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Abstract The robustness of a chaos-suppressing sce-
nario against potential mismatches is experimentally
studied through the universal model of a damped,
harmonically driven two-well Duffing oscillator sub-
ject to non-harmonic chaos-suppressing excitations.
We consider a second order analogous electrical cir-
cuit having an extremely simple two-well potential
that differs from that of the standard two-well Duff-
ing model, and compare the main theoretical predic-
tions regarding the chaos-suppressing scenario from
the latter with experimental results from the former.
Our experimental results prove the high robustness of
the chaos-suppressing scenario against potential mis-
matches regardless of the (constant) values of the
remaining parameters. Specifically, the predictions of
an inverse dependence of the regularization area in the
control parameter plane on the impulse of the chaos-
suppressing excitation as well as of a minimal effective
amplitude of the chaos-suppressing excitationwhen the
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impulse transmitted is maximum were experimentally
confirmed.

1 Introduction

The problem of taming chaos of general (nonlinear)
systems appears in many scientific and technological
fields, including neuroscience [1], solid-state lasers [2],
fluids [3], and discharge plasmas [4], among many
other. This interest has resulted in a vast literature [5–
9], including experimental investigations of chaos sup-
pression [10–15].Oneof themost effective suppressory
methods in the context of dissipative non-autonomous
systems is to apply judiciously chosen periodic excita-
tions [16–20] while it is readily experimentally appli-
cable [1,2,11–13,15,20–25]. Furthermore, the use of
Melnikov analysis (MA) techniques has allowed the
development of a theoretical approach to chaos sup-
pression in damped driven systems, andwhich involves
adding periodic chaos-suppressing (CS) excitations
[26]. This MA-based approach has been shown to be
reliable in suppressing chaos in a Duffing oscillator
by a fine choice of the shape of the external peri-
odic excitation [27], a generalized Duffing oscillator
with fractional-order deflection [28], coupled arrays
of damped, periodically forced, nonlinear oscillators
[29,30], as well as in starlike networks of dissipative
nonlinear oscillators [31].

Traditionally, sinusoidal functions have been typi-
cally employed as representative of the periodic exci-
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tations involved (one chaos-inducing (CI) and the other
CS) in the suppressory scenario (SS).While this choice
is both mathematically and experimentally convenient,
it imposes, however, a radical and unprofitable limita-
tion in the SS, restricting thus its possible scope and
applications. Thus, to properly probe and take advan-
tage of the physics of the SS, one should consider CS
excitations presenting generic characteristics of peri-
odic excitations which are the output of nonlinear sys-
tems, i.e., those excitations generally represented by
Fourier series—not just by a single harmonic term.
Thus, the effect of the waveform of the CS excitations
on the SS (once its amplitude and period are fixed)
becomes a significant problem given the existence of
an infinity of different waveforms.

In the present work, we provide experimental and
analytical evidence that for a genericCSexcitation f (t)
having equidistant zeros, the impulse transmitted by
the excitation over a half-period (hereafter referred to
as simply the excitation’s impulse),

I ≡
∣
∣
∣
∣

∫ T/2

0
f (t)dt

∣
∣
∣
∣
, (1)

is a relevant quantity that characterizes the effective-
ness of such CS excitation. Here, T is the period and
I a quantity integrating the conjoint effects of the
excitation’s amplitude, period, and waveform. Addi-
tionally, we explore the robustness of the SS against
potential mismatches through the universal model of a
damped, harmonically driven two-well Duffing oscil-
lator by considering non-harmonic (elliptic) CS excita-
tions. We compare the predictions from this theoretical
model with experimental results from a second order
analogue electrical circuit having an extremely sim-
ple two-well potential, which is similar but not iden-
tical to that of the two-well Duffing oscillator. The
importance of the excitation’s impulse has been pre-
viously confirmed in different physical contexts, such
as space-periodic Hamiltonian systems [32], laser sys-
tems [33], directed transport by symmetry breaking
[34–38], oscillator networks [39], scale-free networks
of signaling devices [40], control of wave-packet local-
ization [41], suppression of chaos in dissipative driven
systems [25], and bouncing droplets [42].

The rest of the paper is organized as follows. We
study the effect of theCS excitation’s impulse by gener-
alizing the standard sinusoidal CS excitation to a family
of periodic functions which are related to the Jacobian

elliptic functions [43] in Sect. 2, along with the afore-
mentioned model that describes the SS. That section
also describes the MA-based analytical predictions for
the dissipative Duffing oscillator subject to a harmonic
CI excitation and a non-harmonic (elliptic) CS excita-
tion which satisfy a resonance condition with the pri-
mary CI excitation. Section 3 compares the theoretical
predictions deduced inSect. 2with experimental results
from a second order analogue electrical circuit describ-
ing the damped driven Duffing oscillator but having an
extremely simple two-well potential, while some con-
clusions for themain findings of ourwork are presented
in Sect. 4.

2 Theoretical approach

We shall investigate a simple and universal model for
spatially bounded chaos in damped driven systems: a
perturbed two-well Duffing oscillator described by the
equation

..
x − x + βx3 = −δ

.
x + γ sin(ωt) + γ η f (t), (2)

where T ≡ 2π/ω and γ are the period and amplitude,
respectively, of the CI excitation, β > 0, η > 0 is an
amplitude factor, while f (t) is a T -periodic CS exci-
tation which is described below [cf. Eq. (3)], i.e., we
shall concentrate on the case of the main resonance
between the two excitations involved for the sake of
effectiveness [7]. It is also assumed that the Duffing
oscillator presents a chaotic attractor in the absence of
anyCS excitation (η = 0) and satisfies theMA require-
ments, i.e., the excitation and dissipation terms are
small-amplitude perturbations (0 < δ, γ, γ η � 1) of
the underlying conservative system

..
x = x − βx3 (see

[44,45] for the general background).

2.1 Chaos-suppressing excitation

Here, we consider the elliptic CS excitation

f (t) = N sn (4Kt/T + �) dn (4Kt/T + �) , (3)

where sn (·) ≡ sn (·;m) and dn (·) ≡ dn (·;m) are
Jacobian elliptic functions of parameterm, K ≡ K (m)

is the complete elliptic integral of the first kind [43],
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Suppressing chaos in damped driven systems by non-harmonic excitations 2645

� = �(m, ϕ) ≡ 2K (m)ϕ/π , ϕ ∈ [0, 2π ], T ≡
2π/ω, and

N = N (m) ≡
[

a + b

(

1 + exp

{
m − c

d

})−1
]−1

,

(4)

is a normalization function (a ≡ 0.43932, b ≡
0.69796, c ≡ 0.3727, d ≡ 0.26883) which is intro-
duced so that the elliptic CS excitation has the same
period, T , and amplitude, 1, for any waveform (i.e.,
∀m ∈ [0, 1]; see Fig. 1, top panel). If m = 0, then
f (t)m=0 = sin (2π t/T + ϕ), i.e., one recovers the
standard case of a sinusoidal CS excitation, while for
the limiting value m = 1 the excitation vanishes.
The effect of renormalization of the elliptic arguments
is apparent: with T constant, solely the excitation’s
impulse is varied by increasing the shape parameter
m from 0 to 1. Observe that, as a function of the shape
parameter m, the impulse transmitted by the CS exci-
tation per unit of amplitude and unit of period

I = I (m) ≡ N (m)

2K (m)
(5)

presents a single maximum at m = mimpulse
max � 0.717

(see Fig. 1, bottom panel).
The Fourier expansion of the elliptic CS excitation

[Eq. (3)] reads

f (t) =
∞
∑

n=0

an(m) sin [(2n + 1) (ωt + ϕ)] , (6)

where

an(m) ≡ π2N (m)(n + 1
2 )√

mK 2(m)

sech

[

(n + 1
2 )πK (1 − m)

K (m)

]

. (7)

The Fourier coefficients an(m) satisfy the following
properties: (i) an(m) exhibits a singlemaximumatm =
mmax (n) such that mmax (n + 1) > mmax (n), n =
0, 1, ..., (ii) limm→1 an(m) = 0, (iii) the normalized
functions I (m, T )/I (m = 0, T ) ≡ πN (m)/(2K (m))

and a0(m)/a0(m = 0) present, as functions ofm, simi-
lar behaviors while their maxima verify thatmimpulse

max �
0.717 is very close tommax (n = 0) � 0.65 (see Fig. 1),
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Fig. 1 Top: Chaos-suppressing T -periodic excitation f (t) vs
t/T [Eqs. (3) and (4)] for three values of the shape parameter:
m = 0 (sinusoidal pulse, thin line), m = 0.717 � mimpulse

max
(nearly square-wave pulse, regular line), and m = 0.9995
(double-humped pulse, thick line). Bottom: Normalized first
Fourier coefficient a0(m)/a0(m = 0) [Eq. (7), solid line] and
CS excitation’s impulse I (m)/I (m = 0) ≡ πN (m)/(2K (m))

[Eq. (5), dashed line] vs shape parameter m. We can see that
the respective single maxima occur at very close values of the
shape parameter: mmax (n = 0) � 0.642 and mimpulse

max � 0.717,
respectively. (For interpretation of the colors in the figure(s), the
reader is referred to the web version of this article)

and (iv) the Fourier expansion [Eq. (6)] is rapidly
convergent over a wide range of values of the shape
parameter. The following remarksmay now be in order.
First, regarding experiments, we considered the entire
Fourier expansion of the elliptic CS excitation in order
to obtain useful information concerning the effective-
ness of the approximations used in the theoretical anal-
ysis as well as of the robustness of the SS. Second,
regarding analytical estimates, property (iii) is relevant
in the sense that it allows us to obtain a useful effective
estimate of the chaotic threshold in the ϕ − η control
plane from MA by solely retaining the first harmonic
of the Fourier expansion [Eq. (6)]:
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2646 F. Palmero, R. Chacón

f (t) ≈ a0(m) sin (ωt + ϕ) . (8)

2.2 Chaotic threshold from Melnikov analysis

The essential point of MA is the introduction of a func-
tion, the so-called Melnikov function (MF), M (t0),
which provides a measure of the distance between the
perturbed stable and unstablemanifolds in the Poincaré
section at t0. If theMelnikov function presents a simple
zero (dM/dt0 �= 0), the manifolds intersect transver-
sally and chaotic instabilities result. From the Smale–
Birkhoff theorem [44], the presence of such intersect-
ing orbits implies that the Poincarémap has an invariant
hyperbolic set: a Smale horseshoe, which is a hallmark
of chaos. Regarding Eq. (2), note that keeping with the
assumption of the MA, it is assumed that one can write
δ = εδ∗, γ = εγ ∗, γ η = εγ ∗η∗ where δ∗, γ ∗, η∗ are
of order one while 0 < ε � 1. After applying MA to
Eq. (2), one straightforwardly obtains the MF:

M± (t0) = −D ∓ A cos (ωt0) ∓ πγη

√

2

β

×
∞
∑

n=0

an (m) bn(ω) cos [�nt0 + (2n + 1) ϕ]

(9)

with D ≡ 4δ/3β, �n ≡ (2n + 1)ω, A ≡ πγω
√
2/β

sech(πω/2), bn(ω) ≡ �n sech (π�n/2), and where
the coefficients an (m) are given by Eq. (7), while
the negative (positive) sign refers to the left (right)
homoclinic orbit of the underlying conservative Duff-
ing oscillator (δ = γ = 0):

x0,± (t) = ±
√

2

β
sech (t) , (10)

.
x0,± (t) = ∓

√

2

β
sech (t) tanh (t) . (11)

Let us assume that, in the absence of any CS excitation
(η = 0), the damped driven two-well Duffing oscilla-
tor [Eq. (2)] presents chaotic behavior for which the
respective MF,

M±
0 (t0) ≡ −D ∓ A cos (ωt0) , (12)

has simple zeros, i.e., D � A or

γ � γth ≡ 2
√
2δ cosh (πω/2)

3π
√

βω
, (13)

where the equal sign corresponds to the case of tan-
gency between the stable and unstable manifolds [45].
If we now let the CS excitation act on the Duffing oscil-
lator such that B∗ � A − D, with

B∗ ≡ πγη

√

2

β
× (14)

max
t0

{ ∞
∑

n=0

an (m) bn(ω) cos [�nt0 + (2n + 1) ϕ]

}

,

then this relationship represents a sufficient condi-
tion for M± (t0) to change sign at some t0. Thus, a nec-
essary condition for M± (t0) to always have the same
sign is

B∗ > A − D ≡ Bmin. (15)

Since an (m) > 0, bn(ω) > 0, n = 0, 1, 2, ..., one
straightforwardly obtains

B∗ � πγη

√

2

β

∞
∑

n=0

an (m) bn(ω), (16)

and hence,

η > ηmin ≡
(

1 − D

A

)

R, (17)

R ≡ ω sech (πω/2)
∑∞

n=0 an (m) bn (ω)
. (18)

Note that Eq. (17) provides a lower threshold for the
amplitude of the CS excitation. Similarly, an upper
threshold is obtained by imposing the condition that
the CS excitation may not enhance the initial chaotic
state (i.e., it does not increase the (initial) gap from the
homoclinic tangency condition),

B∗ � πγη

√

2

β

∞
∑

n=0

an (m) bn (ω) < A + D ≡ Bmax,

(19)
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and hence,

η < ηmax ≡
(

1 + D

A

)

R, (20)

which is a necessary condition for M± (t0) to always
have the same sign. Thus, the suitable (suppressory)
amplitudes of the CS excitation must satisfy

ηmin < η < ηmax, (21)

while the width of the range of suitable amplitudes
reads

�η ≡ ηmax − ηmin = 8δ

3πγ
√
2β

∑∞
n=0 an (m) bn (ω)

.

(22)

One finds that both the threshold amplitudes ηmin, ηmax

and the width of the range of suitable amplitudes �η

[Eq. (22)] present a single minimum at m = mmin

as the shape parameter m is increased from 0 to 1
due to the dependence of the function R on the shape
parameter (see Figs. 2 and 3). Note that this minimum
mmin ≡ mmin(T ) is very near mimpulse

max � 0.717 over a
wide range of periods. However, one should not expect
an exact agreement between mmin and mimpulse

max for all
periods owing to the dependence of the chaotic thresh-
old on the common excitation period (main resonance).
Thus, the proximity of the values mmin ≡ mmin(T )

and mimpulse
max � 0.717 means that ever lower ampli-

tudes ηmin can suppress chaos as the impulse trans-
mitted by the CS excitation approaches its maximum
value, whereas the corresponding suppressory ranges
�η also decrease in the same way as ηmin owing to the
impulse-induced enhancement of the chaos-inducing
effectiveness of the CS excitation. It should be empha-
sized that this dependence of ηmax, ηmin,�η on the
impulse transmitted by the CS excitation constitutes a
bona fide characteristic of the impulse-induced chaos-
control scenario.

Regarding suitable values of the initial phase dif-
ference ϕ, note that ϕ determines the relative phase
between M±

0 (t0) and

∓πγη

√

2

β

∞
∑

n=0

ap (m) bn (ω) cos [�nt0 + (2n + 1) ϕ]
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Fig. 2 Contour plot of the function �η ≡ ηmax − ηmin [Eq.
(22)] vs shape parameter m and period T . System parameters:
γ = 0.29, δ = 0.25, β = 1

Fig. 3 Upper threshold amplitude ηmax [Eq. (20), dotted line],
lower threshold amplitude ηmin [Eq. (17), solid line], and dif-
ference �η ≡ ηmax − ηmin [Eq. (22), dashed line] vs shape
parameterm. T = 2π and the remaining parameters as in Fig. 2

irrespective of the shape parameter value. We there-
fore conclude from previous theory [7] that a sufficient
condition for ηmin < η < ηmax to also be a sufficient
condition for suppressing chaos is that M±

0 (t0) and

∓πγηmin,max

√

2

β

∞
∑

n=0

an (m) bn (ω)

cos [�nt0 + (2n + 1) ϕ]

are in opposition. This yields the optimum suppressory
value

ϕopt ≡ π (23)
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for all m ∈ [0, 1] in the sense that it allows the widest
amplitude range for the elliptic CS excitation.

To obtain a useful analytical estimate of the bound-
aries of the regions in the ϕ − η control plane where
chaos is suppressed, we assume the first-harmonic
approximation is given by Eq. (8) instead of the entire
Fourier expansion [cf. Eqs. (6) and (7)] in the remain-
der of this subsection. Indeed, recall that the value
mimpulse

max � 0.717 at which the CS excitation’s impulse
presents a single maximum is very close to the value
m = mmax (n = 0) � 0.642 where the amplitude
a0 (m) [cf. Eq. (7)] presents a single maximum (see
Fig. 1, bottom panel). Thus, we apply MA to the effec-
tive MF

M±
eff (t0)

= −D ∓ A cos (ωt0) ∓ B0 cos (ωt0 + ϕ) , (24)

B0 ≡ πγη

√

2

β
a0 (m) b0 (ω) , (25)

while the effectiveness of the first-harmonic approxi-
mation (η > 0) at suppressing chaos will be examined
by considering for example the effective MF M+

eff (t0)
(the analysis of M−

eff (t0) is similar and leads to the
same conclusions). To this end, it is convenient to use
the normalized MF M+

n (t0) ≡ M+
eff (t0) /D to write

M+
n (t0) = −1 − (

R′ + R′′ cosϕ
)

cos (ωt0)

+ R′′ sin ϕ sin (ωt0)

� −1 +
√

(R′ + R′′ cosϕ)2 + R′′2 sin2 ϕ,

(26)

where R′ ≡ A/D, R′′ ≡ B0/D. If one now lets the
first-harmonic approximation act on the system so that

(

R′ + R′′ cosϕ
)2 + R′′2 sin2 ϕ � 1, (27)

this relation represents a sufficient condition forM+
n (t0)

to be negative (or null) for all t0. The equal sign in Eq.
(27) yields the boundary of the region in the ϕ−η plane
where chaos is suppressed:

η = 1

a0 (m)

⎡

⎣− cosϕ ±
√

γ 2
th

γ 2 − sin2 ϕ

⎤

⎦ , (28)

with γ > γth [cf. Eq. (13)], and where the two signs
before the square root correspond to the two branches

Fig. 4 Boundary function [Eq. (28)] encircling the region where
chaos is suppressed in theϕ−η control plane for four values of the
shape parameter: m = 0 (dashed line), m = 0.717 � mimpulse

max
(solid line), m = 0.93 (dotted line), and m = 0.95 (thin solid
line). System parameters as in Fig. 3

of the boundary (see Fig. 4). The following remarks
may now be in order.

First, the boundary function [Eq. (28)] represents a
loop encircling the single regularization region in the
ϕ − η plane which is symmetric with respect to the
optimal suppressory value

ϕopt ≡ π, (29)

i.e., the value of the initial phase difference for which
the range of suitable suppressory values of η is max-
imum. As expected, it is the same suppressory value
than that found in the exact case of representing the
elliptic CS excitation by its entire Fourier expansion
[cf. Eq. (23)]. Remarkably, one finds that the effective
amplitude of the CS excitation is minimal when the
impulse transmitted is maximum (cf. Fig. 4).

Second, the area, AR , enclosed by the boundary
function [Eq. (28)] is straightforwardly obtained from
previous theory [7]:

AR = 16δ

3
√
2βπωγ a0(m)

. (30)

Observe that one finds AR → 0 as δ → 0, which cor-
responds to the limiting Hamiltonian case, as expected.
More importantly, the normalized regularization area

AR(m)

AR(m = 0)
= a0(m = 0)

a0(m)
(31)
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Suppressing chaos in damped driven systems by non-harmonic excitations 2649

presents, as a function of the shape parameter, a single
minimum at them value where a0(m) presents a single
maximum (see Fig. 1, bottom panel): mmax (n = 0) �
0.642, which is very close to mimpulse

max � 0.717. This
inverse dependence of the regularization area on the
impulse transmitted by the CS excitation represents a
genuine feature of the present impulse-induced chaos-
control scenario. By lowering the impulse transmitted
one obtains larger regularization areas in the ϕ − η

control plane, the price to be paid being the requirement
of larger amplitudes (cf. Fig. 4).

Third, the regularization area shrinks as the ratio
γth/γ diminishes, which means that the impulse-
induced chaos-control scenario is sensitive to the
strength of the initial chaotic state in the sense of its
degree of proximity to the threshold condition [cf. Eq.
(13)].

3 Experimental results

Toexplore the robustness of the aboveSSagainst poten-
tial mismatches, we compared the theoretical predic-
tions deduced in Sect. 2 and the experimental results
arising from a second-order analogue electrical cir-
cuit having an extremely simple two-well potential
which retains the main characteristics of a Duffing-
like electric oscillator. We followed Ref. [46] to imple-
ment the electrical circuit shown in Fig. 5a, where
R1 = R2 = R3 = 10 k�, R = 20 �, L = 19 mH, and
C = 500 nF. We considered an operational amplifier
of the LM741 type, while the diodes D1 and D2 are
general-purpose silicon devices.

The dynamics of this electrical circuit is described
by a nonlinear differential equation that is quite similar
to Eq. (2), and where the tension at the capacitor, Vc,
plays the role of variable x in Eq. (2) (see Fig. 5b).

Tomake our analogue experimental implementation
consistent with Eq. (2), we applied a periodic external
voltage V (t) as

V (t) = γ sin(ωt) + γ η f (t), (32)

where the CS excitation f (t) is given by Eq. (3), and
monitored the tension Vc with an oscilloscope to char-
acterize the resulting dynamics. For each set of control
parameter values, we have implemented the function
V (t) by generating it numerically in a computer and

(b)

(a)

Fig. 5 a Experimental setup of the analogue implementation of
the damped driven Duffing oscillator. b Potential corresponding
to a standard Duffing oscillator described by Eq. (2) (β = 1,
solid line) and that corresponding to the oscillator simulated by
the circuit shown in version (a) (dashed line). The quantities
plotted are dimensionless

Fig. 6 Time series of the chaotic signal Vc(t) for γ = 0.5 V,
f = 1.5 kHz, and η = 0

sending it to a programmable arbitrary waveform gen-
erator.

Firstly, we studied the case of a pure sinusoidal exci-
tation (η = 0) and observed both periodic and chaotic
oscillations depending on the values of the parameters
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2650 F. Palmero, R. Chacón

Fig. 7 Experimental steady states (capacitor voltage) of the elec-
trical circuit shown in Fig. 5a in the ϕ−η parameter plane for two
values of the shape parameter: a m = 0 and b m = 0.95. Green
(blank) regions correspond to chaotic (periodic) states. Labels
(I) and (II) denote regions of periodic behavior mentioned in the
text, while dashed lines indicate the boundaries of the main cen-
tral regularized regions centered around the optimal initial phase
ϕ = ϕopt = π . Fixed parameters: γ = 0.5 V, f = 1.5 kHz

γ and ω. For example, by selecting the values of the
parameters γ = 0.5 V and f = 1.5 kHz, the sys-
tem displayed a steady chaotic behavior, as is shown in
Fig. 6.

Secondly,we explored the suppressory effectiveness
of the CS excitation f (t) [cf. Eq. (3)] when the circuit
exhibits steady chaos in the absence of any CS exci-
tation (η = 0). We systematically measured Vc(t) for
different values of the control parameters η, m, and
ϕ, while keeping the remaining parameters fixed. To
determine whether an experimental time series Vc(t)
corresponds to a periodic or chaotic state, we calculated

Fig. 8 Bifurcation diagrams of the capacitor voltage Vc as a
function of a the shape parameter m for η = 1.7 V a, and b
the factor amplitude η for m = 0. Fixed parameters: γ = 0.5 V,
f = 1.5 kHz, ϕ = ϕopt = π

its largest Lyapunov exponent following the method
described in Ref. [47]. We found both periodic and
chaotic states in the control parameter space {η,m, ϕ}.
Figures 7 and 8 show representative examples of the
experimental results.

The following remarks may now be in order.
First, our experimental results confirmed that the

single optimal value of the initial phase difference ϕ

which regularizes the initial chaotic dynamics (η = 0)
corresponds to ϕ = ϕopt = π [cf. Eq. (29); see Fig. 7].

Second, starting fromaperiodic state for a sinusoidal
CS excitation (m = 0), Fig. 8a shows how the capacitor
voltage Vc reaches a chaotic attractor over a wide range
of m values that is centered at m ≈ mmax (n = 0) �
0.642, which is very close to mimpulse

max � 0.717. Note
that this is coherent with the second remark in Sect. 2,
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Suppressing chaos in damped driven systems by non-harmonic excitations 2651

Fig. 9 Experimental boundaries encircling the main regulariza-
tion regions in the ϕ − η control plane for the same four values
of the shape parameter as in Fig. 4: m = 0, 0.717, 0.93, 0.95.
Fixed parameters: γ = 0.5 V, f = 1.5 kHz

i.e., with the inverse dependence of the regularization
area in the ϕ − η control plane on the CS excitation’s
impulse. Figure 8b shows successive windows of regu-
larization as the factor amplitude η is increased from 0
and ϕ = ϕopt ≡ π . Clearly, these regularization win-
dows correspond to the regularization regions between
chaotic bands shown in Fig. 7a. One finds that period-
1 attractors only appear inside the central region of
the main regularization region predicted from MA (cf.
Sect. 2), while period-3 attractors typically appear in
the remaining regularization windows.

Third, although there exists a (residual) chaotic
annular bandwithin themain regularization region pre-
dicted from MA for each value of the shape parameter
m (cf. Figs. 7a, b), the features of the boundaries of such
experimental regularization regions are quite similar to
those of the predicted boundary functions [cf. Eq. (28)]
for any value of the shape parameter (compare Figs. 4
and 9).

Lastly, Fig. 10 shows the highest experimental value
of the amplitude factor η which allows chaotic behav-
ior, ηcexp, inside the deepest chaotic band in the ϕ − η

control plane versus the shape parameter m. One sees
that ηcexp = ηcexp (m) presents the same behavior than
the upper threshold amplitude ηmax (m) [cf. Eq. (20)],
the lower threshold amplitude ηmin (m) [cf. Eq. (17)],
and the difference �η (m) ≡ ηmax (m) − ηmin (m) [cf.
Eq. (22)] as a function of the shape parameter (com-
pare Figs. 3 and 10a). Figure 10b also shows the nor-
malized area, S(m)/S(m = 0), of the region in the

Fig. 10 a Experimental values of the factor amplitude ηcexp (see
the text) and b normalized area S(m)/S(m = 0) in the ϕ−η con-
trol plane corresponding to chaotic states versus shape parameter
m. Fixed parameters: γ = 0.5 V and f = 1.5 kHz

ϕ − η control plane with η ∈ [0, ηcexp] and ϕ ∈ [0,
2π ] corresponding to chaotic states as a function of m.
Remarkably, one finds that S(m)/S(m = 0) presents
the same behavior than the normalized regularization
area AR(m)/AR(m = 0) [cf. Eq. (31)] as a func-
tion of m, i.e., an inverse dependence on the impulse
transmitted by the CS excitation. Furthermore, Fig.
11 shows the experimental values of the highest val-
ues, η′

max, the lowest values, η
′
min, and the differences

�η′ ≡ η′
max − η′

min which are associated with the reg-
ularization bands denoted by (I) and (II) in Fig. 7 as
functions of m. Once again, one sees that such vari-
ables present the same behavior than the upper thresh-
old amplitude ηmax (m) [cf. Eq. (20)], the lower thresh-
old amplitudeηmin (m) [cf. Eq. (17)], and the difference
�η (m) ≡ ηmax (m)−ηmin (m) [cf. Eq. (22)] as a func-
tion of the shape parameter (compare Figs. 3 and 11).
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(a)

(b)

Fig. 11 Experimental values of the factor amplitude η corre-
sponding to η′

max (�), η′
min (◦), and �η′ = η′

max − η′
min (*)

(see the text) vs shape parameter m corresponding to the bands
denoted by a (I) and b (II) in Fig. 7. Fixed parameters: γ = 0.5
V and f = 1.5 kHz

4 Conclusion

In summary, we have experimentally studied the
robustness of a chaos-suppressing scenario against
potential mismatches through the universal model of a
damped, harmonically driven two-well Duffing oscilla-
tor subject to non-harmonic chaos-suppressing excita-
tions. Analytical estimates were obtained from Mel-
nikov analysis characterizing the dependence of the
suppressory scenario on the amplitude, period, and
waveform of the chaos-suppressing excitation as well
as on the dissipation coefficient. Our experiments
reasonably confirmed these theoretical predictions,
thus revealing a remarkable robustness of the chaos-
suppressing scenario against potential mismatches.

Specifically, the predictions of an inverse dependence
of the regularization area in the control parameter plane
on the impulse transmitted by the chaos-suppressing
excitation as well as of a minimal effective amplitude
of the chaos-suppressing excitation when the impulse
transmitted is maximum were experimentally con-
firmed. These two remarkable properties of the exter-
nal chaos-suppressing excitation hold when it acts as
a parametric excitation [25], thus suggesting their uni-
versal character.

Some interesting open problems remain. Among
them, the authors are presently exploring the robust-
ness of the present suppressory scenario in networks
of damped driven Duffing-like oscillators where the
effect of varying the impulse transmitted by the chaos-
suppressing excitations acting on particular nodes is
expected to depend strongly on their number anddegree
of connectivity.
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