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Abstract Higuchi’s method of determining fractal

dimension is an important, well-used, research tool

that, compared to many other methods, gives rapid,

efficient, and robust estimations for the range of

possible fractal dimensions. One major shortcoming in

applying the method is the correct choice of tuning

parameter (kmax); a poor choice can generate spurious

results, and there is no agreed upon methodology to

solve this issue. We analyze multiple instances of

synthetic fractal signals to minimize an error metric.

This allows us to offer a new and general method that

allows determination, a priori, of the best value for the

tuning parameter, for a particular length data set. We

demonstrate its use on physical data, by calculating

fractal dimensions for a shell model of the nonlinear

dynamics of MHD turbulence, and severe acute

respiratory syndrome coronavirus 2 isolate Wuhan-

Hu-1 from the family Coronaviridae.

Keywords Fractal � Higuchi � Brownian motion �
Tuning � Coronavirus � COVID-19

1 Introduction

Since the seminal work of Mandelbrot and Van Ness

[27], the characterization of data in terms of fractal

properties has found near ubiquitous and enduring use

in diverse research areas, including research within the

fields of engineering [48], hydrology [21, 50], geology

[4, 34], physics [40], space science [7, 41], medicine

[17, 28], economics [13], financial markets [44] and

many more. Fractal properties in nature and human

dynamics arguably have served to yield increased

understanding and improvement on human society.

Higuchi’s method [18] is a widely applied time-

domain technique to determine fractal properties of

complex non-periodic, nonstationary physical data

[12, 35, 49]. That is, the method can accurately

calculate the fractal dimension of time series. Higuchi

initially developed it to study large-scale turbulent

fluctuations of the interplanetary magnetic field. It is a

modification to the method of Burlaga and Klein [5] in

which fluctuation properties of turbulent space plas-

mas can be studied beyond the inertial range. It is

simple to implement, efficient, and can rapidly achieve

accurate and stable values of fractal dimension, even

in noisy, nonstationary data [25]. The fractal dimen-

sion calculated via the Higuchi method is called the

Higuchi fractal dimension (HFD). Since its initial

development, the Higuchi method has been applied to

numerous fields of research. In medicine, for instance,

it has found widespread use to detect and classify
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epileptic EEG signals [26], human locomotion [36],

and in engineering, it has been used to detect faults in

rolling bearings [48]. One difficulty in using the

Higuchi method is that certain parameters must be

applied to the method, and inappropriate parameter

selection results in spurious calculation of fractal

properties. Although the method has been used for

decades and is widely employed at present, there is an

absence of consensus of the appropriate method to

determine the parameters that must be input. In this

paper, we expose this weakness of the Higuchi method

so that there is wider appreciation of its limits and

suggests how to solve the drawbacks of this method

when applied to different types of scientific data.

The HFD computed depends on the length of the

time series, and an internal tuning factor kmax.

Higuchi’s original paper did not elaborate on the

selection of the tuning factor but illustrated the method

with kmax = 211 for time series having length N = 217.

Subsequent authors used similar values for the tuning

factor but we will show that the tuning factor plays a

crucial role in estimation the HFD. Higuchi’s method,

if applied appropriately, can reliably find the time

series fractal dimension. However, if the tuning factor

is incorrectly selected, the method is compromised

from the outset.

How is the researcher to determine the appropriate

tuning factor for their study that will optimize the

calculation of a stable HFD, if it exists? In addition,

how does the selection of the factor influence the value

of the computed HFD? The literature is vague in

answering these questions, and to do so is the main

thrust of our research. Multiple studies have addressed

the issue of proper selection of tuning factor kmax.

Accardo et al. [2] applied the method in their study of

electroencephalograms and sought the most suit-

able pair of (kmax, N). They experimented with

kmax = 3–10 on time series with lengths from

N = 50–1000 and settled on an optimum kmax = 6.

Some papers recommend plotting the HFD versus a

range of kmax, and then selecting the appropriate kmax

at the location where the calculated HFD approaches a

local maximum or asymptote, which can be consid-

ered a saturation point [11, 39]. However, there is no

reason that in every instance, the HFD will reach a

saturation point. Paramanathan and Uthayakumar [31]

proposed to determine the tuning factor kmax based on

a size–measure relationship that employed a recursive

length of the signal from different scales of

measurement. Gomolka et al. [16] selected kmax on

the basis of statistical tests that allowed the best

discrimination between already known diabetic and

healthy subjects. But in the absence of such additional

data between systems in different dynamic states (e.g.

health or pathology), how can one select the correct

tuning parameter?

In this paper, we will try to answer these questions

in a general way that is helpful to the community of

researchers who utilize the Higuchi method. The

organization of the paper is as follows. We will

generate artificial time series with well-specified

fractal dimension and then compare the HFD com-

puted from these data for different values of the tuning

parameter kmax. We will demonstrate the results on

several examples of physical data.

2 Data and method

In order to investigate the optimization of the Higuchi

method, we turn to the generation of synthetic time

series with known fractal properties, to see how well

the method performs. One difficulty resides in the

production of truly fractal time series of given

dimension, which is a non-trivial task [20]. Therefore,

studies must concern themselves with the adequacy of

the data-generating algorithms in addition to the

fractal dimension estimation algorithms. We will

consider synthetic time series realizations of processes

with perfect and controlled scale invariance, viz.

signals that have only a single type of scaling. Many

other theoretical data types exist that have been used to

analyze signals that lack local scaling regularity, but

rather have a regularity which varies in time or space

[24, 42]. There is also a recent effort to generalize the

Higuchi method to distinguish monofractal from

multifractal dynamics based on relatively short time

series [6].

In this paper, we will limit the research to study of

well-understood synthetic data with monofractal scal-

ing. To illustrate how a monofractal scaling exponent

can be derived, we consider fractional Brownian

motion (fBm) which is characterized by a single

stable fractal dimension and is a continuous-time

random process [27]. Next, we research these data and

compare the fractal dimension recovered using the

Higuchi algorithm with the theoretical fractal dimen-

sion. The synthetic data time series can be written in
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terms of stochastic integrals of time integrations of

fractional Gaussian noise:

BH tð Þ ¼ 1

C H þ 1
2

� �

Z0

�1

½ðt� sÞH�1
2 � �sÞH�1

2

� i
dW sð Þ

8
<

:

þ
Z t

0

ðt� sÞH�1
2dW sð Þ

9
=

;
:

here W is a stationary and ergodic random white noise

process with zero mean defined on (- ?, ?). In the

above equation, H 2 ð0; 1Þ is known as the Hurst

exponent. The time series Hurst exponent is related to

signal roughness averaged over multiple length scales.

The higher the value of H, the smoother is the time

series, and the longer trends tend to continue. For

values closer to zero, the time series rapidly fluctuates,

as shown in Fig. 1. The covariance function of the

noisy signal can be expressed by:

cov BH sð Þ;BH tð Þf g ¼ 1

2
sj j2Hþ

�� �� tj j2H� s� tj j2H
n o

;

so that BH 0ð Þ � 0 and varfBH tð Þg ¼ t2H. For H = 1/

2, the white noise process reduces to the well-known

random walk. The theoretical relationship between the

Hurst exponent, H, and the Higuchi fractal dimension,

HFD, is HFD ¼ 2 �H, with values of HFD between 1

and 2.

We consider four different method generators of

processes having long-range dependence to generate

synthetic series with exact fractal dimension. First, we

consider an exact wavelet-based method. This is based

on a biorthogonal wavelet method proposed by Meyer

and Sellan [1, 3] and implemented in MATLAB

software and the wfbm calling function. The second is

the method of Davies and Harte [9] whose generation

process uses a fast Fourier transform basis and embeds

the covariance matrix of the increments of the

fractional Brownian motion in a circulant matrix.

The third category of synthetic simulated data is

produced using the Wood-Chan circulant matrix

method [45], which is a generalization of the previous

method [8]. The fourth set of data are simulated using

the Hosking method [19], also known as the Durbin or

Levinson method [23], which utilizes the well-known

conditional distribution of the multivariate Gaussian

distribution on a recursive scheme to generate samples

based on the explicit covariance structure. All these

methods of producing simulated data are considered

exact methods because they completely capture the

covariance structure and produce a true realization of

series with a single scaling parameter.

Figure 1 shows various examples of time series

produced via the Davies and Harte [9] method. The

smoothest curve corresponds to H = 0.9, which

implies high probability to observe long periods with

increments of same sign. The roughest curve corre-

sponds to H = 0.1, which is sub-diffusive, with high

probability that increments feature long sequences of

oscillating sign. The curves show data for Hurst

exponents H = 0.3, 0.5, 0.7, 0.9, from top to bottom.

For each of the four data-generating methods, we

create 100 unique time series, of differing lengths up

to maximum length 500,000 data points, for Hurst

exponents H = 0.1, 0.3, 0.5, 0.7, 0.9. Thus, for each

time series length N, we have 500 unique simulations

of fBm for each method. This produces 44,000 data

sets in total, for experimentation. We next apply the

Higuchi method to each of these time series with an

exact fractal dimension (FD) to determine how well

the Higuchi method is able to accurately recover the

theoretical value compared to the derived HFD.

Next, we describe the Higuchi method. The

Higuchi method takes a signal, discretized into the

form of a time series, x 1ð Þ; x 2ð Þ; . . .; x Nð Þ and, from

this series, derives a new time series, Xm
k , defined as:

Fig. 1 Examples of synthetic time series from the Davies and

Harte [9] method, characterized by Hurst exponent H = 0.3, 0.5,

0.7, 0.9 (top to bottom)
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Xm
k : x mð Þ; x mþ kð Þ; x mþ 2kð Þ; . . .; x mþ N � k

k

� �
� kÞ

� 	
;

here [] represents the integer part of the enclosed

value. The integer m ¼ 1; 2; . . .; k is the start time, and

k is the time interval, with k ¼ 1; . . .; kmax; kmax is a

free tuning parameter. This means that given time

interval equal to k, spawns k-sets of new time series.

For instance, if k ¼ 10 and the time series has length

N ¼ 1000, the following new time series are derived

from the original data:

X1
10 : x 1ð Þ; x 11ð Þ; x 21ð Þ; . . .; x 991Þð Þ;

X2
10 : x 2ð Þ; x 12ð Þ; x 22ð Þ; . . .; x 992Þð Þ;

..

.

X10
10 : x 10ð Þ; x 20ð Þ; x 30ð Þ; . . .; x 1000ð Þ:

These curves have lengths defined by:

Lm kð Þ¼

P N�m
k½ �

i¼1 x mþ ikð Þ�xðmþ i�1ð Þ �kj j
� 	

N�1
N�m
k½ ��k


 �

k
:

The final term in the numerator is a normalization

factor, N � 1
N�m
k½ � � k. The length of the curve for the

time interval k is then defined as the average over the k

sets of Lm kð Þ :

L kð Þ ¼ Lm kð Þ:

In cases when this equation scales according to the

rule L kð Þ / k�HFD; we consider the time series to

behave as a fractal with dimension HFD. Thus, the

HFD is the slope of the straight line that fits the curve

of ln(L(k)) versus ln(1/k). Figure 2 shows the

L(k) curve from simulated data for the fractal dimen-

sion FD = 1.7 (corresponding to H = 0.3) time series

data in Fig. 1. The corresponding curve of HFD(kmax)

is shown in Fig. 3.

We now turn to finding the best tuning parameter,

kmax, for the set of data we have simulated. As

discussed in the Introduction, a common way to

determine the tuning parameter relies upon finding the

location, in plots like Fig. 3, of HFD versus a range of

kmax, where the calculated HFD approaches a local

maximum or asymptote [11, 39]. We will call this a

tuning curve. In Fig. 3, which is for the time series

with HFD = 1.7, there is only one local maximum

which is located at kmax = 7 which produces a

negligible error of 0.5%. There are three places where

the Higuchi method finds a best value is achieved for

this simulation, viz. kmax = 4, 14, 727. In this partic-

ular instantiation of a fBm, the most effective tuning

parameter would thus be kmax = 4, 14, or 727. The

easiest method would be to use the smallest kmax since

this results in the least computational effort. However,

in this case, using the local maxima method yields an

acceptable estimate result with little additional effort.

3 Results

There is no reason to expect that a local maxima exists

in every case in a tuning curve and is therefore

Fig. 2 Average curve length versus scale size, k, for the time

series with HFD = 1.7

Fig. 3 Curve showing the relationship between HFD and kmax

for the FD = 1.7 time series shown in Fig. 1
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searching through these curves for asymptotes is not a

general or practical method to determine the best

tuning parameter kmax. For instance, Fig. 4 shows the

tuning curves for HFD = 1.9, 1.5, 1.3, 1.1 computed

from the simulated data of Fig. 1. The black horizontal

dashed line in each subplot shows the theoretical value

of the fractal dimension. There is not always a local

maximum or an asymptotic convergence to a set value

of HFD. For HFD = 1.9, a peak occurs but only near

kmax * 5000; the region of the plateau is found at the

tuning parameter that yields the largest error in fractal

dimension. This indicates that in this fBm realization,

a much smaller kmax would be appropriate.

We now turn to analyzing the simulated realizations

of fBm. The smallest time series length we select has

N = 1000, and the largest has N = 500,000 data points

and compute the HFD for each of these series, as a

function of tuning parameter kmax. We use values

between kmax = 2 and kmax = N/2. This gives a new

data set comprised of HFD values as a function of the

time series length, and the tuning parameter, yielding

HFD = HFD(N, kmax). The error to be minimized is

written by:

E N; kmaxð Þ ¼ 100 �
HFD � FDtheory

� 

FDtheory

:

The previous equation gives the percentage error to

be averaged over all synthetic time series simulations

to yield a general result for all simulation data

considered. As researchers do not generally know a

priori which method of simulating artificial data most

closely follows the statistics of any particular physical

or research data set, it is appropriate to use a range of

synthetic simulated time series with known fractal

dimension, as an average result gives the most general

answer. Figure 5 shows surface plots comparing the

percentage error HFD versus the tuning parameter

kmax and time series length, N for the theoretical

HFD = 1.7 for each of the four simulation methods

described in the previous section. The curve of least

error is shown as a thick grey line.

Each method of simulation yields a different curve

of least error. Figure 5b, which is the curve for the

Wood-Chan circulant matrix method [45], is the

lowest overall error. The Hosking [19] method yields

HFD values with the greatest errors (Fig. 5d). Overall,

the location of the minimum error curve varies widely

Fig. 4 Curves showing the relationship between HFD and kmax for the HFD = 1.9, 1.5, 1.3, 1.1 time series shown in Fig. 1. The dashed

horizontal curves show the theoretical value for the HFD
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depending on the generation algorithm for the syn-

thetic data.

By taking a geometric mean of these minimum

error curves for all HFD values, we derive a best-fit

curve using a sum of sines function since this gave a

simple function with few terms and a fit with small

sum squared error. Figure 6 shows the relationship

between the time series length and the tuning param-

eter, for different HFD values, and the dashed curve

shows the best fit, given by the following equation:

kmax ¼ A1 sin B1 � N þ C1ð Þ þ A2 sin B2 � N þ C2ð Þ½ �:
ðð�ÞÞ

here [] represents the integer part of the enclosed

function value. Table 1 shows the parameter values

for the best-fit. Figure 6 shows that for short time

Fig. 5 Surface showing the average percentage error between

the Higuchi method fractal dimension and theoretical FD = 1.7

averaged over 100 datasets of different lengths, N. The curve of

least error is shown a Wavelet generation method, b Wood-

Chan method, c Davies–Harte method, and d Hosking method.

The curve of least error is shown as a thick grey line

Fig. 6 Comparison of the average minimum error curve (solid)

and the best-fit sum of sines function (dashed)
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series, the use of a plateau criterion to select the kmax

tuning parameter will result in the use of values

smaller than those proposed by this generalized study.

For example, in Fig. 1, a time series of length

N = 20,000 is used. Figure 3 shows the curve of

HFD versus kmax. Our fitting function yields kmax = 47

for this length data set.

4 Applications

In this section, we present two applications of the

Higuchi method with the corrections applied to

determining the appropriate tuning parameter. The

first is a shell model of the nonlinear dynamics of

MHD turbulence. We effect this via simplified

approximations of the Navier–Stokes fluid equations

[15, 30, 47]. We use the MHD Gledzer–Ohkitani–

Yamada (GOY) shell model, which captures the

intermittent dynamics of the energy cascade in MHD

turbulence [22] as it moves along through the shells in

a front-like manner.

Shell models of MHD turbulence are an example of

dynamical systems incorporating simplified versions

of the Navier–Stokes or MHD turbulence equations.

They attempt to conserve some of the invariants in the

limit of no dissipation. We use the SHELL-ATM code

[4] to produce a time series of length N = 500,000 of

the magnetic energy dissipation rate (2b) as a function

of time obtained in the MHD shell model (Fig. 7a).

The model is described in detail in Lepreti et al. [22].

In short, the SHELL-ATM model makes it possible to

obtain rapid simulations of MHD turbulence in

volumes in which a longitudinal magnetic field

dominates. Model construction begins via division of

the wave-vector space (k-space) into a number, N, of

discrete shells with known radius kn ¼ k02n (n = 0, 1,

…, N) [14]. Each shell is then assigned complex

dynamical Elsässer-like fields un tð Þ and bn tð Þ, which

represent longitudinal velocity increments and mag-

netic field increments. The magnetic energy dissipa-

tion rate is defined by

2b tð Þ ¼ g
XN

n¼1

k2
n b2

n

�� ��

where g is the kinematic resistivity. To find the

solutions to the above equations, we solve the

equations

dbn
dt

¼� gk2
nbn þ

1

6
ikn unþ1bnþ2 � bnþ1unþ2ð Þ

� 1

6
ikn un�1bnþ1 � bn�1unþ1ð Þ½

:

þ un�2bn�1 � bn�2un�1ð Þ�� þ fn

and

dun
dt

¼� mk2
nun þ ikn unþ1unþ2 � bnþ1bnþ2ð Þ

� 1

4
ikn un�1unþ1 � bn�1bnþ1ð Þ½

þ un�2bn�1 � bn�2un�1ð Þ
2

��
þgn

where m is the kinematic viscosity, and fn; gnð Þ are

forcing terms operating on the magnetic and velocity

increments. The symbol * represents a complex

conjugate. The forcing terms are calculated from the

Langevin equation driven by a Gaussian white noise.

These data in Fig. 7a display clear intermittent

bursts of dissipated energy. Figure 7b shows average

curve length versus scale size, k, for the time series.

Figure 7c shows the relationship between HFD and

kmax. There is no asymptote which may indicate an

appropriate value of kmax. We now use Eq. (*) to select

the appropriate tuning parameter kmax determined

from our prior analysis for data featuring a single

fractal scaling, for varying lengths, N, of the time

series. Figure 7d shows the computed HFD selected.

There is a variation in the fractal dimension with

values being estimated as smaller from shorter lengths

of the time series, and overall HFD * 1.04–1.13.

The second data example is that of the severe acute

respiratory syndrome coronavirus 2 isolate Wuhan-

Hu-1. Wu et al. [46] reported on the identification of

the novel RNA virus strain from the family Coron-

aviridae, which is designated here ‘WH-Human-1’

coronavirus. We obtained these data from the National

Table 1 Fitting parameters

for best-fit sum of sin

function,

kmax ¼ A1 sin B1 � N þ C1ð Þ þ A2 sin B2 � N þ C2ð Þ½ �

A1 129.8 ± 3.0

B1 (1.292 ± 0.045) 9 10–5

C1 0.04488 ± 0.0255

A2 18.82 ± 2.56

B2 (6.488 ± 0.280) 9 10–5

C2 1.332 ± 0.220
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Center for Biotechnology Information (NCBI), which

is part of the United States National Library of

Medicine (NLM), a branch of the National Institutes of

Health (NIH).

To analyze the fractal patterns in the genome one

must convert the nucleotide sequence from a symbolic

sequence, meaning A,G,C,T into a time series. We

follow the Peng [32] method in which DNA is

represented as a ‘‘random walk’’ with two parameters

ruling the direction of the ‘‘walk’’ and the resulting

dynamics. We start with the first nucleotide. If it is a

pyrimidine base, we move up one position. Every

subsequent pyrimidine base moves up one position.

When a purine base is encountered in the series the

walk steps down one position. The nucleotide distance

from the first nucleotide is then plotted versus the

displacement, as in Fig. 8a. Figure 8b shows average

curve length versus scale size, k, for the time series.

Figure 8c shows the relationship shows the computed

HFD against tuning parameter kmax from the whole

time series of length N = 29,903. In this case, there is a

distinct asymptote at kmax = 20, which yields HFD =

1.497. To test our method, we again use Eq. (*) to

select the appropriate tuning parameter kmax, for

varying lengths, N, of the time series. Figure 8d shows

the computed HFD selected. There is no statistically

significant variation in the fractal dimension with

values being estimated at HFD * 1.5.

Fig. 7 a Magnetic energy dissipation rate for the GOY shell model. b Average curve length versus scale size, k. c The relationship

between HFD and kmax. d The relationship between HFD and time series length.
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Our analysis shows that the fractal dimension of

WH-Human-1 coronavirus genome is different from

its fractal dimension computed from electron micro-

scopic and atomic force microscopic images of 40

coronaviruses (CoV), as reported by Swapna et al. [37]

who found a scale-invariant dimension of 1.820. This

indicated that the images of the virus feature higher

complexity and greater roughness than the pattern we

have detected in the genome.

5 Conclusions

Higuchi’s method to compute the fractal dimension of

physical signals is widely used in research. However, a

major difficulty in applying the method is the correct

choice of tuning parameter (kmax) to compute the most

accurate results. Poor selection of kmax can result in

values of the fractal dimension that are spurious, and

this can result in potentially invalid interpretations of

data. In the past researchers have used various ad hoc

methods to determine the appropriate tuning param-

eter for their particular data. We have shown that a

method such as seeking a convergence of the

computed HFD to a plateau is not in general a valid

procedure as not every data instance shows the HFD

estimate reaches a plateau.

In this paper, we have sought to find a more general

method of determining, a priori, the optimum tuning

parameter kmax for a time series of length N. To study

this problem, we generated synthetic time series of

known HFD and applied the Higuchi method to each,

Fig. 8 a WH-Human-1 complete genome represented by the Peng [32] method. b Average curve length versus scale size, k
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averaging results over the different fbm within

HFD = [1.9, 1.7, 1.5, 1.3, 1.1] categories. These data

allow the calculation of curves showing where in (N,

kmax)-space the most appropriate tuning parameter

should be selected. We found that fractal dimension

calculation via the Higuchi method is sensitive to both

the tuning parameter kmax and also the length of the

time series. We derive a best-fit curve fitting the

location of the average minimum HFD error to

provide researchers with an efficient method of

estimating and appropriate kmax, given their particular

dataset.

We applied the modified method to two physical

cases, one from physics and one from bioinformatics.

In the latter case, we considered the Coronaviridae

genome of the severe acute respiratory syndrome

coronavirus 2 isolate Wuhan-Hu-1, first reported by

Wu et al. [46]. Our analysis of this data showed strong

evidence of monofractality (Fig. 8b) with HFD * 1.5

(Fig. 8d).

In the former case, we computed the magnetic

energy dissipation rate from a shell model of the

nonlinear dynamics of MHD turbulence. We used

simplified approximations of the Navier–Stokes fluid

equations [15, 30, 47], in particular the MHD Gledzer–

Ohkitani–Yamada (GOY) shell model, and found

HFD * 1.10 (Fig. 7d). These data have been reported

to feature a multifractal scaling [33], and this is

consistent with our results in Fig. 8b which show

evidence of nonlinear behaviour, which is possibly a

reason why there is about a 10 per cent variation in the

HFD calculation (Fig. 7d).

It is clear that accurate calculation of fractal

dimension can be a delicate process and is influenced

not only by the method used, but also by the nature of

the data. Studies must therefore concern themselves

not only with the type of data, but also with the

adequacy of the data-generating algorithms, and

fractal estimation algorithms. We considered only

synthetic time series realizations of processes with

perfect and controlled scale invariance, viz. signals

that have only a single type of scaling. However, many

other theoretical data types exist. For instance,

numerous geophysical signals do not have local

scaling regularity, but rather have a regularity which

varies in time or space [10, 24]. Data that are

multifractal require a variety of scaling exponents to

fully describe the dynamics, and methods to generalize

the Higuchi method to these more complex data types

are going forward at present [6].
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