

connectivity (FC) estimates between every pair of regions. b:
The sample entropy was calculated for every FC TS. c, d: From
the resulting sample entropy matrix two binary adjacency

matrices were created, by keeping the edges (connections) with

the highest and lowest sample entropy values, respectively. e:
Two undirected graphs (high complexity, and low complexity)

were created from the adjacency matrices and subjected to

further analysis. (Color figure online)
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degree distribution [42], for the HCG and LCG of

every subject. Following a procedure described by

[12], we then averaged the BC values of the 23 nodes

across the 1000 graphs across all subjects and

subtracted this cutoff value from the average BC of

every node from the non-random graphs. A node was

determined to be a hub if this value was at least one SD

above the average difference across all nodes. This

way we obtained the hub structure for the HCG and

LCG, respectively.

2.6.3 Modularity

As a measure of functional segregation, we computed

the Newman–Girwan modularity (MOD) of the

graphs, which, given a partition of the network nodes,

results in an index Q (if Q = 0 the community

structure of the graph is not stronger than one would

expect by chance; Q[ 0 if stronger, and Q\ 0 if

weaker) [43]. To obtain the optimal partition and deal

with the known issue of degeneracy [44], we used the

Louvain algorithm [45], as part of a procedure

described in [46]: After running the algorithm 100

times, we computed the (23 9 23) association matrix,

where entry Aij represents the number of times node i

and node j are assigned to the same community across

the 100 iterations. From this matrix, we subtracted a

null model association matrix obtained from random

permutations of the original partitions and kept the

values above zero. Finally, we obtained the final

partition by running the algorithm on the resulting

association matrix. We computed Q for the HCG and

LCG for every subject and subsequently compared

their means with a T test for dependent samples. To

gain more insight into the properties of the hubs, we

obtained with the procedure described in 2.6.2 we

calculated the within-module z-score (WMZ). The

WMZ value of node i is defined as:

WMZi ¼
ki mið Þ � k mið Þ

rk mið Þ ;

where mi is the module of node i, ki mið Þ the within-

module degree of i (the number of edges between i and

all other nodes in mi), and k mið Þ and rk mið Þ are the

mean and SD of the within-module mi degree distri-

bution [47]. We also computed the participation

coefficient (PC), which, for node i, is equivalent to:

PCi ¼ 1�
X

m2M

ki mð Þ
ki

� �2

;

whereM is the set of modules (given by the partition of

the nodes), and ki mð Þ is the number of edges between

i and all nodes in module m [47]. Nodes with high

WMZ score and low PC contribute mainly to the

modular segregation of a network (provincial hub

[PH]), whereas a node with high PC contributes to

(inter-modular) integration (connector hub [CH]) [41].

Subsequently, we performed multiple comparisons of

these measures between our hubs (HCG and LCG).

2.7 Software used for analyses and visualization

All calculations were performed with MATLAB

(9.7.0.1296695 [R2019b] Natick, Massachusetts:

The MathWorks Inc.). Figures 1 and 2 were in part

created with MATPLOTLIB [48]. Figures 1 and 3

were in part created with the help of the visualization

tool SCHEMABALL (https://habs.mgh.harvard.edu/

researchers/data-tools/schemaball).

3 Results

3.1 Graph measures

3.1.1 Global efficiency

Average GE of the HCGs (M = 0.59, SEM = 0.005)

was significantly higher, compared to the average GE

of the LCGs (M = 0.58, SEM = 0.009), with

t(405) = 9.15, p\ 0.001, and Cohen’s d = 0.45

(medium size effect), see Fig. 3.

3.1.2 Betweenness centrality/hubs

In the HCG BG (M = 0.09; SD = 0.07) and TH

(M = 0.10; SD = 0.07) displayed significant BC. In

the LCG the following nodes displayed significant BC:

SM2 (M = 0.06; SD = 0.04), hVIS1 (M = 0.05; SD =

0.04), LNG1 (M = 0.05; SD = 0.04), and VSP2

(M = 0.06; SD = 0.04). To compare the hubs across

the HCGs and LCGs in terms of their BC, we used a

nonparametric Friedman test for repeated measures,

which resulted in a significant column effect (Chi-

square value = 139.24, p\ 0.001, df = 5). Multiple

123

4292 F. Hirsch, A. Wohlschlaeger

https://habs.mgh.harvard.edu/researchers/data-tools/schemaball
https://habs.mgh.harvard.edu/researchers/data-tools/schemaball


comparisons (Bonferroni corrected) revealed that BG

and TH had significantly higher mean ranks (BG =

4.07; TH = 4.20), compared to the hubs of the LCGs,

which did not differ significantly in their mean rank,

with SM2 = 3.26, hVIS1 = 3.13, LNG1 = 3.13, and

VSP2 = 3.24. See Figs. 3 and 4 for a graphical

description of the results reported in this section.

3.1.3 Modularity/hubs

Average Q of the LCGs (M = 0.49, SEM = 0.002) was

significantly higher, compared to the average Q of the

HCGs (M = 0.48, SEM = 0.002), with t(405) = 3.34,

p\ 0.001, and Cohen’s d = 0.17 (small size effect),

see Fig. 2. We also statistically compared the average

number of clusters, which was significantly higher for

the LCGs (M = 3.49, SEM = 0.03), compared to the

HCGs (M = 3.34, SEM = 0.02), with t(405) = 4.07,

p\ 0.001, and Cohen’s d = 0.20 (small size effect).

Fig. 3 Upper panel: Boxplots of the global efficiency values

(left side), and modularity Q values (right side), for the high

complexity network (red boxes) and the low complexity

network (blue boxes), respectively. The black line within the

boxes represents the median, the area of a box covers the inter-

quartile range (IQR) for the data values. Whiskers indicate the

range of the data, and individual points show values higher than

the third quartile ? 1.5*IQR, and lower than the first quartile

- 1.5*IQR, respectively. Lower panel: Bar plots of the

betweenness centrality (BC) values for the networks in the high

complexity network (left side; red), and the low complexity

network (right side; blue): Nodes with significant BC values are

marked by an asterisk. Significance for a node was reachedwhen

its average BC across all subjects was at least one standard

deviation above the average difference between the BC values

across all nodes and subjects, and the average BC value across

all nodes and subjects derived from a series of random graphs,

preserving the node degree distribution. AUD = auditory

network; BG = basal ganglia network; TH = thalamic network;

SM1, SM2 = sensorimotor networks; VSP1, VSP2 = visuospa-

tial networks; LNG1, LNG2 = language networks; PREC/

CUN = precuneus/cuneus network; pVIS = primary visual

network; hVIS1, hVIS2, hVIS3, hVIS4 = higher visual net-

works; dDMN = dorsal default mode network; vDMN = ven-

tral default mode network; rEXC1 = right executive control

network; lEXC1, lEXC2 = left executive control networks;

aSAL1, aSAL2 = anterior salience networks; pSAL = posterior

salience network. (Color figure online)
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In terms of PC all identified hubs can be considered

CHs, if one uses the cutoff of 0.3 as suggested by [47]:

BG (M = 0.55; SD = 0.11), TH (M = 0.55; SD =

0.10), SM2 (M = 0.49; SD = 0.15), hVIS1

(M = 0.48; SD = 0.15), LNG1 (M = 0.50; SD =

0.14), and VSP2 (M = 0.51; SD = 0.12). As one

would expect, all hubs had positive WMZ scores: BG

(M = 0.58; SD = 0.72), TH (M = 0.60; SD = 0.70),

SM2 (M = 0.25; SD = 0.67), hVIS1 (M = 0.25; SD =

0.64), LNG1 (M = 0.19; SD = 0.61), and VSP2

(M = 0.20; SD = 0.64). As a cutoff, we defined that

for a hub to be considered a PH its WMZ score had to

be at least a SD above the mean WMZ score across all

hubs, which was the case for BG and TH only.

To compare the hubs in terms of their PC we used a

nonparametric Friedman test for repeated measures,

which resulted in a significant column effect (Chi-

square value = 132.27, p\ 0.001, df = 5). Multiple

comparisons (Bonferroni corrected) revealed that BG

and TH had significantly higher mean ranks (BG =

4.11; TH = 4.09), compared to the other hubs, which

did not differ significantly in their mean rank, with

SM2 = 3.13, hVIS1 = 3.04, LNG1 = 3.27, and

VSP2 = 3.36. To compare the hubs in terms of their

WMZ we used a nonparametric Friedman test for

repeated measures, which resulted in a significant

column effect (Chi-square value = 131.76, p\ 0.001,

df = 5). Multiple comparisons (Bonferroni corrected)

revealed that BG and TH had significantly higher

mean ranks (BG = 4.07; TH = 4.13), compared to the

other hubs, which did not differ significantly in their

mean rank, with SM2 = 3.32, hVIS1 = 3.31, LNG1 =

3.07, and VSP2 = 3.11.

3.2 Replication data set and additional analyses

In the (split sample) replication data set, all results

from the original set could be replicated. We also

wanted to assess if our main results were independent

of our method to derive RSNs (dual regression,

automatized assignment of ICA-derived components

to specific functional NWs), and our decision to

binarize the SampEn matrices in deriving HCGs and

LCGs. We therefore repeated our analysis on a subset

Fig. 4 Graphical description of the topology of the high

complexity network (left; red) and the low complexity network

(right; blue) at a density of 18 percent, i.e., with edges

representing the top (high complexity network) and bottom

(low complexity network) 18 percent functional connectivity

time series in terms of sample entropy. Hubs are surrounded by a

black box. Note: The graphs were created by averaging the node

degrees across all subjects and then rounding to the nearest

integer. Subsequently a representational graph was created with

the Havel–Hakimi algorithm [85, 86]. This procedure was not

part of any calculations to obtain the results of this study.

AUD = auditory network; BG = basal ganglia network;

TH = thalamic network; SM1, SM2 = sensorimotor networks;

VSP1, VSP2 = visuospatial networks; LNG1, LNG2 = lan-

guage networks; PREC/CUN = precuneus/cuneus network;

pVIS = primary visual network; hVIS1, hVIS2, hVIS3,

hVIS4 = higher visual networks; dDMN = dorsal default mode

network; vDMN = ventral default mode network; rEXC1 =

right executive control network; lEXC1, lEXC2 = left execu-

tive control networks; aSAL1, aSAL2 = anterior salience

networks; pSAL = posterior salience network. (Color figure

online)
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(n = 100) of subjects after choosing a different (a

priori) parcellation, based on [49], and subsequently

computed weighted versions of our main GMs (GE,

MOD, and BC). The resulting effect sizes were

equivalent in direction, and either larger (GE; Cohen’s

d[ 0.80, large size effect), or analogous (MOD;

Cohen’s d = 0.18, small size effect), compared to the

ones from the main analyses. In terms of BC, thalamic

and basal ganglia regions retained their hub status in

the HCGs, as did higher visual, sensorimotor, and

attentional (akin to VSP2) regions in the LCGs. We

therefore concluded that our original results were

unbiased by subject selection, parcellation, and bina-

rization of the SampEn matrices.

4 Discussion

4.1 Global efficiency and modularity

The main finding of our investigation is that when

RSNs interact with high levels of complexity and

irregularity they display a topology that permits more

efficient integration of information, compared to when

their interplay is governed by lower levels of com-

plexity and changes at a slower pace. On the other

hand, the low complexity network (LCN) shows a

higher degree of functional segregation, compared to

the high complexity network (HCN). Importantly, this

pattern of results is replicable across datasets, parcel-

lations, and different ways to derive the HCGs and

LCGs from the SampEn matrices. These outcomes are

in line with past investigations reporting topological

differences of functional RSN configurations at

distinct frequencies [19, 20, 50]. Our outcomes are

also compatible with evidence from fMRI that the

brain during rest switches between periods where its

network structure exhibits different degrees of MOD

[51], and with evidence based on magnetoencephalog-

raphy that the same holds true for GE [12]. Since our

results were obtained with a (to our knowledge) new

combination of methodological approaches (namely

complexity analysis of CTS and graph-theoretic

measures), they underscore the validity of the studies

mentioned above, in the sense of multiple operational-

ization. Additionally, they could open the door to

gaining new insights into the mechanisms underlying

mental illness (see Sect. 4.3 for a discussion).

4.2 Hub structure

BG and TH emerged consistently as hubs of the HCN

across datasets, and both qualified as a CH as well as a

PH, according to our criteria. It has been suggested

that TH acts as global/kinless hub capable of interact-

ing with multiple cortical networks [47, 52, 53],

allowing for efficient and integrative information

processing [54, 55]. Of note, age-related decreases in

GE are related to decreased local efficiency of BG and

TH structures [56], and, in accordance with its global

hub properties in our study, lesions to TH also result in

decreased MOD on a network level [39]. The struc-

tural basis for the CH properties of TH and BG is well

established, of course as constituent elements of the

cortico-basal ganglia-thalamo-cortical loop [57, 58],

but also through extensive reciprocal interconnections

of TH (mainly with prefrontal cortex) through which it

can exert influence on cortico-cortical activity

[59, 60].

When compared to the HCN, the overall structure

of the LCN seemed to be less determined by properties

of a few hubs, since PPC and BC values of the LCN

hubs were significantly lower than for BG and TH in

the HCN. The average number of clusters was

significantly higher in the LCN, as was the average

MOD, indicative of a topology that favors functional

segregation, juxtaposed with the HCN. The spatial

layout of most LCN hubs encompassed regions that

have consistently been associated with networks

exhibiting functional hub properties [12, 61–63].

These were precentral and postcentral gyri (SM2),

cuneus (hVIS1), and inferior parietal lobule (VSP2).

Interestingly, a similar hub structure emerges when the

graph-analyses are based on bandpass-filtered TCs

(between 0.01 and 0.075 Hz) [19], although global

measures of network topology were not evaluated in

this study. This temporal dimension of the (functional)

network architecture of the brain is also reflected in

our results.

4.3 Clinical applications

Our results and methodology can potentially offer new

insights concerning neuronal correlates of neuropsy-

chiatric illnesses, such as major depressive disorder

(MDD) and schizophrenia (SCZ). With regard to

MDD, numerous studies have found diverging FC

between patients and healthy controls [64–66], but
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often the temporal specificity of these patterns is not

taken into account. However, it has been shown that

differences in hub structure betweenMDD and healthy

populations are a function of the dynamics with which

these brain regions interact [19]. In light of our results,

it would be interesting to investigate changes that are

specific to the HCN and LCN, respectively, at the

global (GE and MOD), as well as the node level (e.g.,

the hub structure). Since MDD populations are not

homogenous in terms of their symptoms and impair-

ments [67], one can speculate that a HCN/LCN

specific analysis could shed light on the physiological

underpinnings of these different manifestations of the

disease; however, testing these hypotheses has to be

the focus of future investigations.

The same holds true for the study of SCZ patients,

where affective and psychotic symptoms can affect

subpopulations to a different degree [67, 68]. Addi-

tionally, given that BG dysfunction in SCZ has been

established by a plethora of studies and meta-analyses

[69–71], the global hub properties of BG found in the

present investigation would predict decreased GE, as

well as MOD, in SCZ patients, compared to controls.

There is indeed evidence that this seems to be the case

[72–75], and interestingly, TH dysfunction has also

been found in SCZ [76, 77], which is also in line with

our results. Of note, after calculating the SampEn of

CTS obtained from a SW (analogous to our study),

[11] reported increased complexity within the visual

system of SCZ patients, as well as within and between

subcortical and cortical structures [10]. In light of our

results, and the findings mentioned above, one can

speculate that this might be reflective of a compen-

satory mechanism [78], to account for decreased

effectiveness of BG and TH in ensuring proper

information processing. Apart from MDD and SCZ,

we think that our approach in general can offer new

insights to the workings of the healthy, aging, and

diseased brain, and opens the door for future inves-

tigations of nonlinear brain network interactions

across different populations.

4.4 Limitations

There are some caveats inherent to our approach. First,

the use of a SW to assess FC dynamics requires

determining the values of two parameters (window

size and SD) a priori; however, a substantial body of

literature exists that suggests that our choices are close

to optimal for BOLD time series [35, 79–81]. It should

be noted that a number of other ways for estimating

dynamic FC exist, such as spatial distance, innovation-

driven co-activation patterns, and jackknife correla-

tion [82–84], that offer a frame by frame temporal

resolution, whereas (by its nature), SW analysis rather

captures slower FC dynamics. Applying our approach

to these alternative methods is an exciting prospect for

future investigations. Secondly, in terms of our graph

analyses, we concede that the choice of the cutoff

values (determining the density of the graphs) is

somewhat arbitrary, but by averaging the GMs across

a range of cutoff values we are confident that our

results are not biased by a specific threshold. Finally,

another issue pertains to the influence of noise. By

definition, SampEn is sensitive to noise in two ways:

Unstructured noise would result in higher SampEn

values, whereas structured noise would deflate Sam-

pEn values. Nevertheless, the fact that SampEn values

were generally not significantly correlated with the

tSNR of their BOLD TS indicates that they were not

simply a function of the noise content of the under-

lying TS.

5 Summary

We have shown that subcortical networks are the

central nodes in a large-scale brain network whose

inter-node interactions are marked by fast dynamics

and high levels of complexity. The topology of this

HCN favors the integration of information, juxtaposed

to a LCN governed by slower dynamics. In contrast,

the LCNs structure displays higher levels of MOD

than the HCN. These results are important, since they

show that investigating nonlinear properties of resting

state dynamics can reveal the relative importance of

specific brain regions to different fundamental

requirements for healthy brain functioning.
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47. Guimerà, R., Amaral, L.A.: Cartography of complex net-

works: modules and universal roles. J. Stat. Mech.

2005(P02001), nihpa35573 (2005)

48. Hunter, J.D.: Matplotlib: a 2D graphics environment.

Comput. Sci. Eng. 9(3), 90–95 (2007)

49. Tian, Y., et al.: Topographic organization of the human

subcortex unveiled with functional connectivity gradients.

Nat. Neurosci. 23(11), 1421–1432 (2020)

50. Kabbara, A., et al.: The dynamic functional core network of

the human brain at rest. Sci. Rep. 7(1), 2936 (2017)

51. Betzel, R.F., et al.: Dynamic fluctuations coincide with

periods of high and low modularity in resting-state func-

tional brain networks. Neuroimage 127, 287–297 (2016)
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57. Sidibé, M., Paré, J.F., Smith, Y.: Nigral and pallidal inputs

to functionally segregated thalamostriatal neurons in the

centromedian/parafascicular intralaminar nuclear complex

in monkey. J. Comp. Neurol. 447(3), 286–299 (2002)

58. Parent, A., Hazrati, L.-N.: Functional anatomy of the basal

ganglia. II. The place of subthalamic nucleus and external

pallidium in basal ganglia circuitry. Brain Res. Rev. 20(1),
128–154 (1995)

59. McFarland, N.R., Haber, S.N.: Thalamic relay nuclei of the

basal ganglia form both reciprocal and nonreciprocal cor-

tical connections, linking multiple frontal cortical areas.

J. Neurosci. 22(18), 8117–8132 (2002)

60. Castro-Alamancos, M.A., Connors, B.W.: Thalamocortical

synapses. Prog. Neurobiol. 51(6), 581–606 (1997)

61. Cole, M.W., Pathak, S., Schneider, W.: Identifying the

brain’s most globally connected regions. Neuroimage 49(4),
3132–3148 (2010)

62. Guye, M., et al.: Graph theoretical analysis of structural and

functional connectivity MRI in normal and pathological

brain networks. Magn. Reson. Mater. Phys. Biol. Med.

23(5), 409–421 (2010)

63. de Pasquale, F., et al.: A cortical core for dynamic inte-

gration of functional networks in the resting human brain.

Neuron 74(4), 753–764 (2012)

64. Kaiser, R.H., et al.: Large-scale network dysfunction in

major depressive disorder: a meta-analysis of resting-state

functional connectivity. JAMA Psychiat. 72(6), 603–611
(2015)

65. Mulders, P.C., et al.: Resting-state functional connectivity

in major depressive disorder: a review. Neurosci. Biobehav.

Rev. 56, 330–344 (2015)

66. Zhong, X., Pu, W., Yao, S.: Functional alterations of fronto-

limbic circuit and default mode network systems in first-

episode, drug-naı̈ve patients with major depressive disorder:

a meta-analysis of resting-state fMRI data. J. Affect. Disord.

206, 280–286 (2016)

67. Diagnostic and statistical manual of mental disorders:
DSM-5, ed. A. American Psychiatric and D.S.M.T.F.

American Psychiatric Association. 2013, Arlington, VA:

American Psychiatric Association.

68. Jeste, D.V., Maglione, J.E.: Treating older adults with

schizophrenia: challenges and opportunities. Schizophr.

Bull. 39(5), 966–968 (2013)

69. Salman, M.S., et al.: Decreased cross-domain mutual

information in schizophrenia from dynamic connectivity

states. Front. Neurosci. 13, 873 (2019)

123

4298 F. Hirsch, A. Wohlschlaeger



70. Perez-Costas, E., Melendez-Ferro, M., Roberts, R.C.: Basal

ganglia pathology in schizophrenia: dopamine connections

and anomalies. J. Neurochem. 113(2), 287–302 (2010)

71. Bernard, J.A., et al.: Patients with schizophrenia show

aberrant patterns of basal ganglia activation: evidence from

ALE meta-analysis. Neuroimage Clin. 14, 450–463 (2017)

72. Bassett, D.S., et al.: Hierarchical organization of human

cortical networks in health and schizophrenia. J. Neurosci.

28(37), 9239 (2008)

73. Liu, Y., et al.: Disrupted small-world networks in

schizophrenia. Brain 131(4), 945–961 (2008)

74. Alexander-Bloch, A., et al.: The discovery of population

differences in network community structure: new methods

and applications to brain functional networks in

schizophrenia. Neuroimage 59(4), 3889–3900 (2012)

75. Alexander-Bloch, A.F., et al.: Disrupted modularity and

local connectivity of brain functional networks in child-

hood-onset schizophrenia. Front. Syst. Neurosci. 4, 147

(2010)

76. Pergola, G., et al.: The role of the thalamus in schizophrenia

from a neuroimaging perspective. Neurosci. Biobehav. Rev.

54, 57–75 (2015)

77. Watis, L., et al.: Glutamatergic abnormalities of the thala-

mus in schizophrenia: a systematic review. J. Neural

Transm. (Vienna) 115(3), 493–511 (2008)

78. Cieri, F., et al.: Brain entropy during aging through a free

energy principle approach. Front. Hum. Neurosci. 15, 139
(2021)

79. Hutchison, R.M., et al.: Dynamic functional connectivity:

promise, issues, and interpretations. Neuroimage 80,
360–378 (2013)

80. Jones, D.T., et al.: Non-stationarity in the ‘‘resting brain’s’’

modular architecture. PLoS ONE 7(6), e39731 (2012)

81. Hansen, E.C., et al.: Functional connectivity dynamics:

modeling the switching behavior of the resting state. Neu-

roimage 105, 525–535 (2015)

82. Thompson, W.H., Fransson, P.: A common framework for

the problem of deriving estimates of dynamic functional

brain connectivity. Neuroimage 172, 896–902 (2018)

83. Thompson, W.H., et al.: Simulations to benchmark time-

varying connectivity methods for fMRI. PLoS Comput.

Biol. 14(5), e1006196 (2018)

84. Karahanoglu, F.I., Van De Ville, D.: Transient brain activity

disentangles fMRI resting-state dynamics in terms of spa-

tially and temporally overlapping networks. Nat. Commun.

6, 7751 (2015)

85. Hakimi, S.L.: On realizability of a set of integers as degrees

of the vertices of a linear graph. I. J. Soc. Ind. Appl. Math.

10(3), 496–506 (1962)

86. Havel, V.: A remark on the existence of finite graphs.

Casopis Pest. Mat. 80, 477–480 (1955)

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

Graph analysis of nonlinear fMRI connectivity dynamics reveals 4299


	Graph analysis of nonlinear fMRI connectivity dynamics reveals distinct brain network configurations for integrative and segregated information processing
	Abstract
	Introduction
	Methods
	Participants
	Resting state fMRI data
	RSN selection
	Sliding window
	Sample entropy
	Graph measures
	Global efficiency
	Betweenness centrality
	Modularity

	Software used for analyses and visualization

	Results
	Graph measures
	Global efficiency
	Betweenness centrality/hubs
	Modularity/hubs

	Replication data set and additional analyses

	Discussion
	Global efficiency and modularity
	Hub structure
	Clinical applications
	Limitations

	Summary
	Acknowledgements
	Data availability
	References




