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Abstract In the behavioral epidemiology (BE) of
infectious diseases, little theoretical effort seems to
have been devoted to understand the possible effects of
individuals’ behavioral responses during an epidemic
outbreak in small populations. To fill this gap, here
we first build general, behavior implicit, SIR epidemic
models including behavioral responses and set them
within the framework of nonlinear feedback control
theory. Second, we provide a thorough investigation
of the effects of different types of agents’ behavioral
responses for the dynamics of hybrid stochastic SIR
outbreak models. In the proposed model, the stochas-
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tic discrete dynamics of infection spread is combined
with a continuousmodel describing the agents’ delayed
behavioral response. The delay reflects the memory
mechanisms with which individuals enact protective
behavior based on past data on the epidemic course.
This results in a stochastic hybrid system with time-
varying transition probabilities. To simulate such sys-
tem,we extendGillespie’s classic stochastic simulation
algorithm by developing analytical formulas valid for
our classes of models. The algorithm is used to simu-
late a number of stochastic behavioral models and to
classify the effects of different types of agents’ behav-
ioral responses. In particular this work focuses on the
effects of the structure of the response function and of
the form of the temporal distribution of such response.
Among the various results, we stress the appearance of
multiple, stochastic epidemic waves triggered by the
delayed behavioral response of individuals.

Keywords Multiple epidemic waves · Social
distancing · Hybrid systems · Stochastic epidemic
models · Human behavior · Memory effects · Gillespie
algorithm

1 Introduction

The principles of mathematical epidemiology (ME)
were established more than one century ago with the
milestone work by Sir Ronald Ross in 1916 and by
Kermack and McKendrick [1,2].
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The Kermack andMcKendrick’s lied in the descrip-
tion of infection transmission by means of the mass
action law of Chemistry and Statistical Mechanics. In
their formulation, the individuals’ social contact pat-
terns relevant for transmission are represented as colli-
sions between particles of a perfect gas, while transmis-
sion is modeled as a chemical reaction occurring with a
certain probability upon a random encounter between
two individuals of different types, namely a susceptible
subject and an infective one [3]:

Susceptible + Infectious
β→ Infectious + Infectious.

As a consequence, in their approaches, the social con-
tact rate per individual and the transmission rate β

per social contact were taken essentially as natural
constants valid for appropriate combinations of spatial
settings, human activities, cultural habits, institutions,
etc. However, it was acknowledged the possible depen-
dence of these constants on the seasonality of social
phenomena, e.g., the school calendar, or on climatic
phenomena [4].

In the last four decades, mathematical models of
infectious diseases have become key supporting tools
for public health decisions [5–7]. This development
was made possible by the increasing awareness of the
need for better data and statistical tools allowing a
finer and finer description of the transmission process.
Further dimensions were incorporated in the models:
individual-level characteristics, as age and sex; meso-
level fundamental structures, such as the community
composition by household type, by space, by social
activity, etc. [5].

The impulse impressed by the fear for avian
influenza and the 2009 H1N1 flu pandemic induced
the development of highly sophisticated mathematical
and computationalmodels, which better integratemod-
els with data [6,8], and which were used to describe
and predict the worldwide dynamics of influenza pan-
demics. Of course, the current COVID-19 pandemic,
and related mitigation measures, are bringing further
astonishing momentum to the discipline, with an end-
less list of contributions (more than 9000 modeling
papers and PhD theses on COVID-19 are reported by
Google Scholar at February 2, 2022).

However, in essentially all public health models,
the individuals’ social, transmission and vaccination
behavior remain unaffected regardless of the trends in
the risks of acquiring the infection they might perceive
from available information.

Clearly, this is an unrealistic abstraction, increas-
ingly less applicable in contemporary scenarios. This
became even more true during the current COVID-19
pandemic, which represented a huge open-sky labora-
tory of humans’ behaviors [9]. Indeed, individuals are
frantic information seekers and therefore hardly unaf-
fected by the state of the disease and related informa-
tion.

Attempts to remove this abstraction have led, in the
last 20 years, to the birth of a newbranch ofME thatwas
termed the behavioral epidemiology (BE) of infectious
diseases [7,10–12].

The pioneering work in BE was due to Capasso and
Serio [13,14], who first assumed that the transmission
intensity might also depend on the level of infection
spread by modeling the contact rate β as a decreas-
ing function of infection prevalence. This was the
first instance of an epidemiological model incorporat-
ing individuals’ spontaneous social-distancing behav-
ior by a prevalence-dependent contact rate [7,10–12].
A key postulate of BE is that infection spread is not
anymore an independent process, but it is instead the
outcome of the interplay of an infection-spread layer
with a number of other layers, first of all a behavior
layer, in turn modulated by an information layer. In
simple words, human behavior relevant for infection
spread may be critically affected by the information
about the spread and severity of the considered infec-
tion. And any change in human behavior will possibly
affect infection trends that might eventually feedback
on behavior itself. This means that the spread of infor-
mation is a critical component of infection transmission
modeling and therefore requires careful modeling per
se. All this led some of us to develop new classes of epi-
demiological models by using new variables, that we
termed information indexes, in order to include not only
individual perceptions about the current state of infec-
tion, but also the memory of past spread [7,15,16] and
eventually also spatio-temporal memories. In particu-
lar, in [17] the Capasso–Serio model was extended by
considering a deterministic SIR model for an endemic
infection diseasewith a general information-dependent
transmission rate allowing to also include past available
information on infection spread.

In this article, we depart from the previously cited
works [13,17] along two main directions.

The first one deals with the interpretation side: we
will cast the aforementioned behavior implicit mod-
els including the effects of delayed information [17])

123



Multiple epidemic waves as the outcome of stochastic SIR... 889

in the framework of the theory of nonlinear feedback
control systems [18–21]. The underlying idea is that
the individuals’ behavioral responses considered in the
BE literature, whereby, e.g., agents reduce their daily
number of social contacts depending on the informa-
tion they have on disease severity. This is nothing
other than a (nonlinear) feedback control. In particular,
unlike many feedback systems studied in mathematical
biology [19,22,23], the one considered here is a gen-
uine feedback. Indeed, it is the outcome of voluntary—
though uncoordinated—actions of agents.

The second main departure point is that most BE
studies are based on deterministic models and as such
they are suitable to describe epidemic or endemic sce-
narios for large populations only.

More in detail, we aim at studying the impact of
human behavior during the spread of an epidemic out-
break in small-medium size populations, by taking into
account that human decisions might also depend on
past information. This has a number of implications.
First, the involved nonlinear feedback control systems
are stochastic and therefore depart from the classical
asymptotic deterministic description based on the qual-
itative theory of differential equations [18–21]. More-
over, as we are dealing here with a system having a
finite life span, it is necessary to assess the impact of
the control action on a mainly transient phenomenon.

In particular, we depart from classical stochas-
tic models of mathematical epidemiology, generically
belonging (as themodels of chemical kinetics, ofwhich
they can be considered as a subcase [7]) to the class of
nonlinear birth and death Markov processes [24,25].
The latter processes can be simulated by means of the
well-known Gillespie algorithm [26,27]. However, the
presence of the information memory index (denoted as
M(t) in this paper) makes, from the theoretical view-
point, the resulting model a hybrid stochastic system
[28–30], where a birth–deathmodel of epidemic spread
is coupled with a piecewise deterministic model for
the information index M(t). The main implications are
the following: (i) the state variables of the stochas-
tic epidemic sub-system impact on the—otherwise
deterministic—dynamics of thememory; (ii) in its turn,
the model of the memory impacts on the birth–death
epidemic component by making the key occurrence
probabilities, namely the transmission rate β, hetero-
geneous in time. From the computational viewpoint,
the latter issue requires to modify Gillespie’s algorithm
following the lines of [28–31].

Based on this background, we then use selected sim-
ulation experiments to analyze and classify the effects
of different individuals’ delayed behavioral responses
during the course of a stochastic SIR-type epidemic in
a fully susceptible population. In particular, the agents’
responses to the epidemic threat are modulated by: (i)
the structure of the behavioral response function, (ii)
the form and amplitude of the response function tem-
poral kernels. Consistently, for each hypothesis on the
behavioral response function, the resulting system is
simulated to adequately reconstruct a number of key
features of the stochastic epidemic, namely the simu-
lated distributions of (i) the final attack rate, (ii) the
epidemic extinction time, (iii) the epidemic maximum
prevalence, etc.

Finally, we explicitly stress that our work did not
intend to refer to COVID-19, which is an infection
with a more complex dynamical structure than the one
considered here [32–34]. Instead, our work had a quite
general purpose, namely to develop a general stochastic
behavioral epidemiology framework including delayed
responses by individuals. However, we will insert—
only where appropriate—observations that could be
related to (or of interest for) investigations on the cur-
rent pandemics.

The manuscript is structured as follows. Section 2
(i) presents the behavioral deterministicmodels and the
related information indices that motivated this study,
(ii) it plugs them in the formalism of nonlinear con-
trol theory, and (iii) it presents the models main fea-
tures. Section 3 introduces the stochastic counterparts
of the givenmodelswith special focus on the simulation
issues that arise when lagged behavioral components
are considered, thereby leading to hybrid stochastic
systems. Section 4 explains the experiments. The sub-
sequent sections illustrate the results for different forms
of the information index. Concluding remarks follow.

2 Deterministic epidemic models with implicit
behavior

In this section we present the deterministic counter-
parts of the stochastic behavioral models used in this
paper. We depart from two basic, behavior implicit,
models with a prevalence-dependent response. Then,
we discuss the structure of the information index M
and present some main instances of delaying kernels
tuning the behavioral response, namely, the exponen-
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tially fading kernel and a generalization that we term
the acquisition fading kernel. Then we set the proposed
systems in the framework of nonlinear control the-
ory. Finally, we discuss the main qualitative features
of the proposed class of models with special focus on
the interplay between the strength of the behavioral
response and the related time delay.

2.1 Prologue: the Capasso–Serio deterministic SIR
epidemic model with social distancing

Themodel byCapasso andSerio [13] extended the clas-
sical SIR deterministic epidemic model by Kermack
andMcKendrick [2] to include a prevalence-dependent
contact (or transmission) rate, taken as a decreasing
function of infective prevalence to mimic individual
behavior change as a response to the epidemic threat.
The model reads as follows:

S′ = −β(I )
I

N
S (1)

I ′ = β(I )
I

N
S − γ I (2)

where S = S(t), I = I (t) represent the number of
susceptible and infective individuals at time t, γ > 0 is
the recovery rate, and β(I ) is the prevalence-dependent
transmission rate which was assumed to obey

β ′(I ) < 0

β(0) = β0

where β0 represents the transmission rate in the epi-
demic early phase where no individuals’ responses are
in place yet. The key hypothesis is that the larger the
infective prevalence, the stronger will be the agents’
response to the epidemic threat by correspondingly
reducing their transmission—or contact—rates, that is
by expanding their social distancing.

Among the main properties of model (1)–(2) we
mention that: (i) an epidemic outbreak will occur only
if β(0) (S(0)/N ) > γ , i.e., if the basic reproduction
number (BRN) relevant for this model exceeds one; (ii)
for t → ∞ it is I (t) → 0, that is, due to the determin-
istic continuous nature of the model the outbreak only
ends for infinitely times. Moreover, the total number
of infected subjects obeys the biologically meaningful
relationship

T =
∫ +∞

0
β(I (t))

I (t)

N
S(t)dt = S(+∞) − S(0)

. In substantive terms, the working of the model is
rather simple: the inclusionof a simple agents’ response
increasing with prevalence has a protective role on
the community. Compared to the baseline Kermack–
McKendrick model, this response can mitigate the epi-
demic in the event of an outbreak and can—if very
intense—even prevent the outbreak occurrence. This
simplicitywill obviously disappear in presence ofmore
articulated behavioral response.

2.2 A deterministic endemic SIR model with social
distancing

In [17], the notion of prevalence-dependent social dis-
tancing first formulated by Capasso and Serio was
extended in a fairly general manner by taking the trans-
mission rate β as a decreasing function of a gen-
eral information index denoted by M(t), i.e., β =
β(M), β ′(M) < 0. The concept of information index
was first introduced in [15], to summarize the entire
amount of—current and past—available information
about infection spread that agents can use to inform
their response to the infection threat. In [17] the idea
of social distancing was cast within a basic behav-
ior implicit information-dependent SIR model for an
endemic—rather than epidemic—infection (therefore
also including the vital dynamics of the population).
The model read as follows:

S′ = μ(N − S) − β(M(t))
I

N
S (3)

I ′ = β(M(t))
I

N
S − γ I − μI, (4)

where μ represent both the birth and death rates and
kept equal to ensure population stationarity over time.
The corresponding epidemic variant is obtained by just
setting μ = 0.

A model using the M index in a behavior-explicit
setting was proposed by [35] within their outbreak
model with normal vs altered behavior.

As argued in [17], the information index is a flexible
summary of the infection state and can therefore take a
wide range of forms. A general form adequate for our
present purposes is the followingprevalence-dependent
form

M(t) =
∫ +∞

0
g(I (t − q))K (q)dq (5)
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where g(I ) is an increasing function of the prevalence,
and K (q) is a delaying kernel (or ‘memory function’),
that is a probability density function that weighting the
levels of past prevalence. For the sake of the simplicity,
in our subsequent analyses we will use g(I ) = k I .

In [17] it was shown that in the endemic case (i.e.,
for μ > 0), model (3)–(4)–(5) has two equilibria:
(i) the disease-free equilibrium point DF E = (N , 0),
which is Locally Asymptotically Stable (LAS) and
Globally Asymptotically Stable (GAS) provided that
the model BRN is lower or at most equal to one, where

BRN = β(0)

μ + ν

and a unique endemic equilibrium

E E = (Se, Ie)

where (Se, Ie) is the unique solution of the following
system

Se = N −
(
1 + ν

μ

)
Ie

Se = N μ+ν
β(Ie)

.

The stability of the endemic state depends on the spe-
cificmodel of information index (5). For example, if the
kernel K obeys K (q) = δ(q) where δ(.) is the Dirac
function then M(t) = I (t) (i.e., themodel is unlagged),
and E E is GAS (see [17,36] and Appendix A).

2.3 Plugging social distancing within the framework
of nonlinear control theory

Even on an intuitive ground, the information index
M(t) can be read as a feedback control variable (tra-
ditionally denoted as u(t) in nonlinear control theory),
since it represents a decision variable that—at the indi-
vidual level—agents may tune to reduce their hazard
of infection. By setting β0 = β(0) and defining

ψ(M) = 1 − β(M)

β0

one can rewrite system (3)–(4)–(5) in the classical form
of nonlinear control theory [18]

x ′ = f (x) + ψ(M)g(x) (6)

where

x = (x1, x2) = (S, I )

f (x) =
(
μ(N − x1) − β0

x2
N

x1, β0
x2
N

x1−(ν + μ)x2
)

g(x) =
(
β0

x2
N

x1,−β0
x2
N

x1
)

.

In particular, the case where the information index is
assumed to be simply given by the infection prevalence,
M = I = x2, has a nice control-theory interpretation:
it is the deviation of the state x2(t) (i.e., I ) with respect
to the ideal reference case of absence of disease, i.e.,
xre f
2 (t) = 0: M = x2 − xre f

2 (t).

2.4 Modeling the information index and its temporal
kernels

In this section, we state our main assumptions on the
transmission rate and the delaying kernel, and provide
some relevant control-theoretic interpretations.

As regards the functional form of the transmission
rate resulting from the above definition (2.3), i.e., β =
β0(1 − ψ(M)), this could allow to design the control
by applying techniques of differential geometry [18,
20,21]. However, this approach would not keep under
control the key constraint on function ψ(M), namely:

0 < ψ(M) < 1

ψ(0) = 0

ψ ′(M) > 0.

Therefore, in our numerical simulations we will use
the following phenomenological family of functions
for the information-dependent transmission rate β(M):

β(M) = β0
M p

50

M p
50 + M p

(7)

where p is an integer such that p ≥ 1, and M50 is such
that β(M50) = 0.5β(0)

Note that, in the particular case where the informa-
tion index only includes current information (that is,
M(t) = I (t)) and for p = 1, the corresponding force
of infection (FOI) h(I ) = β(I )I/N (the instantaneous
hazard of infection faced by a susceptible individual
per time unit) is increasing, whereas for p ≥ 2 the FOI
is nonmonotone with a maximum at I = M50.

Note moreover that, the fact that the DFE is LAS
(GAS, actually) only if BRN < 1 independently of the
memory kernel , i.e., only if in absence of the behav-
ioral effect the disease cannot remain endemic, implies
that one cannot design a ψ(M) such that the DFE is
stabilized.

As regards the memory kernel, we will consider
three main cases:

• Thememoryless case K (q) = δ(q). In this case the
information index M only includes current infor-
mation.
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• The exponentially fading memory kernel (EFK):

K (q) = aExp(−aq).

This represents the often realistic case where past
information receives a decreasing weight. In this
case, the integro-differential system can be reduced
to ordinary differential equation (ODEs) by adding
the further ODE:

M ′(t) = a(g(I ) − M) (8)

• The acquisition-fading memory kernel (AFK):

K (q) = a1a2
a2 − a1

(Exp(−a1q) − Exp(−a2q)) .

This represents another possibly realistic scenario
where no information (about the infection state)
is available at current time; then, it is gradually
acquired up to a maximum before starting fading
out exponentially, as in the EFK case.
Even in this case integro-differential model (3)–
(4)–(5) can be reduced to ODEs by the additional
equations

Z ′(t) = a1(g(I ) − Z) (9)

M ′(t) = a2(Z − M) (10)

Note that if the two sub-processes of information
acquisition and memory fading occur at the same
relative speed a1 = a2 = a, then our 2-dimensional
acquisition-fading kernel reduces (via the limit
a2 → a1) to the so-called Erlang(2, a) = ate−at

kernel [37].

It is immediate to verify that:

• In the case of the exponentially fading kernel, the
memory index/control variable M(t) can be read
as the output of a low-pass filter with characteristic
cutoff frequency a that is applied to the ‘signal’
g(I (t)). Under our work assumption g(I ) = k I
the transfer function H(λ) between the input I and
the output M reads as follows

H(λ) = M̂(λ)

Î (λ)
= kλ

a + λ
= K̂ (λ),

where λ ∈ C and M̂(λ), M̂(λ) and K̂ (λ) are the
Laplace transforms of, respectively, M(t), I (t) and
K (q);

• In the case of the acquisition-fading kernel, the
memory index M(t) can be read as the output of
the application of two low-pass filters in series (with
characteristic frequencies a1 and a2) that is applied

to the ‘signal’ g(I (t)). In particular, in the case
g(I ) = k I , the transfer function between the input
I and the output M reads as follows

H(λ) = M̂(λ)

Î (λ)
= ka1a2

(a1 + λ)(a2 + λ)
= K̂ (λ). (11)

Therefore, in our problems, the processes of fading and
(if it is the case) acquisition of the memory are analo-
gous to the errorwithmemory connected to themeasure
of a feedback signal by means of a mechanic or elec-
tronic device [19]. This is a typical scenario in control
theory, where the controller often acquires the infor-
mation on the variables to be controlled by means of
measure devices. The latter can have their own inter-
nal dynamics and, moreover, are also aimed at reducing
extrinsic noises that are characterized by large frequen-
cies.

Adopting again the control-theory formalism, the
final structure of the considered family of models (6)
is as follows:

• In case of EFK:

x = (x1, x2, x3) = (S, I, M)

f (x) =
(
μ(N − x1) − β0

x2
N

x1, β0

x2
N

x1 − (ν + μ)x2, a(g(x2) − x3)
)

g(x) =
(
+β0

x2
N

x1,−β0
x2
N

x1
)

, 0

• In case of AFK:
x = (x1, x2, x3, x4) = (S, I, Z , M)

f (x) =
(
μ(N − x1) − β0

x2
N

x1, β0
x2
N

x1

−(ν + μ)x2, a1(g(x2) − x3), a2(x3 − x4))

g(x) =
(
+β0

x2
N

x1, −β0
x2
N

x1
)

, 0

2.5 Properties of the previous general deterministic
endemic model with social distancing

We discuss here the main stability properties of the
endemic state of model (6) under the different hypothe-
ses considered on the form of the delaying kernel.

First, in the case of EFK, it was proven in [17] that
the endemic equilibrium is LAS. Moreover, in [38]
by means of an appropriate Lyapunov function it was
shown that under the additional condition (Mβ(M))′ >

0 the endemic equilibrium is globally stable. Addition-
ally, in [17], the case of an Erlang2-type memory was
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considered. As already pointed out, this memory rep-
resents a special case of the acquisition-fading kernel
where the two sub-processes of acquisition and fading
occur at the same rate a1 = a2 = a. The corresponding
transfer function reads as follows

M̂(λ)

Î (λ)
= ka2

(a + λ)2
,

In this case, the EE can be either LAS or can be desta-
bilized by a Hopf bifurcation (see [17]).

Let us now consider model (6) for a general delay-
ing kernel K (τ ). Denoting as K̂ (λ) the corresponding
Laplace transform and linearizing at EE one gets:

λ2 + c1λ + c0 + d(λ + μ) = K̂ (λ) = 0,

where

c1 = μ + β(Ie)Ie > 0

c0 = β2(Ie)Ie Se > 0

d = −β ′(Ie)Ie Se > 0

Under an AFK, K̂ (λ) is given by formula (11) and it
can easily be rewritten as follows:

K (λ) = a1a2
(λ + a1)(λ + a2)

= p

λ2 + σλ + p

where σ = a1 + a2 and p = a1a2.
This finally yields the following characteristic poly-

nomial:

λ4 + q1λ
3 + q2λ

2 + q3λ + q4 = 0

where

q3 = σ + c1 > 0

q2 = c1σ + p + c0 > 0

q1 = c0σ + (c1 + d)p > 0

q0 = (dμ + c0)p > 0

Since all the coefficients are positive, applying the
Routh–Hurwitz criterionwe get the following local sta-
bility conditions of the EE:

H(p, σ ) = q1q2q3 − q2
1 − q2

3q0 > 0, (12)

In particular, if

H(p, σ ) < 0, (13)

then EE becomes unstable through Hopf a bifurcation
at the locus

H(p, σ ) = 0.

As well known, the Hopf theorem only provides local
information in the parametric space. In other words,

it only states that in a parametric neighborhood of the
bifurcation point the solution of the system is a periodic
solution of small amplitude. Therefore, in our case this
will hold for values of (p, σ ) in the region H(p, σ ) < 0
that are sufficiently close to points where H(p, σ ) =
0. In order to draw more general information about
points in the interior of the region H(p, σ ) < 0 one can
take advantage of the Yakubovitch–Efimov–Fradkov
theorem [39].

To apply the theorem, note preliminarily that the
system is bounded and has two unstable equilibrium
points, and the DFE has as stable manifold the segment
l = (x1, 0, 0, 0) with x1 ∈ [0, N ] that corresponds
to the trivial case of absence of disease in the target
population. The biological and geometrical nature of
the stable manifold of DFE implies that there are not
heteroclinic orbits connecting EE to DFE.

As a consequence, from the Yakubovitch–Efimov–
Fradkov theorem (see corollary 1 of [39]) if H(p, σ ) <

0 then system undergoes self-sustained oscillations,
not necessarily periodic, called Yakubovitch oscilla-
tions or Y-oscillations [40].We report below two useful
remarks.

Remark The above results can easily be extended to
delays in the form of n ≥ 3 first-order low-pass filters
in series.

Remark Note that, in our case (and in the generaliza-
tion) the Y-oscillations are fully induced by the behav-
ior, i.e., by the control. In control language, this is the
consequence of the fact that the control is based on a
‘measure’ coming from a double filtering of the preva-
lence, i.e., from the indirect nature of the control. Note
however that the choice of the weight K (q) is primarily
based on behavioral arguments.

As regards the analytical form of condition (12), this
is cumbersome and gives no particular hints, so that
also (13) becomes of scarce practical relevance. There-
fore, we numerically computed the Jacobian and its
4 associated eigenvalues at the endemic equilibrium.
This allowed us to plot (see Fig. 1) the stability and
instability regions in function of the two key param-
eters: (i) T1 = 1/a1 which is the average acquisition
time of information; and T2 = 1/a2 which is the aver-
age fading time. In particular, Fig. 1 reports the contour
plot of the following function:

z(T1, T2) = Max
(
0, Maxk∈{1,2,3,4} (Re(λk(T1, T2))

)
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2.6 Deterministic modeling of the epidemic case
(μ = 0)

In the rest of the present work we will mostly focus
on the purely epidemic case (μ = 0). This case was
not previously analyzed with the exception of the case
M = I , i.e., the Capasso–Serio model.

For the general model with a generic information-
dependent M index it is easy to see that it exists a
disease-free equilibrium x2 = 0 and that x1(t) tends
to an equilibrium value that depends on the function
ψ(M(t)) and on the dynamics of M(t), which is in
turn determined by the delay kernel. A fact not previ-
ously pointed out in the literature is that under appro-
priate behavioral responses multiple behavior-induced
epidemic waves can arise even in the course of a single
epidemic. We will numerically illustrate these deter-
ministic results in “Appendix.”

3 Stochastic modeling of social distancing under
generic M-indices

In this section we introduce the stochastic counterparts
of the previous deterministic models with social dis-
tancing and discuss the simulation issues that arise
when the behavioral component is involved. We start
from the simpler casewhere nomemory effects are con-
sidered, and then extend to the case of hybrid systems
arising under memory effects.

3.1 No memory effects: stochastic version of the
Capasso–Serio model

As is well known, the deterministic models of infec-
tious diseases can be considered as a good approxima-
tion of the true underlying stochastic systems only if
the population size is large enough so that stochastic
oscillations around the mean pattern become negligi-
ble. In the absence of behavioral effects, if the popula-
tion is small then the system ismodeledbyabirth–death
Markov process [24].

In the absence of memory effects, i.e., when con-
sidering the stochastic version of the Capasso–Serio
model, the resulting stochastic model remains a birth–
death stochastic processes [24,26,27,41].

In this case, the model is simply the outcome of two
transition processes and related events, namely:

(i) transmission: a susceptible subject becomes infec-
tious due to adequate social contactswith infectious
subjects. The probability of a transmission event
during the infinitesimal interval (t, t + dt) is:

Prob ((S(t + dt), I (t + dt)) = (S(t) − 1, I (t) + 1))

= β(I )
I

N
Sdt (14)

However, unlike the basic stochastic SIR model,
the probability in formula (14) is not bilinear.

(ii) removal: an infectious individuals are removed
from the infectious compartment due to recovery
and immunity acquisition. The probability of a
removal event during (t, t + dt) is:

Prob ((S(t +dt), I (t +dt)) = (S(t), I (t) − 1)) = γ Idt

(15)

The stochastic simulationof birth anddeathMarkov
processes is elegantly done by the Gillespie algo-
rithm [26,27,41] which in our case works as fol-
lows. Let us suppose that the nth event occurred at
time tn so that the system after the event has state
values

(S, I ) = (Sn, In).

Therefore, denoting the time of the next event as

tn+1 = tn + τ

then τ is such that

γ Inτ + β(In)
In

N
Snτ = rn

where rn is exponentially distributed. This yields:

τ = rn

γ In + β(In) In
N Sn

(16)

The type of the next event, which will either be
the contagion of a susceptible or the removal of an
infectious subject), is determined by randomization
through a Bernoulli experiment based on the two
complementary probabilities

ρrec = γ In

γ In + β(In) In
N Sn

ρcont = 1 − ρrec

3.2 Memory effects and simulation of hybrid
stochastic systems

In the presence of a general memory effects the behav-
ior of the system becomes more complicated. Indeed,
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Fig. 1 Model (6) with acquisition-fading kernel: contour plot
of the stability and instability regions in terms of parameters T1
and T2 as determined by the function z(T1, T2). Dark Blue: LAS
region. Lighter blue and other colors: instability region. In the
instability region the different colors indicate the amplitude of

z(T1, T2), i.e., the real part of the eigenvalue (of the Jacobimatrix)
having the largest real part. The Basic Reproduction Number is
set to either BRN = 20 (left panel) or to BRN = 2 (right panel).
Other parameters: μ = 1/(365.25 ∗ 75), ν = 1/7

the stochastic evolution of the discrete state variables
(S, I ) has to be coupled with an integral equation
describing the dynamics of M(t), which is a contin-
uous one during each inter-events intervals (tn, tn+1).
In particular, under our hypotheses on the memory ker-
nels, the dynamics of M is givenby a systemof ordinary
differential equations depending on In .

As a consequence, the system is no longer a classi-
cal birth and death process, but it belongs to the class
of the so-called hybrid models [28] where stochastic
automata are coupled with deterministic processes by
means of time-varying propensities. Note however that
in our case the coupling is mutual. Indeed, a stochas-
tic birth–death model (for infection spread) is coupled
with an ODE (or a system of ODEs) model for the
memory, yielding for M a continuous piecewise deter-
ministic model that depends on the stochastic epidemic
model. Indeed, in between two stochastic events, the
dynamics of M(t) is fully deterministic, i.e., M(t) is a
piecewise deterministic process.

Overall, the above-described model can be formal-
ized similarly to the class of stochastic hybrid automata
defined in [31].

Operatively, the infinitesimal probability of a conta-
gion event in (t, t + dt), given by:

Prob ((S(t + dt), I (t + dt)) = (S(t) − 1, I (t) + 1))

= β(M(t))
I

N
Sdt (17)

is time-dependent. This requires to resort to a version of
the Gillespie algorithmwith time-varying propensities,
as in [28].

Namely, the time to the (n+1)-th event is determined
by the following equation:

γ Inτ + In

N
Sn

∫ tn+τ

tn
β(M(t))dt = rn (18)

In the general case, the inequality

0 ≤ β(M) ≤ β0,

implies that

0 ≤
∫ tn+τ

tn
β(M(t))dt ≤ β0τ.

As a consequence, from (18) and provided that In > 0
(the case In = 0 is trivial because I = 0 is an adsorbing
state for the system) we can infer that

τL ≤ τ ≤ τR,

where

τL = rn

γ In + β0
In
N Sn

τR = rn

γ In
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which is an useful bound for the numerical simulations.

Remark The bounds τL and τR are not constant: they
change at each step of the simulation algorithm.

To compute τ it is necessary to know themodel link-
ing the continuous state variable M(t) to the discrete
state variables (S, I ).

Once τ has been determined, the type of the next
event is chosen (as in the classical Gillespie algorithm)
by the following probabilities:

ρ̄rec = γ In

γ In + β(M(tn + τ)) In
N Sn

ρ̄cont = 1 − ρ̄rec

3.2.1 Numerical determination of τ

Let us define

ψ(τ) =
∫ tn+τ

tn
β(M(t))dt

Then one has to numerically solve the following equa-
tion

γ Inτ + In

N
Snψ(τ) = rn (19)

in the interval

τL ≤ τ ≤ τR,

by some numerical algorithms. We then have two main
cases. The first one occurs when functionψ(τ) is avail-
able in closed form. In the case where β(M(t)) can be
analytically integrated in (tn, tn+1), thenEq. (19) can be
solved bymeans of well-known standard iterative algo-
rithms, such as the Newton–Raphson and the bisection
methods (see “Appendix”).

For the sake of notational simplicity we define

f (τ ) = γ Inτ + In

N
Snψ(τ) − rn

thus to determine τ we must solve

f (τ ) = 0

Note also that: f (τL) < 0 and f (τR) > 0.
Instead, if ψ(τ) is not analytically known, one has

to numerically approximate the integral that appears in
the time-varying Gillespie algorithm. For this case, we
propose the algorithm described by the following steps:

• Split the interval [0, τR] in L >> 1 points, and
define

h = τR

V

θk = kh

where k = 0, 1, . . . , V . Note that:

f (θ0) = f (0) = −rn

θV = τR

• Approximate ψ(θk+1) by some standard strategy,
such as:

ψ(θk+1) ≈ ψ(θk) + h

2
(β(M(tn + θk))

+β(M(tn + θk+1))) .

Note that this implies that

f (θk+1) ≈ f (θk) + γ Inh + In

N
Sn

h

2
(β(M(tn + θk)) + β(M(tn + θk+1))) (20)

• Since τ > τL , we have to iterate computations
(without checking if we have found the solution
τ ) f (θ) at least until the step

kL =
[τL

h

]

where [x] is the integer part of x , e.g., [3.99] = 3.
• Suppose that the step q ≥ kL had been reached and
that

f (θq) < 0.

Then go to the next step θq+1 and compute f (θq+1)

bymeansof formula (20). The following three cases
are possible: (i) | f (θq+1)| < T ol, where T ol is a
sufficiently small tolerance, so you can stop; (ii)
f (θq+1) < −T ol, thus one must continue; (iii)
f (θq+1) > T ol, which implies that then the solu-
tion τ is such that

τ ∈ (θq , θq+1)

Sinceh is sufficiently small, one canuse the approx-
imation

τ ≈ θq + θq+1

2
= θq + h

2
Remark The most sensitive point in the previous algo-
rithm is therefore that of appropriately choosing V ,
which must be sufficiently large. In our simulations,
we have chosen V in a way such that the time step h
is always kept smaller than 0.1 days. Moreover, one
must remember that since τR changes at each step of
the Gillespie algorithm, the same holds for V Once
determined τ the type of the next event is chosen by
the following probability:

ρ̄rec = γ In

γ In + β(M(tn + τ)) In
N Sn

ρ̄cont = 1 − ρ̄rec
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3.3 The case of the exponentially fading memory

In the cases of EFK and of AFK kernels, the coupling
between the discrete and the continuous parts of the
hybrid model is relatively simpler than in the general
case. Indeed, as we have seen, in our examples the
model of M(t) reduces, respectively, to one or two lin-
ear ordinary differential equations.

In this section and in the following one,wewill show
how β(M(t)) can be analytically defined in all event
intervals (tn, tn+1) for both the EFK and the AFK. For
the exponentially fading memory kernel, we will also
provide the analytical form of ψ(τ), which allows to
significantly speed up the computations.

In the case of an exponentially fading memory, one
has that in each interval (tn, tn+1) between two con-
secutive events, M(t) is given by the following linear
differential equation

M ′(t) = a(g(In) − M) (21)

M(tn) = Mn (22)

M0 = 0. (23)

since we suppose that the epidemics starts at t = 0.
The solution of ODE problem (21)–(22) is:

M(t) = g(In) + (Mn − g(In))Exp(−aθ) (24)

where

θ = t − tn .

The function ψ(τ) is given by the integral

ψ(τ) = β0

∫ τ

0

M p
50

M p
50 + (g(In) + (Mn − g(In))Exp(−aθ))p dθ

Defining

K = M50

|Mn − g(In)| , B = g(In)

|Mn − g(In)| ,
σ = sign (Mn − g(In))

yields

ψ(τ) = β0K p
∫ τ

0

1

K p + (R + σExp(−aθ))p dθ

Defining the new variable

y = R + σExp(−aθ)

yields

ψ(τ) = β0K p
∫ R+σExp(−aτ)

R+σ

−1

a

1

(K p + y p)

1

y − R
dy.

As for the above integral note the following: (i) ifσ = 1
then we have that the upper integration limit is smaller

than the lower integration limit (due to a > 0), but since
y = R + exp(−aθ) ⇒ y > R, thus the function to be
integrated is negative and the integral is positive; (ii) if
σ = −1, the upper integration limit is greater than the
lower integration limit and since y = R−exp(−aθ) ⇒
y < R, the integrand function turns out to be positive,
so that the integral will be positive as well (and, in
principle, analytically solvable).

Further setting y = K z one gets:

ψ(τ) = β0

∫ r+ρExp(−aτ)

r+ρ

−1

a

1

(1 + z p)

1

z − r
dz

where r = R/K and ρ = σ/K .
Namely, for the case p = 1 one has:

ψ(τ) = β0
−1

a(1 + r)

∣∣∣log(z − r) − log(1 + z)
∣∣∣r+ρExp(−aτ)

r+ρ

yielding

ψ(τ) = β0
−1

a(1 + r)
log

(
1 + r + ρ

Exp(aτ)(1 + r) + ρ

)
> 0

or equivalently (the following version reduces numer-
ical errors in the case exp(−aτ) << 1)

ψ(τ) = β0
−1

a(1 + r)

(
−aτ − log

(
1 + r + ρExp(−aτ)

1 + r + ρ

))

(25)

For the case p = 2 one has:
ψ(τ) = β0

−1

a

1

1 + r2∣∣∣log(z − r) − (1/2)log(1 + z2) − r Arctan(z)
∣∣∣r+ρExp(−aτ)

r+ρ

For p ≥ 3, the expressionofψ(τ)becomesuntractable.
Of course, once τ has been computed, one must set

Mn+1 = g(In) + (Mn − g(In))Exp(−aτ)

3.4 The case of the acquisition-fading kernel

In the case of the acquisition-fading kernel, one has that
in each interval (tn, tn+1) the solution (Z(t), M(t)) to
the pair of addition differential equations can be com-
puted as follows. First, Z(t) is defined as the solution
of the following differential equation

Z ′(t) = a1(g(In) − Z) (26)

Z(tn) = Zn (27)

Z0 = 0 (28)

The solution of the above ODE problem is:

Z(t) = g(In) + (Zn − g(In))Exp(−a1θ) (29)
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Fig. 2 The memoryless case for p = 1: effects of M50% on the
simulated distributions of the final attack rate and of the extinc-
tion time. Left panels: BRN = 15; right panels: BRN = 2.

Higher panels: PDFs of the final attack rate. Lower panels: PDFs
of the extinction time

where

θ = t − tn .

Next, M(t) is the solution of

M ′(t) = a2(Z(t) − M) (30)

M(tn) = Mn . (31)

implying:

M(t) = g(In) +
( a2

a2 − a1
(Zn − g(In))

)
Exp(−a1τ)

+
(

Mn − a2Zn

a2 − a1
+ a1g(In)

a2 − a1

)
Exp(−a2τ) (32)

Note that in this case the integral defining ψ(τ) cannot
be analytically solved even in the case p = 1.

Remark In this case, once τ has been numerically com-
puted, one must set

Zn+1 = g(In) + (Zn − g(In))Exp(−a1τ) (33)

Mn+1 = g(In) +
( a2

a2 − a1
(Zn − g(In))

)
Exp(−a1τ)

+
(

Mn − a2Zn

a2 − a1
+ a1g(In)

a2 − a1

)
Exp(−a2τ) (34)

Simulations of scenarios where the memory kernel
is the AFK are shown in appendix, for the sake of the
readability.
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Fig. 3 The memoryless case for p = 1: impact of M50%. Left panels: BRN = 15; right panels: BRN = 2. Higher panels: effects of
M50% on the PDF of the maximum prevalence. Lower panels: effects of M50% on PDF of time at the maximum prevalence

3.5 Algorithm for the localization of multiple
‘process’ peaks in the simulated time series

In our work we used MATLAB 2019b for model sim-
ulation and the analysis of results. Given our focus
on multiple-stochastic—epidemic waves, we briefly
present the approach for the localization of (multi-
ple) epidemic peaks. The purpose of the algorithm is
that of allowing to separate true ‘process’ peaks, i.e.,
peaks induced by the behavioral response, from spu-
rious oscillations due to the stochastic nature of the
problem. The localization of the first peak was done
by finding the maximum number of infectious individ-
uals, because the first peak always resulted the higher
one. The latter (purely due to susceptible depletion) is
a somewhat straightforward consequence of the sim-

plicity of the model. The localization of the second
peak (and subsequent ones) was more complicated due
to the noise of stochastic simulations. Firstly, we fil-
tered the time courses and analyzed only cases with 3
and more points. Noise was filtered by the Gaussian-
weighted moving average filter (we applied MATLAB
function: smoothdata) with window size equal to 100
points. Thenwe accepted as true peaks, maxima arising
in the smoothed data course according to the following
criteria (i) minimum height of peak equal to 100 infec-
tious, (ii) minimum time distance between subsequent
peaks of 5 days (MATLAB function: findpeaks). As
matter of fact, since the appearance of multiple peaks
was much neater in the case BRN = 15 (compared to
BRN = 2), later on we will mainly report our results
on multiple peaks for this case.
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Table 1 Statistics related to Fig. 2

Figure Panel BRN p M50% mean SD Median Min Max

1 A 15 1 (Classic SIR) 93.27 25.05 100 0.01 100

1 A 15 1 200 88.97 23.65 95.23 0.01 96.72

1 A 15 1 50 86.56 23.42 92.87 0.01 95.50

1 A 15 1 10 81.21 22.97 87.70 0.01 92.75

1 B 2 1 (Classic SIR) 39.80 39.83 0.27 0.01 83.07

1 B 2 1 200 24.12 24.35 0.16 0.01 58.56

1 B 2 1 50 16.61 17.68 0.08 0.01 49.58

1 B 2 1 10 1.33 2.35 0.04 0.01 92.75

1 C 15 1 (Classic SIR) 69 20 71 <1 173

1 C 15 1 200 173 53 178 <1 371

1 C 15 1 50 434 131 454 <1 797

1 C 15 1 10 1260 381 1344 <1 1995

1 D 2 1 (Classic SIR) 83 80 44 <1 297

1 D 2 1 200 289 297 31 <1 1212

1 D 2 1 50 456 496 20 <1 1966

1 D 2 1 10 116 192 13 <1 1705

4 Results: Stochastic epidemics and
behavior—The memoryless case

In this section we report the main results of a range of
stochastic simulation experiments, with special focus
on the effects of different hypotheses on the shape of
the social distancing response function β(M) on the
system behavior.

4.1 Simulation strategy, assignment of input
parameters and main simulation outputs

In all our experiments we simulated epidemic out-
breaks in a fully susceptible population, under the fol-
lowing assumptions on input parameters: (i) the popula-
tion size is set to N = 10,000; (ii) the infection average
duration is set to one week, implying γ = 1/7days−1;
(iii) M50% is allowed to take three possible values:
M50% ∈ {10, 50, 200}. As regards the basic reproduc-
tion number, we considered twowidely different cases:
(1) BRN = 15 corresponding to a highly transmissi-
ble infection, such as measles; (2) BRN = 2, corre-
sponding to a moderately transmissible infection as it
may be the case, e.g., of seasonal influenza. The corre-
sponding baseline transmission rates (in the absence of
any behavioral response) are β0 = 15/7days(−1), and

β0 = 2/7days(−1), respectively. In the deterministic
SIR epidemic model in a wholly susceptible popula-
tion, the considered figures of the BRN would yield
a total proportion of people eventually infected, i.e., a
final attack rate of the outbreak—well above 99percent
for BRN = 2. As for the main outputs of stochastic
simulation we primarily looked at the simulated prob-
ability density functions (PDF) of (i) the final attack
rate, (ii) the epidemic extinction time, (iii) the max-
imum prevalence, and to the temporal realizations
(or realized paths) of the prevalence function. In par-
ticular, in order to adequately reproduce the relevant
probability density functions, the model simulation is
replicated Nsim = 100,000 times.

4.2 Results: behavioral responses without memory
effects

4.2.1 Effects of M50% in the stochastic case

In this subsection, we considered the memoryless case
with p = 1, in order to characterize the role of param-
eter M50%.

The stationary PDFs of the final attack rate and
of the extinction time are shown in the upper and
lower panels of Fig. 2 (left panels: BRN = 15, right
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Table 2 Statistics related to Fig. 3

Figure Panel BRN p M50% Mean SD Median Min Max

2 A 15 1 (Classic SIR) 70.34 18.90 75.37 0.01 77.59

2 A 15 1 200 15.45 4.12 16.51 0.01 18.15

2 A 15 1 50 5.48 1.49 5.86 0.01 6.86

2 A 15 1 10 1.42 0.40 1.52 0.01 1.97

2 B 2 1 (Classic SIR) 7.81 7.82 0.10 0.01 18.44

2 B 2 1 200 0.93 0.92 0.07 0.01 2.58

2 B 2 1 50 0.33 0.33 0.05 0.01 1.03

2 B 2 1 10 0.09 0.09 0.03 0.01 0.37

2 C 15 1 (Classic SIR) 6 2 6 <1 11

2 C 15 1 200 16 4 17 <1 25

2 C 15 1 50 23 8 24 <1 50

2 C 15 1 10 45 25 41 <1 208

2 D 2 1 (Classic SIR) 32 31 26 <1 135

2 D 2 1 200 41 43 17 <1 210

2 D 2 1 50 66 87 9 <1 846

2 D 2 1 10 51 99 5 <1 1197

panels: BRN = 2), respectively. Each panel reports
three different histograms corresponding to the three
values considered of M50% and, for comparison pur-
poses, also the one corresponding to the benchmark
case of the classic stochastic SIRmodel without behav-
ioral response.

Concerning the final attack rates (upper panels of 2),
we note that for both BRN = 15 and BRN = 2, the
simulated PDFs are always bimodal. The mode for low
values of the infected subjects reflects stochastic extinc-
tion occurring soonafter infection introduction, when
the behavioral effects are still negligible. Obviously
stochastic extinction is rather unlikely for BRN = 15,
whereas it occurs with a much higher probability per-
centages for the ‘classical SIR’; instead for BRN = 2
this lower mode is very large.

We may note that even for M50% = 200 for both
BRN = 15 and BRN = 2 the effect is remarkable.
Qualitatively, both for BRN = 15 and for BRN = 2,
the mean value of the total number of people that
acquired the infection decreases if M50 decreases,
but the variance of the distributions increases. For
BRN = 2, at M50 = 10 the distribution is character-
ized by a large initial peak followed by exponential-like
decrease.

As for the extinction time (lower panels of 2), the
simulated PDFs are also bimodal, corresponding to

“initial” and “final” (i.e., after the outbreak occurred)
extinction. Interestingly, for BRN = 15 the mean
values of the extinction time are increasing as M50

decreases (i.e., when outbreaks occur, the stronger
the behavioral response the longer is the epidemic),
and also the variances become larger. Moreover, at
M50 = 10 the PDF is more markedly bimodal. For
BRN = 2 and M50% = 10 the PDF again shows an
initial peak followed by exponential-like decrease.

Note that, for BRN = 15 the location of PDFs of
the extinction time for M50% = 50 and especially for
M50% = 10 is so rightward that the chosen approxima-
tion of neglecting vital dynamics could be questioned.
The same holds for BRN = 2 and M50% = 50. This
suggests that behavioral responses could significantly
delay the epidemic extinction time and, not paradoxi-
cally, sustain the endemicity of the infection.Both these
effects have been observed during the current COVID-
19 pandemic.

For the sake of completeness, the right panels of
Figures 2 and 3 report analogous results for the case
BRN = 2. Note in particular the much larger stochas-
ticity arising compared to BRN = 15, a well-known
fact.

The PDFs of the maximum reached prevalence and
of the timeof occurrence of suchmaximumare reported
in the upper and the lower panels of Fig. 3, respec-
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Fig. 4 The stochastic model in the memoryless case. Effects of parameter p on the time course of infectious prevalence I (t) (a sample
of 100 realizations) for BRN = 15 and M50% = 200. (A) p = 2 (B) p = 5 (C) p = 100

Fig. 5 The stochastic model in the memoryless case. Effects of parameter p on the simulated PDF of the infection extinction time for
BRN = 15 and different values of M50%. (A) p = 2, (B) p = 5 and (C) p = 100

Fig. 6 The stochastic model in the memoryless case. Effects of parameter p on the time course of infectious prevalence I (t) (a sample
of 100 realizations) for BRN = 2 and M50% = 200. (A) p = 2 and (B) p = 100
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Fig. 7 PDF of infection extinction time for BRN = 2: impact of p and M50%. (A) p = 2, (B) p = 100. Other values of p produces
PDFs similar to that of panel (B)

tively. For both BRN = 15 and BRN = 2, the mean
maximum epidemic size (upper panels of Fig. 3) and its
variance are rapidly increasing as M50 increases. For
BRN = 15, the mean and the variance of the time of
occurrence of such maximum (lower panels of Fig. 3)
are increasing as M50 decreases. Instead, for BRN = 2,
themean is nonmonotonewith M50%, whereas the vari-
ance increases.

Summary statistics of the various PDFs of Figs. 2
and 3 are reported, respectively, in Tables 1 and 2.

4.2.2 The effects of the shape of the response function

The effects of the shape of the behavioral response
function β(M), in absence of delays, is summarized
by parameter p. Of course, even the threshold M50%

plays a fundamental role. Figure 4 reports a sample
of the simulated time series of the infectious preva-
lence with M50% = 200, for different values of p (we
keep BRN = 15). This shows three main effects of
increasing p. The first is related to the fact that, for
p > 1, the function β(I ; p) decreases slower with I ,
thereby increasing extinction time. This effect is better
illustrated by the corresponding PDFs in Fig. 5. The
second and the third are more interesting: (i) the max-
imum epidemic size decreases with p and (ii) the dis-
ease prevalence remains at large values for a larger time
w.r.t. the case p = 1. Particularly interesting is the case
p = 100, whose behavior can be better understood by
resorting to the following approximation of function
β(I )

β(I ) ≈

⎧⎪⎨
⎪⎩

β(0) if I < M50%

0.5 if I = M50%

0 if I ≥ M50%

Initially, since for I < M50% it holds β(I ) ≈ β(0),
the epidemic grows free up to the level I = M50%.
Sooner or later I switches to the value M50% whereβ =
0.5β(0). However, sooner or later the next contagion
event will occur, so that prevalence I reaches the value
M50%+1 and the transmission rate abruptly falls toβ =
0. This means that the contagion stops and prevalence
will remain constant at the level I = M50% + 1 until
the next removal event occurs, so that the system now
switches back and forth around M50%. In other words,
I (t) will experience for a long time small stochastic
oscillations around I = M50% until when through a
series of removal events disease extinction is reached.

By decreasing M50% the minimal extinction time
remarkably increases. This is better shown in Fig. 5.
Figures 6 and 7 report the results for the case BRN =
2. As for the total number of infected people, the corre-
sponding simulated PDF gradually switches rightward
as p increases (see supplementary figures).

5 Results: Exponentially fading kernels and
multiple stochastic epidemic waves

In this section we investigate the effects of delayed
social distancing response function β(M) on the epi-
demic course. In particular, we will study the EFK case
by considering two possible values for the parame-
ter a tuning the delayed response: a = 0.1/day and
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Fig. 8 Stochastic multiple epidemic waves of infectious preva-
lence for an exponentially fading behavioral response, under
BRN = 15, for different values of the memory rate a, and of
parameters p and M50% tuning the behavioral response. Left

panels: a = 0.1; right panels: a = 0.05. Upper panels: p = 1;
central panels: p = 2; lower panels: p = 10. Black curves:
M50% = 200, red curves: M50% = 50, blue curves: M50% = 10
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Fig. 9 Stochastic multiple epidemic waves of infectious preva-
lence for an exponentially fading behavioral response, under
BRN = 2, for different values of the memory rate a, and of
parameters p and M50% tuning the behavioral response. Left

panels: a = 0.1; right panels: a = 0.05. Upper panels: p = 1;
central panels: p = 2; lower panels: p = 10. Black curves:
M50% = 200, red curves: M50% = 50, blue curves: M50% = 10
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Fig. 10 The stochastic model in the case of an exponentially
fading memory kernel. Histograms of the PDF of the infec-
tious prevalence at the first epidemic peak for p = 1, 2, 10 and

M50% = 50. Left panels: a = 0.1; right panels: a = 0.05. Upper
panels: BRN = 15; lower panels: BRN = 2

Fig. 11 The stochastic model in the case of an exponentially fading memory kernel. Histograms of the PDF of the infectious prevalence
at the second epidemic peak for BRN = 15, p = 1, 2, 10 and M50% = 50. Left panel: a = 0.1; right panel: a = 0.05
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Fig. 12 The stochastic model in the case of an exponentially
fading memory kernel. Histograms of the simulated PDF of the
time at the first epidemic peak for p = 1, 2, 10 and M50% = 50.

Left panels: a = 0.1; right panels: a = 0.05. Upper panels:
BRN = 15; lower panels: BRN = 2

Fig. 13 The stochastic model in the case of an exponentially fading memory kernel. Histograms of the PDF of the time at the second
epidemic peak for BRN = 15, p = 1, 2, 10 and M50% = 50. Left panel: a = 0.1; right panel: a = 0.05
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Table 3 Statistics related to Fig. 13—times of second peak

Figure Panel BRN a p Mean SD Median Min Max

13 A 15 0.1 1 70 7 69 53 195

13 A 15 0.1 2 55 8 53 46 170

13 A 15 0.1 10 44 1 44 41 63

13 B 15 0.05 1 104 5 104 86 132

13 B 15 0.05 2 79 2 79 71 96

13 B 15 0.05 10 71 1 71 67 76

Fig. 14 The stochastic model in the case of an exponentially
fading memory kernel. Histograms of the simulated PDF of epi-
demic extinction time for p = 1, 2, 10 and M50% = 50. Left pan-

els: a = 0.1; right panels: a = 0.05. Upper panels: BRN = 15;
lower panels: BRN = 2
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Fig. 15 The stochastic model in the case of an exponentially
fading memory kernel. Histograms of the simulated PDF of the
final attack rate for p = 1, 2, 10 and M50% = 50. Left panels:

a = 0.1; right panels: a = 0.05. Upper panels: BRN = 15;
lower panels: BRN = 2

Fig. 16 The stochastic model in the case of an exponentially fading memory kernel. Histograms of the simulated PDF of the number
of epidemic peaks for BRN = 15, p = 1, 2, 10 and M50% = 50 of the PDF. Left panel a = 0.1, Right panel a = 0.05

123



910 M. Ochab et al.

Fig. 17 Exponentially Fading Kernel: effect of ‘filtering’with
BRN = 2. Plot of I (t) (green lines) and M(t) (black lines) for
a single instance of the stochastic process. Left panels: a = 0.1,

Right panels: a = 0.05. (A) and (B): p = 1; (C) and (D): p = 2;
(E) and (F): p = 10

123



Multiple epidemic waves as the outcome of stochastic SIR... 911

a = 0.05/day, corresponding to an average response
delay of 10 and 20 days, respectively.

We assessed the effects of a delayed behavioral
response in both the stochastic and in the determin-
istic case (see “Appendix”), for BRN = 15 (Fig. 8)
and BRN = 2 (Fig. 9) and for distinct values of p
(p = 1, 2, 10). Both deterministic and stochastic sim-
ulations show that multiple epidemic waves can actu-
ally occur, as a consequence of the behavioral response
of individuals, when lagged information is used in
the response process. The different cases reported in
the figures clarify mechanisms and determinants of
these waves. Notably, these waves cannot occur in the
absence of the delay. In particular, the oscillatory pat-
ternwill bemoremarked the larger the amplitude of the
time delay (i.e., the lower a), the sudden the behavioral
response (i.e., the larger p), and the larger the response
threshold M50%.

5.1 Statistical features of simulated epidemics

In what follows, we reports the main statistics of our
simulative result where multiple waves occur. To do so,
in the computation of the simulated PDFs we did not
include those realizations where no second peak was
clearly detectable. In the present experiments we keep
M50% = 50, whereas a ∈ {0.05, 0.1}, p = 1, 2, 10,
BRN ∈ {2, 15}. Figure 10 shows the PDF of infectious
prevalence at the first epidemic peak. We note that of
course in all cases there is a peak at low prevalence lev-
els, corresponding to a rapid extinction of the epidemic.
A second peak occurs for larger values of prevalence.
We note that for BRN = 2 (bottom part of the figure)
the PDFs are located at low values of prevalence, they
are overlapping and the average values are increasing
with p. On the contrary, for BRN = 15 (top part of
the Figure), the PDFs are located at large values of the
prevalence, they are not overlapping and the average
values are decreasing with p. Obviously, the larger the
delay in the behavioral response, the larger the expected
magnitude at the first peak.

Figure 11 reports the PDF of the infectious preva-
lence at the second epidemic peak. As detailed before,
this is done only for the case of a large value of the
BRN (BRN = 15), in order to magnify occurrence
and detectability of the second wave. For a = 0.1
the prevalence at the second time series peak decreases
with p, whereas for BRN = 15 and a = 0.05 the his-

tograms overlap, but their location appears somewhat
nonmonotone with p.

As for the simulated PDF of the time of occurrence
of the first epidemic peak (Fig. 12 ), we note that (dis-
regarding the initial peak due to stochastic extinction)
for BRN = 15, the PDFs are well-separated with an
average peak-time decreasing in p (from 4 to 8 days),
while for BRN = 2, the PDFs largely overlap espe-
cially for longer behavioral response delays. In partic-
ular, the effects of the response delay are essentially
negligible on the timing of the first peak.

Instead, the corresponding PDFs of the time at the
second epidemic peak (still drawn for BRN = 15 only)
reveal (Fig. 13) a marked effect of the time delay in the
behavioral response.

We report in Table 3 the main summary statistics of
the PDFs shown in the previous figures.

For the sake of completeness, we report also the
PDFs of the time to epidemic extinction (Fig. 14). Still
disregarding initial stochastic extinction, it can be noted
that no relevant role was played by the delay in the
behavioral response. However, the dependency on p
and the BRN remains more complicated.

As for the epidemic final attack rate, the correspond-
ing simulated PDFs (Fig. 15), suggest—as usual—a
major role of the shape of the behavioral response
(tuned by p) for BRN = 2. For BRN = 15 a counter-
intuitive role of the delay emerges at high values of p:
for p = 10 and a = 0.05, the PDF of the final attack
rate has two nontrivial modes. One of these is the tra-
ditional one at high levels of the FAR. The second one
occurs for levels of the FAR around value 20%. This
secondmode reflects the interesting fact by which a too
delayed behavioral response cannot prevent the occur-
rence of the outbreak but, if the response is sufficiently
intense, it can halt it and bringing it to extinction.

Finally, the PDF of the number of nontrivial peaks
(Fig. 16) in the more interesting case (BRN = 15),
reveals the number of (detectable) peaks increases with
the delay of the behavioral response (that is, for a =
0.05 compared to a = 0.1).

5.2 The filtering effect

For BRN = 2, Fig. 17 compares, for a single real-
ization of the stochastic process, the simulated time
series of the information index M(t) and that of the
infectious prevalence I (t). The figure well shows
the analogy between the concept of an exponentially
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Fig. 18 Pattern of infectious prevalence in the deterministic
model for BRN = 15, and a memoryless behavioral response
with p = 1. Black curve: M50% = 200, red curve: M50% = 50,
blue curve M50% = 10

fading memory and the concept of ‘low-pass filter’
used in system control theory. Calling these quantities
as the (original) ‘signal’ (I (t)) and the ‘filtered sig-
nal’ (M(t)), it happens that the signal is noisy and
the filtered signal is smooth, for a = 0.01 and for
(a, p) = (0.1, 1), whereas in all the other cases also
the filtered signal is noisy, especially for a = 0.05. This
is a natural consequence of the fact that the ‘low-pass
frequency’ a is too close to the typical frequency of the
stochastic events of I (t). Case BRN = 15 is shown in
Appendix.

6 Concluding remarks

This article investigated the effects of agents’ behav-
ioral responses on the dynamics of stochastic SIRmod-
els for epidemic outbreaks. The agents’ behavioral
response was represented by means of an information-
dependent transmission rate specified as a function of
an appropriate information index, as first proposed in
[15,17]. In particular, agents were assumed to respond
either to the current or past prevalence of infection,
where the latter was specified according either to an
exponentially fading memory or to an acquisition-
fading memory. This resulted in a family of hybrid
stochastic models. In order to numerically simulate
specific models belonging to the family, we needed a
suitable extension of classical Gillespie algorithm. In
particular, we developed analytical formulas valid for
two classes of models.

Our analysis provides a thorough classification
of the possible outcomes of behaviorally modulated

stochastic SIR epidemics depending, besides basic
reproduction numbers, on: (i) the form and strength
of the behavioral response, (ii) the information time
lag with which this behavioral response is enacted by
individuals.

This offers a range of theoretical results. For exam-
ple, even in the absence of delays in the behavioral
response (i.e., when the agents’ response is only based
on current prevalence), the behavioral response may
substantially increase the variance of the extinction
time, thereby favoring infection persistence (especially
for highly transmissible infections). This behavior-
triggered persistencemight linkwith other factors, such
as demographics or the appearance of new variants of
the pathogen, favoring endemicity, as might sadly be
the case with COVID-19. These phenomena becomes
richer when the behavioral response is also modulated
by past information. In this case, we showed that mul-
tiple epidemic waves can result from delayed agents’
responses already in the underlying deterministic mod-
els and remain also in the stochastic formulation.

In general the topic of recurrent waves, especially
in relation to endemic infectious diseases (e.g., for
measles), has been a major topic of mathematical epi-
demiology over decades [6]. Instead, the issue of mul-
tiple waves during an epidemic outbreak has become
popular during the pandemic preparedness in the early
2000s. This started from retrospective studies on the
1918–1919 Spanish flu pandemic and developed after
the H1N1 2009 pandemic. A variety of explanations
were proposed, ranging from exogenous changes in
transmissibility [42], to policy intervention [43], to
the presence of multiple strains [44], up to behavioral
changes [45]. Recently, elegant analytical work has
stressed the role of inter-regional commuting in induc-
ingmultiple (behavior-unrelated) epidemicwaves [46].
The multiple waves observed during the COVID-19
pandemic in industrialized countries were primarily
due to the activation and relaxation of social distanc-
ing measures during the first pandemic year and to the
onset of new variants of concern during 2021 [47], but
also behavioral explanations were proposed [48].

In relation to the previous debate, the main inno-
vation of this work lies in the fact that it represents
the first general theoretical assessment of the role of
delayed behavioral responses in promoting multiple
waves in the most basic stochastic setting. This in
turn required to consider an innovative formal setting,
namely that of Stochastic Hybrid Automata, whose
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continuous component mirrors (in our case) a dis-
tributed delay/memory.

Of course, the proposedmodel isminimalistic:many
refinements can be considered. First, the model rep-
resents spontaneous individual behaviors in the sim-
plest manner, i.e., implicitly by the information index
approach [15,17]. As such, the model might also rep-
resent a situation where a government uses the same
information index to implement a policy of forced
behavior change in individuals as, e.g., a lockdown.
Modeling behavior in an explicit manner [7,15,16] can
refine such scenarios.

Further improvements might include: (i) further epi-
demiological detail, e.g., the presence of a latency
period; (ii) the effects of exogenous seasonal fluctu-
ations in transmission; (iii) the combination of individ-
uals’ behavior with governmental responses; (iv) the
spatial dimension modeled as continuous or by a dis-
cretemetapopulation approach ( [46]): it is well-known
that the metapopulation network topology can rele-
vantly impact on disease spread [7,49]; (v) the presence
of multiple pathogen strains; (vi) the possibility that,
besides the transmission rate, the behavioral response
affects also the recovery rate. ForCOVID-19 this surely
occurred, e.g., in the propensity to testing and self-
isolating by pauci-symptomatic individuals; (vii) the
modeling of the propagation of information through its
articulated interpersonal and virtual networks [49–51].
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Appendix

A Global stability of the endemic equilibrium in
the no-memory case

In this appendix we show the global stability of the
endemic equilibrium in the no-memory case K (x) =

Fig. 19 The deterministic model in the memoryless case. Effects of parameter p on the time course of infectious prevalence for
BRN = 15. Left panel: p = 2, right panel: p = 10. Black curves: M50% = 200, red curves: M50% = 50, blue curves M50% = 10
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Fig. 20 Deterministic multiple epidemic waves of infectious
prevalence for an exponentially fading behavioral response,
under BRN = 15, for different values of the memory rate a, and
of parameters p and M50% tuning the behavioral response. Left

panels: a = 0.1; right panels: a = 0.05. Upper panels: p = 1;
central panels: p = 2; lower panels: p = 10. Black curves:
M50% = 200, red curves: M50% = 50, blue curves: M50% = 10

δ(x) without imposing technical conditions. In paper
[36] , it was shown that the endemic equilibrium is
globally stable provided that F(I ) = Iβ(I ) is either
increasing or having at most an inflexion point. Here
we remove this requirement.

Since model (1)–(2) has a stable manifold the set
I = 0 it is convenient to investigate (in our case in the

set

� = {(S, I )|S ≥ 0, I > 0, S + I ≤ 1}
) an appropriately chosen topologically equivalent
dynamical system (TEDS) obtained by multiplying the
velocity field by a Dulac multiplier [52]. In our case,
we employed the following multiplier: 1/(Iβ(I )).
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Fig. 21 Deterministic multiple epidemic waves of infectious
prevalence for an exponentially fading behavioral response,
under BRN = 2, for different values of the memory rate a, and
of parameters p and M50% tuning the behavioral response. Left

panels: a = 0.1; right panels: a = 0.05. Upper panels: p = 1;
central panels: p = 2; lower panels: p = 10. Black curves:
M50% = 200, red curves: M50% = 50, blue curves: M50% = 10

The resulting TEDS reads as follows

d

dτ
S = A(I )

I
μ(1 − S) − S (35)

d

dτ
I = S − cA(I ) (36)

where we set for the sake of notation simplicity: N = 1
, A(I ) = 1/β(I ), and c = γ + μ. The rescaled time τ

is linked to the original time t by

τ =
∫ τ

0
I (t)β(I (t))dt.

Note that at the endemic equilibrium it is

μ(1 − Se) = cIe,
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Fig. 22 Exponentially fading kernel: effect of ’filtering’with
BRN = 15. Plot of I (t) (green lines) and M(t) (black lines) for
a single instance of the stochastic process. Left panels: a = 0.1,

right panels: a = 0.05. (A) and (B): p = 1; (C) and (D): p = 2;
(E) and (F): p = 10
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Fig. 23 Acquisition fading kernel:multiple epidemicwaves pre-
dicted by the deterministic model. Left panels: a = 0.1; right
panels: a = 0.05. Upper panels: p = 1; central panels: p = 2;

lower panels: p = 10. Black curves: M50% = 200, red curves:
M50% = 50, blue curves: M50% = 10

which implies that at equilibrium the Jacobi matrix J
is such that

J12 = ∂I

(
d

dτ
S

)
= μ(1 − Se)

(
A′(Ie)

Ie
− A(Ie)

I 2e

)

= c

(
A′(Ie) − A(Ie)

Ie

)
.

Thus the characteristic equation reads as follows

λ2 +
(

cA′(Ie) + 1 + μ
A(Ie)

Ie

)

λ + c
A(Ie)

Ie

(
1 + μA′(Ie)

) = 0

which cannot have positive real part roots or zero roots.
Thus, the endemic equilibrium is LAS.
Moreover, applying the Dulac–Bendixon theorem
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Fig. 24 Acquisition fading kernel:multiple epidemicwaves pre-
dicted by the stochastic model for BRN = 15. Left panels:
a2 = 0.1; right panels: a2 = 0.05. Upper panels: p = 1;

central panels: p = 2; lower panels: p = 10. Black curves:
M50% = 200, red curves: M50% = 50, blue curves: M50% = 10
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Fig. 25 Acquisition fading kernel: multiple epidemic waves
predicted by the stochastic model for BRN = 2. Left panels:
a2 = 0.1; right panels: a2 = 0.05. Upper panels: p = 1;

central panels: p = 2; lower panels: p = 10. Black curves:
M50% = 200, red curves: M50% = 50, blue curves: M50% = 10
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Fig. 26 Acquisition fading kernel. Histograms for p = 1, 2, 10 and M50% = 50 of the PDF of the prevalence at the first epidemic
peak. (A) (BRN, a2) = (15, 0.1), (B) (BRN, a2) = (15, 0.05); (C) (BRN, a2) = (2, 0.1). (D) (BRN, a2) = (2, 0.05)

Fig. 27 Acquisition fading memory kernel. Histograms for p = 1, 2, 10 and M50% = 50 of the PDF of the prevalence at the second
epidemic peak. (A) (BRN, a2) = (15, 0.1), (B) (BRN, a2) = (15, 0.05)
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Fig. 28 Acquisition fading memory kernel. Histograms for p = 1, 2, 10 and M50% = 50 of the PDF of the time of the first epidemic
peak. (A) (BRN, a2) = (15, 0.1), (B) (BRN, a2) = (15, 0.05); (C) (BRN, a2) = (2, 0.1). (D) (BRN, a2) = (2, 0.05)

Fig. 29 Acquisition fading memory kernel. Histograms for p = 1, 2, 10 and M50% = 50 of the PDF of the time of the second epidemic
peak. (A) (BRN, a2) = (15, 0.1), (B) (BRN, a2) = (15, 0.05)
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Fig. 30 Acquisition Fading Kernel. Histograms for p = 1, 2, 10 and M50% = 50 of the PDF of infection extinction times. (A)
(BRN, a2) = (15, 0.1), (B) (BRN, a2) = (15, 0.05); (C) (BRN, a2) = (2, 0.1). (D) (BRN, a2) = (2, 0.05)

yields

div

(
d

dτ
S,

d

dτ
I

)
= −1 − A(I )

I
− cA′(I ) < 0

It easily follows that the endemic equilibriumof system
of (35)–(36) is GAS in the set�. Due to the topological
equivalence, even the endemic equilibrium of model
(1)–(2) is GAS in �.

B The deterministic Memoryless case

B.1 Effects of M50% in the deterministic case with
p = 1

The output of the deterministic model for p = 1 is
reported in Fig. 18, where the effects of three different
values of parameter M50% are shown.

B.2 The effects of the shape of the response function
in the deterministic case

For sake of comparison with our stochastic simulation,
in Fig. 19 the behavior of the deterministic model in
the memoryless case is reported for two values of p.

C Exponentially fading kernels and multiple
deterministic epidemic waves

Here we illustrate the effects of a delayed behavioral
response in the deterministic case, for BRN = 15
(Fig. 20) and BRN = 2 (Fig. 21) and for distinct values
of p (p = 1, 2, 10).
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Fig. 31 Acquisition fading memory kernel. Histograms for p = 1, 2, 10 and M50% = 50 of the PDF of the final attack rate. (A)
(BRN, a2) = (15, 0.1), (B) (BRN, a2) = (15, 0.05); (C) (BRN, a2) = (2, 0.1). (D) (BRN, a2) = (2, 0.05)

Fig. 32 Acquisition Fading memory kernel. Histograms for p = 1, 2, 10 and M50% = 50 of the PDF of the number of peaks. (A)
(BRN, a2) = (15, 0.1), (B) (BRN, a2) = (15, 0.05)
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D Exponentially fading Memory: the filtering
effect for BRN = 15

Figure 22 illustrates the effect of ‘filtering’ with
BRN = 15 induced by an exponentially fading ker-
nel.

E Multiple stochastic epidemic waves: the case of
the acquisition fading kernel

In this section, we will illustrate the results of the sim-
ulations in case of acquisition fading kernel. Since the
acquisition phase is short, we set a1 = 1, whose char-
acteristic time is T1 = 1. On the contrary, the fading
phase is much slower so we considered two values:
a2 = 0.1, i.e., T2 = 10 >> T1, and a2 = 0.05, i.e.,
T2 = 20 >> T1.

E.1 Deterministic and stochastic multiple waves

Deterministic simulations for (a1, a2) = (1, 0.1) and
(a1, a2) = (1, 0.0.05) are shown, respectively, in left
and right panels of Fig. 23, where BRN = 15. The
deterministic model suggests that multiple epidemic
waves can occur for BRN = 15 for large populations.
Similarly, multiple waves are also observed for BRN =
2 (not shown).

Patterns of multiple waves are also observed in the
stochastic model, for both BRN = 15 (Fig. 24) and
BRN = 2 (Fig. 25).

E.2 Statistical assessment

Figure 26 shows the prevalence at the first peak. For
BRN = 15 it is interesting to note as the location of
the PDFs depends nonmonotonically on p.

As far as the prevalence at the second peak, Fig. 27
shows that for a2 = 0.1 the PDF for p = 1 overlaps
with the PDF for p = 2, which for a2 = 0.05 moves
rightward and overlaps partially with the PDF for p =
10.

As far as the time of the first peak, Fig. 28 shows that
the PDFs seemmixtures between an unimodal PDF and
an exponential PDF (faster decaying for RB N = 15 ,
slower for BRN = 2).

As far as the time of at the second peak, Fig. 29
shows that for BRN = 15 the average decreases with
p and also the variance.

The distribution of the time at epidemic extinction
time is of interest (seeFig. 30) . Indeed for (BRN, a2) =
(15, 0.1) the location of the PDFs is increasing with p,
but the PDF for p = 10 has also an appreciable earlier
mode. On the contrary, for (BRN, a2) = (15, 0.05) all
the three PDF have an earlier peak, which in the case
p = 10 is the largest one. For BRN = 2 the PDFs over-
laps are mixtured between unimodal and fastly decay-
ing exponentials.

Finally, even the distribution of the final attack rates
is of some interest (Fig. 31). Indeed, for (BRN, a2) =
(15, 0.1) the PDF are increasing with p, but for p = 10
the PDF has a smaller but appreciable earlier mode.
For (BRN, a2) = (15, 0.05), all the three PDFs have
an intermediate mode, and for p = 10 this mode is the
largest one.

Finally, Fig. 32 shows as p is a key factor influencing
the average and shape of the histogram of main peaks.
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