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Abstract The objective of the present study is to

examine the effect of nonlinearity on the efficiency

enhancement of a capacitive energy harvester. The

model consists of a cantilever microbeam underneath

which there is an electret layer with a surface voltage,

which is responsible for the driving energy. The

packaged device is exposed to unwanted harmonic

mechanical excitation. The microbeam undergoes

mechanical vibration, and accordingly, the energy is

harvested throughout the output electric circuit. The

dynamic formulation accounts for nonlinear curva-

ture, inertia, and nonlinear electrostatic force. The

efficiency of the device in the vicinity of the primary

and super-harmonic resonances is examined, and

accordingly, the output power is evaluated. Bifurca-

tion analysis is carried out on the dynamics of the

system by detecting the bifurcations in the frequency

domain and diagnosing their respective types. One of

the challenging issues in the design and analysis of

energy-harvesting devices is to broaden the bandwidth

so that more frequencies are potentially accomodated

within the amplification region. In this study, the effect

of the nonlinearity on the bandwidth broadening, as

well as efficiency improvement of the device, are

examined. It is seen that as the base excitation

amplitude increases, the vibration amplitude does also

increase and accordingly the nonlinearity dominates.

The super-harmonic resonance regions emerge and get

bigger as the vibration amplitude increases, and pull-in

gaps appear in the frequency response curves.

Keywords Capacitance � Energy-harvesting device �
Nonlinearity � Cantilever � MEMS

1 Introduction

Wireless sensor networks (WSNs) have been focused

in recent years due to their numerous advantages such

as ease of installation, reduction in cost and weight,

and elimination of wire connections [1]. Providing the

power supply source is a challenge issue in these

systems. Batteries provide an impermanent power

supply solution which it takes lots of time and cost to

replace them. An interesting and long-term solution to

extend the operational time of WSNs is vibration
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energy-harvesting devices which convert the ambient

vibrations into electrical energy to charge the batteries

or replacing them. In the past few years, many

researchers have focused on the dynamics of energy-

harvesting devices so that to enhance the efficiency of

the energy harvester [1–3]. Among the numerous

publications reported so far, some of them have

focused on harvesting energy based on electromag-

netic effect [4–9], and some have focused on piezo-

electric-based ones [1, 2, 10–14]. Capacitive energy-

harvesting devices have also been focused in the

literature thanks to their ease of fabrication; however,

as a major challenge, they require a voltage source to

induce electric charges on the electrodes of the

variable capacitor and consequently start the conver-

sion [3, 15–18]. The required voltage can be provided

by means of using dielectric, capable of keeping

internal charges for many years. In variable gap

capacitors, the capacitance value can be changed by

different physical quantities such as pressure or

acceleration. This change is measured by an electronic

circuitry. Due to the electrostatic nonlinearity, the

working range of devices using electrostatic force is

limited. Some researchers have explored the possibil-

ity of amplitude enhancement thanks to the internal

resonance [14, 19, 20]. A very important research

subject which has received a great research interest is

the effect of nonlinearity on the performance and the

efficiency of an energy-harvesting devices. The find-

ings of the most important of these are reviewed here.

Ngan Tran et al. [21] reported a review on nonlinear

techniques for performance enhancement of ambient

vibration of energy harvesters. They reported the most

important publications devoted to the effect of

stochastic loading, internal resonance, being multi-

degree of freedom, mechanical stoppers, and para-

metric excitation, which lead to nonlinear behavior

and accordingly enhance the efficiency of the energy-

harvesting device. Lu et al. [22] explored the connec-

tion between the resonance response interaction and

bubble-shaped response curve that can occur in the

forced response of a nonlinear magnetoelectric cou-

pled system. Hao Wu et al. [23] proposed a nonlinear

two-degree-of-freedom piezoelectric energy harvester

based on the similar linear model proposed by Wu

et al. [24]; they achieved broader operating bandwidth

in mono-stable condition by taking benefit of the

nonlinearity and also tuning the resonance response

peaks in the frequency domain. A Cammarano et al.

[25] improved the bandwidth of an energy harvester

exploiting nonlinearities. They reported that the

stronger is the nonlinearity, the broader is the band-

width and accordingly the better is the performance;

this is due to the fact that more frequency contents can

be accommodated in the bandwidth.

Malaji and Ali [26] investigated the energy har-

vesting from a two-degree-of-freedom near periodic

structure composed of two pendulums connected

using a linear spring. They studied the mutual effect

of mistuning due to changing the length of pendulums

and the amount of harvested energy on each other. A

bistable energy harvester subject to periodic and

quasi-periodic excitations has been examined by

Rajagopal et al. [27]. They investigated the nonlinear

behavior of such system by exploring different

dynamical properties. Using the bifurcation diagrams

of the harvester under periodic excitation, they showed

that hidden attractors coexist. They also used a 2D

lattice array of the harvesters to study their collective

behavior. Kumar et al. [28] considered the energy

harvested from the vibration of a flexible cantilevered

flapper induced by vortex in the wake of a rigid

circular cylinder. They carried out experimental

analysis in the wind tunnel, in addition to numerical

simulations, to investigate how the amount of har-

vested energy is affected by the gap between the

cylinder and the cantilever. They showed that the

location of vortex shedding with respect to the flapper

will vary as the flow speed changes, and this will affect

the dynamics of the flapper and consequently the

energy harvesting.

Based on the literature, one of the main issues with

the vibrating energy harvesters is the narrow band-

width in case of high-quality factor resonators [21];

the impetus of the current research is to broaden the

bandwidth of a capacitive energy-harvesting device

exposed to unwanted harmonic external excitations,

thanks to the existence of nonlinearity. We also want

to determine the low-frequency resonances which are

activated due to the nonlinearity of the response and

mainly known as super-harmonic resonance regions.

Since the mechanical excitations are mostly of low

frequency, in order to harvest the energy of low-

frequency ambient mechanical vibrations, activation

of super-harmonic resonances is a necessity; besides

the endeavor made to broaden the bandwidth, we have

examined the nonlinear resonance regions to maxi-

mize the energy harvesting in the super-harmonic
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resonance domains. The effect of nonlinearities

including geometric, inertia, and nonlinear displace-

ment-dependent electrostatic force on the efficiency of

the device is taken into account. The study encom-

passes the response in the vicinity of both primary and

super-harmonic resonances. The frequency response

curves are computed by means of shooting technique,

and the stability of the periodic solutions is ascertained

based on Floquet theory. The bifurcations in the

frequency domain are determined, and their types are

examined based on the loci of the Floquet exponents

with respect to the unit circle.

2 Model description and mathematical modeling

As depicted in Fig. 1, the proposed energy harvester is

composed of a cantilever beam exposed to underneath

capacitance. Between the lower electrode and the

cantilever beam exists an electret layer with a surface

voltage of Vs, thickness of he, and relative permittivity

of ee, which is responsible for providing the required

voltage of the device.

In order to model the mechanical behavior of the

micro-cantilever, an Euler–Bernoulli beam theory is

utilized. The coordinate system (x-y-z) is attached to

the fixed end of the cantilever beam with its origin on

the neutral axis and the x-axis along the beam and the

y-axis in the direction of the base excitation. Assum-

ing the energy harvester operating as a high-quality

factor resonator and accordingly undergoing large

deformations, the geometrical and inertial nonlinear-

ities due to inextensionality conditions get more

pronounced and the linear theory does not hold true

anymore. Therefore, a full nonlinear beam model is

employed which takes the curvature nonlinearities and

shortening effects into account. The nonlinear equa-

tion of motion for the considered micro-cantilever

based on the Euler–Bernoulli beam theory is given by

[29],

qA €wþ EI w000 þ w0w002 þ w000w02� �0�J €w00

þ 1

2
w0

Zs

L

qA
Zs

0

w0ð Þ2ds

2

4

3

5

::

ds

0

@

1

A

0

¼ FE � qA€yb ð1Þ

where w denotes the transverse displacement and the

superscript (
0
) represents the derivative with respect to

the s which is the undeformed length measured from

the root of the beam to the reference point, q is the

mass density, A is the cross-sectional area, and E is the

modulus of elasticity. Here, I denotes the area moment

of inertia with respect to the neutral axis, J is the rotary

inertia, wb is the base displacement due to ambient

vibrations, and FE is the electrostatic force per unit

length acting on the micro-cantilever. The first and

third terms on the left-hand side of Eq. (1) account for

translational and rotary inertias, respectively. The first

part of the second term in the left-hand side accounts

for linear stiffness, and the last part is due to curvature

nonlinearities. Also, the last integral term in left-hand

side accounts for shortening effect due to inertial

nonlinearities. The last term in right-hand side

accounts for translational inertia due to base excitation

and is considered as a harmonic displacement in the

form of:

yb ¼ y0sinðxtÞ ð2Þ

The electrostatic force between the electrodes of a

parallel plate capacitor is given by [30]:

FE ¼ dUE

dw
ð3Þ

where UE is the electric potential energy stored in the

capacitor and is given by [30]:

UE ¼ 1

2
CV2

s ð4Þ

where Vs is the surface voltage of the electret layer,

and C denotes the equivalent capacitance of the

Fig. 1 Schematics of the

proposed energy harvester
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system which consists of two series capacitances

including the electret layer capacitance (Ce) and the

variable capacitance (C1). To obtain the equivalent

capacitance of the device, the capacitor is considered

as an infinite number of differential parallel

capacitors,

dC1 s; tð Þ ¼ e0bds
gd � wðs; tÞ ð5Þ

Each of them is in series with the electret layer

capacitance.

dCe ¼
e0eebds

he
ð6Þ

Neglecting the fringing effects and assuming com-

plete overlap between the micro-cantilever and the

substrate, the equivalent differential capacitance of the

system is obtained as follows:

dC ¼ e0bds

gd þ he
ee
� wðs; tÞ

ð7Þ

Integrating Eq. (7) over the length and substituting

the resultant in Eq. (4), and using Eq. (3), the

electrostatic force per unit length acting on the

micro-cantilever is obtained as follows:

FE ¼ be0V2
s

2 gd þ he
ee
� wðs; tÞ

� �2
ð8Þ

Neglecting the effects of parasitic capacitances, the

equivalent electric circuit of the energy harvester is

modeled as Fig. 2.

Applying the Kirchhoff’s voltage law in the equiv-

alent circuit of the device, the electrical governing

equation of the system reduces to [3]:

dQ

dt
þ Q

RC
¼ VS

R
ð9Þ

Equation (1) along with Eq. (9) forms the nonlinear

electromechanical governing equation of the system

subjected to the following boundary conditions:

w ¼ 0; w0 ¼ 0 at s ¼ 0

w00 ¼ 0; w000 ¼ 0 at s ¼ L
ð10Þ

For convenience, the governing equations of the

system are non-dimensionalized using following

dimensionless parameters:

ŝ ¼ s

L
; ŵ ¼ w

gd
; Q̂ ¼ Q

Qe
; t̂ ¼ t

T
;X ¼ xT ;

Q̂ ¼ Q

Qe
; T ¼

ffiffiffiffiffiffiffiffiffiffiffi
qAL4

EI

r ð11Þ

where Qe is the electrical charge stored in electret

layer and is defined as:

Qe ¼
e0eebL
he

Vs ð12Þ

Introducing the dimensionless parameters given in

Eq. (11) and the electrostatic force in Eq. (8) to Eq. (1)

and Eq. (9) and removing the hat notation, the

dimensionless governing equations reduce to:

€wþ w000 þ a1 w0w002 þ w000w02� �� �0�a2 €w
00

þ a1
2
w0r s1qA

Z s

0

w0ð Þ2ds
� �::

ds

	 
0

¼ a3V2
s

r1 � 1ð Þ2
Q2

r
1
0
ds

r1�w

� �2

r1 � wð Þ2
þ YbsinðXtÞ

ð13Þ

and

dQ

dt
þ a4

Q
R 1

0
ds

r1�w

¼ a5 ð14Þ

where

a1 ¼
g2d
L2

; a2 ¼
J

qAL2
; a3 ¼

be0L4

2EIg3d
; r1 ¼ 1þ he

eegd
; r2

¼ gu
gd

; a4 ¼
gdT

RbLe0
; a5 ¼

heT

Re0eebL
; Yb ¼

y0
gd

X2

ð15Þ

and the boundary conditions in the non-dimensional

form reduce to:

w ¼ 0; w
0 ¼ 0 ¼ 0 at s ¼ 0

w00 ¼ 0; w000 ¼ 0 at s ¼ 1
ð16ÞFig. 2 The equivalent electric circuit of the electret-based

capacitive energy harvester
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The Galerkin decomposition method is employed

to eliminate the spatial dependence in Eqs. (13) and

(14). To this end, the transverse deflection of the

micro-cantilever is represented as a series expansion

in terms of the eigenfunctions of the micro-cantilever,

i.e.,

w s; tð Þ ¼
XN

i¼1

Ui tð Þui sð Þ ð17Þ

where Ui tð Þ is the ith generalized coordinate and ui sð Þ
is the ith linear undamped mode shape of the micro-

cantilever. Based on Galerkin method, the reduced-

order model of the system is obtained as given in

appendix. The mean output power of the energy

harvester P is obtained based on the amplitude of the

steady-state response as:

P ¼ 1

t2 � t1

Z t2

t1

R
dQ

dt

	 
2

dt ð18Þ

Due to the surface voltage of the electret layer, it is

necessary to calculate the static pull-in voltage of the

micro-cantilever. To this end, the time-dependent

terms in Eq. (13) are eliminated and the static behavior

of the micro-cantilever is given by:

w000 þ a1 w
0
w00ð Þ2 þ w000 w

0
� �2

	 
� �0

¼ a3V2
s

r1 � wð Þ2

ð19Þ

Using the Galerkin method, the static deflection and

the pull-in voltage of the energy harvester are

determined.

3 Energy conservation

To clarify the problem and examine the energy

conservation, we have developed the following equiv-

alent electromechanical circuit for the reduced-order

model which accounts for the output energy through

the electret layer and the pumped energy throughout

the base excitation. A part of this energy is harvested

in the resistance, and the remaining is stored in terms

of kinetic and potential energies in the vibration

system and the potential energy in the variable gap

capacitor.

Equation (20) represents the energy conservation

where the left-hand side corresponds to input energies

and the right-hand side represents the harvested,

mechanical, and dissipated energies.

QVs þWex ¼
Z t

0

oQ

ot

	 
2

Rdt þ 1

2

Q2

CðtÞ þ Em

þ
Z t

0

Bd
_ZðtÞ2dt ð20Þ

where:

Em ¼ 1

2
M _ZðtÞ2 þ 1

2
KsZðtÞ2 ð21Þ

In Eq. (20), Wex is the input energy due to the base

excitation, QVs represents the output energy from the

electret layer, Em is the mechanical energy of the

vibratory system, and the last term in Eq. (20) denotes

the dissipated energy due to mechanical damping. M,

Ks, Bd stand for the equivalent mass, stiffness, and

damping coefficients of the vibratory system.

4 Stability analysis

4.1 Stability of the fixed points

In order to determine the fixed points in the absence of

base excitation, the motion equations (Eq. (13)) are

transformed into the following phase space form:

_S ¼ F S; tð Þ ð22Þ

The fixed points are defined by the vanishing of the

vector field; say F S; tð Þ ¼ 0. The place in the phase

space where this condition is satisfied is known as

stationary or equilibrium point. Equilibrium points are

usually available in the absence of time-varying

forces, and the stability of any fixed point is examined

by the determination of the eigenvalues of the so-

called Jacobian matrix A, at the corresponding fixed

point as follows:

A ¼

oF1

oS1
� � � oF1

oS2n
..
. . .

. ..
.

oF2n

oS1
� � � oF2n

oS2n

2

66664

3

77775
ð23Þ

where F1 S1; S2; . . .; S2nð Þ; . . .;F2n S1; S2; . . .; S2nð Þ are

the components of the vector field F. When the

eigenvalues of the Jacobian matrix at a particular fixed
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point have negative real parts, then the corresponding

fixed point is asymptotically stable.

5 Stability of the periodic orbits

We have applied shooting method for autonomous

systems to capture the periodic motions and deter-

mined the stability of the periodic orbits by means of

Floquet theory [2].

6 Results and discussion

The mechanical, electrical, and geometrical properties

of the harvester are given in Table 1. The values given

in Table 1 have been taken from [3]. The harvester is

assumed to be made of silicon and CYTOP electret

layer with breakdown voltage of 90 kV/mm [31].

Figure 4 illustrates the dimensionless tip deflection

of the cantilever beam versus the applied electret

surface voltage. It is shown that for a definite surface

voltage, there exist either one or three equilibrium

positions. In case merely one equilibrium position is

available, the eigenvalues of the Jacobian matrix

evaluated at the equilibrium point are negative and

accordingly the fixed point is stable. However, once

there are three equilibrium positions, two of them are

stable (only one of them is of physical interest as the

second one lays outside the gap and hence is not

physically possible) and the other one is unstable. As

the surface voltage is increased, the stable and unsta-

ble positions approach each other and they coincide on

the so-called pull-in voltage where the system under-

goes a saddle node bifurcation and beyond it, both of

the equilibrium positions disappear.

As it is shown in Fig. 4, contribution of the first two

modes in Eq. (17) provides a reasonable convergence

and accordingly in the rest of the study the effect of the

third and the higher modes in the system response is

neglected. Figure 5 depicts the time history and the

phase diagram of the dynamic response of the energy

harvester in the absence of the base excitation but

exposed to initial disturbance. Here, the impetus is to

examine the energy conservation by means of com-

paring the input energy with that captured throughout

the output circuit. As depicted, once the initial

disturbance is applied, the output circuit initiates

transforming the mechanical energy into electrical and

accordingly the motion amplitude dissipates [2].

50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3
1 mode - unstable
1 mode - stable
2 modes - unstable
2 modes - stable
3 modes - unstable
3 modes - stable

Fig. 4 The dimensionless deflection versus the electret surface

voltage with the contribution of the first three vibrational modes

Table 1 Mechanical, electrical, and geometrical properties of

the studied energy harvester

Length, L (lm) 100

Width, b (lm) 20

Thickness, h (lm) 3

Young’s modulus, E (GPa) 169.2

Air gap, gd(lm) 3

Air gap, gu(lm) 3

Electret layer thickness, he(lm) 2

Density of Si beam, q (kg/m3) 2330

Surface voltage of electret layer, Vs (V) 180

Relative permittivity of electret layer,ee 2

Permittivity of free space, e0 ( C2

N:m2) 8:85� 10�12

Fig. 3 The equivalent electromechanical circuit for energy

conservation examination

123

878 S. Azizi et al.



In the absence of base excitation, the energy

conservation is examined by comparing the consumed

and harvested energies throughout the output circuit.

Once the circuit is closed due to the electrostatic force,

the microbeam bends toward the electret layer and the

electrical charge on both sides of the capacitor

increases and accordingly an electric current flows in

the circuit until the capacitor is charged. During this

time span, a part of the energy is harvested throughout

the resistance. Table 2 gives the amount of consumed,

harvested, and stored energy in the capacitor for

various electret layer voltages.

Figure 6 depicts the time response, phase plane,

and charge distribution on the capacitor plate for

different electret layer voltages and R ¼ 50MX.
Considering the base excitation, Fig. 7 illustrates

the harvested power for different load resistances with

250V electret surface voltage. As we increase the

electrical resistance, the maximum harvested power

increases up to a particular resistance (R ¼ 15MX)
beyond which the harvested power decreases; this is

because the effect of the higher electrical resistance on

the harvested power is counterbalanced with the

current reduction in the circuit and accordingly the

harvested power exhibits a Lorenzian-type behavior

[2]. The solid and dashed lines represent the stable and

unstable limit cycles. Capturing the unstable periodic

solutions usually demands cumbersome iteration pro-

cess as they have no attraction basins; some of the

periodic solutions on the unstable branch have not

been captured since they require a lot of iteration

process.

For a given R as the frequency is swept forward, the

system response undergoes a jump to the higher

(a) (b)

Fig. 5 The tip response, subjected to initial disturbance, in the absence of base excitation for Vs=250 (V) a: time response, b: phase
plane

Table 2 The input and harvested energy for various output resistances and initial disturbances in the absence of base excitation

Vs(V) QVs(Consumed energy) (pJ) R t
0
ðoQ
ot Þ

2
Rdt

(Harvested energy) (pJ)

1
2

Q2

CðtÞ
(Stored energy in the capacitor) (pJ)

Efficiency (%)
Harvested Energy
Consumed Energy

100 44.67 22.23 22.33 49.76

150 101.80 50.32 50.90 49.42

200 184.88 90.32 92.44 48.85

250 299.56 143.21 149.78 47.80
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amplitude periodic attractor in the cyclic fold bifur-

cation point where the branch of stable and unsta-

ble solutions collides and beyond it both of the

branches disappear. As we sweep the frequency in the

backward direction, the response undergoes another

jump to the lower amplitude periodic attractor in the

period doubling bifurcation point where the Floquet

multipliers leave the unit circle through -1. The

difference between the forward and backward fre-

quency sweeps is regarded as hysteresis which is very

common in the literature of nonlinear systems. In the

region of multi-response solutions where the system

exhibits more than one stable limit cycle, it is

suggested that we push the system to vibrate on the

highest amplitude limit cycle so that to harvest more

energy; this is usually possible either by forward/

backward frequency sweep or by disturbing the mass

by an appropriate electrostatic initial voltage which

pushes the system to the basin of the attraction of the

desired limit cycle. Figure 8 depicts the jumps in the

time response which occur in the bifurcation points in

both forward and backward frequency sweeps.

(a) (b)

(c)

Fig. 6 The tip response, subjected to initial disturbance, in the absence of base excitation, a: time response, b: phase plane, c: charge
distribution on the capacitor (parameters are in non-dimensional form)
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Figure 9 represents the frequency response curves

for the same parameters as of Fig. 7. The results show

that the system experiences higher damping effects for

higher values of resistance. Therefore, by increasing

the resistance, the nonlinear behavior of the beam is

reduced and the amplitude–frequency diagram of the

beam straightens back to the right.

The more is the harvested power, the less is the

motion amplitude since more mechanical energy is

extracted from the vibratory system. As the nonlin-

earity dominates the response, the bandwidth broadens

and accordingly the harvested power within the

bandwidth increases. Figure 10 depicts the frequency

response curves and the corresponding harvested

powers for R ¼ 15MX;Vs ¼ 250V, and different base

excitation amplitudes.

As the base excitation amplitude increases, the

amplitude of the super-harmonic resonance of order

two surges and accordingly the harvested power in this

region rises. Further increase in the amplitude of the

base excitation leads to further energy harvesting as a

result of the amplification of the motion amplitude in

(a) (b)

Fig. 7 The output power in the absence of mechanical damping for various resistances and Yb ¼ 0:15

Fig. 8 The frequency sweep with R ¼ 10MX and VS ¼ 250V; a forward sweep where upward jump takes place at the cyclic fold

bifurcation point; b backward sweep where the downward jump takes place at period doubling bifurcation point
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the super-harmonic resonance. A significant observa-

tion is that by increasing the level of base excitation,

the amplitude of the response increases until a sepa-

ration happens in the frequency response curve and a

band gap emerges. A band gap is emerged in the

vicinity of each resonant frequency (e.g., one gap

emerges atX ¼ 2:5 for 0:3\Yb\0:6, and the other is

generated at X � 1:25 for Yb � 1:3). For Yb ¼ 1:2,

the frequency response in the super-harmonic reso-

nance region splits into two distinct parts and accord-

ingly two more bifurcations including one cyclic fold

(point A) and one period doubling bifurcation (point

B) manifest. As we further increase the base excitation

amplitude to Yb � 1:3, band gap appears at X � 1:25

in the frequency response curve where pull-in occurs

for any initial condition. After the band gap has

emerged, no significant increase is observed in the

maximum amplitude of the vibration in response to

further increase in base excitation amplitude. Instead,

the emerged band gaps grow as the level of base

excitation is amplified. This urges one to compromise

between the benefit of a high amplitude vibration and

the disadvantage of a wide band gap due to large base

excitations. For the energy-harvesting application,

once the device undergoes the excitation frequency in

the vicinity of the super-harmonic resonance, it is

preferable for the system to be excited with the highest

possible amplitude before the system undergoes band

gap where pull-in occurs.

The results of Fig. 10 illustrate which regions are

robust for energy harvesting against the variation of

base excitation amplitude. For instance, the vibration

amplitude is relatively high in the vicinity of excitation

frequency X ¼ 3 for lower levels of base excitation

(e.g., Yb ¼ 0:3). Although it gets even larger as the

base excitation is amplified, it is observed that the

stable response at X ¼ 3 disappears as the band gap

grows for higher values of Yb. It is also observed that

the secondary resonance is not significantly contribut-

ing to the response of the system for lower levels of

excitation. Increasing the amplitude of base motion

results in a larger amplitude of secondary resonance at

lower frequencies. That is, the energy harvesting can

be made at lower frequencies for higher values of base

excitation. However, the growth of pull-in band gaps

due to the increase in the excitation amplitude should

be taken into consideration.

Figure 11 illustrates the frequency response curve

forR ¼ 15MX and Yb ¼ 0:3. The corresponding force

response curves for three different frequencies

X = 2.5, 2.6, and 2.7 are illustrated in this figure.

The number of stable and unstable periodic solutions

depicted in force response curves are in accordance

with those in the frequency response curve. As the

motion amplitude increases (Fig. 11b), the stable man-

ifold 1 (SM1) and unstable manifold 1 (UM1) on the

force response curves get closer and they eventually

intersect at the cyclic fold bifurcation point (CF)

beyond which both solutions disappear. However, the

stable manifold 2 (SM2) and unstable manifold 1

(UM1) emerge at the other cyclic fold bifurcation

(a) (b)

Fig. 9 The frequency response curves in the absence of mechanical damping for various resistances and Yb ¼ 0:15
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= 0.3

= 0.6

= 0.9

= 1.2

(a) 

(b) 

(c) 

(d) 

Fig. 10 The frequency

response in the vicinity of

the primary resonance for

different base excitations at

R ¼ 15MX (solid and dot

dash lines show the

stable and

unstable branches,

respectively)

123

Bifurcation analysis and nonlinear dynamics of a capacitive energy harvester 883



point (CF) and the corresponding manifolds diverge as

the motion amplitude increases.

7 Conclusion

We proposed a nonlinear capacitive energy-harvesting

device which harvests the energy of ambient mechan-

ical vibrations. The equations of motion were derived

based the Euler–Bernoulli beam theory and then

discretized to a reduced-order model by means of

Galerkinmethod. Theminimum required mode shapes

to gain a reasonable converged response were deter-

mined. The periodic solutions were computed by

shooting technique, and their stabilities were exam-

ined based on the values of the corresponding Floquet

multipliers. We inspected the energy-harvesting

enhancement in the multi-response region which

revealed a considerable increase in the ratio of the

harvested energy to the input mechanical energy. The

bifurcation types were studied on the frequency

response curves, and upward and downward jump in

the cyclic fold and period-doubling bifurcation points

in the forward and backward frequency sweeps were

= 1.3

= 1.4

= 1.5

(e) 

(f) 

(g) 

Fig. 10 continued

123

884 S. Azizi et al.



reported, respectively. We have observed that as the

amplitude of the base excitation increases, the super-

harmonic resonance of order two gets more pro-

nounced and the harvested power increases consider-

ably within resonance region. As we further increases

the base excitation amplitude, the amplitude of the

limit cycles in the resonance region increased, but a

band gap immerged in the frequency response curves

where we could not capture any stable periodic

attractors and accordingly any excitation in the band

led to pull-in. We have demonstrated that the nonlin-

earity of the response broadens the bandwidth which

in turn enhances the energy harvesting.
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