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Abstract In this paper, we study the problem of infer-
ring the latent initial conditions of a dynamical sys-
tem under incomplete information, i.e., we assume we
observe aggregate statistics of the system rather than
its state variables directly. Studying several model sys-
tems, we infer the microstates that best reproduce an
observed time series when the observations are sparse,
noisy, and aggregated under a (possibly) nonlinear
observation operator. This is done by minimizing the
least-squares distance between the observed time series
and amodel-simulated time series using gradient-based
methods. We validate this method for the Lorenz and
Mackey–Glass systems by making out-of-sample pre-
dictions. Finally, we analyze the predicting power of
our method as a function of the number of observations
available. We find a critical transition for the Mackey–
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1 Introduction

We often model empirical processes as complex sys-
tems: they are composed of different agents or
microstates, that interact through simple rules but
evolve in non-trivial ways. A lot of research has taken
a complex systems approach, where authors have con-
structed models from the bottom up, but where empiri-
cal observations exhibit incomplete information of the
system. Applications range fromEarth’s global climate
[1], to urban dynamics [2], to the human brain [3], to
financial markets [4], to transportation networks [5],
and marine fisheries [6]. However, data are usually
available as an aggregate statistic of the microstates
because it is difficult to measure microstates directly.
Thus, it is an ongoing challenge to develop methods
to recover the latent microstates from aggregate and
incomplete observations [7].

Estimating and forecasting complex systems accu-
rately depends on (1) the inherent complexity of the
system, which depends on things like the systems’
state space dimension, its Lyapunov exponents, and its
attractors, (2) the sparsity and quality of the data, and
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(3) our ability to model them. In low-dimensional sys-
tems with high-quality data, as shown by Packard et
al. [8] and Takens [9], state-space reconstruction tech-
niques can be applied to partial information to create a
representation as a dynamical system. By reconstruct-
ing an attractor from data, we can make accurate pre-
dictions by choosing its closest points to the current
state of the system and extrapolating them [10]. These
techniques work well even without any modeling [11].

In high-dimensional systems, it is typically not pos-
sible to use time series models. It is nonetheless often
possible to use a theoretical model, if one can only
measure the initial conditions that the model requires
and compare them to the data. The task of estimat-
ing initial conditions that match observations is known
as initialization. Similar to the state-space reconstruc-
tion techniques, we require to know the evolution func-
tion of the underlying dynamics of the system, or at
least some approximation of it [12]. In particular, if the
observations available are an aggregate of the dynam-
ical system, then the process is known as microstate
initialization, or latent state initialization. To do this
we need to know how the microstate is aggregated, in
addition to having a model of its dynamics.

In the fields of meteorology and numerical weather
prediction (NWP), researchers have developed a frame-
work for estimating the latent states of a system [13,14],
where a large number of observed states are avail-
able. This framework is known as data assimilation,
and, although it is well justified from the Bayesian
perspective, it incorporates several heuristics pertinent
to the weather prediction field. For instance, model-
ers often incorporate Gaussian priors in the cost func-
tionals involved with known statistics about the latent
states [15]. Ideas from data assimilation have already
permeated outside the NWP community, such as in
urban dynamics [2]. Typically, data assimilation meth-
ods operate in a sequentialmatter: themicrostate at time
t gets nudged (or corrected) so it optimally approaches
the empirical observation at t . Then, the modeler sim-
ulates the nudged microstate from time t to time t + 1,
where the microstate is again nudged. Therefore, the
resulting sequence of microstates is not a solution of
the underlying dynamical system—the microstate was
constantly altered throughout its trajectory.We, in con-
trast, seek to analyze real trajectories of the latent states,
so this sequential approach does not suit our goal.

The initialization process is an optimization prob-
lem where we minimize a cost function that depends

on some notion of distance between the observed and
the model-generated data. Hence, in high-dimensional
systems, it is essential to develop efficient algorithms to
find initial conditionswith high precision. Research has
been done around the parameter estimation of stochas-
tic dynamical systems in low-dimensional parame-
ter spaces [7,16]. Among other alternatives, gradient
descent has proven to be superior in strongly nonlinear
models [17,18], but the main drawback is that it can get
stuck in localminima.Othermethods, like genetic algo-
rithms, simulated annealing, and other meta-heuristics
algorithms [19], usually find the global minimum in
low dimensions, but they are likely to diverge in high-
dimensional systems. We provide a thorough compar-
ison of the state-of-the-art gradient descent methods
[20] and discuss their performance in the context of
microstate initialization.

Here, we propose a gradient-based method for ini-
tializing chaotic systems where only aggregate obser-
vations of short observation windows are available.
Using a combination of numerical simulations and ana-
lytical arguments, we study the conditions in which
certain systems may be initialized with arbitrary pre-
cision. We explore the performance of several gradi-
ent descent algorithms and the effects of observational
noise on the accuracy and convergence of the initializa-
tion process. Furthermore, we quantify the accuracy of
our method numerically with out-of-sample forecasts.
Under this framework, we offer a better understanding
of what information the observations provide about a
system’s underlying dynamics, and, additionally, lay
out the connections of our method to those in the data
assimilation literature.

The remainder of this paper is laid out as follows.
In Sect. 2, we describe the initialization problem under
the framework of dynamical systems and develop our
initialization methodology accordingly. In Sect. 3, we
test our method in two systems, namely the Lorenz and
Mackey–Glass systems. Finally, in Sect. 4, we discuss
our results and suggest further research directions.

2 Methods

2.1 Problem setup

A wide class of dynamical systems can be formulated
as follows

x(t + �t) = f (x(t); θ) + ξ(t) , (1)
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where x(t) ∈ X ⊂ R
Nx is the (Nx -dimensional) state

of the system at time t ∈ R living in some manifold
X , ξ(t) ∈ R

Nx are random variables that model the
intrinsic noise of the system and θ ∈ R

d is a vector of
parameters. We will hereafter refer to the state x as the
microstate to emphasize that x is not directly observ-
able and is potentially high dimensional. If �t > 0
is finite, the model f : X × R

d → X is a discrete
mapping that takes the microstate from time t to time
t + �t . If �t is infinitesimal, the system (1) defines a
continuous-time dynamical system. Here, we assume
that the dynamical system f is deterministic and per-
fectly specified, so that Eq. (1) depends on neither ξ

nor θ .
We are interested in using information from the past

to estimate the microstate x(t0) of a dynamical system
f at the present time t0. We assume we know f , but
cannot directly observe its microstate x(t). Instead, we
are only able to observe a sequence of observations
y = (y−T , . . . , y0) measured at times {t−T , . . . , t0},
where yk ∈ R

Ny and Ny < Nx , i.e., we are interested
inmeasurements that lose information of themicrostate
by reducing its dimension from Nx to Ny . Moreover,
these observations can be noisy. Thus, we can relate the
observations to the dynamical system as

yk = H(
x(tk)

) + εk . (2)

where H : X ⊂ R
Nx → R

Ny is a known (possi-
bly) nonlinear observation operator and εk accounts
for observational noise. Although it is not necessary
for the following discussions, we will assume for sim-
plicity that Ny = 1 and, that the noise has a known
variance σy . Our choice of indices from −T to 0 for yk
reflects our interest in the present time t0.

We assume that the observations are sampled at a
uniform rate as follows

�tk = tk+1 − tk = m�t ,

where the nonzero integer m is the sampling interval1.
We treat m as a parameter that controls how often we
sample observations from the system. Thus, we can
recast Eq. (1) as a discrete-time mapping

xk+1 = f {m}(xk) = f {mk}(x−T ) , (3)

where f {i}(·) is the composition of f with itself i-
times, x−T = x(t−T ) is the latentmicrostate at the time

1 The initialization procedure we introduce in the following sec-
tion works with irregularly sampled observations as well.

of the first observation, and f {k} is the self-iteration
of f by k times. Note that the whole evolution of the
microstates is determined by x−T , so themicrostate ini-
tialization problem is that of obtaining the best approx-
imation to x0 given the observations from the assimila-
tion time t−T up to present time t0. These observations,
alongside with the model (3) and the observation oper-
ator (2), form a nonlinear system of equations with Nx

variables and T equations corresponding to the dimen-
sion of the microstate space and the number of obser-
vations.

2.2 Initialization procedure

As we stated previously, the microstate initialization
problem is that of obtaining the best representation
of the present-time microstate x0 given the history
of observations y under the dynamical system f . We
define what best means in what follows. We make the
code of the initialization procedure freely available at
https://github.com/blas-ko/LatentStateInitialization.

2.2.1 Cost function

Given an estimate x of the ground-truthmicrostate x−T

at the assimilation time t−T , a natural way to quantify
the goodness of x is by measuring the point-to-point
discrepancy between the observed and estimated data.
We do so with the following mean-squared cost func-
tion.2

J (x) = 1

Tσ 2
y

0∑

k=−T

(
yk − ŷk

)2
, (4)

where

ŷk(x) = H
(
f {mk}(x)

)
(5)

is our estimate of observation yk given x, and σy ,
the variance of the observed data, is a normaliza-
tion constant that is arbitrary but will be of practi-
cal use later. We call the state x̂−T that minimizes J
the assimilated microstate and the present-time state
x̂0 = f {mT }(x̂−T ) the initialized microstate. Our goal

2 We may generalize this cost function for non-scalar observa-
tions as

J (x) = 1

T

∑

k

( yk − ŷk)
†�−1

y ( yk − ŷk) ,

where �y is the covariance matrix of the observations.
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is to find an initialized microstate x̂0 that is a good
representation of the ground-truth microstate x0.

The cost function J is known as a filter in the
interpolation assimilation community, a least-squares
optimizer in the optimization and machine learning
communities, and 4D-Var with infinite state uncer-
tainty in the variational assimilation community. From
a Bayesian perspective, the cost function J emerges
naturallywhenweassume the prior p(x) is uniformand
observational noise is Gaussian: the posterior p(x| y)
is maximal when J is minimal [14].

If the observations in the time series y are noiseless,
and given that we assume that the model f perfectly
describes the system, then J has a global minimum
x̂−T for which J (x̂−T ) = 0. However, even for the
noiseless scenario, x̂−T is not necessarily unique. Take,
for instance, the Lorenz system [21], which is symmet-
ric around its x-axis, and take an observation opera-
tor of the form H(x) = x†x with † denoting matrix
transposition. Note that for any microstate x in the axis
of symmetry, the condition −x will produce the same
sequence of noiseless observations, so x and −x are
indistinguishable in terms ofJ . We will refer to the set
of indistinguishable microstates as the feasible set of
solutions, and we will denote it as �.

An additional problem arises when the observations
contain noise. In any finite time series, theremight exist
microstates with a lower value of the cost function than
the ground-truth microstate—i.e., where J (x̂−T ) <

J (x−T ) for x̂−T /∈ �—which we will call dominating
microstates, following [22]. Judd et al. [22] suggest that
using cost functions that minimize both the variance
(as in Eq. (4)) and the kurtosis will do a better job of
identifying the true microstate when the observational
noise is Gaussian. While this is a good idea when there
are many observations, we consider short time series
in this work, which calls for other alternatives. Instead
of modifying the cost function J , we preprocess the
data to reduce the probability of finding dominating
trajectories outside of the feasible set �.

Following [13], we distinguish between the error-
free and the noise contributions to the cost function
J . Isolating the contributions from the discrepancy
between ground-truth and assimilated microstate and
the observational noise will let us design a well-suited
methodology to deal with noise and dominating tra-
jectories in a separate manner. Recall that, given x−T ,
H(xk) is the error-free observation at time tk , εk its
associated noise and ŷk our estimation of yk . Thus,

we can decompose Eq. (4) into three terms of the
form

J (x) = 1

σ 2
y

[ 1

T

∑

k

(H(xk) − ŷk)
2

︸ ︷︷ ︸
noise-free cost

+ 1

T

∑

k

ε2k

︸ ︷︷ ︸
obseravation noise

− 2

T

∑

k

(H(xk) − ŷk)εk

︸ ︷︷ ︸
error-noise covariates

]

The first term on the RHS is the noise-free cost,
Jfree(x), that we would obtain in the absence of obser-
vational error. The second term is the average contri-
bution of the square of the noise, which converges to
the noise variance, σ 2

n , for large T . Finally, the third
term captures how the noise and the noise-free cost
vary together, which goes to 0 for large T because we
assume the observational noise and the system dynam-
ics are uncorrelated. Considering a large number of
observations, we can thus approximate J as

J (x) ≈ Jfree(x) + σ 2
n

σ 2
y

, (6)

which shows the expected behavior of Eq. (4) in the
presence of noise.

Now, note that if we take ŷk = E[ y] for all k [10],
which is the best constant predictor for the observed
time series, then Jfree = 1 and, therefore

J (x : ŷk = E[ y] ∀k) = Jconst := 1 + σ 2
n /σ 2

y .

Naturally, we want to find an assimilated microstate
x̂−T that performs better than a constant predictor, so
that J (x̂−T ) ≤ Jconst. This motivates us to consider
microstates x such as

{x : J (x) ≤ α + σ 2
n

σ 2
y
β} , (7)

where the parameter α ∈ (0, 1] accounts for the error-
free tolerance about the global minimum while β ∈
(0, 1] accounts for the noise tolerance. We will explore
these parameters in the following sections.

The above discussion suggests that we should pay
especial attention on handling dominating trajectories,
which might be present by either the presence of obser-
vational noise or by microstates that live far away from
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the ground-truth but that have low cost function values.
Thus,we propose the following three stages to initialize
the microstate from aggregate observations: (1) a pre-
processing stage in which we reduce the noise of the
observations, (2) a bounding stage in which we limit
the region of the microstate space in which we search
for an optimal solution, and (3) a refinement stage in
which we minimize the cost function (4) in a small
search space and estimate the optimal microstate given
the observations.

2.2.2 Preprocess: noise reduction

First, we preprocess the observed time series to reduce
theobservational noise and thus lower theprobability of
obtaining dominating microstates. Casdagli et al. [23]
showed that in the presence of observational noise, the
distribution of local minima gets increasingly complex
with increasing levels of noise, especially when the
dynamics is chaotic. We handle time series with only a
handful of data points (in the order of 100 data points or
less), so reducing noise by orbit shadowing [12] or large
window impulse response filters [24] are not suitable
options. Instead, we find that the best way to reduce
the variance of the noise is using a low-pass moving
average (LPMA) filter,

zk :=

⎧
⎪⎨

⎪⎩

1
2 yk + 1

2 yk+1 k = −T
1
2 yk + 1

2 yk−1 k = 0
1
2 yk + 1

4 (yk−1 + yk+1) otherwise

, (8)

where zk is the filtered data point at time tk . We control
the amount of noise reduction by repeatedly feeding
the signal back into the LPMAfilter of Eq. (8). Feeding
the signal back into the filter q times, hereafter denoted
as zqk , is equivalent to increasing the filtering window
from three to 2q + 1 points, making the filtered signal
smoother.

We expect for the resulting variance, (σ
q
n )2, to be

lower than the original noise variance σ 2
n . Thus, fol-

lowing [25] and assuming we can rewrite the filtered
signal in terms of the microstates as zqk = H(xk)+ ε

q
k ,

we can measure the performance of the LPMA filter
with the increase of the signal-to-noise ratio

r0 =
√ ∑

k(εk)
2

∑
k(ε

q
k )2

≈ σn

σ
q
n

, (9)

where r0 > 1 whenever σn > σ
q
n .

The resulting noise distribution of the filtered sig-
nal converges to a zero-mean Gaussian distribution if

we have either many data samples or set q big enough.
However, if q is too big, we may filter parts of the
dynamics and mix them into noise, resulting in exotic
noise distributions (seeFig. 12 inAppendixC for exam-
ples). What big enough, many samples, and too big
mean depend heavily on the dynamical system and the
noise distribution, although we stress that the LPMA
filter works optimally when the noise distribution has
higher frequency spectrum on average than that of the
dynamics of the system (see [26], Chapter 6.4.3.1.).

2.2.3 Bound: exploring the attractor

After the preprocessing stage, the next step is to bound
the search space. Under no constraints in the cost func-
tion, the initialization procedure consists on search-
ing through the whole microstate space X for a set of
microstates that minimize Eq. (4), with no prior prefer-
ence on where to start the search from. However, many
real-world systems are dissipative, meaning that their
dynamics relax into an attractor, i.e., a subset manifold
M ⊂ X of the microstate space. Thus, it is safe to
assume that the observations y derive from a sequence
of microstates that live in or nearM, and, by the prop-
erties of dissipative systems, any microstate x in the
basin of attraction will eventually visit every point in
M [27]. This means that, if we wait for long enough,
then any point in the basin of attraction will get arbi-
trarily close to the ground truth microstate.

The bounding stage consists of exploiting the dis-
sipative nature of real-world systems and letting any
arbitrary estimate of the microstate explore the basin
of attraction until it roughly approaches the ground
truth microstate. To be more precise, we say that the
microstate xR−T ∈ X roughly approaches x−T if

J (xR−T ) ≤ δR := αR + σ 2
n

σ 2
y
βR, (10)

for some rough threshold 0 � δR < 1. Thus, we let
an arbitrary microstate evolve according to the model
f until Eq. (10) is satisfied.
At this stage, we want to obtain solutions with a cost

value of the order of the unfiltered noise level σ 2
n /σ 2

y ,

so that xR−T is either near to the feasible set � or to any
of the dominating microstates driven by the noise. To
achieve this, it suffices to set βR ∼ O(1) and αR <

σ 2
n /σ 2

y ≤ 1.
We note that whenever the time series y is noiseless,

the bounding stage is only driven by αR , the error-free
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tolerance of the points situated at the global minima of
the cost function,which are exactly those in the feasible
set�. Thus, our choice of αR leverages how closely we
approach to �. If we set αR too close to 0, we would
impose for x̂−T to lay near �; however, it would take
too long simulation times to satisfy Eq. (10) for this
approach to be practical. The idea, ultimately, is to set
the lowest δR possible such that the time to satisfy Eq.
(10) is short.

2.2.4 Refine: cost minimization

The final step of the initialization procedure is refin-
ing xR−T . By this point, we expect that xR−T , our esti-
mate of x−T , has bypassed most of the high-valued
local minima of the cost function landscape. Addition-
ally, we preprocessed the observations y to reduce their
observational noise, but we have not fully exploited
such preprocessing yet. By reducing the variance of the
observational noise, we lower the number of dominat-
ing trajectories of the cost function—i.e., trajectories
for x /∈ � such that J (x) < J (x−T ). Thus, starting
from xR−T , we can minimize J using any optimization
scheme until

J (x̂−T ) ≤ δr := αr + σ 2
n

σ 2
y
βr (11)

for some refinement threshold 0 < δr � 1, with x̂−T

the assimilatedmicrostate of the system.We then define
x̂0 = f {mT }(x̂−T ) to be the initializedmicrostate, hop-
ing that x̂0 is a good representation of x0.

We want for x̂−T to have the lowest cost possible at
this stage. In terms of the error-free tolerance, we look
for αr � αR < σ 2

n /σ 2
y ≤ 1, but the actual magnitude

of αr is left to the modeler to choose. Regarding the
contribution of the noise, recall from Eq. (9) that r0 ≈
σn/σ

q
n > 1, so the lowest expected cost we can get is

σ 2
n /σ 2

y r
−2
0 (see Eq. (6)). Thus, we define the refinement

bound of our initialization procedure as that of setting
αr � αR and βr ∼ O(r−2

0 ).
For our optimization scheme, we explore a plethora

of the most successful gradient-based algorithms in
the literature [20]. These algorithms include stochastic
gradient descent [28], momentum descent [29], Nes-
terov [30], Adagrad [31], Adadelta [32], Rmsprop [33],
Adam [34], and AdamX [35] and YamAdam [36].

In all cases, we set the hyper-parameters to be those
given in the literature. We then compute the gradi-
ent of J using centered finite differences of step size

√
εM ≈ 1.5×10−8, where εM corresponded to double

precision arithmetic on our machine. In the absence of
observational noise, provided that the dynamics is not
degenerate and that we have sufficient observations, we
expect that the feasible set � collapses to the ground-
truth microstate only, so at this stage we expect to infer
it with high precision from the data.

2.3 Validation

We validate the initialized microstate x̂0 by comparing
them with the present-time microstate x0 and making
out-of-sample predictions of the observed time series.
Recall that we take the convention in which the obser-
vations, y = (y−T , . . . , y0), have non-positive time
indexes, so we refer to the observation times tk for
k < 0 as assimilative while we refer to times for k ≥ 0
as predictive. Wemeasure the discrepancy between the
real and the simulated observations using both the nor-
malized squared error in the observation space and the
normalized error in the model space, i.e.,

NSEobs
k = (yk − ŷk)2

σ 2
y

, (12)

NSEmod
k = 1

Nx
(xk − x̂k)†	−1

x (xk − x̂k), (13)

where σ 2
y is the variance of the data, 	x the covari-

ance matrix of the microstates and (·)† denotes matrix
transposition. In general, xk and 	x are unknown to
the modeler, but we use them to measure the perfor-
mance of our initializations in the latent space of the
microstates.

Note that if we let T → ∞, then J (x) converges
to E[NSEobs

0 ]. When k grows, the trajectories yk and
ŷk diverge exponentially until they lose all memory
about their initial conditions (x0 and x̂0, respectively).
Given that such divergence is exponential, we therefore
take the median of the NSE when comparing the per-
formance over an ensemble of experiments as a better
alternative to the mean.

On the same note, another way to validate the
inferred microstate is by looking for how long our pre-
dictions accurately describe the system. Chaotic sys-
tems are by definition sensitive to initial conditions,
meaning that microstates that are close to each other
diverge exponentially over time. If these microstates
live in a chaotic attractor, the distance between them is
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bounded by the size of the attractor [13]. Thus, we can
assess the quality of our predictions by measuring how
long the real and simulated observations retainmemory
about each other [10]. We refer to this limiting time as
the predictability horizon of the system kmax , and we
define it as the average number of steps before the sep-
aration between yk and ŷk is greater than the distance
between two random points in the attractor of the sys-
tem. Mathematically,

kmax := E

[
argmin

k≥0

{
(yk − ŷk)

2 ≥ DM
}]

,

where DM is average squared distance between two
random points in the attractor M normalized by the
variance of the attractor. More specifically, if X,Y are
two i.i.d. random variables such that X ∼ μ(M) with
μ(·) denoting the natural measure, then

DM := E[‖X − Y‖2]
Var(X)

= 2.

Thus, given that E[σy] = Var(X), we can simplify
kmax into an expression that only depends on Eq. (12)
so that

kmax = E

[
argmin

k≥0

{
NSEk ≥ 2

}]
, (14)

which is the formula we use to compute kmax .
Finally, we benchmark the inferred microstate by

comparing kmax with a measure of the natural rate of
divergence of the dynamics. As a measure of this, we
use the Lyapunov tenfold time tλ, which indicates the
average time for twoneighboringmicrostates to diverge
from each other by one order of magnitude [37]. This
is defined in terms of the inverse of the maximum Lya-
punov exponent λ as

tλ = ln 10

m�t
λ−1, (15)

where the factor ln 10/(m�t) lets us interpret tλ in the
units of the number of observations afterwhich on aver-
age the dynamics causes the loss of an order of mag-
nitude of precision. We obtain λ numerically using the
two-particle method from Benettin et al. [38].

2.4 Initialization procedure summary

We summarize our microstate initialization procedure
in the following steps:

1. Preprocess: Smooth the observed time series using
the LMPA filter (see Eq. (8)) or any other suitable

noise reduction technique. The smoothed signalwill
have fewer dominating trajectories [22] and a sim-
pler distribution of local minima than the full noisy
signal [23].

2. Bound: Make an arbitrary guess x ∈ X of the
microstate, and let it evolve under the model f until
the microstate roughly approaches the smoothed
observations, i.e., until J (xR−T ) ≤ δR for xR−T =
f {mR}(x) for some R ≥ 0. (see Eq. (10)). If several
attractors exist, make one arbitrary guess for each
of the different basins of attraction in the system.

3. Refine:Minimize the cost function J starting from
xR−T using Adam gradient descent or any other suit-
able optimization scheme until J (x̂−T ) ≤ δr (see
Eq. (11)) and call x̂−T the assimilated microstate
and x̂0 = f {mT }(x̂−T ) the initialized microstate.

4. Validate: Compute the discrepancy between the
real and simulated observations (see Eq. (12)) and
the predictability horizon kmax (see Eq. (14)) on out-
of-sample predictions of the system to evaluate the
quality of the initialized microstate x̂0. If possible,
benchmark the predictability horizon with the Lya-
punov tenfold time (see Eq. (15)) of the system con-
sidered.

3 Results

In this section, we test the microstate initialization pro-
cedure on two paradigmatic chaotic systems: the well-
known Lorenz system [21] and the high-dimensional
Mackey–Glass system [39]. We approximate both sys-
tems using numerical integrators (described in each
section that follows), and we take the approximated
system as the real dynamical system.

In all cases, we sample the ground-truth microstate
x−T from the attractor of the system considered. We
generate observations using the following nonlinear
observation operator

H(x) = 3

√√√
√

Nx∑

i=1

(x)3i , (16)

where (x)i is the i-th component of x. Note that,
while H is nonlinear, the mappings x → x3 and
x → 3

√
x are bijective, so there exists a diffeomor-

phism betweenH and any non-degenerate linear oper-
ator H : X ⊂ R

Nx → R. Additionally to this oper-
ator, in Appendix B we study the quality of our ini-
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Table 1 Parameters and other quantities

αR αr βR βr T Nx m σn/σy q r0 tλ

Lorenz 0.05 10−4 0.5 0.8r−2
0 50 3 2 0.3 4 2.02 127

Mackey–Glass 0.05 10−5 0.5 0.2r−2
0 25 50 2 0.3 5 2.41 230

αR , αr , βR , and βr are the parameters of our procedure. T is the number of data points in the time series y, Nx is the dimension of the
microstate space, m is the sampling interval between observations, q is the number of times we feed the signal back into the LPMA
filter, r0 is the increase in the signal-to-noise ratio, σn/σy is the noise level, and tλ is the Lyapunov tenfold time of the system

tialization procedure with several observations opera-
tors each with different levels of coupling between the
microstate components. The predictions in the obser-
vation space are almost identical regardless of what
observation operator we use. However, given the sym-
metry about the x-axis of the Lorenz system, the oper-
ator with the maximum coupling recovers the right x
component, but a reflection of the ground truth of the
y and z components.

We test our initialization procedure on both noise-
less time series and noisy time series. For the noisy
series, we take a zero-mean Gaussian noise distribu-
tion εk ∼ N (0, σ 2

n ) for all k. Here, σn represents
the noise level of the observations, which we take
to be 30% of the standard deviation of the observed
data; i.e., σn = 0.3σy . We always construct the noise-
less and noisy time series from the same ground-truth
microstate so that all our results are comparable.

Although our choice for the initial guess is arbitrary,
we initialize our method with a microstate that matches
the first observation of y exactly. This is, we take our
initial guess at random from the set {x ∈ X : H(x) =
y−T }. This is straightforward to do for any homoge-
neous function, such as the one of Eq. (16).

Throughout the results, we use the parameters and
system features described in Table 1 unless other-
wise stated. However, we evaluate the performance of
our method for various choices of the rough param-
eter δR (see Fig. 16 in Appendix C) and the opti-
mizers described in Sect. 2.2.4 (See Figs. 10 and 11
in Appendix C). Varying δR determines the effect of
bounding the search space into finer-grained regions of
the attractor, and we find that when observations are
noiseless, the lower δR the better the initialization but
the longer it takes to meet condition (10). For noisy
observations, we find that if we set δR very small,
the refinement stage yields no improvement over the
initialized microstates obtained. In terms of the opti-
mization schemes of the refinement stage, we find that

Adadelta [32] and the various flavors of Adam [34–
36] outperform all other alternatives, with significantly
better results than vanilla gradient descent.

3.1 Low-dimensional example: Lorenz system

We first test our microstate initialization procedure on
the Lorenz system [21], described by the following dif-
ferential equations

ẋ = σ(y − x) ,

ẏ = x(ρ − z) − y ,

ż = xy − βz ,

(17)

where xk = (
x(tk), y(tk), z(tk)

)
is themicrostate of the

system at time tk . The dynamics exhibit chaotic behav-
ior for the parameters σ = 28, ρ = 10, and β = 8/3.
We solve the system using a 4-th order Runge–Kutta
integrator with a fixed step size of 0.01 units. Under
these settings, the system’s Lyapunov tenfold time is
tλ = 127 samples while its attractor has a Kaplan–
Yorke dimension of NM = 2.06.

We perform 1000 independent experiments. For
each experiment, we sample ground-truth microstates
at random from the attractor of the system and gener-
ate time series of T = 50 observations with a sampling
interval of m = 2 time steps per observation. We ini-
tialize the microstate for each time series following the
steps presented in Sect. 2.4 using the parameters sum-
marized in Table 1. We present our results in Fig. 1,
where we show the median assimilation (k < 0) and
prediction errors (k ≥ 0) of the noiseless and noisy
time series for both the model and observation spaces
(see Eqs. (12)-(13)).

From the assimilation side, our estimations get pro-
gressively better the closer they are to the present time at
k = 0. This means that the longer the time series—and
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Fig. 1 Prediction error for the Lorenz system, showing the
median normalized squared error over 1000 experiments for the
observation space (solid lines) and themodel space (dotted lines)
for the case of noiseless (green) and noisy (blue) observations.
The solid vertical line separates the assimilative regime (k < 0)
from the predictive regime (k ≥ 0)

the more information we have from the past—the bet-
ter the quality of the initialized microstate. Note that in
the noisy case, the assimilative error plateaus near 10−3

in the observation space, marking the noise level of the
observations. In contrast, the estimations keep getting
better in the model space, indicating that even in the
presence of noise, having more observations mitigates
the probability of having dominating trajectories.

From the prediction side, we observe that the error
diverges at essentially the same rate in both the noise-
less and noisy cases. The main difference is that the
error intercept at k = 0 is higher in the noisy case, thus
making the predictions saturate earlier than when the
observations are noiseless. Specifically, we find predic-
tion horizons of kmax = 171 and knoisymax = 113 steps,
which correspond to 1.35tλ vs. 0.89tλ for the noise-
less and noisy time series (see Fig. 13 in Appendix
C for an alternative approach on the prediction hori-
zons). Moreover, we find that the prediction errors on
the model and observation spaces are almost identical
throughout the whole prediction window. Thus, mea-
suring how the errors diverge in the observation space
gives us a good proxy of the out-of-sample behavior of
the latent microstates of the system.

In Figs. 2 and 3, we analyze how the performance
of our method depends on the length of the observa-
tion window, showing how the prediction horizons and
the discrepancies between x0 and x̂0 change with the
number of observations.

Fig. 2 Predictability vs. number of observations. We show how
the predictability horizon kmax for the Lorenz system changes
with the number of observations T for noiseless (green) and
noisy (blue) ensembles of time series. The horizontal black solid
line indicates the Lyapunov tenfold time tλ

Fig. 3 Initialized microstate error for the Lorenz system. We
show how the average discrepancy NSEmodel

0 between the true
present-time microstate x0 and the initialized microstate x̂0
changes with the number of observations T for noiseless (green)
and noisy (blue) ensembles of time series

In Fig. 2, we find that the prediction horizon
increases linearly with the number of observations
available, with a similar slope for both the noiseless
and noisy cases. Not surprisingly, the noise affects the
time horizon over which one canmake an effective pre-
diction.

Additionally, we observe in Fig. 3 that the discrep-
ancy decreases monotonically in both the noiseless
and noisy cases. For the noiseless case, we observe
a higher than exponential decrease in the discrepancy
that ranges from NSEmodel

0 ∼ 10−3 for T = 5 to
NSEmodel

0 ∼ 10−5 for T = 50 observations. While the
change in discrepancy is less pronounced for the noisy
time series, it decreases 2 orders of magnitude with
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NSEmodel
0 ∼ 10−1.5 for T = 5 to NSEmodel

0 ∼ 10−3.5

for T = 50 observations.
The Lorenz equations are a low-dimensional sys-

tem (Nx = 3) with a low dimensional attractor of
dimension NM = 2.06. The number of observations
in our experiments can be much larger than the dimen-
sion of the system. When combined with the fact that
this system does not have any severe degeneracies, (see
Appendix A), we recover the ground-truth microstate
precisely with only a handful of noiseless observations.
Every additional observation is, in theory, redundant for
finding x−T but, in practice, measurements can have
several sources of error such as observational noise or
the finite precision of numerical integration methods.
Each additional observation thus further averages out
these errors, which probably why kmax gets better pro-
portionally to T .

3.2 High-dimensional system: Mackey–Glass

TheMackey–Glass system [39] describes the dynamics
of the density of cells in the blood with the following
delayed differential equation

ẋ = F
(
x, xtd

) = axtd
1 + xctd

− bx . (18)

The state xtd = x(t − td) is the density of cells
delayed by td time units and a, b, and c are param-
eters. It exhibits chaotic dynamics for td > 16.8 with
a = 0.2, b = 0.1 and c = 10 [40]. In terms of blood
cell density, the chaotic regime represents a pathologi-
cal behavior.

The evolution of Eq. (18) relies on knowing the
state of x in the continuous interval [t − td , t], mak-
ing its state space infinite-dimensional. However, we
can approximate such state by taking Nx samples at
intervals of length �t = td/Nx and constructing the
Nx -dimensional microstate vector

xk = (
(xk)1, · · · , (xk)Nx

)

= (
x(tk − Nx�t︸ ︷︷ ︸

td

), . . . , x(tk − �t), x(tk)
)
, (19)

where (xi )k = x(t − (Nx − i)�t).
Using this vector, we can obtain trajectories of the

Mackey–Glass system with any numerical integrator,
forwhichwe use the Eulermethodwith a fixed step size

of �t for simplicity. We can thus recast this approxi-
mate system with the following Nx -dimensional deter-
ministic mapping

xk+1 = f (xk)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(xt )Nx + �tF
(
(xt )Nx , (xt )1

)

(xt+1)1 + �tF
(
(xt+1)1, (xt )2)

)

...

(xt+1)Nx−1 + �tF
(
(xt+1)Nx−1, (xt )Nx

)
,

(20)

using F as defined in Eq. (18). The microstate-space
dimension Nx of this mapping is determined by td/�t ,
for which we take Nx = 50 and td = 25 so that the
systemexhibits chaotic dynamics.Under these settings,
the system’s Lyapunovs tenfold time is tλ = 230 sam-
ples while its attractor has a Kaplan–Yorke dimension
of NM = 2.34.

As before, we perform 1000 independent exper-
iments in which, for each experiment, we sample
ground-truth microstates at random from the attractor
of the system and generate time series of T = 25 obser-
vations with a sampling interval of m = 2 time steps
per observation (see Table 1 for details). In contrast to
the Lorenz system, we consider time series containing
fewer data points than the dimension of the microstate
space (in this case T = 25 and Nx = 50, respectively),
making the problem under-determined. We present our
results in Fig. 4, where we show the median assimi-
lation (k < 0) and prediction errors (k ≥ 0) for the
noiseless and noisy time series for both the model and
observation spaces.

Unexpectedly, our method yields more accurate
initializations for the Mackey–Glass system than the
Lorenz system, even though both the attractor and the
microstate space of the former have a higher dimen-
sion than the latter. However, if we compare the power
spectra of the two systems (see Fig. 14 in Appendix
C), we find that the Mackey–Glass system has a faster
frequency decay and more frequency peaks than the
Lorenz system, suggesting that the former is easier to
initialize than the latter. For instance, the power ampli-
tude for frequency 1/6 is more than 1000 higher in the
Lorenz system than in the Mackey–Glass system. This
further suggests that looking at the power spectra of the
system is a better indicator of the initializability of a
system than the dimension of its chaotic attractor.
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Fig. 4 Prediction error for the Mackey–Glass system. We show
the median normalized squared error over 1000 experiments for
the observation space (solid lines) and the model space (dotted
lines) for the case of noiseless (green) and noisy (blue) obser-
vations. The solid vertical line separates the assimilative regime
(k < 0) from the predictive regime (k ≥ 0)

From the prediction side, our results are qualitatively
similar towhat we saw for the Lorenz system. The error
diverges at roughly the same rate in both the noiseless
and noisy time series, with an error intercept at k = 0
that is higher for the noisy experiments. Additionally,
we find a very close correspondence between the errors
in the model and observation spaces, which supports
our claim that measuring the error in the observation
space gives us a goodproxyof the out-of-sample behav-
ior of the latent microstate dynamics.

In terms of their predictability horizons, we find
that kmax = 556 and knoisymax = 285, corresponding
to 2.4tλ and 1.2tλ for the noiseless and noisy ensem-
bles, respectively, (see Fig. 13 in Appendix C for an
alternative approach on the prediction horizons). We
find it remarkable that with only 25 observations of the
system, we obtain predictions that stay accurate for sig-
nificantly longer than the Lyapunov tenfold time of the
system.

From the assimilation side, the microstate estima-
tions get progressively better the closer they are to the
present time, similar to what we observed in the Lorenz
system. However, the assimilation error is significantly
lower in the observation space than in the model space,
suggesting, misleadingly, that the initializedmicrostate
is much more accurate than the error we observe in
the model space. Nonetheless, the errors in model and
observation spaces converge to each other as soon as
the prediction window starts, meaning that the error in

Fig. 5 Predictability horizon of the Mackey–Glass system. We
show how the predictability horizon kmax changes with the num-
ber of observations T for noiseless (green) and noisy (blue)
ensembles of time series. The horizontal black solid line indi-
cates the Lyapunov tenfold time tλ. For the noiseless case, we
observe a critical transition on the behavior of kmax for Tc = 25

the observation space is still an accurate proxy of the
out-of-sample behavior in the model space.

Interestingly, the first few out-of-sample predictions
in the model space have a lower discrepancy than in the
observation space in both the noiseless and noisy cases.
This happens, we believe, because the time span of the
observations y is not long enough for the initialized
microstate to converge onto the attractor. With only
T = 25data points of a 50-dimensional chaotic system,
we do not possess enough information to recover the
present-time microstate precisely.

The previous discussion suggests that we need more
observations to better initialize the system. To investi-
gate this we perform a series of experiments in which
we vary the number of data points of the observed time
series and assess the quality of the predictions. Simi-
lar to what we did for the Lorenz system, we focus on
the prediction horizon (see Fig. 5) and the discrepancy
between the present-time and the initialized microstate
(see Fig. 6).

We find a contrasting behavior regarding the experi-
ments between noisy and noiseless observations.When
the observations are noisy, the prediction horizon
increases linearly with the number of observations (see
Fig. 5 blue), ranging from kmax = 0.78tλ when T = 5
to kmax = 1.34tλ when T = 50. We also find that,
in general, the discrepancy between the initialized and
ground-truth present microstate decreases monotoni-
cally with the number of observations (see Fig. 6 bot-
tom). These results are qualitatively similar to what we
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Fig. 6 Initialized model error for the Mackey–Glass system.
We show how NSEmodel

0 , the average discrepancy between the
true present-time microstate x0 and the initialized microstate x̂0,
changes with the number of observations T for noiseless (green)
and noisy (blue) ensembles of time series. For the noiseless case,
we observe a critical transition in the behavior of NSEmodel

0 for
Tc = 25

found for the Lorenz system: the more observations the
better.

When the observations are noiseless, we find a crit-
ical change of behavior at roughly T = 25 observa-
tions. In Fig. 5 (green), we find that the prediction hori-
zon rises superlinearly for T < 25, with kmax = 1.11tλ
for T = 5 to kmax = 2.31tλ for T = 25. Afterward, the
prediction horizon grows linearly and with a marginal
increase, getting to kmax = 2.67tλ forT = 50.Wenote,
however, that the increase in this linear regime is almost
double of what we find in the noisy counterpart, with
a slope of �kmax = 15.2 steps per observation against
�knoisymax = 8.3, respectively. In parallel, we find that
the discrepancy of the initialized microstate decreases
abruptly for the time series of T ≥ 25 observations,
as we show in Fig. 6 (green). This sharp transition
reflects that time series with more than 25 observations
have enough information to pin down the present-time
latent microstate precisely, meaning that we possess
enough data points to uniquely separate the mixing of
the microstate generated by the observation operatorH
into its individual components.

In short, having 25 (or more) noiseless measure-
ments of the system gives us enough information to
precisely recover the present-time microstate, which
is 50-dimensional. Recall that we are considering the
discrete map (20) as the real system, so the only infor-
mation we lose comes from either measuring the sys-
tem withH or taking time series with a coarse-grained

Fig. 7 Critical transition heatmap of the Mackey–Glass system:
In the z-axis, we show the (base-10 logarithm of the) initialized
microstate discrepancy, NSEmodel

0 , as a function of the number
of observations T and the sampling interval m for ensembles of
noiseless time series. In white, we plot the m = Nx/T curve
for fixed Nx = 50. We find that the microstate discrepancies
decrease abruptly before and after this curve

sampling frequency. Thus, for a fixed H and noise-
less observations, recovering the initialmicrostates pre-
cisely should depend solely on how well the samples
describe the latent trajectory of the system. Inspired by
theNyquist–Shannon sampling theorem [41], if we can
establish a clear cutoff frequency on the power spec-
trum of the system, we could argue that if we observe
the system with twice the frequency as the systems’s
cutoff frequency, then the observed signal would not
lose any information with respect to the signal sam-
pled for every update of map (20).

We thus claim that, if we can establish a clear cutoff
frequency fc and the dynamical system does not suf-
fer from severe degeneracies, we can precisely obtain
the initial conditions of an Nx -dimensional (possibly)
nonlinear system observed every m updates with a
scalar (possibly) nonlinear observation operator H if
1) m−1 ≥ 2 fc and 2) Tc ≥ Nx/m. Having these con-
ditions satisfied is equivalent to having an invertible
observation-matrix M that determines the solution of
the system y = Mx0 exactly (see Appendix A for a
deeper development of this discussion).

Wemake further experiments to check the validity of
our claim, where we measure the initialized microstate
discrepancy when varying both the number of obser-
vations T and the sampling interval m while leaving
the dimension of the system fixed to Nx = 50. If our
claim about the Nyquist–Shannon theorem is a good
approximation, we expect to find a Tc ∼ 1/m relation
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where, for T ≥ Tc, the error in the initializedmicrostate
becomes significantly lower than for T < Tc. In Fig. 7,
we show the results of these experiments, in which we
observe such a change of regimes before and after the
T = Nx/m line, thus supporting the Nyquist–Shannon
hypothesis.

4 Conclusions

Many natural and social processes can be accurately
described by how their microstates interact and evolve
into rich non-trivial dynamics with emerging proper-
ties. We often only possess aggregate noisy measure-
ments of such processes, so it is of great interest to
develop methods that let us extract information about
the latent microstate dynamics from a given dataset.

In this paper, we tackled the problem of initializ-
ing the latent microstate of a known (possibly) nonlin-
ear dynamical system from aggregate (possibly) noisy
and nonlinear observations of the system. We propose
a three-step method to obtain such latent microstate
that consists of (1) reducing the observational noise
to mitigate possible dominating trajectories, (2) let-
ting the system explore its attractor(s) and thus limiting
the region in which we search for an optimal solution,
and (3) minimizing the discrepancy between the sim-
ulated and real observations to obtain a refined esti-
mation of the ground-truth microstate. We quantified
the discrepancy between observations and simulations
using a least-squares cost function in the observation
space, similar to [13,14]. We minimized the cost func-
tion using a plethora of gradient-based algorithms, for
which we find that Adadelta [32] and Adam-oriented
schemes [34–36] perform the best.

We tested our method on two chaotic paradigmatic
examples: the Lorenz and a high-dimensional approxi-
mation of theMackey–Glass systems.We obtained ini-
tialized microstates that accurate fit the data, with out-
of-sample predictions that outperformed the systems’
Lyapunov tenfold times, even when the observed time
series were very short. We found that good predictions
in the observations space always implied good predic-
tions in the space of the microstates. We considered
nonlinear observation operators that aggregate all the
microstate component into a real number in all cases,
with robust resultwith all the operators considered. Sur-
prisingly, we obtained better results for the Mackey–
Glass system, which has a higher-dimensional model

space and higher-dimensional attractor but faster-
decaying frequency spectrum than the Lorenz system,
suggesting that the frequency spectrumgives us a better
proxy of the initiability of the system than the observa-
tions to dimension of the model ratio.

In most experiments, the quality of the initialized
microstate was proportional to the number of data
points of the observed time series. However, when the
dimension of the system was higher than the number
of observations and these observations were noiseless,
the quality of the initialized microstate grew superlin-
early. This superlinear regime transitions into the more
common linear regime in a non-trivial manner, and we
explored the conditions for such a transition. We claim
that as long as we can establish a clear cutoff frequency
of the observed data and this data meets the Nyquist–
Shannon sampling theorem conditions with respect to
the cutoff frequency, we can recover the ground-truth
microstate precisely with fewer observations than the
dimension of the system, thus marking the transition
between regimes. This implies that if we possess a
dataset where observations are sampled at an optimal
rate such that we lose the least possible information
of the underlying system, we can obtain high-quality
initializations with just a handful of samples.

How well we can initialize a system depends on
the amount of information the observed data contains
and on the intrinsic features of the system. On the one
hand, the amount of observational noise, the mixing
that results from aggregating the system, the number
of observations, and the data sampling rate contribute
significantly in estimating microstates that may fit the
data well but extrapolate poorly into the future. On the
other hand, the dimension of the dynamical system, the
frequency spectrum of its attractor(s), and how chaotic
the system is, determines the window in which the pre-
dictions stay accurate.

Thiswork gives us a conceptual framework to under-
stand the interface between aggregate data and micro-
scopic interactions. However, it is limited the case in
which we know the model that perfectly specifies the
system, aswell as the observation operator and the char-
acteristics of the noise in the observations.

In future developments, we will explore how to deal
with misspecified models and systems with stochas-
tic behavior. We should include these new sources
of uncertainty in the cost functions involved. With
stochastic behavior alone, there are several new con-
siderations for inferring individual agents’ evolution in
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a system [42]. Once we better understand what infor-
mation low-dimensional observations gives us about a
high-dimensional dynamical system, the natural next
step is test our initialization method on real-world
datasets.
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Appendices

A noiseless non-autonomous linear systems

In this section, we assume that the dynamical sys-
tem (1), the observations (2), and the corresponding
dynamical mapping (3) are given by time-varying lin-
ear functions. We further assume that the dynamics are
deterministic and the observations are noiseless so that
ξ k = 0 and εk = 0 for all k. Making these assumptions
provides us with two advantages over arbitrary nonlin-
ear dynamical systems: (1) linear systems aremucheas-
ier to handle than nonlinear systems, and (2) nonlinear
systems can be approximated by time-varying systems
arbitrarily well if they are locally Lipchitz [43].

Additionally,wefind it convenient to slightly change
the notation introduced in the main text. In the main
text, we indexed the observations of the system so
that the time stamps describe the observations y in
the most natural way. Thus, we defined tk such that
yk = y(tk) is the k-th data point of the series. Con-
sequently, we indexed the evolution of the microstates
as x(tk+1) = x(tk + m�t) = f {m}(x(tk)), i.e., we
needed to update the system m times before sam-
pling the next observation. Here, we index the pass-
ing of time in the time scale of the microstates, so that
x(tk+1) = x(tk + �t) = f (x(tk)). Thus, we label the
observed time series as y = (y0, ym−1, . . . , ymT−1)
so that ymk−1 is the k-th data point of a time series of
T observations. This approach emphasizes that y is a
coarse-grained sample of the underlying dynamics of
the microstates.

Under the above considerations, we can recast Eqs.
(1–2), respectively, as follows

xk+1 = Fkxk = (FkFk−1 · · · F0)x0 , (21)

yk = Hkxk , (22)

where, at every time tk , Fk is an Nx ×Nx matrix repre-
senting a linear dynamical process and Hk is an 1×Nx

matrix representing a linear observation operator. We
assume that every element of Hk is nonzero for every
k. Note that under the current notation, the sequence
y0, y1, . . . , yk, . . . represents the ground-truth dynam-
ics under the (time-varying) observation operator Hk ,
and only those indexes k that are a multiple of m are
included in the observations y.

From theRHS of Eq. (21), we see the explicit depen-
dence of any observation yk from the initial conditions
x0, so we can define an 1 × Nx matrix3

Mk := HkFk−1 · · · F0

that takes us from x0 to yk for any k. Thus, if we possess
a time series of T observations such that the last obser-
vations happen at time tmT−1, then we can recast the
microstate initialization problemas the following linear

3 We define matrix M for time t0 as M0 := H0.
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system of equations of Nx variables and mT equations

y0 = M0x0
y1 = M1x0
...

ymT−1 = MmT−1x0 ,

or, more compactly,

y∗ = M∗x0, (23)

where y∗ = (y0, y1, . . . , ymT−1) ∈ R
mT is the

extended sequence of observations (it is extended in
that it includes all the observations in y ∈ R

T plus
its intermediate, unobserved samples) and M∗ =
[M0|M1| . . . |MmT−1], the extended observation
matrix of size mT × Nx .

We may solve system (23) exactly whenever M is
invertible. If the matrices Mk are non-singular, then
M∗ becomes invertible when mT = Nx .

We do not possess y∗ but the coarse-grained time
series y of T observations, where two consecutive sam-
ples arem time steps apart. Thus, we may only express
a reduced form of system (23) with T equations and
Nx variables as

y = Mx0, (24)

with M = [M0|Mm−1| . . . |MmT−1] of size T × Nx .
The system (24) spans the same time interval as system
(23), but it has m less equations, so it is underdeter-
mined and might have several solutions.

Under the conditions we describe in what follows,
we may obtain a solution x of the reduced system (24)
that is also a solution of the extended system (23).
If y consists of T = Nx/m (or more) data points,
the solution x is unique and equal to the ground-truth
microstate x0. More specifically, if the sampling fre-
quency (m�t)−1 is higher than twice the cutoff fre-
quency of the spectrum of the system and the matrices
Mk are non-singular for k ∈ {0,m − 1, . . . ,mT − 1},
then the time series y determines the extended series
y∗ uniquely, and therefore any solution x that solves
(24) also solves (23). The above conditions establish
the necessary and sufficient conditions for theNyquist–
Shannon sampling theorem [41] to be true, so our result
is a direct application of the theorem.

Note that the power spectra of the systems consid-
ered in this work (and most chaotic systems) exhibit
a power-law decay on their power spectrum, so there

is not a well-defined cutoff frequency on neither the
Mackey–Glass nor the Lorenz systems. Nevertheless,
if their power spectrum decays fast enough, we should
be able to define an effective cutoff frequency for the
previous arguments to be a good approximation. We
will investigate the validity of our arguments in future
iterations of this work.

In this paper, we chose non-degenerate dynamical
systems that are Lipschitz continuous and chose an
observation operator (see Eq. (16)) that is bijective to
the linear operator H = [1, . . . , 1]†. Therefore, the
results of this Appendix apply in all our systems when-
ever the observations are noiseless. In particular, the
results of this Appendix explain the critical transition
we show in Figs. 5 and 6 for T = Nx/m = 25.

B Comparison of several nonlinear observation
operators

We assess the robustness of our initialization method
using different (nonlinear) observation operators. The
way we aggregate the microstates affects how much
information we retain about the latent dynamics, so we
consider the three following operators each with dif-
ferent levels of coupling between the microstate com-
ponents

H1(x) = 3
√
Sx, (25)

H2(x) = sign (Px)
Nx
√|Px |, (26)

H3(x) = sign (Cx)
√|Cx |, (27)

where

Sx =
Nx∑

i=1

x3i , (28)

Px =
Nx∏

i=1

xi , (29)

Cx =
∑

i< j

xi x j . (30)

Our rationale for choosing these operators goes as
follows. We point out that Eq. (25) is the same as Eq.
(16): it is the cubic root of sum of cubes of the com-
ponents of the microstates. This operator has no cou-
pling between the microstate variables. As we men-
tioned before, Eq(25) is bijective to any non-degenerate
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Fig. 8 Prediction error for different observation operators. We
show the median normalized squared error over 200 experiments
for the observation space (solid lines) and themodel space (dotted
lines) for the case of noiseless (green) and noisy (blue) obser-
vations for (a) the Lorenz system and (b) the Mackey–Glass

system. From left to right, we show the behavior for operators
representing the sumof cubes (see Eq. (25)), the product between
microstate components (see Eq. (26)), and the sum of pairwise
couplings (see Eq. (27)). We take all parameters as in Table 1

linear operator. For Eq. (26), we take an operator that
couples all the microstate components by multiplying
them. If all the microstate components are positive—
i.e., if xi > 0 for all i—then we can take the logarithm
of H2 and recover a non-degenerate linear operator. If
any of the components is non-positive, then we cannot
transform H2 to a linear operator, making the decou-
pling impossible. Finally, Eq. (27) is the sum of pair-
wise couplings between the microstate components. In
this case, there is no smooth transformation between
H3 and a linear operator, so we can make no further
simplification of H3. We consider the cubic-, Nx th-,
and square-root of Sx , Px , and Cx , respectively, so that
the physical units of the observations are the same as
the units of the microstates.

In Fig. 8, we show the median assimilation (k <

0) and prediction (k ≥ 0) errors over 200 runs for
the Lorenz and the Mackey–Glass systems for each of
the observation operators described above.We took the
same set of 200 initial conditions and noise seeds for
each operator to make the results comparable.

In almost every case, we observe that the results
for each system are almost identical regardless of the

Fig. 9 Dynamics of the individual microstate components of the
Lorenz system for an example run of the ground truth (black) and
the initialized (green) microstate when the observation are taken
using the operator of Eq. (26)—i.e., the operator that multiplies
all the microstate components— in a noiseless scenario. The
y and z components are symmetric with respect to the 0 line.
Similar to Fig. 8, k < 0 denotes assimilation times and k ≥ 0
prediction times

operator we use, both in the observation and the model
spaces. This behavior suggests that ourmethod is robust
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to the observation operator: if the observation convey
enough information about the latent dynamics of the
system, our method will initialize a microstate with
good prediction power.

However, we observe an anomaly on the model
space error for theLorenz system: themodel space error
corresponding toH2—the product of components—is
significantly higher than i) its observation space error,
and ii) the model error corresponding to H1 and H3.
Recall that the Lorenz system is symmetric around its
x-axis, so the operator H2 cannot resolve if the prod-
uct

∏
i xi corresponds to (x, y, z) or to (x,−y,−z),

regardless of the number of measurements we have
about the system. Thus, our method sometimes initial-
izes the ground truth microstate and the other times it
initializes its reflection about the x-axis, as we show in
Fig. 9.

Summarizing, the feasible set of solutions for the
Lorenz system observed through H2 include both
(x, y, z) and (x,−y,−z) which, incidentally, result
in the same observation-space dynamics for time win-
dows of arbitrary size. In this case, the initialization is
more difficult because some microstates are indistin-
guishable. For all the other observation operators, the
only feasible solution is the ground-truth microstate,
hence their results are almost identical in 8. These
results suggest, that it is possible to improve the ini-
tialization procedure in systems with symmetries. It
would only be necessary to add an extra step to the ini-
tialization procedure. This extra step would involve the
rotation of the microstate found across all the symme-
tries of the system. We would then continue refining in
parallel all those different symmetric microstates. The
global solution would be then the one with the lowest
cost function. We leave a deep analysis of this scenario
for a future study.

C Initialization method performance & system fea-
tures

Fig. 10 Gradient-based optimizers performance on the Lorenz
system. We measure the performance of the gradient-based opti-
mizers (described in Sect. 2.2.4) with NSEmodel

0 , the average
discrepancy between the present-time microstate x0 and the
initialized microstate x̂0, for noiseless (dark purple) and the
noisy (light purple) time series. We show only the four best
performing optimizers—namely Adadelta, Adam, AdamX, and
YamAdam—as well as stochastic gradient descent, which serves
as our benchmark

Fig. 11 Gradient-based optimizers performance on the
Mackey–Glass system. See description in Fig. 10 for details.
The best performing optimizers were the same aswith the Lorenz
system
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Fig. 12 Filtered noise distributions Starting from a simulated
observational noise described by a left-skewed Beta distribution
(see “unfiltered noise” in the legend) of very long time series
(T = 50000 samples) of the a)Lorenz and b)Mackey–Glass sys-
tems, we plot the noise distribution of the unfiltered noise (solid
blue) as well as the noise distribution we obtain after smoothing
the corrupted signal with the LMPA filter for filters of increasing
strength q. See Sect. 2.2.2 for details on the filter. For small q,
the resulting distribution looks like a Gaussian distribution while
for q � 1, the filter takes a significant of the signal, resulting in
exhotic-shaped distributions
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Fig. 13 Cumulative
probability of divergence
for a) the Lorenz system
and b) the Mackey–Glass
system. We show the
fraction of trajectories—out
of 1000—for which
NSEobs

k ≥ 2 as a function
of the prediction step k.
This approach generalizes
our definition of prediction
horizon of Eq. (14) into a
distribution-like quantity. In
solid vertical lines, we show
the Lyapunov tenfold time
of the system as well as the
prediction horizons kmax for
the noiseless and noisy
cases
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Fig. 14 Normalized power spectra for a the Lorenz system and
b the Mackey–Glass system. The plot shows the average power
spectra over 100 random in-attractor initial conditions with tra-
jectories of 212 points. We note that the Lorenz system has a
clear power-law frequency decay with only a few low frequency
peaks. While the Mackey–Glass system exhibits a nonvanishing
spectrum characteristic of chaotic systems, it has more defined
frequency peaks and decays much faster than the Lorenz system.
Thus, we expect for the Mackey–Glass system to be easier to
initialize in general

Fig. 15 Chaotic attractors for a the state space portrait of the
Lorenz system, where the axis show x, y and z, respectively, and
b the state space portrait of the Mackey–Glass system, where
we show x(t) against x(t − td ). Each attractor consists of a long
trajectory of 15000 points coming from a random in-attractor
initial condition
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Fig. 16 Initialization performance for different bounding-stage
parameters. We present, on the x axis, the discrepancy of
x̂R
0 against, on the y axis, the discrepancy of the initialized

microstates x̂0 for increasing levels of δR (see legend) on a the
Lorenz system and b the Mackey–Glass system. The microstate

x̂R
0 is the rough estimation of x0 after Eq. (10) is zatisfied. Values

below the identity mean that x̂R
0 improves refining it as described

in Sect. 2.2.4. Values on the diagonal mean that the initialized
microstates do not get any better by applying refinementmethods
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