Skip to main content
Log in

Constrained control methods for lower extremity rehabilitation exoskeleton robot considering unknown perturbations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, trajectory tracking control is investigated for lower extremity rehabilitation exoskeleton robot. Unknown perturbations are considered in the system which are inevitable in reality. The trajectory tracking control is constructively treated as constrained control issue. To obtain the explicit equation of motion and analytical solution of lower extremity rehabilitation exoskeleton robot, Udwadia–Kalaba theory is introduced. Lagrange multipliers and pseudo-variables are not needed in Udwadia–Kalaba theory, which is more superior than Lagrange method. On the basis of Udwadia–Kalaba theory, two constrained control methods including trajectory stabilization control and adaptive robust control are proposed. Trajectory stabilization control applies Lyapunov stability theory to modify the desired trajectory constraint equations. A leakage type of adaptive law is designed to compensate unknown perturbations in adaptive robust control. Finally, comparing with nominal control and approximate constraint-following control, simulation results demonstrate the superiority of trajectory stabilization control and adaptive robust control in trajectory tracking control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig.13
Fig.14

Similar content being viewed by others

Data availability

All data are available upon request at the authors’ email address.

Code availability

Custom code is available upon request at Liang Yuan email address.

References

  1. United Nations.: World Population Ageing. www.un.org/en/global-issues/ageing (2019)

  2. Gao, L.: Structure design and research of lower limb rehabilitation robot based on exoskeleton. In: MA Thesis, Anhui University of Technology, China (2019)

  3. Li, X.: Design and control strategy of lower limb rehabilitation robot. In: MA Thesis, Harbin Institute of Technology, China (2016)

  4. Chen, L., Wang, C., Song, X., et al.: Dynamic trajectory adjustment of lower limb exoskeleton in swing phase based on impedance control strategy. Proc Inst. Mech. Part I J Syst. Control Eng. 234(10), 1120–1132 (2020)

    Google Scholar 

  5. Zhang, X., Yin, G., Li, H., et al.: An adaptive seamless assist-as-needed control scheme for lower extremity rehabilitation robots. Part I: J Systems and Control Engineering. Epub ahead of print 24 November 2020. https://doi.org/10.1177/0959651820970720 (2020)

  6. Hasan, S. K., Dhingra, A.K.: Development of a model reference computed torque controller for a human lower extremity exoskeleton robot. In: Proceedings of the Institution of Mechanical Engineers, Part I: J Systems and Control Engineering. Epub ahead of print 14 April 2021. https://doi.org/10.1177/09596518211009032.

  7. Chen, X., Zhao, H., Zhen, S., et al.: Adaptive robust control for a lower limb rehabilitation robot running under passive training mode. IEEE-CAA J Automatic. 6(2), 493–502 (2019)

    Article  MathSciNet  Google Scholar 

  8. Zhao, X., Chen, Y.H., Zhao, H., et al.: Udwadia-Kalaba equation for constrained mechanical systems: formulation and applications. Chin. J. Mech. Eng. En. 31(6), 11–24 (2018)

    Google Scholar 

  9. Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. Math. Phys. Eng. Sci. 439, 407–410 (1992)

    MathSciNet  MATH  Google Scholar 

  10. Udwadia, F.E.: A new perspective on the tracking control of nonlinear structural and mechanical systems. Proc. Math. Phys. Eng. Sci. 459(2035), 1783–1800 (2003)

    Article  MathSciNet  Google Scholar 

  11. Udwadia, F.E., Kalaba, R.E.: What is the general form of the explicit equations of motion for constrained mechanical systems. J. Appl. Mech-T ASME. 69(3), 335–339 (2002)

    Article  MathSciNet  Google Scholar 

  12. Udwadia, F.E., Kalaba, R.E.: New directions in the control of nonlinear systems. In: Gutallu, R. (ed.) Mechanics and control. Springer, Berlin (1994)

    MATH  Google Scholar 

  13. Ma, Y., Yang, G., Sun, Q., et al.: Adaptive robust control for tank stability: a constraint-following approach. In: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. Vol. 235(1), pp. 3–14 (2020)

  14. Wang, X., Sun, Q., Chen, Y.H.: Adaptive robust control for triple evasion-tracing-arrival performance of uncertain mechanical systems. In: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering vol. 231(8), pp. 652–668 (2017)

  15. He, C., Huang, K., Chen, X., et al.: Transportation control of cooperative double-wheel inverted pendulum robots adopting Udwadia-control approach. Nonlinear Dyn. 91, 2789–2802 (2018)

    Article  Google Scholar 

  16. Huang, K., Xian, Y., Li, C.M., et al.: Application of Udwadia-Kalaba approach to semi-active suspension control of a heavy-duty truck. Proc Inst. Meche Part D J. Automob. Eng. 234(1), 245–257 (2020)

    Article  Google Scholar 

  17. Yang, S., Han, J., Xia, L., et al.: Adaptive robust servo constraint tracking control for an underactuated quadrotor UAV with mismatched uncertainties. ISA Trans. 106, 12–30 (2020)

    Article  Google Scholar 

  18. Chen, Y.H.: Adaptive robust control of artificial swarm system. Appl. Math. Comput. 217(3), 980–987 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Zhao, X., Chen, Y.H., Dong, F., et al.: Controlling uncertain swarm mechanical system: a β-measure-based approach. IEEE Trans. Fuzzy Syst. 27(6), 1272–1285 (2019)

    Article  Google Scholar 

  20. Zhao, R., Chen, Y.H., Jiao, S.: Optimal design of constraint-following control for fuzzy mechanical systems. IEEE Trans. Fuzzy Syst. 24(5), 1108–1120 (2016)

    Article  Google Scholar 

  21. Sun, H., Yang, L., Chen, Y.H., et al.: Controlling tractor-semitrailer vehicles in automated highway systems: adaptive robust and Lyapunov minimax approach. Asian J Control. 1–15 (2020)

  22. Sun, H., Zhao, H., Huang, K., et al.: Adaptive robust constraint-following control for satellite formation flying with system uncertainty. J. Guid Control Dyn. 40(6), 1492–1502 (2017)

    Article  Google Scholar 

  23. Huang, K., Wang, M., Sun, H., et al.: Robust approximate constraint-following control design for permanent magnet linear motor and experimental validation. J. Vib. Control. 27(1–2), 119–128 (2021)

    Article  MathSciNet  Google Scholar 

  24. Liu, X., Zhen, S., Huang, K., et al.: A systematic approach for designing analytical dynamics and servo control of constrained mechanical systems. IEEE-CAA J Autom. 2(4), 382–393 (2015)

    MathSciNet  Google Scholar 

  25. Yu, R., Zhao, H., Zhen, S., et al.: A novel trajectory tracking control of AGV based on Udwadia-Kalaba approach. IEEE CAA J Automat (2016). https://doi.org/10.1109/JAS.2016.7510139(2016)

    Article  Google Scholar 

  26. Chen, X., Zhao, H., Sun, H., et al.: Adaptive robust control based on Moore-Penrose generalized inverse for underactuated mechanical systems. IEEE Access. 7, 157136–157144 (2019)

    Article  Google Scholar 

  27. Cho, H., Wanichanon, T., Udwadia, F.E.: Continuous sliding mode controllers for multi-input multi-output systems. Nonlinear Dyn. 94(4), 2727–2747 (2018)

    Article  Google Scholar 

  28. Udwadia, F.E., Wanichanon, T.: A new approach to the tracking control of uncertain nonlinear multi-body mechanical systems. In: Nonlinear Approaches in Engineering Applications 2, Springer, New York pp. 101–136 (2014)

  29. Udwadia, F.E., Wanichanon, T.: Control of uncertain nonlinear multibody mechanical systems. J. Appl. Mech. 10(1115/1), 4025399 (2014)

    Google Scholar 

  30. Wanichanon, T., Udwadia, F.E., Cho, H.: Satellite formation-keeping using the fundamental equation in the presence of uncertainties in the system. In: AIAA SPACE 2011 Conference & Exposition pp. 7210 (2011)

  31. Udwadia, F.E., Wanichanon, T., Cho, H.: Methodology for satellite formation-keeping in the presence of system uncertainties. J. Guid. Control. Dyn. 37(5), 1611–1624 (2014)

    Article  Google Scholar 

  32. Udwadia, F.E.: Optimal tracking control of nonlinear dynamical systems.In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences vol. 464, pp. 2341–2363

  33. Cho, H., Udwadia, F.E., Wanichanon, T.: Autonomous precision control of satellite formation flight under unknown time varying model and environmental uncertainties. J. Astronaut. Sci. 67, 1470–1499 (2020)

    Article  Google Scholar 

  34. Sun, H., Zhao, H., Zhen, S., et al.: Application of the Udwadia-Kalaba approach to tracking control of mobile robots. Nonlinear Dyn. 83, 389–400 (2016)

    Article  MathSciNet  Google Scholar 

  35. Liu, J., Liu, R.: Dynamic modeling of dual-arm cooperating manipulators based on Udwadia-Kalaba equation. Adv Mech Eng. 8(7), 1–10 (2016)

    Google Scholar 

  36. Qin, F., Zhao, H., Zhen, S.: Torque analysis of lower limb based on Udwadia-Kalaba approach and inertial sensor motion detection. J Mech Med Biol. 20(4), 1950032 (2020)

    Article  Google Scholar 

  37. Cho, H., Udwadia, F.E.: Explicit solution to the full nonlinear problem for satellite formation-keeping. Acta Astronaut. 67, 369–387 (2010)

    Article  Google Scholar 

  38. Chen, Y.H.: Constraint-following servo control design for mechanical systems. J Vib Control. 15(3), 369–389 (2009)

    Article  MathSciNet  Google Scholar 

  39. Udwadia, F.E., Wanichanon, T.: Explicit equations of motion of constrained systems with applications to multi-body dynamics, pp. 315–348. Springer, New York (2012)

    Google Scholar 

  40. Udwadia, F.E., Wanichanon, T.: Hamel’s paradox and the foundations of analytical dynamics. Appl. Math. Comput. 217(3), 1253–1265 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Yu, R., Chen, Y.H., Zhao, H., et al.: Self-adjusting leakage type adaptive robust control design for uncertain systems with unknown bound. Mech Syst Signal Process. 116, 173–193 (2019)

    Article  Google Scholar 

  42. Udwadia, F.E., Koganti, P.B., Wanichanon, T., Stipanović, D.M.: Decentralised control of nonlinear dynamical systems. Int. J. Control 87(4), 827–843 (2014)

    Article  MathSciNet  Google Scholar 

  43. Zhao, H., Li, C., Huang, K., et al.: Trajectory tracking control of parallel manipulator based on Udwadia-Kalaba approach. Math Probl Eng. 2017, 8975743 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Yang, Y., Huang, D., Dong, X.: Enhanced neural network control of lower limb rehabilitation exoskeleton by add-on repetitive learning. Neurocomputing 323, 256–264 (2019)

    Article  Google Scholar 

  45. Udwadia, F.E.: A new approach to stable optimal control of complex nonlinear dynamical systems. J. Appl. Mech. 81(3), 1–6 (2013)

    Google Scholar 

  46. Udwadia, F.E., Koganti, P.B.: Dynamics and control of a multi-body planar pendulum. Nonlinear Dyn. 81, 845–866 (2015)

    Article  MathSciNet  Google Scholar 

  47. Khalil, H.: Nonlinear Systems, 3rd edn. Prentica-Hall, New Jersey (2002)

    MATH  Google Scholar 

  48. Yu, R., Chen, Y.H., Zhao, H., et al.: Uniform ultimate boundedness for underactuated mechanical systems as mismatched uncertainty disappeared. Nonlinear Dyn. 95, 2765–2782 (2019)

    Article  Google Scholar 

  49. Udwadia, F.E.., Wanichanon, T.: A closed-form approach to tracking control of nonlinear uncertain systems using the fundamental equation. In: Earth and space 2012: engineering, science, construction, and operations in challenging environments, pp. 1339–1348 (2012)

  50. Chen, Y.H., Zhang, X.: Adaptive robust approximate constraint-following control for mechanical systems. J Franklin Inst. 347(1), 69–86 (2010)

    Article  MathSciNet  Google Scholar 

  51. Sun, Q., Wang, X., Chen, Y.H.: Adaptive robust control for dual avoidance–arrival performance for uncertain mechanical systems. Nonlinear Dyn. 94, 759–774 (2018)

    Article  Google Scholar 

  52. Liu, X., Zhen, S., Sun, H., et al.: A novel model-based robust control for position tracking of permanent magnet linear motor. IEEE Trans. Ind. Electron. 67(9), 7767–7777 (2020)

    Article  Google Scholar 

Download references

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: The authors would like to thank the National Natural Science Foundation of China (U1813220, 62063033) for their support in this research.

Author information

Authors and Affiliations

Authors

Contributions

JT involved in writing the original draft, validation and software. LY and LH involved in writing, reviewing and editing and supervision. WX, TR and JZ took part in methodology, investigation and formal analysis.

Corresponding author

Correspondence to Liang Yuan.

Ethics declarations

Conflicts of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Yuan, L., Xiao, W. et al. Constrained control methods for lower extremity rehabilitation exoskeleton robot considering unknown perturbations. Nonlinear Dyn 108, 1395–1408 (2022). https://doi.org/10.1007/s11071-022-07272-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07272-2

Keywords

Navigation