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Abstract In the absence of specific drugs and vac-
cines, the best way to control the spread of COVID-19
is to adopt and diligently implement effective and strict
anti-epidemic measures. In this paper, a mathematical
spread model is proposed based on strict epidemic pre-
ventionmeasures and the known spreading characteris-
tics of COVID-19. The equilibria (disease-free equilib-
rium and endemic equilibrium) and the basic regenera-
tive number of themodel are analyzed. In particular, we
prove the asymptotic stability of the equilibria, includ-
ing locally and globally asymptotic stability. In order
to validate the effectiveness of this model, it is used to
simulate the spread of COVID-19 in Hubei Province
of China for a period of time. The model parameters
are estimated by the real data related to COVID-19
in Hubei. To further verify the model effectiveness,
it is employed to simulate the spread of COVID-19
in Hunan Province of China. The mean relative error
serves to measure the effect of fitting and simulations.
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Simulation results show that the model can accurately
describe the spread dynamics of COVID-19. Sensitiv-
ity analysis of the parameters is also done to provide
the basis for formulating prevention and control mea-
sures. According to the sensitivity analysis and corre-
sponding simulations, it is found that themost effective
non-pharmaceutical intervention measures for control-
ling COVID-19 are to reduce the contact rate of the
population and increase the quarantine rate of infected
individuals.
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1 Introduction

Beginning at the end of 2019, a pneumonia epidemic
caused by a new type of coronavirus has spread glob-
ally. This new type of coronavirus is named “Severe
Acute Respiratory Syndrome-related Coronavirus type
2” (SARS-CoV-2) [1], and the pneumonia caused by
it is called “Coronavirus disease 2019” (COVID-19)
pandemic [2]. In order to curb the spread of the virus,
the Chinese government implemented a series of effec-
tive and strict prevention and control measures in time.
With the joint efforts of the government and the people,
China’s prevention and controlmeasures have achieved
good results and the epidemic situation has been com-
pletely controlled. In the rest of the world, however,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-022-07244-6&domain=pdf
http://orcid.org/0000-0001-7364-3101


266 B. Yang et al.

the spread of COVID-19 is still not under effective
control, with increasing number of confirmed cases
and deaths. According to the report by WHO, as of
April 25, 2021, people infected by COVID-19 in the
world reaches 145,216,414 with 3,079,390 deaths [3].
To make matters worse, three major variants of SARS-
CoV-2 have been identified in the past few months in
the UK, South Africa and Brazil, respectively [4]. They
have commonly demonstrated an increase in transmis-
sibility compared to wild-type (non-VOC) variants and
rapidly replaced the wild-type variant in the relevant
country [5]. They bring about a new wave of the cur-
rent COVID-19 epidemic. Recently, the COVID-19
epidemic situation in India continues to worsen, with
new confirmed cases in a single day repeatedly reach-
ing new highs. The number of new confirmed cases
exceeds 300,000 for several days, and the number of
deaths also increases sharply [3]. For COVID-19, there
is no specific drug [6]. Although some vaccines are
already in use, their production cannotmeet the demand
at present. Therefore, strict prevention and controlmea-
sures are themost effectiveway to slowdown the spread
of the epidemic. Governments and people around the
world are working together to strengthen prevention
and control, hoping to contain the further spread of
COVID-19 at an early date and return the world to its
past prosperity.

Mathematical models play important roles in epi-
demiology. They can help us to simulate, analyze and
predict the epidemic spread system and seek optimal
performance and intervention strategies [7,8]. Based
on the characteristics of COVID-19 epidemic, many
related mathematical models have been proposed, such
as fractional-order models [9–12] and stochastic mod-
els [13–15]. Applying “nonlinear autoregressive net-
work with exogenous inputs” approach, a time series
model is developed to forecast the impact of environ-
mental stresses on the frequent waves of COVID-19
[16]. There are also many deterministic models for the
spread of COVID-19 based on the different prevention
measures in different countries. A time-delay SEIRS
model is presented to study the spread of COVID-19
in [17]. The authors apply a deep learning technique
“Self OrganizingMap” to obtain the parametric values.
A compartmental model considering the role of envi-
ronmental contamination by COVID-infected individ-
uals is presented in [18]. The authors use relevant data
from South Africa to fit model parameters and study
the impact of various control and mitigation strate-

gies on the spread of COVID-19 in South Africa. In
[19], a new SEIR model comprehensively considering
the characteristics of COVID-19 and government inter-
vention measures is proposed. The authors use Italian
epidemic data from February 15 to June 30 to simu-
late the spread of COVID-19 in Italy. An SEIR model
is used to forecast the effect of nationwide lockdown
on the spread of COVID-19 in India [20]. Also about
studying the spread of COVID-19 in India, a compart-
mental model considering quarantine and hospitalized
isolation is formulated in [21], and the model param-
eters are fitted by the real data of India. In [22], the
authors use an SEIR model to research the impact of
vaccination and isolation on the spread of COVID-19
in Indonesia. The stability of the model is analyzed and
the relevant data of Indonesia is applied for simulation.
By considering the interactive effect of imported cases,
isolating rate, diagnostic rate, recovery rate and mor-
tality rate, a spread model of COVID-19 is established
in [23]. In [24], an SIR model is employed to study
the spread of COVID-19 in Italy, India, South Korea
and Iran. By considering the different age structures,
an age-structured SIQR model is proposed to track
the spread of COVID-19 in India, Italy and USA [25].
Some improvedSEIRmodels consideringdifferent fac-
tors are proposed to study the spread of COVID-19. For
example, a nonlinear incidence rate is used [26]; gov-
ernment policy is considered [27]; some general con-
trol strategies, such as hospital, quarantine and external
input, are considered [21,28,29], etc.

However, most of the existing models ignore several
problems: 1) asymptomatic individuals can develop
into symptomatic ones; 2) asymptomatic individuals
can be diagnosed, and once diagnosed, asymptomatic
individuals should be isolated; 3) individuals quaran-
tined or hospitalized (isolated) cannot be considered as
contagious as long as protective measures are appro-
priate. This paper studies the impact of strict preven-
tion and control measures on the spread of COVID-19,
improves the models in [21,28,29], and establishes a
more reasonable spread model considering the above
three neglected aspects to simulate the transmission
dynamics of COVID-19. As validations, the model is
used to simulate the spread of COVID-19 in Hubei and
Hunan Provinces of China for a period of time. The
actual data are divided into two categories: one is for
fitting the model parameters and the other is for verify-
ing the simulations of model. In particular, combined
with the actual situation, the cure rate and died rate are
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fitted as time-varying functions. Sensitivity analysis of
the parameters is also done to provide the basis for for-
mulating prevention and control measures, and they are
verified by simulation.

An outline of this paper is as follows. In Sect. 2,
we present a spread model of COVID-19 based on
strict epidemic prevention measures and analyze some
properties of solutions of the model. Equilibria and
basic reproductive number of the model are derived in
Sect. 3. Stability of equilibria, including the disease-
free equilibrium and endemic equilibrium, are ana-
lyzed in Sect. 4. In Sect. 5, with the real data of Hubei
Province in China, themodel parameters are estimated,
and simulations are conducted to analyze the spread
dynamics ofCOVID-19 inHubei andHunanProvinces.
Sensitivity analyses for the previously estimated values
of parameters are made in Sect. 6. Some concluding
remarks are given in Sect. 7.

2 Spread model

According to the spread characteristics of COVID-19
and the epidemic prevention measures, we divide the
entire population into eight groups, as shown in Table
1. Individuals in group A or I are both infected and
infectious. Their transforming relationship is shown in
Fig. 1, and descriptions of the parameters are shown
in Table 2. All the parameters are nonnegative. S(t)
represents the number of susceptible individuals at time
t , abbreviated as S, and the rest of the state variables
are similar. N (t) = S(t)+E(t)+Q(t)+ A(t)+ I (t)+
J (t) + R(t) is the number of the entire population at
time t . M is the average number of new arrivals per day
in the region, including births and migrants.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= M − uS (αA + β I )

N − Q − J
− υS

dE

dt
= uS (αA + β I )

N − Q − J
− (δ1 + δ2 + δ3 + υ)E

dQ

dt
= δ1E − (η1 + η2 + υ)Q

dA

dt
= δ2E − (σ1 + σ2 + σ3 + υ)A

dI

dt
= δ3E + σ2A − (γ1 + γ2 + υ)I

dJ

dt
= γ1 I + η1Q + σ1A − (θ + μ + υ)J

dR

dt
= σ3A + η2Q + γ2 I + θ J − υR

(1)

with the initial conditions

(S(0), E(0), Q(0), A(0), I (0), J (0), R(0)) ≥ 0.

and the state space

R
7+ = {(S(t), E(t), Q(t), A(t), I (t), J (t), R(t)) :

(S(t), E(t), Q(t), A(t), I (t), J (t), R(t)) ≥ 0} .

Remark 1 D(t) satisfies the differential equation

dD

dt
= μJ (t). (2)

Since Eq. (2) is independent of the equations in model
(1), it is omitted in model (1) to make the mathematical
analysis more concise.

For COVID-19, we consider preventive measures
for three classes of people in model (1).

(a) Quarantined (Q) and confirmed (J) individuals. The
epidemic preventionmeasures for these persons are
the most stringent. They are completely isolated
so that they have no chance to infect susceptible
persons;

(b) Exposed (E), asymptomatic (A) and symptomatic
(I) individuals. The prevention and control mea-
sures for these persons are mainly tracking quar-
antine and isolated treatment. The parameters
δ1, σ1, γ1 represent the quarantined/isolated effi-
ciency of these three types of infected individuals,
respectively.

(c) Susceptible (S) individuals. The prevention and
control measures for these persons mainly include
traffic control, maintaining social distance, imple-
menting curfew, etc., in order to protect them from
getting infected. 1 − u represents the strength of
these measures. The smaller the u, the greater the
prevention and control efforts.

There are two basic properties of system (1) as follows.

Proposition 1 For the given initial condition

(S(0), E(0), Q(0), A(0), I (0), J (0), R(0)) > 0,

the solution of system (1) satisfies (S(t), E(t), Q(t),
A(t), I (t), J (t), R(t)) > 0 for all t > 0.

Proof The proof is by contradiction. Assume that there
exists t1 > 0 such that at least one of S(t1), E(t1),
Q(t1), A(t1), I (t1), J (t1) and R(t1) is not positive. By
continuity of solution, this implies that there exists
t0 such that at least one of S(t0), E(t0), Q(t0), A(t0),
I (t0), J (t0) and R(t0) is equal to 0. Without loss of
generality, we assume that t0 is the minimal time with
such property.
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Table 1 Population classification

Group Symbol Description

Susceptible S People who do not have antibodies and are easily infected by COVID-19

Exposed E People who are infected but not infectious

Quarantined Q Infected people who are quarantined and medically observed but are not confirmed

Asymptomatic A Infected people who do not have any symptoms and are not confirmed and isolated

Symptomatic I Infected people who have obvious symptoms but are not confirmed and isolated

Confirmed J Infected people who are confirmed and isolated

Recovered R People who recover from infection

Died D People who die as a result of infection

Fig. 1 The state
transformation process of
individuals

(a) If S(t0) = 0, then dS
dt

∣
∣
t=t0

= M > 0,which implies
that there exists ε > 0 such that S(t) is strictly
monotone increasing in interval (t0−ε, t0+ε). Let
t2 ∈ (t0 − ε, t0). Then, S(t2) < S(t0) = 0, and
since S(0) > 0, there exists t3 ∈ (0, t2) such that
S(t3) = 0 byBolzano’s theorem, which contradicts
the assumption of t0.

(b) If S(t0) > 0 and E(t0) = 0, then

dE

dt

∣
∣
∣
∣
t=t0

= uS(t0) (αA(t0) + β I (t0))

N (t0) − Q(t0) − J (t0)
≥ 0.

There are two cases:

(1) dE
dt

∣
∣
t=t0

> 0. In this case, a contradiction can
be obtained similar to a).

(2) dE
dt

∣
∣
t=t0

= 0. It is easy to know that E(t) = 0
for all t ≥ 0 is the solution with E(0) = 0.
This is a contradiction to the uniqueness of the
solution since E(0) > 0 and E(t0) = 0.

(c) If S(t0) > 0, E(t0) > 0 and Q(t0) = 0, then

dQ

dt

∣
∣
∣
∣
t=t0

= δ1E(t0) > 0.

As in the case of (a), a contradiction is arrived.
By the same token, A(t0) = 0, I (t0) =
0, J (t0) = 0 or R(t0) = 0 all lead to contradic-
tions. Thus, the proof is completed. ��

Proposition 2 The system (1) is bounded in R7+.

Proof Adding all the equations in (1) yields

dN

dt
= M − υN − μJ ≤ M − υN .

By differential inequality in [30], it follows

0 < N (t) ≤ M

υ
+

[

N (0) − M

υ

]

e−υt .

Let M̂ = max
{
N (0), M

υ

}
. Taking t → +∞, one

obtains 0 < N (t) ≤ M̂ . Hence, the system (1) is
bounded in R7+. ��
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Table 2 Description of symbols

Symbol Description

α, β Infection rates of asymptomatic and symptomatic individuals, respectively.

δ1, δ2, δ3 Transmission rates of exposed individuals to quarantined, asymptomatic and symptomatic, respectively.

η1, η2 Transmission rates of quarantined individuals to isolated and recovered, respectively.

σ1, σ2, σ3 Transmission rates of asymptomatic individuals to quarantined, symptomatic and recovered, respectively.

γ1, γ2 Transmission rates of symptomatic individuals to isolated and recovered, respectively.

θ Cure rate of isolated individuals.

υ Natural death rate.

μ Death rate caused by COVID-19.

1 − u 0 ≤ u ≤ 1, the strength of control measures for susceptible individuals.

Remark 2 By Propositions 1 and 2, it follows that the
set

Ω =
{

(S, E, Q, A, I, J, R) :(S, E, Q, A, I, J, R) ≥ 0,

S + E + Q + A + I + J + R ≤ M̂

}

is a positively invariant set of the system (1).

3 Equilibria and basic reproductive number

In this section, the equilibria and the basic regenerative
number of the system (1) are discussed. Let
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 = M − uS (αA + β I )

N − Q − J
− υS = 0

f2 = uS (αA + β I )

N − Q − J
− δE = 0

f3 = δ1E − ηQ = 0

f4 = δ2E − σ A = 0

f5 = δ3E + σ2A − γ I = 0

f6 = γ1 I + η1Q + σ1A − mJ = 0

f7 = σ3A + η2Q + γ2 I + θ J − υR = 0

(3)

where

δ = δ1 + δ2 + δ3 + υ, η = η1 + η2 + υ,

σ = σ1 + σ2 + σ3 + υ;
γ = γ1 + γ2 + υ, m = θ + μ + υ.

First, from A = I = 0, it follows that E = Q =
J = 0. Thus, an unique disease-free equilibrium can
be obtained:

P0 =
(
M

υ
, 0, 0, 0, 0, 0, 0

)

.

Next, we use the next-generation approach [7,31] to
calculate the basic reproductive number. Let

F =

⎛

⎜
⎜
⎜
⎜
⎝

uS(αA+β I )
N−Q−J

0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎠

,

V =

⎛

⎜
⎜
⎜
⎜
⎝

δE
−δ1E + ηQ
−δ2E + σ A

−δ3E − σ2A + γ I
−γ1 I − η1Q − σ1A + mJ

⎞

⎟
⎟
⎟
⎟
⎠

The Jacobian matrices of F and V at P0 are as follows:

F̃ =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 uα uβ 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

Ṽ =

⎛

⎜
⎜
⎜
⎜
⎝

δ 0 0 0 0
−δ1 η 0 0 0
−δ2 0 σ 0 0
−δ3 0 −σ2 γ 0
0 −η1 −σ1 −γ1 m

⎞

⎟
⎟
⎟
⎟
⎠

.
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Then, the basic reproductive number is

	0=ρ(F̃Ṽ−1) = u

(
αδ2

δσ
+ βδ3σ + βσ2δ2

δσγ

)

. (4)

At the end of this section, the endemic equilibrium is
given. Assume that the number of infected individuals
be nonzero, i.e., I > 0 or A > 0. Then, we have
E 
= 0 by the second equation of (3). From the last five
equations of (3), we obtain

A = δ2

σ
E, Q = δ1

η
E, I = δ3σ + δ2σ2

σγ
E,

J =
[
γ1(δ3σ + δ2σ2)

mσγ
+ η1δ1σ + ηδ2σ1

mση

]

E,

R = 1

υ

[
σ3δ2

σ
+ η2δ1

η
+ γ2(δ3σ + δ2σ2)

σγ

+ θγ1(δ3σ + δ2σ2)

mσγ

+θ(η1δ1σ + ηδ2σ1)

mση

]

E .

Notice that N−Q−J = S+E+A+I+R. Substituting
the above results into the second equation of (3) yields

E = S

q
(	0 − 1), (5)

where

q = 1 + δ2

σ
+ δ3σ + δ2σ2

σγ

+ 1

υ

[
σ3δ2

σ
+ η2δ1

η
+ γ2(δ3σ + δ2σ2)

σγ

+θγ1(δ3σ + δ2σ2)

mσγ
+ θ(η1δ1σ + ηδ2σ1)

mση

]

.

Adding the first two equations of (3), and combining
with Eq. (5), one obtains the unique S:

Se = qM

δ(	0 − 1) + qυ
.

Thus, a unique possible endemic equilibrium Pe =
(Se, Ee, Qe, Ae, Ie, Je, Re) of system (1) is obtained,

where

Se = qM

δ(	0 − 1) + qυ
,

Ee = Se
q

(	0 − 1), Ae = δ2

σ
Ee,

Qe = δ1

η
Ee, Ie = δ3σ + δ2σ2

σγ
Ee,

Je =
[
γ1(δ3σ + δ2σ2)

mσγ
+ η1δ1σ + ηδ2σ1

mση

]

Ee,

Re = 1

υ

[
σ3δ2

σ
+ η2δ1

η

+ γ2(δ3σ + δ2σ2)

σγ

+θγ1(δ3σ + δ2σ2)

mσγ
+ θ(η1δ1σ + ηδ2σ1)

mση

]

Ee.

(6)

By the foregoing analysis, we have the following
conclusion:

Theorem 1 If 	0 ≤ 1, system (1) has a unique
disease-free equilibrium P0, and no endemic equilib-
rium. If 	0 > 1, system (1) has not only a unique
disease-free equilibrium P0, but also a unique endemic
equilibrium Pe.

4 Stability analysis of equilibria

In this section, the stabilities of the disease-free equi-
librium and endemic equilibrium are analyzed, which
are closely related to the value of 	0. The main results
are as follows.

Theorem 2 The disease-free equilibrium P0 of system
(1) is locally asymptotically stable if	0 < 1, but unsta-
ble if 	0 > 1.

Proof The Jacobian matric of system (1) at P0 is

JP0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−υ 0 0 −uα −uβ 0 0
0 −δ 0 uα uβ 0 0
0 δ1 −η 0 0 0 0
0 δ2 0 −σ 0 0 0
0 δ3 0 σ2 −γ 0 0
0 0 η1 σ1 γ1 −m 0
0 0 η2 σ3 γ2 θ −υ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7)

Its characteristic polynomial is

0 = det(λE7 − JP0) = (λ + m)(λ + υ)2(λ + η)
∣
∣
∣
∣
∣
∣

λ + δ −uα −uβ
−δ2 λ + σ 0
−δ3 −σ2 λ + γ

∣
∣
∣
∣
∣
∣
.
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It can be seen that JP0 has at least four negative real
eigenvalues λ1 = −m, λ2 = λ3 = −υ and λ4 = −η.
Thus, we only need to discuss the roots of the following
equation:

0 =
∣
∣
∣
∣
∣
∣

λ + δ −uα −uβ
−δ2 λ + σ 0
−δ3 −σ2 λ + γ

∣
∣
∣
∣
∣
∣

= (λ + δ)(λ + σ)(λ + γ ) − uβδ2σ2

− uβδ3(λ + σ) − uαδ2(λ + γ ).

(8)

Consider the case of	0 < 1first. Equation (8) is rewrit-
ten as

1 = uβδ2σ2

(λ + δ)(λ + σ)(λ + γ )
+ uβδ3

(λ + δ)(λ + γ )

+ uαδ2

(λ + δ)(λ + σ)
� H(λ).

It is not difficult to know that H(λ) is a decreasing
function on [0,+∞). Suppose that Eq. (8) has a non-
negative real part solution λ* = a + bi , that is, a ≥ 0.
Then,

1 = ∣
∣H(λ∗)

∣
∣

≤
∣
∣
∣
∣

uβδ2σ2

(λ∗ + δ)(λ* + σ)(λ* + γ )

∣
∣
∣
∣

+
∣
∣
∣
∣

uβδ3

(λ* + δ)(λ* + γ )

∣
∣
∣
∣

+
∣
∣
∣
∣

uαδ2

(λ* + δ)(λ* + σ)

∣
∣
∣
∣

= uβδ2σ2

|λ∗ + δ| ∣∣λ* + σ
∣
∣
∣
∣λ* + γ

∣
∣

+ uβδ3

|λ∗ + δ| ∣∣λ* + γ
∣
∣

+ uαδ2

|λ∗ + δ| ∣∣λ* + σ
∣
∣

≤ H(a) ≤ H(0) = 	0 < 1,

which is a contradiction. Therefore, when 	0 < 1,
all solutions of Eq. (8) have negative real parts. Thus,
all eigenvalues of JP0 have negative real parts, which
implies that P0 is locally asymptotically stable.

Now consider the case of 	0 > 1. Equation (8) can
be rewritten as

λ3 + (δ + σ + γ )λ2 + (δσ + σγ + γ δ

−uβδ3 − uαδ2)λ + δσγ (1 − 	0) = 0. (9)

Let λ5, λ6, λ7 be three solutions to Eq. (8). Then,
according to the relationship between roots and coeffi-
cients, we have

⎧
⎪⎨

⎪⎩

λ5 + λ6 + λ7 = −(δ + σ + γ ) < 0,

λ5λ6λ7 = uβ(δ2σ2 + δ3σ) + uαδ2γ − δσγ

= δσγ (	0 − 1) > 0.

(10)

There are two cases about λ5, λ6 and λ7 implied by
Eq. (10):

(a) They are all reals. In this case, there must be one
positive and two negative;

(b) One is real and the other two are conjugate complex.
In this case, the real one must be positive.

In a word, Eq. (8) has a positive root if 	0 > 1, which
implies that JP0 has a positive eigenvalue. Thus, system
(1) is unstable at P0. ��

Theorem 3 The disease-free equilibrium P0 of system
(1) is globally asymptotically stable if 	0 < 1.

Proof Adopt the method in [32]. Let y = (S, R) ∈
R
2 (uninfected groups), z = (E, Q, A, I, J ) ∈ R

5

(infected groups) and y0 = (M
υ

, 0
) ∈ R

2. Then, system
(1) can be written as

dy
dt

= G(y, z),

dz
dt

= H(y, z), H(y, 0) = 0.

(a) The solution to the differential equation dy
dt =

G(y, 0) =
(
M − υS
−υR

)

is

⎧
⎨

⎩

S = k1e
−υt + M

υ

R = k2e
−υt

, k1, k2 ∈ R.

Taking t → +∞, we have y = (S, R) →
(M

υ
, 0) = y0, which shows that y0 is globally

asymptotically stable for dy
dt = G(y, 0).

(b) H(y, z) can be written as H(y, z) = CzT −
H̃(y, z), where

C = ∂H

∂z

∣
∣
∣
∣
(y0,0)

=

⎛

⎜
⎜
⎜
⎜
⎝

−δ 0 uα uβ 0
δ1 −η 0 0 0
δ2 0 −σ 0 0
δ3 0 σ2 −γ 0
0 η1 σ1 γ1 −m

⎞

⎟
⎟
⎟
⎟
⎠

,

which is an M-matrix (non-diagonal element non-
negative), and
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H̃(y, z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

uαA
(
1 − S

N−Q−J

)
+ uβ I

(
1 − S

N−Q−J

)

0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

≥ 0, ∀(y, z) ∈ Ω.

By Remark 2, Ω is an invariant set of system (1).
By the theorem in [32], the disease-free equilibrium
P0 of system (1) is globally asymptotically stable
if 	0 < 1. ��

Theorem 4 The endemic equilibrium Pe of system (1)
is locally asymptotically stable if 	0 > 1.

Proof The Jacobian matric of system (1) at P0 is (7).
Choose u as a bifurcation parameter. According to
	0 = 1, it is easy to obtain

u∗ = δσγ

γαδ2 + βσδ3 + βσ2δ2
.

Then, 0 is a simple eigenvalue of JP0 at u = u∗, and
other eigenvalues have negative real parts. In fact, by
	0 = 1 when u = u∗, Eq. (9) becomes

λ3 + (δ + σ + γ )λ2 + (δσ + σγ + γ δ

−u∗βδ3 − u∗αδ2)λ = 0.

Therefore, the Jacobian matric JP0 at u = u∗ has a
zero eigenvalue, without loss of generality, let λ7 = 0.
Moreover, we have

λ5 + λ6 = −(δ + σ + γ ) < 0,

λ5λ6 = δσ + σγ + γ δ − u∗(βδ3 + αδ2)

= δσ + σγ + γ δ

− δσγ

γαδ2 + βσδ3 + βσ2δ2
(βδ3 + αδ2)

= βσ2δ2(δσ + σγ + γ δ) + γαδ2(σγ + γ δ) + βσδ3(δσ + σγ )

γ αδ2 + βσδ3 + βσ2δ2
> 0,

which implies that the real parts of λ5 and λ6 are both
negative. Thus, 0 is a simple eigenvalue of JP0 at u =
u∗, and other eigenvalues have negative real parts.

A right eigenvector corresponding to the eigenvalue
0 of JP0 at u = u∗ is not hard to obtain, denoted by
p = (p1, p2, p3, p4, p5, p6, p7)T , where

p1 = − δ

υ
p2, p2 > 0, p3 = δ1

η
p2, p4 = δ2

σ
p2,

p5 = σδ3 + σ2δ2

σγ
p2,

p6 =
[
η1σδ1 + ησ1δ2

σηm
+ γ1(σδ3 + σ2δ2)

σγm

]

p2,

p7 =
[
σ3δ2

σ
+ η2δ1

η

+ γ2(δ3σ + δ2σ2)

σγ

+θγ1(δ3σ + δ2σ2)

mσγ
+ θ(η1δ1σ + ηδ2σ1)

mση

]
p2
υ

.

Similarly, a left eigenvector corresponding to the eigen-
value 0 of JP0 at u = u∗ is denoted by qT =
(q1, q2, q3, q4, q5, q6, q7), where

q1 = 0, q2 > 0, q3 = 0, q4 = u∗(αγ + βσ2)

γ σ
q2,

q5 = u∗β
γ

q2, q6 = 0, q7 = 0.
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Let S = y1, E = y2, Q = y3, A = y4, I =
y5, J = y6, R = y7, we have

a =
7∑

i, j,k=1

qk pi p j
∂2 fk

∂ yi∂ y j

∣
∣
∣
∣
∣
∣
y=P0,u=u∗

= −2u∗υq2
M

(α p4 + β p5)(p2 + p4 + p5 + p7)<0,

b =
7∑

i,k=1

qk pi
∂2 fk
∂ yi∂u

∣
∣
∣
∣
∣
∣
y=P0,u=u∗

=q2(α p4 + β p5)>0.

According to Theorem 4.1 in [33], the endemic equilib-
rium Pe of system (1) is locally asymptotically stable
if 	0 > 1. ��

According to Theorems 2 and 4, a forward bifur-
cation (transcritical bifurcation) occurs at 	0 = 1 in
system (1). Let E∗ be the value of E(t) when system
(1) is in equilibrium. Then,

E∗ =
{

0, 	0 ≤ 1

Ee, 	0 > 1
.

Taking E∗ as an example, the bifurcation diagram is
shown in Fig. 2. The disease-free equilibrium of sys-
tem (1) is stable if 	0 < 1, but unstable if 	0 > 1.
However, the endemic equilibrium is locally asymp-
totically stable if 	0 > 1.

Theorems 2 and 3 show that the number of peo-
ple infected by COVID-19 I (t)will eventually become
zero when 	0 < 1, i.e., the epidemic will be brought
under control and COVID-19 will disappear. Theorem

Fig. 2 Forward bifurcation (M = 1500, θ = 0.1, μ = 0.01 and
the values of remaining parameters are shown as in Table 3)

4 shows that I (t) will stabilize around a positive con-
stant when 	0 > 1, forming an endemic disease, i.e.,
COVID-19will not disappear, but coexistwith humans,
and may break out again at any time. People certainly
hope that COVID-19 disappear as soon as possible,
which means that the basic regenerative number 	0

should be controlled below 1. In the absence of spe-
cific drugs and vaccines, its spread can only be slowed
by non-pharmacological interventions.

From expression (4) of 	0, the following measures
can be taken to reduce the spread of COVID-19:

(a) Strengthen the quarantine for close contacts
(exposed persons), so that the number of infected
persons (groups A and I) mixed in the susceptible
population will be reduced, i.e., increase δ1, and
then δ2 and δ3 will decrease.

(b) Increase the isolation rate of infected individuals
(groups A and I), i.e., increase σ1 and γ1.

(c) Implement the control measures mentioned previ-
ously for susceptible individuals: that means reduc-
ing u.

Among the above measures, (a) and (c) are very effec-
tive and can significantly reduce	0,which is consistent
with the actual situation, especially (c).

5 Model calibration and simulation

In this section, the stability of the equilibria (includ-
ing the disease-free equilibrium and endemic equi-
librium) are verified by simulations. The parameters
of model (1) are estimated by using the real data of
Hubei Province in China and then simulate the spread
of COVID-19 in Hubei and Hunan Provinces.

5.1 Stability of equilibria

Taking one day as the simulation step length, and
choosing different parameter values, we simulate the
spread dynamics of COVID-19 in two cases of 	0 < 1
and	0 > 1. The spread dynamics of COVID-19 in 100
days when 	0 = 0.2271 < 1 is shown in Fig. 3. It can
be seen fromFig. 3a that the undiagnosed infected indi-
viduals (the infectious source of COVID-19, includ-
ing asymptomatic and symptomatic) are completely
cleared on about the 50th day, which means that after
about 50 days later, the spread of COVID-19 is com-
pletely controlled. Figure 3b shows that the number of
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(a) (b)

Fig. 3 The spread dynamics of COVID-19 when 	0 =
0.2271 < 1. (S(0) = 50000, E(0) = 700, Q(0) = 800, A(0) =
200, I (0) = 80, J (0) = 500, R(0) = 200, M = 800, θ =

0.1, μ = 0.01, u = 0.3, β = 3.8, α = 0.45β, δ1 = 0.8, δ2 =
0.04, δ3 = 0.01, σ1 = 0.2, σ2 = 0.1, σ3 = 0.15, γ1 =
0.1, γ2 = 0.046, η1 = 0.5, η2 = 0.15.)

(a) (b)

Fig. 4 The spread dynamics of COVID-19 when 	0 = 3.01145 > 1. (u = 1, δ1 = 0.2, σ1 = 0.1, values of the initial states and other
parameters are the same as Fig. 3.)

confirmed cases J (t) is reduced to 0 on about the 70th
day. At this time, COVID-19 is completely eliminated.
Figure 3 verifies that the disease-free equilibrium is
asymptotically stable when 	0 < 1.

The spread dynamics of COVID-19 in 10000 days
when 	0 = 3.01145 > 1 is shown in Fig. 4. As shown
in Fig. 4a, there are still active undiagnosed infected
individuals (A(t) > 0 and I (t) > 0) even after 10,000

days when 	0 = 3.01145, which means COVID-19
is not completely controlled and continues to spread
among the population. The number of confirmed cases
J (t) is also maintained at around 4000 (Fig. 4b). From
Fig. 4, it can be seen that the number of people in
each group tends to be stable over time, which veri-
fies Theorem 4. When 	0 > 1, the endemic equilib-
rium is locally asymptotically stable, and COVID-19
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(a) (b)

Fig. 5 Fitting of θ(t) and μ(t)

will coexist with humans. According to (6), we obtain
Ae = 250, Ie = 321, Ee = 2185, Qe = 672, Je =
3573. By Theorem 4, A(t), I (t), E(t), Q(t) and J (t)
will converge to 250, 321, 2185, 672 and 3573, respec-
tively.

5.2 Estimation of model parameters and spread
dynamics of COVID-19 in Hubei

In this subsection, model (1) is used to simulate the
spread of COVID-19 in Hubei Province, China. Firstly,
the parameters of the model are estimated applying the
relevantly real data of Hubei. In the early stage, a large
number of people were infected, leading to a severe
shortage of medical resources, including hospital beds,
medical staff and medical protective supplies. As a
result, many patients could not be hospitalized in time.
Patients with mild symptoms are required to be self-
isolated at home, which leads to increased infections
among family members and cannot block the spread
of COVID-19. Since early February 2020, with the
strong intervention of the Chinese government, a large
number of existing medical institutions were rapidly
converted to isolation wards and two large temporary
hospitals were built to treat severe cases; a large num-
ber of medical workers and supplies were mobilized
from other provinces in China to aid Hubei province;
large public places, such as exhibition centers, were
transformed into simple temporary hospitals, known

as “shelter hospitals,” to collectively isolate and treat
patients with mild symptoms; some hotels and schools
were set as places for quarantined observation of close
contacts, etc. The purpose of thesemeasures is to gather
infected people as many as possible for isolation, treat-
ment or medical observation to completely cut off the
source of infection of COVID-19. Model (1) is based
on these strong epidemic prevention measures. Given
that there were many suspected patients in the early
stage and the daily nucleic acid testing ability was lim-
ited, many cases could not be diagnosed in time; so
the early data could not accurately reflect the spread
of COVID-19. Therefore, we choose 21 days of data
from February 14 to March 5, 2020, to calibrate the
model; that is, to estimate the parameters in the model.
The real data come from the official Web site of the
Chinese Health Commission [34] and Hubei Health
Commission [35]. With the increased number of med-
ical staff and medical supplies and the accumulation
of diagnostic and treatment experience, the case fatal-
ity rate gradually decreases and the cure rate continu-
ously increases. Therefore, assume that θ = θ(t) and
μ = μ(t) are both functions of time, which is more
consistent with the reality. The real-time data about
COVID-19 reported by the health department mainly
include: the number of confirmed cases (hospitaliza-
tions), the number of deaths due to COVID-19, the
number of cured and discharged patients, etc. θ = θ(t)
and μ = μ(t) are fit with a first-order function and an

123



276 B. Yang et al.

Fig. 6 Currently confirmed cases

Table 3 Values of parameters

Parameter Value Source Sensitivity index

α 0.45β Assumed 0.22780

β 3.65253 Estimated 0.77220

δ1 0.71533 Estimated −0.93088

δ2 0.04227 Estimated 0.54710

δ3 0.01081 Estimated 0.38383

η1 0.22732 Estimated –

η2 0.14357 Estimated –

σ1 0.19914 Estimated −0.24684

σ2 0.11686 Estimated 0.22945

σ3 0.16972 Estimated −0.21037

γ1 0.10646 Estimated −0.52016

γ2 0.05155 Estimated −0.25187

υ 3.589 × 10−5 [29] –

u 0.3 Assumed 1

exponential function, respectively, to the actual report
data, as shown inFig. 5 and the fitting results as follows:

θ(t) = 0.00388t + 0.01157,

μ(t) = μ(t) = 0.00279e−0.04828t .

Almost all confirmed cases are symptomatic
patients, and once diagnosed, they will be hospitalized
for isolation and treatment. As a result, the number of
confirmed cases is the number of inpatients, including
all patients in hospitals and shelter hospitals. We used
the reporteddata of currently confirmedcases (the num-
ber of cases currently being isolated and treated in hos-
pitals) and the solution J (t) of model (1) to do the least

Table 4 Initial values of states

Symbol Value Source

S(0) 5,00,000 Assumed

E(0) 7,233 Estimated

Q(0) 8,261 Estimated

A(0) 2,482 Estimated

I (0) 869 Estimated

J (0) 48,175 Reported

R(0) 6,000 Assumed

Jc(0) 54,406 Reported

Z(0) 4,774 Reported

D(0) 1,457 Reported

square fitting [7] to estimate values of the parameters.
Because of the strong anti-epidemic measures imple-
mented by the government and the active cooperation
of the public, we assume that u = 0.3. At this time,
since population mobility is almost nonexistent and the
number of birthswithin 21 days is limited, it can be con-
sidered that M = 0. The population of Hubei Province
is about 58million. Due to the epidemic prevention and
control measures, the vast majority of people could not
go out or make contact with the outside world. There-
fore, assume that the initial value of actually suscep-
tible people is S(0) = 500, 000. Take February 14 as
the time of t = 0; the fitting simulation is shown in
Fig. 6, where the points represent the actually reported
data, and the curve represents the model solution J (t).
The estimated values of model parameters are shown
in Table 3, and the initial values of states are shown in
Table 4. Themean relative error can be used to evaluate
the fitting effect, and it is defined as follows:

EMRE = 1

n

n∑

i=1

∣
∣
∣X (i) − X̂(i)

∣
∣
∣

X (i)
× 100%,

where X (i) is the true value, X̂(i) is the fitted value
and n is the number of data. It can be calculated that
the mean relative error of the currently confirmed cases
fitting is EMRE = 0.8942%.

We validate the model using the actually reported
data on cumulative number of confirmed cases, cured
cases and deaths. According to model (1), the cumu-
lative number of confirmed cases (hospitalized cases)
Jc(t), cured cases Z(t) and dead cases D(t) on day t
is as follows:
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(a) (b)

(c)

Fig. 7 Simulation and verification in Hubei. The points are the real reported data, and the curves are the solutions of differential Eq.
(11) associated with system (1)

Table 5 Mean relative error

Region J (t) Jc(t) Z(t) D(t)

Hubei 0.8942% 0.3517% 2.3583% 1.7299%

Hubei ([29]) 4.4841% 13.2997% 47.4423% 12.9712%

Hunan 2.4785% 3.2764% 13.2765% –

Jc(t) =
∫ t

0

[
γ1 I (t) + σ1A(t) + η1Q(t)

]
dt

+Jc(0), Z(t) =
∫ t

0
θ(t)J (t)dt + Z(0)

and

D(t) =
∫ t

0
μ(t)J (t)dt + D(0),

respectively. Initial values J (0), Z(0) and D(0) are the
cumulative number of confirmed cases, cured cases and
dead cases actually reported on February 14, respec-
tively, as shown in Table 2. Then, the differential equa-
tions associated with system (1) are obtained as fol-
lows:
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(a) (b)

Fig. 8 Fitting of θ(t) and J (t) in Hunan

Table 6 Initial values of states

Symbol Value Source

S(0) 500000 Assumed

E(0) 196 Estimated

Q(0) 166 Estimated

A(0) 128 Estimated

I (0) 33 Estimated

J (0) 277 Reported

R(0) 3 Estimated

Jc(0) 277 Reported

Z(0) 0 Reported

dJc
dt

= γ1 I (t) + σ1A(t) + η1Q(t),

dZ

dt
= θ(t)J (t),

dD

dt
= μ(t)J (t).

(11)

The simulation results and the mean relative errors
are shown in Fig. 7 and Table 5, respectively. It can
be seen that model (1) is basically consistent with
the actual data and can reflect the spread dynamics of
COVID-19 under the strong intervention of the govern-
ment. According to the values of parameters in Table
3, 	0 = 0.24512 is given, which is already much less
than 1 and indicates that the spread of COVID-19 has
been almost controlled.

5.3 Spread dynamics of COVID-19 in Hunan

The prevention and control measures are the same in all
parts of China, so the spread dynamics of COVID-19 in
China almost have no difference. Therefore, model (1)
is suitable for Hubei Province and other parts of China.
In this subsection, the model is used to simulate the
spread of COVID-19 in Hunan Province of China and
compare it with the real data [34,36]. The early cases in
Hunan Province all had travel history in Hubei. Under
strict prevention and control measures, it was easy to
control the spread of COVID-19 in Hunan, so finally
the confirmed cases were onlymore than one thousand.
We choose 21 days from January 29 to February 18,
2020, to simulate. Adopting the estimated values in
Table 3, there are only initial values of several states
of model (1) in Hunan which need to be estimated.
Let S(0) = 500000 since the population of Hunan and
Hubei provinces are similar, and M = 0. In these 21
days, the cumulative deaths due to infectionbyCOVID-
19 were only 4, which was a small proportion and can
be ignored, that is, μ = 0. Firstly, the cure rate per day
θ(t)within the 20 days was fitted by a line, see Fig. 8a.
The fitting result is

θ(t) = 0.0042t + 0.00065.

Similarly, the initial values of the states are estimated
by using the actual data of confirmed cases. The results
are shown in Table 6 and Fig. 8b. According to the
estimated values of the initial states, the simulation
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(a) (b)

Fig. 9 Simulation and verification in Hunan

of cumulative confirmed case Jc(t) and cumulative
cured case Z(t) is shown in Fig. 9a and b, respectively.
The mean relative errors of fitting and simulations are
shown in Table 7. It can be seen that the simulation
results of the model are basically consistent with the
actual data, which indicate that model (1) can truly
reflect the spread dynamics of COVID-19 under the
strict prevention and control measures.

5.4 Comparison with related work

The real data with respect to COVID-19 in a certain
area generally includes the number of daily new con-
firmed cases, daily cured cases and daily died cases, the
number of cumulatively confirmed cases, cumulatively
cured cases and cumulatively deaths, and the number
of currently confirmed cases, etc. However, most of the
studies use only one or two of them in parameter fit-
ting and model verification. For example, the real data
in [19,21,22] and [20] is only the number of cumula-
tively confirmed cases and currently confirmed cases,
respectively. In [10], the number of cumulatively con-
firmed cases and that of cumulative deaths are used,
while the number of daily new confirmed cases and
that of cumulatively confirmed cases are adopted in
[29]. It is not difficult to see that almost all the real data
about COVID-19 in Hubei and Hunan are used in sub-
sections 5.2 and 5.3. The number of daily newly cured
cases, daily died cases and currently confirmed cases

are employed to fit the parameters. The remaining real
data are used to verifymodel (1). Usingmultiple sets of
actual data to fit the parameters can improve the accu-
racy of the fitting. The comparison between the model
simulation results and multiple sets of actual data can
better reflect the rationality of the model.

6 Sensitivity analysis of �0

Taking the model in [29] as an example, the real data
of COVID-19 in Hubei are used to perform param-
eter fitting and simulation verification. Similarly, the
parameters are fitted by the number of currently con-
firmed cases. Then, the model is employed to simulate
the number of cumulatively confirmed cases, cumula-
tively cured cases and cumulatively died cases. Com-
pared with the real data, the mean relative errors of
fitting and simulations are shown in the third row of
Table 5. Obviously, model (1) is more consistent with
real data and can better reflect the actual spread dynam-
ics of COVID-19.

According to Sect. 5.1, the basic reproductive num-
ber	0 plays an important role for analyzing the dynam-
ics of system (1) and COVID-19. COVID-19 remains
in the population, and the number of infected individ-
uals stabilizes around a positive constant if 	0 > 1. In
this case, the disease will become endemic in the pop-
ulation. The number of infected individuals gradually
declines to zero, and COVID-19 disappears from the
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(a) (b)

(c)

Fig. 10 The curves of 	0 with respect to various isolation rates. (The values of related parameters are shown in Table 3.)

population if 	0 < 1. In order to reduce the spread of
COVID-19,whichmeasures aremost effective needs to
be considered, in other words, which parameters have
the greatest impact on the basic regenerative number	0

should be analyzed. This is the sensitivity of parameter,
which refers to the relative change of relevant variables
caused by the change of some parameters. Suppose that
function f is differentiable to parameter x , then the
sensitivity index of f for x is defined as [37]

Υ x
f = ∂ f

∂x

x

f
.

Sensitivity index Υ x
f reflects the robustness of function

f to variable x . Specifically, with values of other vari-
ables (or parameters) remaining unchanged, ifΥ x

f > 0,

f increases (or decreases) by Υ x
f % when x increases

(or decreases) by 1% ; if Υ x
f < 0, f decreases (or

increases) by −Υ x
f % when x increases (or decreases)

by 1%. Sensitivity indices of basic regenerative num-
ber 	0 to each parameter are shown in Table 3. For
example, the sensitivity index of 	0 to β is 0.77220
(Υ β

	0
= 0.77220), which means that if β increases

by 10% and other parameters remain unchanged, then
	0 will increase by 7.7220%. Similarly, since Υ

δ1	0
=

−0.93088, increasing δ1 by 10% decreases 	0 by
9.3088%. It can be seen from Table 3 that the parame-
ters with large sensitivity index are u, δ1, β, δ2, γ1 and
δ3 in turn, which tells us that the effective measures
to reduce 	0 include strengthening interventions to
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(a) (b)

(c) (d)

Fig. 11 The spread dynamic of COVID-19 about different u

reduce population exposure (decreasing u), strengthen-
ing trace and quarantine of close contacts (increasing
quarantine rate δ1), strengthening safeguard measures
to hospitalize asmany symptomatic patients as possible
(increasing γ1), and so on. These results are consistent
with the analysis at the end of Section 4. Let 	0 be
a function of δ1, σ1 and γ1, respectively. For different
values of u, the curves of 	0 about δ1, σ1 and γ1 are
shown in Fig. 10. As shown in Fig. 10a,	0 is a decreas-
ing and concave-up function of δ1 for different u.When
u is smaller and δ1 is larger, 	0 is smaller. Figure 10b
and c shows similar results.

Some parameters can be adjusted for simulation and
comparison to intuitively reflect the impacts of cor-

responding prevention and control measures on the
spread of COVID-19. Take Hunan Province, China, as
an example. According to sensitivity analysis, u has the
greatest impact on the basic reproductive number 	0,
followed by δ1.We focus on the impact of different u on
the spread of COVID-19 firstly. Keeping other param-
eters unchanged, let u = 0.2, 0.3 and 0.4, respectively.
The simulations are shown in Fig. 11. The correspond-
ing basic reproductive numbers are 0.16341, 0.24512
and0.32682, respectively. It can be seen that the smaller
the u, the smaller the basic reproductive number 	0,
and the fewer confirmed cases. It shows that taking
prevention and control measures for susceptible peo-
ple is indeed an effective way to control the spread
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(a)

(c) (d)

(b)

Fig. 12 The spread dynamic of COVID-19 about different δ1

of COVID-19. Similarly, keeping the other parameters
unchanged (where u = 0.3), let δ1 = 0.5, 0.71533 and
0.9, respectively. The spread dynamic of COVID-19 is
shown in Fig. 12, and the corresponding basic repro-
ductive numbers are 0.34054, 0.24512 and 0.19763,
respectively. The larger the quarantine rate (δ1), the cor-
respondingly fewer the infected individuals (sources
of infection) who have not been quarantined, and the
smaller the basic reproductive number	0. As shown in
Fig. 12, the larger the δ1, the more the confirmed cases
(the fewer the source of infection) in the early stage,
which leads to fewer infected individuals in the later
stage. Therefore, the quarantine rate of infected indi-

viduals (δ1) also plays an important role in controlling
the spread of COVID-19.

7 Conclusion

One year has passed since COVID-19 firstly appeared.
However, COVID-19 is still in the stage of global
pandemic. In particular, several variants of COVID-
19 were discovered in some countries recently, which
have been confirmed more infectious, and pose even
greater challenges to epidemic prevention and control.
Although vaccination against COVID-19 has been car-
ried out in some countries, its output cannot satisfy cur-
rent needs and the conditions for mass vaccination are
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not yet in place. Strict epidemic prevention measures
of non-pharmacotherapy intervention are still needed
to prevent further spread of the epidemic. Based on
this background, this paper establishes a mathematical
model to simulate the spread of COVID-19 under some
strict epidemic preventionmeasures. The existence and
stability of equilibria are analyzed. The parameters of
the proposed model are estimated using the real data
in Hubei. As validations, this model is used to sim-
ulate the spread of COVID-19 in Hubei and Hunan
provinces of China for a period of time. Experimen-
tal results show that the model can well simulate the
spread dynamic of COVID-19 under certain strict pre-
vention and control measures. Reducing the contact
rate of the population and increasing the quarantine
rate of infected individuals are the most effective non-
pharmaceutical intervention measures for controlling
COVID-19 by the sensitivity analysis of the parame-
ters. Through the modeling and analyses of this paper,
we hope to provide some useful insights for formulat-
ing epidemic preventionmeasures to contain the spread
of COVID-19 [38,39]. In order to establish more pre-
cise and accurate model to simulate and predict the
spread dynamic of COVID-19, we will fully consider
the influence of different types of co-infected people
and collect relevant actual data in future research. The
proposed method can be applied to rumor propagation
in social networks [40].
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