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Abstract Data-driven, model-free analytics are nat-
ural choices for discovery and forecasting of complex,
nonlinear systems. Methods that operate in the sys-
tem state-space require either an explicit multidimen-
sional state-space, or, one approximated from available
observations. Since observational data are frequently
sampled with noise, it is possible that noise can cor-
rupt the state-space representation degrading analyti-
cal performance. Here, we evaluate the synthesis of
empiricalmodedecompositionwith empirical dynamic
modeling, which we term empirical mode modeling,
to increase the information content of state-space rep-
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resentations in the presence of noise. Evaluation of a
mathematical, and, an ecologically important geophys-
ical application across three different state-space repre-
sentations suggests that empirical mode modeling may
be a useful technique for data-driven,model-free, state-
space analysis in the presence of noise.
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cal dynamic modeling · Empirical mode modeling ·
Data-driven analysis · Nonlinear systems

1 Introduction

Evolution of science and technology is episodically
redirected as our understanding improves. For exam-
ple, the late 19th to mid-20th Century recognition of
nonlinear dynamical systems as not purely stochastic,
or, purely deterministic was both troubling and oppor-
tune. The subsequent acknowledgment of emergent
behaviors as a property of such systems can be con-
sidered such a redirection[1]. Progress along this front
established dynamical systems theory as a new branch
of science [2]. Accordingly, it is now well-accepted
that canonical statistical and parametric equation-based
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models applied to nonlinear systems, which turn out
to be nearly ubiquitous in complex technologies and
nature, are often problematic [3].

Currently, machine learning is advancing new direc-
tions in data and system analysis. Techniques such
as manifold learning [4] and diffusion maps [5] rely
on a data-driven, inductive approach, wherein the
data-itself reveals underlying dynamics and behav-
ioral complexities, rather than a presumptive, model-
based deductive analysis. Empirical dynamicmodeling
(EDM) is one such paradigm, having developed into a
useful toolset for system analysis and forecasting [6–
10].

EDM operates in multidimensional state-space,
either from an explicit multidimensional data set, or,
from a diffeomorphic reconstruction of the state-space,
for example, by application of Takens embedding the-
orem [11,12]. EDM is not based on parametric pre-
sumptions, fitting statistics, or, specifying equations;
representing a data-driven approach amenable to non-
linear dynamics as noted by DeAngelis [3]. Particu-
lar strengths of EDM are time series forecasting, and,
identification of intervariable interactions and causal
relationships between system variables. The unfamil-
iar reader is referred to the lucid EDM introduction in
reference [13].

Since these methods are data-driven, it is possible
that observational noise can interfere with accurate
state-space representations, degrading inference and
forecast skill. We therefore seek methods to improve
state-space representations derived from noisy obser-
vations, and here, turn to empirical mode decomposi-
tion (EMD).

EMD decomposes oscillatory signals into scale-
dependent modes termed intrinsic mode functions
(IMF) without constraints of linearity or stationar-
ity as presumed by Fourier, wavelet or eigende-
composition. Application of the Hilbert transform
to IMFs provides time-dependent instantaneous fre-
quency estimates, with the combination of EMD and
IMF Hilbert spectra constituting the Hilbert-Huang
transform (HHT) [14]. IMFs are particularly astute at
isolating physically-meaningful dynamics [14], and,
their data-driven isolation of noise is a cornerstone of
EMDutility [15]. An introduction and review are found
in references [14] and [16].

Sincedynamics of interest are often low-dimensional
and contained within a bounded state-space, univari-
ate projections of state-space trajectories are often

expressed as oscillatory signals. EMD provides a
model-free and natural way to filter noise and isolate
physically relevant modes of oscillatory time series,
while EDM enables data-driven state-space metrics for
forecasting and quantifying cross-variable interactions.

Here,we combine themodel-freemodal decomposi-
tion of EMDwith themultivariate state-space represen-
tation inherent in EDM to improve forecasting and dis-
covery in the presence of noisy or confounded observa-
tions. We term this empirical mode modeling (EMM).

We demonstrate the utility of this synthesis in two
distinct applications. First a nonlinear, chaotic mathe-
matical system, theRössler attractor, and second, a non-
linear geophysical system with ecological importance,
salinities in Florida Bay within Everglades National
Park.

1.1 Model fitness and application

FollowingGranger [17], we adopt a position thatmodel
predictability reflects the information a model contains
regarding a dynamical system. We therefore use model
fidelity expressed as the Pearson correlation ρ between
observations and model predictions as a fitness metric.
Note that the models themselves can be equation-free
and nonlinear, and, that other metrics such as mutual
information are equally valid.

When models are used in an operational forecast
system it is typical to assess model fitness on out-of-
sample data, that is, the model is trained on a subset
of available data with fitness assessed on a prediction
(validation) set disjoint from the training data. Out-of-
sample prediction characterizes model stability and the
ability to generalize to untrained data.

In-sample models, where the training and pre-
diction sets overlap, are informative when discover-
ing/assessing the ability of the model to represent sys-
tem dynamics. For example, as a function of state-
space variables and their interactions, or, in response to
noise/confounded states. We use both formats to assess
model fitness and dynamical information content.

1.2 Model representation and alternatives

The application of EMM presumes the state-space is
adequately represented.When approximating the state-
space from time series observations the length of data
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as well as it’s sampling interval enforce constraints on
state-space fidelity to the underlying dynamics [18].
Munch et al. [19] examine these issues with specific
relevance to EDM.

Another keyparameter is the dimensionof the recon-
structed state-space. The choice of the “correct” dimen-
sion is fundamental, as an underestimated dimension in
the reconstructionmay not adequately resolve the state-
space. This can result in the appearance of a random
component in the lower-dimensional dynamics, even
when the data is purely deterministic. As noted below,
an initial step in EDM is to determine the dimensional-
ity that best-represents the data in the state-space recon-
struction. The reader is referred to Chang et al.[13] for
an introduction and demonstration. This is exemplified
in the analysis of hypersalinity in Sect. 4, shown explic-
itly in “Appendix 1” (Sect. 1).

We also note that the synthesis of EMD with other
operators can provide an alternative to EDM for the
dynamical system analysis. For example, a stochastic
evolution operator may serve to alleviate constraints on
data representation [20,21].

2 Empirical mode modeling

The basis of EMMis to create amultidimensional state-
space from empirical mode decomposition of obser-
vational time series. The resultant IMFs, or subsets of
IMFs representing the system state-space, are then ana-
lyzed within the empirical dynamic modeling frame-
work. The reader is referred to reference [16] for details
of empirical mode decomposition, and reference [13]
for empirical dynamic modeling.

Generically, EMMcan be implemented with the fol-
lowing steps:

1. Determine the signal-to-noise ratio (SNR) of the
time series. If the SNR is less than 3 dB, EMMmay
provide improvements in state-space representation
and forecasting.

2. Apply empirical mode decomposition to the time
series creating a set of intrinsic mode functions
(IMFs). This can be done for multiple time series.

3. Optionally select IMFs that best represent the
dynamics. This is an ongoing area of research.
Here, we use two methods:

(a) Multiview embedding as described in reference
[10], selecting the set of IMFs that maximize
model predictability as exemplified in Sect.
3.2.2.

(b) Select IMFs based on spectral filtering, or,man-
ual inspection to remove high frequency noise
or low frequency oscillations external to the
dynamics. This is shown in Sect. 4.1.

4. Apply empirical dynamic modeling using the
selected IMFs as amultivariable state-space.Appli-
cation of EDM to multivariable state-space is
described in reference [8]. EDM analysis can be
performed using simplex [6], sequential locally
weighted global linear maps (S-maps) [7], or con-
vergent cross mapping [9].

3 Rössler dynamics

The Rössler attractor is a three-dimensional coupled
dynamical system known to exhibit chaotic dynamics
[22]. Our implementation is defined as:

dx

dt
= −y − z (1)

dy

dt
= x + ay (2)

dz

dt
= b + z(x − c) (3)

with constants a = 0.4, b = 0.4, c = 4, initial state values
x0 = 1, y0 = 0, z0 = 1, time increment = 0.01, and time
span T = [0-500]. We then subsample the integrated
solutions of equations 1 - 3 at a time increment of 0.1,
and ignore the time span from 0 to 200 resulting in a
3-D time series of 3000 points from time 200 to 500.
Multispectral noise (N ) is generated following refer-
ence [23] as a combination of brown and pink noise:

N = A (B pn + C bn) (4)

Table 1 Rössler signal-to-noise ratios

Noise A 1 2 4 8 12 16 24 32 48 64

SNR dB 10.08 7.00 4.12 1.07 –0.73 –1.89 –3.71 –4.94 –6.69 –7.95
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Fig. 1 State-space time series and trajectories of Rössler dynamics with multispectral noise

where pn is “pink” noise with power spectral density
1/ f , bn is low frequency “Brownian” noise with power
spectrum1/ f 2, where f is frequency, and, noise ampli-
tude A ranges from 0 to 64; B = 0.5,C = 1. Correspond-
ing signal-to-noise ratios are listed in Table 1.

Figure 1 shows four examples of the Rössler state-
space with different levels of additive noise. It is clear
that as noise increases, trajectories in the state-space
become corrupted and entangled, and, we expect that
methods such as manifold learning and EDM that rely
on state-space representations of system dynamics can
perform poorly as noise increases.

3.1 Empirical mode decomposition

The first step in EMM is to obtain IMFs of the obser-
vation time series. Figure 2 shows the Rössler vari-
able x and it’s empirical mode decomposition IMFs
at four values of additive multispectral noise ampli-
tude A from equation 4. We can see that IMFs partition
timescale variance into modes with decreasing ranges
of instantaneous frequency, high frequencies in the low-
order modes and lower frequencies in the higher-order
modes. We will leverage this partition as a data-driven
filter to select IMFs that better represent the underlying
dynamics.

3.2 Empirical dynamic modeling

Empirical dynamicmodelingprovides state-space fore-
casting and cross-variable analysis, here, we use the
simplex algorithm to project univariate state-space
dynamics to assess the fitness of state-space representa-
tions derived from traditional time-delay embeddings,
and, from IMFs of observed variables. IMFs are com-
puted over the entire time series, and, partitioned into
training library and prediction sets in the same manner
as any EDM candidate time series. The forecast vari-
able is z from Eq. 3, with forecasts made from three
different state-space representations consisting of vec-
tors [x, y], [x, y, z], or their IMFs.

The simplex algorithm is a state-space projection
from a simplex of nearest neighbors in the training
data (library) closest to the state-space of the prediction
point. The simplex consists of E + 1 points, where E
is the embedding dimension in the case the state-space
is a time-delay embedding, or, simply the dimension
of the multivariate state-space. Reference [6] describes
the simplex algorithm.

3.2.1 Model comparison

We examine four different EDMmodels (Table 2). The
first is a full variable state-space of [x, y, z] (E = 3)
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Fig. 2 Rössler state-space
variable x time series with 3
instances of additive noise,
and the resultant IMFs

Table 2 Rössler EDM State-space Variables

State-space Variables E

Multivariable x, y, z 3

Multivariable x, y 2

Takens time-delay x, y 6

Multivariable I MFx , I MFy NIMF (12-18)

with complete information. This serves as a reference.
Second, a multivariable [x, y] (E = 2) state-space
representing a naive predictor without information of
the forecast variable z. Third, a Takens time-delay
state-space of variables [x, y] with embedding dimen-
sion Ee = 3 resulting in a state-space dimension of
E =6, and fourth, multivariate state-space of all IMFs
of [x, y]. Here, the dimension E is equal to the number
of IMFs.

Since we are interested in the ability of these differ-
ent representations to model the underlying dynamics,

all models use the target time series of noiseless vari-
able z, and perform simplex projection at a forecast
interval of Tp = 0. All models are evaluated in an out-
of-sample prediction with the training library consist-
ing of points [1-2000], and prediction set [2001-3000].

Figure 3 shows ensemble simplex projection results
as function of signal-to-noise ratio for the four state-
space representations over 1000 noise realisations at
each noise amplitude. Here, we find the naive pre-
dictor x, y → z incapable of meaningful prediction,
while the Takens time-delay embedded model (Tak-
ens x, y → z) approaches that of the reference model
(x, y, z → z) at high signal-to-noise ratios. At high
SNR, above approximately 3 dB, theTakensmodel out-
performs EMM based on IMFs, however, as SNR falls
below 3 dB EMM outperforms the time-delay repre-
sentation providing information recovery closer to the
full-information referencemodel. ASNRof 3 dB trans-
lates to signal power a factor of 2 greater than the noise
power.
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Fig. 3 Pearson correlation and RMSE of simplex projected
Rössler variable z as a function of noise over 1000 noise realisa-
tions at each noise amplitude. Lines are mean values, error bars
± standard error

As noted, at SNR greater than 3 dB, EMM performs
slightly worse than the time-delay embedding. It may
be that the lower dimensional time-delay embedding
provides a more compact state-space simplex that bet-
ter represents state evolution when noise is low. Here,
the time-delay state-space is 6 dimensional, while the
EMM multivariate space is 12 dimensional.

An alternative EDM algorithm: Sequential Locally
Weighted Global Linear Maps (S-map) [7] applies
a localisation kernel to the library of states, rather
than using a fixed number of k-nearest-neighbors to
define a simplex. If dimensional inflation of the sim-
plex is the cause of degraded performance at high SNR,
S-map based EMM may address this issue. However,
the goal of EMM is to improve state-space models in
the presence of noise.

These results suggest that for the data examined,
when noise power is more than 1/2 the signal power,
even an indiscriminate use of IMFs as EDMstate-space
variables instead of time-delay embedding can improve

cross-variable projection x, y → z, evincing a more
inforamtic representation of the underlying dynamics.

3.2.2 IMF selection

It was observed that low order IMFs capture high fre-
quency noise not present in the underlying Rössler
dynamics, and, that use of all IMFs as EDM state-
space variables improves predictability in the presence
of noise. It is then natural to ask whether subsets of
IMFs can provide additional gains in state-space repre-
sentation and model fidelity, or, provide equitable pre-
dictability from a lower-dimensional representation.

One method to identify noise-dominated IMFs is
to examine the variance of IMF instantaneous frequen-
cies (IF) since high variance in instantaneous frequency
is indicative of noise, while low variance suggests a
relatively stable oscillatory mode reflective of low-
dimensional dynamics. The idea being to discard IMFs
with instantaneous frequency variance above some
threshold. However, this does not set a useful bound
on low frequency IMFs, and requires a data-specific
threshold selection.

Following the model agnostic, data-driven approach
wherein model predictability serves as a metric of
information content, Ye & Sugihara suggested multi-
view embedding as an EDM algorithm to select maxi-
mally informative state-space variables [10].Multiview
embedding evaluates model fidelity across all combi-
nations of a set of candidate variables, selecting the D-
dimensional subset with the highest predictive skill. In
standardmultiview embedding, the selection process is
performed with in-sample simplex projection, the top
ranked variables used in an out-of-sample prediction
for the final model output. However, in-sample ranking
poses a problem with IMFs since low-frequency IMFs
approach, and eventually express monotonic functions.

Simplex projection is a nonlinear state-space map-
ping from state-space variables to a target without
constraint on the variables. If the variables support a
unique mapping across their domain, then good in-
sample predictability can be achieved. This means that
arbitrary, non-constant, non-oscillatory functions that
provide a uniquemultivariablemapping can bemapped
in-samplewith goodfidelity to the target. Since low fre-
quency IMFs have very little or no oscillatory content,
they are likely to be selected as in-sample variables
with high predictive skill. Normally, candidate state-
space variables are oscillatory or physically relevant,
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Fig. 4 Simplex projection skill of the most predictive IMFs of
one noise realisation as a function of D, the number of IMFs.
Dashed lines are the ± standard error envelopes of the 1000
noise ensembles of the reference model and state-spaces using
all IMFs

and this is not a concern. Here, we use all available
IMFs, and address IMF selection by modifying stan-
dard multiview embedding to use out-of-sample pre-
dictability as the metric for ranking top predictors.

The modified multiview embedding is performed
using the complete set of IMFs from variables x and
y with the training library of points [1-2000], predic-
tion set [2001-3000], and forecast interval TP = 0. The
embedding dimension is set to E = 1 so that the IMFs
are not time-delay embedded, but used explicitly as
state-space variables. The most predictive combination
of D IMFs are then selected to create a multivariable
state-space.

Figure 4 plots simplex projection skill of the most
predictive IMFs determined by multiview embedding
for state-space dimensions of D from 3 to 8, com-
paring them to the ± standard error envelopes of the
1000 noise ensembles of the reference model and state-
spaces using all IMFs.At SNR immediately below3dB
the predictive skill of EMMwith state-space dimension
of D = 6 has converged to match the upper envelope
of the full IMF state-space ensembles. At SNR below
0 (noise power exceeds signal power) the D = 6 pro-
jection exceeds that of the full IMF state-space.

To summarise, an E = 3 dimensional time-delay
embedding on variables x and y to simplex project z
from a state-space with dimension D = 6 matches that
of the fully informed reference model ([x, y, z] pro-
jecting z) at zero noise. As noise increases the Tak-
ens state-space model degrades in predictive skill, and,

Fig. 5 Top: Aerial photograph of the southern Everglades and
Florida Baywith hydrographicmonitoring stations. Bottom: Sta-
tionwater levels (stage), salinity, and station-averagedwater level
and salinity over 16 years

both an indiscriminate use of all IMFs from noisy x
and y, as well as a selected subset of D = 6 IMFs
outperforms the Takens model at SNR less than 3 dB.
We infer that EMM can provide improved state-space
representations in the presence of noise.

4 Salinity in Florida Bay

Coastal South Florida is fringed by national parks
including Biscayne and Everglades National Parks.
Florida Bay is situated between the southern edge of
the Florida peninsula and Florida Keys, is part of Ever-
glades National Park, and, is an ecologically impor-
tant and proliferent multispecies marine and estuar-
ine nursery. Hydrologically, Florida Bay is interest-
ing in that annual evaporation exceeds rainfall, result-
ing in widely varying coastal salinities as shown in
Fig. 5. Hypersalinity is a seasonal occurrence, with
episodic extremes surpassing 50 psu. These extreme
hypersalinity events are associated with ecological col-
lapse [24,25]. Clarification of influence variables and
the ability to forecast salinities will directly inform
ecosystem resource management.
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Fig. 6 Simplex in-sample
projections of GB salinity
for the year 2016 at different
prediction intervals Tp for
the EMM, multivariable,
and Takens time-delay
state-space representations

Our objective is to forecast salinity in Garfield Bight
(GB), assessing predictive performance of EDM sim-
plex using three different state-space representations
described below. The Florida Bay data consist of 6332
days of mean water level (stage), salinity, evaporation,
and rainfall. The lower panel of Fig. 5 illustrates a
nonlinear inverse relationship between salinities and
coastal marsh water levels signifying that water lev-
els in the southern Everglades are a prime determinant
of coastal salinities. Other causal variables are known
to include evaporation, which is related to temperature
and solar radiation, rainfall, water levels in the bay, and,
previous salinity.

An initial step in EDM analysis is to examine the
dimensionality and nonlinearity of the data [13], here,
indicating that the data are nonlinear, and, a Takens
time-delay embedding dimension of 5 provides good
model predictability. Results of this data discovery are
presented in “Appendix 1” (Sect. 1).

4.1 State-space models

The first state-space model is a Takens E = 5 time-
delay embedding of GB salinity. Second, a multivari-

ate state-space is constructed from the 5 variables GB
salinity, stage, evaporation, rainfall, and, coastal land
water level at station S16. These variables are known
influencers of salinity as determined by the Florida Bay
Assessment model [26]. The third state-space consists
of selected IMFs of GB salinity, water level, evapo-
ration, and coastal land water level at S16. IMFs are
shown in “Appendix 1” (Sect. 1).

4.1.1 Model comparison

The comparative state-space analysis defines an in-
sample data set as days [1-6330] for the training library,
and days [5967-6275] as the prediction set. This predic-
tion set corresponds to the period 2016-01-01 to 2016-
11-04. The EMM model uses IMFs 5,6,7 of the salin-
ity and stage variables, and IMFs 6,7,8 for S16 water
level and evaporation (Fig. 12). These IMFs ignore
high frequency, noise dominated components, as well
interannual variations not deemed important on daily
timescales.

Figure 6 plots a series of in-sample GB salinity pro-
jections for the three models over a sequence of pre-
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diction horizons Tp. It is worth reinforcing that these
are not predictions per-se, since the model is purely in-
sample, rather, we seek to evaluate internal model rep-
resentations of the dynamics. Here, we see that while
the Tp =1 projections are good for all three models, the
EMM model misses high frequency variations evident
in the January toMarch and September to October time
frames. As prediction interval increases, these high fre-
quency contributions seem to dominate themultivariate
and time-delay embedding projections, significantly
degrading accuracy, while the EMM model maintains
a high fidelity internal representation of the dynamics.

4.2 Forecasting

We now turn to the question of whether EMM can be
useful in an out-of-sample regime which is requisite
for an applied forecast system. Simplex forecasts are
made with the three state-space models from a training
library consisting of points [1-5475] expanded in 30
day increments starting at day 5475 (2014-08-27) until
the end of the record. Predictions are made at forecast
intervals of 1 to 56 days in 7 day increments, starting at
one day past the end of the training library. This 30-day
movingwindowprovides 28 samples at each prediction
interval. Themean RMSE over each prediction interval
is shown in Fig. 7 indicating that the EMM IMF state-
space provides generally more accurate predictions of
salinity than themultivariate and time-delay state-space
models.

Fig. 7 Root mean square error (RMSE) of GB salinity out-of-
sample simplex forecasts for the year 2016 at different prediction
intervals Tp for the EMM, multivariable, and time-delay state-
space representations

4.2.1 Comparison to numerical model

As noted earlier, salinity in coastal Florida Bay is
an ecologically important factor, linked to the onset
of widespread ecological collapse [24,25]. In 2015,
environmental conditions aligned to produce historic
record maximum salinities in excess of 70 psu (sea-
water is nominally 35 psu) followed by widespread
sea-grass mortality and food-web disruption. The abil-
ity to forecast such events, or to attribute causal
variables, provides actionable information for natu-
ral resource managers. Accordingly, equation-based
physical models have been developed to explore these
issues, and, the Bay Assessment Model (BAM) is one
of the latest and best performing salinity models [26].
Here, we compare BAM and EMM forecasts for the
2015 hypersalinity event.

EMM forecasts are out-of-sample based on progres-
sive training library and prediction horizon times. The
training library starts with days [1-5721]. Predictions
are made for 121 days starting at day 5722 (2015-5-1)
over a range of prediction horizons Tp from 1 to 21
days. After each set of predictions, the training library
end day and prediction start day are incremented by 1
day.

Figure 8 presents comparisons of theEMMforecasts
with BAM results, where we note that BAM fails to
capture the extreme hypersalinity event of 2015. EMM
forecasts provide accurate salinity predictions at Tp =
1 with good forecasting of extreme salinity. Forecasts
remain reasonably good at Tp = 3, having lost good
fidelity at Tp =7, but still outperforming the numerical
model. This suggests that the method of progressive
EMM projections at Tp =1 are good candidates for an
operational forecast system.

5 Conclusion

The 21st Century revolution in data collection and anal-
ysis has fundamentally changed our ability to infer rela-
tionships and dynamical behavior of complex systems.
A powerful corollary is the emergence of data-driven,
model-free analytical techniques where presumptions
and models are not fit to observations, but where the
data itself is represented in a state-space facilitating
the discovery of dynamical relationships enabling state
forecasting.

Inevitably, observational data are intertwined with
noise, with potential to disrupt accurate state-space

123



2156 J. Park et al.

Fig. 8 Salinity forecasts in
Garfield Bight during the
2015 hypersalinity event.
a–d EMM forecasts (red)
with observed data (blue)
and results from the Bay
Assessment Model (green).
e EMM forecast error for
different prediction horizons
Tp . f) EMM RMS error over
the prediction period May
1-August 31, 2015 as a
function of forecast interval
Tp

representations. Such disruptions motivate us to sug-
gest empirical mode modeling (EMM), a synthesis of
empirical mode decomposition (EMD) and empirical
dynamicmodeling (EDM).As the names suggest, these
are data-driven, model-free techniques with potential
for nonlinear dynamical analysis. EMM uses EMD
intrinsic mode functions (IMF) as state-space vectors
in the EDM framework. Since IMFs naturally decom-
pose time series into physically relevant modes, they
are well-suited for isolation and removal of noise.

EMMwas assessed by application to a synthetic data
set with controlled SNR, and, it was found that for high
SNR state-spaces EMM as implemented here does not
improve projection skill. However, as SNR falls below
3 dB EMM is found to improve model predictability
and information content of the state-space, leading us
to anticipate that noise-dominated signals can benefit
from EMM.

Application to a geophysical data set composed of
inherently noisy data found that EMM provided supe-
rior forecasting ability in comparison to time-delay
or multivariate state-space representations. Further,

the EMM representation outperformed the best avail-
able numerical model in predicting the 2015 hyper-
salinity event in Garfield Bight of Florida Bay, an
extreme occurrence without precedent in the observa-
tional record.

Collectively, this work indicates that EMM can be a
useful technique to improve state-space representations
in the presence of noise with signal-to-noise ratios less
than 3 dB. However, the 3 dB (half power) ratio may be
data-specific, this is an area where further investigation
is warranted.

Although this initial implementation and assessment
of EMM seems promising, there are inherent limita-
tions, and, avenues for improvement. The primary lim-
itation is that EMD is not applicable to non-oscillatory
signals. Time series such as neuronal spike trains, rain-
fall, or other discrete, Poisson process dynamics will
not be amenable to EMM based on EMD IMFs. This
might be addressed by replacing the EMD IMF with
a modal decomposition that captures non-oscillatory
time-dependence, for example, a discretewavelet trans-
form.
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Fig. 9 Out-of-sample simplex model correlation for Florida
Bay station GB salinity as a function of time-delay embedding
dimension. Different curves are based on different library sizes,
expressed as a percentage of the total data size. The maximum
library index is 5000, predictions are over days 5001-6300

As mentioned earlier, a presumption of EMM is that
dynamically-relevant IMF’s have been selected from
the EMD. In cases where the IMF selection excludes
system dynamics, there is potential to miss dynamical
features of interest. This is an on-going area of inves-
tigation.

Regarding improvements, investigating methods to
optimally select IMFs to avoid noise, or, to maximize
cross-variable information assessments are warranted.
Here, we have relied on EDM multiview embedding.
Second, EMD has been extended beyond the orig-
inal decomposition algorithm used here. For exam-
ple, ensemble empirical mode decomposition (EEMD)
has been found to mitigate mode-mixing and improve
physical significance of modes [27]. EMD has also
been extended into hybrid machine learning paradigms
[28,29] and multivariate implementations [30].

Another obvious exploration is to assess comple-
mentary mixed embeddings as a state-space represen-
tation. For example, combinations of Takens time-
delay embedded vectors with IMFs, and, with multi-
variate observations. Yet another is to use other nonlin-
ear modal decompositions such as the discrete wavelet
transform either in-place of, or, as a complement to
IMFs. Finally, the use of sequential locally weighted
global linear maps (S-maps) [7] may provide improved
state-space representation and forecast skill.
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Fig. 12 EMD IMFs of variables influencing Garfield Bight salinity. a Salinity. b Water level. c Coastal land water level. d Evaporation
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Appendix 1: Florida Bay salinity data discovery

Application of EDM to a dataset is predicated on
assessing whether the underlying dynamics are state-
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dependent (nonlinear), and if so, estimating an embed-
ding dimension to use if univariate data are to be
time-delay embedded. A primer on EDM analysis can
be found in [13].

The Florida Bay data consist of 6332 daily values
(September 1 1999 though December 31 2016). We
use days 1-5000 as the training (library) set, and days
5001–6300 as the prediction.

Figure 9 shows simplex prediction skill as a func-
tion of Takens embedding dimension forGarfieldBight
(GB) salinity. Predictions aremade at a forecast interval
of Tp = 1 timestep ahead. This suggests that embed-
ding dimensions in the range of 2-6 provide the best
model fidelity, and that the underlying dynamics of the
salinity are low-dimensional.

Figure 10 presents simplex prediction skill as a func-
tion of forecast interval Tp at different embedding
dimensions E . The saturation of predictability as E
approaches 5 indicates that a dimension of 5 can be a
reasonable choice for EDM analysis of this data. The
decline in predictability as Tp increases is consistent
with dynamics of a nonlinear system.

Interpreting nonlinearity as state-dependence [7],
the EDM s-map algorithm allows one to assess non-
linearity with examination of predictive skill as a func-
tion of state-space linear localization (θ ). Figure 11
shows this assessment for the GB salinity data, indicat-
ing a weak, but robust state-dependence, again indica-
tive that the salinity dynamics are nonlinear.

Figure 12 presents EMD IMFs of physical variables
influencing salinity inGarfieldBight, Florida Bay. Low
order, high frequency IMFs are considered noise dom-
inated and not used as EDM state-space vectors. High
order, low frequency IMFs are also not used as state-
space variables.

References

1. Anderson, P.W.: More is different. Science 177(4047), 393–
396 (1972). https://doi.org/10.1126/science.177.4047.393

2. See for example: Chaos: An Interdisciplinary Journal
of Nonlinear Science, American Institute of Physics
(AIP), ISSN 1054-1500, 1089-7682. https://aip.scitation.
org/journal/cha; Complex Systems, Complex Systems
Publications, Inc., ISSN 0891-2513. https://www.
complex-systems.com/; Physical Review E, American
Physical Society, ISSN 2470-0045, 2470-0053 https://
journals.aps.org/pre/

3. DeAngelis, D.L., Yurek, S.: Equation-free modeling unrav-
els the behavior of complex ecological systems. PNAS
112(13), 3856–3857 (2015). https://doi.org/10.1073/pnas.
1503154112

4. Lin, B., He, X., Ye, J.: A geometric viewpoint of mani-
fold learning.Appl. Inf. 2, 3 (2015). https://doi.org/10.1186/
s40535-015-0006-6

5. Coifman, R., Stéphane, L.: Diffusion maps. Appl. Comput.
Harmon. Anal. 21(1), 5–30 (2006). https://doi.org/10.1016/
j.acha.2006.04.006

6. Sugihara, G., May, R.: Nonlinear forecasting as a way
of distinguishing chaos from measurement error in time
series. Nature 344, 734–741 (1990). https://doi.org/10.
1038/344734a0

7. Sugihara, G.: Nonlinear forecasting for the classification of
natural time series. Philos. Trans. Phys. Sci. Eng. 348(1688),
477–495 (1994)

8. Dixon, P.A., Milicich, M., Sugihara, G.: Episodic fluctu-
ations in larval supply. Science 283, 1528–1530 (1999).
https://doi.org/10.1126/science.283.5407.1528

9. Sugihara, G., May, R., Ye, H., Hsieh, C., Deyle, E., Fogarty,
M., Munch, S.: Detecting causality in complex ecosystems.
Science 338, 496–500 (2012)

10. Ye, H., Sugihara, G.: Information leverage in interconnected
ecosystems: overcoming the curse of dimensionality. Sci-
ence 353, 922–925 (2016)

11. Takens, F.: Detecting strange attractors in turbulence. In:
Rand, D.A., Young, L.-S. (eds.) Dynamical Systems and
Turbulence. Lecture Notes in Mathematics, vol. 898, pp.
366–381. Springer-Verlag, Berlin (1981)

12. Deyle, E., Sugihara, G.: Generalized theorems for nonlinear
state space reconstruction. PLoS ONE 6(3), e18295 (2011).
https://doi.org/10.1371/journal.pone.0018295

13. Chang, C., Ushio, M., Hsieh, C.: Empirical dynamic mod-
eling for beginners. Ecol. Res. 32, 785–796 (2017). https://
doi.org/10.1007/s11284-017-1469-9

14. Huang, N.E., Wu, Z.H.: A review on Hilbert-Huang trans-
form: method and its applications to geophysical studies.
Rev. Geophys. 46(2), RG2006 (2008). https://doi.org/10.
1029/2007RG000228

15. Dai, W., Tang, L., Yu, L.: Why do EMD-based methods
improve prediction? A multiscale complexity perspective.
J. Forecast. 38(7), 714–731 (2019). https://doi.org/10.1002/
for.2593

16. Looney, D., Hemakom, A., Mandic, D.: Intrinsic multi-
scale analysis: a multi-variate empirical mode decomposi-
tion framework. Proc. R. Soc. A. 471, 2173 (2015). https://
doi.org/10.1098/rspa.2014.0709

17. Granger,C.W.J.: Investigating causal relations by economet-
ric models and cross-spectral methods. Econometrica 37(3),
424–438 (1969). https://doi.org/10.2307/1912791

18. Molkov, Y., Loskutov, B., Mukhin, D., Feigin, A.: Random
dynamicalmodels from time series. Phys. Rev. E 85, 036216
(2012). https://doi.org/10.1103/PhysRevE.85.036216

19. Munch, S., Brias, A., Sugihara, G., Rogers, T.: Frequently
asked questions about nonlinear dynamics and empirical
dynamic modelling. ICES J. Mar. Sci. 77(4), 1463–1479
(2020). https://doi.org/10.1093/icesjms/fsz209

20. Arnold, L.: Random Dynamical Systems. Springer Mono-
graphs inMathematics, p. 586. Springer-Verlag, Berlin Hei-
delberg. (1998) http://doi.org/10.1007/978-3-662-12878-7

123

https://doi.org/10.1126/science.177.4047.393
https://aip.scitation.org/journal/cha
https://aip.scitation.org/journal/cha
https://www.complex-systems.com/
https://www.complex-systems.com/
https://journals.aps.org/pre/
https://journals.aps.org/pre/
https://doi.org/10.1073/pnas.1503154112
https://doi.org/10.1073/pnas.1503154112
https://doi.org/10.1186/s40535-015-0006-6
https://doi.org/10.1186/s40535-015-0006-6
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1038/344734a0
https://doi.org/10.1038/344734a0
https://doi.org/10.1126/science.283.5407.1528
https://doi.org/10.1371/journal.pone.0018295
https://doi.org/10.1007/s11284-017-1469-9
https://doi.org/10.1007/s11284-017-1469-9
https://doi.org/10.1029/2007RG000228
https://doi.org/10.1029/2007RG000228
https://doi.org/10.1002/for.2593
https://doi.org/10.1002/for.2593
https://doi.org/10.1098/rspa.2014.0709
https://doi.org/10.1098/rspa.2014.0709
https://doi.org/10.2307/1912791
https://doi.org/10.1103/PhysRevE.85.036216
https://doi.org/10.1093/icesjms/fsz209
http://doi.org/10.1007/978-3-662-12878-7


2160 J. Park et al.

21. Gavrilov, A., Loskutov, E., Mukhin, D.: Bayesian optimiza-
tion of empiricalmodelwith state-dependent stochastic forc-
ing. Chaos Solitons Fract. 104, 327–337 (2017). https://doi.
org/10.1016/j.chaos.2017.08.032

22. Rössler, O.E.: An equation for continuous chaos. Phys.
Lett. 57A(5), 397–398 (1976). https://doi.org/10.1016/
0375-9601(76)90101-8

23. Timmer, J., König, M.: On generating power law noise.
Astron. Astrophys. 300, 707–710 (1995)

24. Hall, M., Furman, B., Merello, M., Durako, M.: Recur-
rence of Thalassia testudinum seagrass die-off in Florida
Bay, USA: initial observations. Mar. Ecol. Prog. Ser. 560,
243–249 (2016). https://doi.org/10.3354/meps11923

25. Johnson, C.R., Koch, M.S., Pedersen, O., Madden, C.J.:
Hypersalinity as a trigger of seagrass (Thalassia testudinum)
die-off events in FloridaBay: evidence based on shootmeris-
tem O2 and H2S dynamics. J. Exp. Mar. Biol. Ecol. 504,
47–52 (2018). https://doi.org/10.1016/j.jembe.2018.03.007

26. Park, J., Stabenau, E., Kotun K.: “Florida Bay Assessment
Model: User Manual”. South Florida Natural Resources
Center, U.S. Department of the Interior, Everglades
National Park, Homestead, FL. Hydrologic Model Man-
ual. SFNRC 2016:7-27. 62 pp. (2016) https://github.com/
SoftwareLiteracyFoundation/BAM

27. Wu, Z., Huang, N.: Ensemble empirical mode decomposi-
tion: a noise-assissted data analysis method. Adv. Adapt.
Data Anal. 01(01), 1–41 (2009). https://doi.org/10.1142/
S1793536909000047

28. Chen, Q., Wen, D., Li, X., Chen, D., Lv, H., Zhang, J.,
et al.: Empirical mode decomposition based long short-term
memory neural network forecastingmodel for the short-term
metro passenger flow. PLoS ONE 14(9), e0222365 (2019).
https://doi.org/10.1371/journal.pone.0222365

29. Jiang, C., Conde, M., Deng, B., Chen, J.: Hybrid improved
empirical mode decomposition and BP neural network
model for the prediction of sea surface temperature.
Ocean Sci. 15, 349–360 (2019). https://doi.org/10.5194/
os-15-349-2019

30. Rehman N., Mandic D. P.: “Multivariate empirical mode
decomposition”. InProceedings of TheRoyal Society of Lon-
don A: Mathematical, Physical and Engineering Sciences,
pg. rspa20090502 (2009)

31. Aimon, S., Katsuki, T., Jia, T., Grosenick, L., Broxton,
M., Deisseroth, K., et al.: Fast near-whole-brain imaging
in adult Drosophila during responses to stimuli and behav-
ior. PLoS Biol. 17(2), e2006732 (2019). https://doi.org/10.
1371/journal.pbio.2006732

32. Jutten, C., Hérault, J.: Blind separation of sources, part I:
an adaptive algorithm based on neuromimetic architecture.
Signal Process. 24, 1–10 (1991)

33. Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M., Keller,
P.J.: Whole-brain functional imaging at cellular resolution
using light-sheet microscopy. Nat. Methods 10, 413–420
(2013)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

https://doi.org/10.1016/j.chaos.2017.08.032
https://doi.org/10.1016/j.chaos.2017.08.032
https://doi.org/10.1016/0375-9601(76)90101-8
https://doi.org/10.1016/0375-9601(76)90101-8
https://doi.org/10.3354/meps11923
https://doi.org/10.1016/j.jembe.2018.03.007
https://github.com/SoftwareLiteracyFoundation/BAM
https://github.com/SoftwareLiteracyFoundation/BAM
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1371/journal.pone.0222365
https://doi.org/10.5194/os-15-349-2019
https://doi.org/10.5194/os-15-349-2019
https://doi.org/10.1371/journal.pbio.2006732
https://doi.org/10.1371/journal.pbio.2006732

	Empirical mode modeling
	A data-driven approach to recover and forecast nonlinear dynamics from noisy data
	Abstract
	1 Introduction
	1.1 Model fitness and application
	1.2 Model representation and alternatives

	2 Empirical mode modeling
	3 Rössler dynamics
	3.1 Empirical mode decomposition
	3.2 Empirical dynamic modeling
	3.2.1 Model comparison
	3.2.2 IMF selection


	4 Salinity in Florida Bay
	4.1 State-space models
	4.1.1 Model comparison

	4.2 Forecasting
	4.2.1 Comparison to numerical model


	5 Conclusion
	Appendix 1: Florida Bay salinity data discovery
	References





