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                    Abstract
The present study focuses on investigating the bifurcation characteristics of a pitch–plunge aeroelastic system possessing coupled non-smooth nonlinearities, both in structural and aerodynamic fronts. To this end, a freeplay nonlinearity is considered in the stiffness of the pitch degree-of-freedom. The effects of dynamic stall arising due to large instantaneous angles-of-attackare incorporated using the semi-empirical Leishman–Beddoes aerodynamic model. A systematic response analysis is carried out to discern the bifurcation characteristics of the aeroelastic system considering the airspeed as the system parameter. At low airspeeds, a series of dynamical transitions, including aperiodic responses, occur predominantly due to the structural freeplay nonlinearity while the flow remains attached to the surface of the wing. However, beyond a critical value of airspeed, the system response is dominated by high amplitude pitch-dominated limit-cycle oscillations, which can be attributed to stall flutter. It is demonstrated that the freeplay gap plays a key role in combining the effects of structural and aerodynamic nonlinearities. At higher values of the freeplay gap, interesting discontinuity-induced bifurcation scenarios, such as grazing and boundary equilibrium bifurcations arise due to coupled nonlinear interactions, which can significantly impact the safety of the aeroelastic system.
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                    Notes
	The pitching moment around c/4 is not exactly equal to zero for thick airfoils, even at very low Mach numbers. Here, it is set to zero as data are not available for \(M<0.3\). Taylor [30] gives data for both the aerodynamic center position and lift curve slope as a function of M but the former is in mediocre agreement with the values in Table 4 while the latter are in significant disagreement.
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Appendices
Aerodynamic state-space ODEs
The set of ODEs used to calculate the states pertaining to the unsteady attached flow regime are given by
$$\begin{aligned} \begin{bmatrix} {x_1}' \\ {x_2}' \\ {x_3}' \\ {x_4}' \\ {x_5}' \\ {x_6}' \\ {x_7}' \\ {x_8}' \\ \end{bmatrix} = \mathrm {diag} \begin{bmatrix} -\frac{2{\mathbf {V}}}{c}b_1\beta ^2 \\ -\frac{2{\mathbf {V}}}{c}b_2\beta ^2 \\ -\frac{1}{K_{\alpha } T_I} \\ -\frac{1}{K_q T_I} \\ -\frac{1}{b_3 K_{\alpha M}T_I} \\ -\frac{1}{b_4 K_{\alpha M}T_I} \\ -\frac{2{\mathbf {V}}}{c}b_5\beta ^2 \\ -\frac{1}{K_{qM}T_I} \nonumber \\ \end{bmatrix} \begin{bmatrix} {x_1} \\ {x_2} \\ {x_3} \\ {x_4} \\ {x_5} \\ {x_6} \\ {x_7} \\ {x_8} \\ \end{bmatrix} + \begin{bmatrix} 1 &{} \frac{1}{2} \\ 1 &{} \frac{1}{2} \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 1 &{} 0 \\ 0 &{} 1 \\ 0 &{} 1 \\ \end{bmatrix} \begin{bmatrix} {\hat{\alpha }}\\ q\\ \end{bmatrix}.\\ \end{aligned}$$

                    (27)
                

The LB model uses the Kirchhoff theory to calculate the load coefficients corresponding to the flow separation regime. The point of trailing edge separation is used to determine the loss in the normal force coefficient with respect to the ideal flow scenario. The position of the trailing edge separation point is given by
$$\begin{aligned} f({\hat{\alpha }},\alpha _1) = {\left\{ \begin{array}{ll} 1-0.3e^{(\frac{|{\hat{\alpha }}|-\alpha _1}{S_1})}, &{} \text {if } |{\hat{\alpha }}| \le \alpha _1.\\ 0.04+0.66e^{(\frac{\alpha _1-|{\hat{\alpha }}|}{S_2})}, &{} \text {if } |{\hat{\alpha }}| > \alpha _1. \end{array}\right. } \end{aligned}$$

                    (28)
                

Here, \(\alpha _1\) is the point where \(f(\alpha _1,\alpha _1)\) = 0.7, which is approximately equal to the static stall angle. It should be noted that \(\alpha _1\) serves as a discontinuous boundary that is responsible for splitting the phase space into two additional domains apart from the existing domains due to the presence of freeplay in the structure. \(S_1\) and \(S_2\) are constants that are obtained from experiments for each airfoil type. The ODEs corresponding to the flow separation regime are given by
$$\begin{aligned}&{x_9}'=\frac{({C_N)}^C+{C_N}^I-x_9}{T_P},\nonumber \\&{x_{10}}'=\frac{f\big (\frac{x_9}{C_{N_{\alpha }}}, \alpha \big )-x_{10}}{T_f} , \end{aligned}$$

                    (29)
                

$$\begin{aligned}&{x_{12}}'=\frac{f({\hat{\alpha }},\alpha )-x_{12}}{0.63T_{f_0}}, \end{aligned}$$

                    (30)
                

where \(T_P\), \(T_f\) and \(T_{f_0}\) are time delay constants obtained from dynamic stall experiments. The parameters \(T_f\) and \(\alpha _1\) vary as the flow detaches and re-attaches. The vortex shedding phase begins when the value of \(|x_9|\) \(\ge \) \(C_{N1}\) marking the onset of flow separation. In this regime, the parameters vary such that
$$\begin{aligned}&T_f = {\left\{ \begin{array}{ll} 3T_{f_0}, &{} \text {if } 0 \le \tau _v \le T_{vl} \text { and } \alpha \alpha ' \ge 0.\\ \frac{1}{3}T_{f_0}, &{} \text {if } T_{vl}< \tau _v \le 2T_{vl} \text { and } \alpha \alpha ' \ge 0.\\ \frac{1}{2}T_{f_0}, &{} \text {if } 0 \le \tau _v \le 2T_{vl} \text { and } \alpha \alpha '< 0.\\ 4T_{f_0}, &{} \text {if } 2T_{vl} < \tau _v. \end{array}\right. } \end{aligned}$$

                    (31)
                

$$\begin{aligned}&\alpha _1 = {\left\{ \begin{array}{ll} \alpha _{1_0}, &{} \text {if } \alpha \alpha ' \ge 0.\\ \alpha _{1_0}-(1-x_{10})^\frac{1}{4}\delta _{\alpha _{1}}, &{} \text {if } \alpha \alpha ' < 0. \end{array}\right. } \end{aligned}$$

                    (32)
                

Here \(\alpha _{1_0}\) is the experimentally obtained static stall angle of incidence, and \(\delta _{\alpha _{1}}\) is a parameter dependent on airfoil shape that is used to capture the point of static stall angle with better accuracy during a dynamic event. The flow reattachment process begins when \(|x_9|\) < \(C_{N1}\) and the parameters \(T_f\) and \(\alpha _1\) in this regime are defined as
$$\begin{aligned} T_f= {\left\{ \begin{array}{ll} T_{f_0}, &{} \text {if } x_{10} \ge 0.7\\ 2T_{f_0}, &{} \text {if } x_{10} < 0.7 \end{array}\right. }; \alpha _1=\alpha _{1_0}. \end{aligned}$$

                    (33)
                

where \(T_{vl}\) is the experimentally obtained value of time taken for a vortex to travel one chord. The ODE that provides the solution to the state \(x_{11}\) is given by
$$\begin{aligned} {x_{11}}'= {\left\{ \begin{array}{ll} c_v'-\frac{x_{11}}{T_v}, &{} \text {if } \alpha c_v'\ge 0 \text { and } 0<{\tau _v}<2T_{vl}.\\ -\frac{x_{11}}{T_v}, &{} \text {otherwise}. \end{array}\right. } \end{aligned}$$

                    (34)
                

\(c_v'\) is the derivative of the vortex feed \({c_v}\) that determines the strength of vortex induced normal force given by \({c_v}\) = \(C_{N}^C - C_{N}^f\). The parameter (\(T_v\)) that controls the change in \(x_{11}\) also changes according to the flow condition and is given by
$$\begin{aligned} T_v = {\left\{ \begin{array}{ll} T_{v_0}, &{} \text {if } 0 \le \tau _v \le T_{vl} \text { and } \alpha \alpha ' \ge 0.\\ \frac{1}{4}T_{v_0}, &{} \text {if } T_{vl}< \tau _v \le 2T_{vl} \text { and } \alpha \alpha ' \ge 0.\\ \frac{1}{2}T_{v_0}, &{} \text {if } 0 \le \tau _v \le 2T_{vl} \text { and } \alpha \alpha '< 0.\\ 0.9 T_{v_0}, &{} \text {if } 2T_{vl} < \tau _v. \end{array}\right. } \end{aligned}$$

                    (35)
                

In the flow separation phase and during flow reattachment (\(|x_9|\) < \(C_{N1}\)), \(T_v\) = \(T_{v_0}\). Finally, the 12 aerodynamic states \(x_1'\) - \(x_{12}'\) defined earlier and the structural states depicting the pitch and plunge, velocity and acceleration terms, \([\alpha ',\alpha '',\epsilon ',\epsilon '']\) together form a state-space system of total 16 ODEs i.e h = \([x_1', x_2',..., x_{16}']\). The parameters \(\alpha _{1_0}\), \(\delta _{\alpha _{1}}\), \(S_1\), \(S_2\), \(T_P\), \(T_{f_0}\), \(T_{vl}\) and \(T_{v_0}\) are also dependent on M and the parameter values for each M concerned with this study are provided in Table 4. Note that the parameter values are obtained from are obtained from Galvanetto et al. [13]. The intermediate values of the empirical parameters between any two Mach numbers are estimated using the polynomial cubic hermite interpolation technique for the bifurcation study.
Table 4 Mach dependent NACA 0012 airfoil parameters [13]Full size table

The expressions of the empirical constants \(K_{\alpha }\), \(K_q\), \(K_{\alpha M}\) and \(K_{qM}\) are given by
$$\begin{aligned} K_{\alpha }= & {} \frac{0.75}{(1-M)+\pi \beta ^2M^2(A_1b_1+A_2b_2)}, \end{aligned}$$

                    (36)
                

$$\begin{aligned} K_q= & {} \frac{0.75}{(1-M)+2\pi \beta ^2M^2(A_1b_1+A_2b_2)}, \end{aligned}$$

                    (37)
                

$$\begin{aligned} K_{\alpha M}= & {} \frac{A_3b_4+A_4b_3}{b_3b_4(1-M)}, K_{qM}\nonumber \\= & {} \frac{7}{15(1-M)+3\pi \beta M^2 b_5}. \end{aligned}$$

                    (38)
                

Here, \(A_1=0.30\), \(A_2=0.70\), \(A_3=1.50\), \(A_4=-0.50\), \(b_1=0.24\), \(b_2=0.53\), \(b_3=0.25\), \(b_4=0.10\) and \(b_5=0.50\).
Fig. 25[image: figure 25]
a Pitch time history obtained by Runge–Kutta integration scheme (ode45) using a tolerance of \(10^{-6}\) compared with time history obtained by ode45 with event detection. b Pitch time history obtained by Runge–Kutta integration scheme (ode45) using a tolerance of \(10^{-12}\) compared with time history obtained by ode45 with event detection
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                  Fig. 26[image: figure 26]
Reconstructed phase-portraits for different dynamical signatures a \(U = 5.8\), b \(U = 6.5\) and c \(U = 7.0\)
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                  Fig. 27[image: figure 27]
Dynamical characterisation of the phase-space attractors
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                Validity of the chosen numerical integration scheme
The integration method adopted can affect the solutions of the system. It was verified by Galvanetto et al. [13] that such stringent values of tolerance can visibly negate the errors arising from integration for discontinuous systems (albeit the computational time may marginally increase), by comparing results obtained through event detection and without event detection. To ensure an accurate solution with the fourth-order Runge–Kutta integration scheme, we have considered a stringent tolerance of \(10^{-12}\) (both in absolute and relative levels of tolerance) for the numerical integration using an adaptive time-stepping approach. To validate the accuracy of the chosen numerical integration scheme, we compare the aperiodic responses presented in our manuscript for two different tolerance values with the solutions obtained with event detection (see Fig. 25). It is evident from Fig. 25 that a less stringent tolerance of \(10^{-6}\) can influence the errors in capturing the discontinuous boundaries. However, the stringent tolerance of \(10^{-12}\) considered in this study seems to be as effective as the event detection scheme in accurately capturing the dynamics. Therefore, we adopt this approach as it reduces the computational cost significantly.
Characterization of the aperiodic dynamics
Figure 26 presents the reconstructed phase-portraits corresponding to the pitching responses of the aeroelastic system with combined structural and aerodynamic nonlinearities as a representative case for three different flow velocities, where the system exhibits quasi-periodic (\(U = 5.8\)), weakly chaotic (\(U = 6.5\)), and periodic (\(U = 7.0\)) response, respectively. The phase-space reconstruction [29] is carried out based on a optimum time delay \({\bar{\tau }}\), estimated using the method of average mutual information [12]. Although the phase-space attractors can qualitatively distinguish between the periodic and the aperiodic states, quantitative measures are required to precisely identify the nature of aperiodicity. To that end, we characterize the aperiodic responses by estimating the quantitative topological measures of the corresponding reconstructed phase-portraits, namely the largest Lyapunov exponent (LLE) and the correlation dimension; see Fig. 27.
Lyapunov exponent is the quantitative measure of the exponential rate at which an infinitesimal perturbation to a trajectory of a system grows or decays in the state space and is a measure of the sensitivity of the system to the initial conditions. LLE is calculated in this study using the Rosenstein algorithm [28]. It can be observed from the first column of Fig. 27 that a positive LLE is estimated for \(U = 6.5\), representing chaotic dynamics as the trajectories diverge exponentially within a bounded volume of the phase space. It is to be noted that the very small positive value of LLE (= 0.00033) represents weak chaos. On the other hand, the quasi-periodic and periodic dynamics are categorized by zero (for \(U = 5.8\)) and negative LLE (for \(U = 7.0\)), respectively.
Correlation dimension based on Grassberger–Procaccia algorithm [15] has been determined next to confirm the dynamical signatures of the attractors observed in the reconstructed phase-portraits. It helps to identify the chaotic oscillations, characterized by the presence of a strange attractor in the phase space with a non-integer correlation dimension. As presented in the second column of Fig. 27, chaos is characterized by a correlation dimension of 2.51 for \(U = 6.5\), depicting the fractal nature of the chaotic signal. However, the quasi-periodic and periodic dynamics are characterized by the integer correlation dimensions of 2 and 1, respectively, for \(U = 5.8\) and \(U = 7.0\). The correlation dimension of 2 for a quasi-periodic attractor corresponds to the two-dimensional toroidal attractor in the phase space. On the other hand, a one-dimensional periodic attractor is denoted by a correlation dimension of 1.
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