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Abstract This paper addresses the leader tracking
control problem for heterogeneous uncertain nonlinear
multi-agent systems sharing information via a com-
munication network, modeled as a directed graph. To
solve the problem, we propose a novel distributed PID-
like control strategywhich, enhancedwith a Lyapunov-
based adaption mechanism for the control parameters,
is able to counteract the uncertainties acting on the
agents dynamics. The stability analysis analytically
proves the effectiveness of the proposed PID protocol
in ensuring the leader-tracking as well as the bounded-
ness of the adaptive control gains. Numerical simula-
tions, involving both the synchronization control prob-
lem for nonlinear harmonic oscillators and the prac-
tical engineering problem of the cooperative driving
for autonomous connected vehicles, confirm the the-
oretical derivation and disclose the capability of the
proposed strategy in achieving the control objective.
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1 Introduction

Recent years have witnessed the great development of
distributed cooperative control based on multi-agent
systems (MASs) with the aim at solving the large vari-
ety of consensus problems commonly arising in dif-
ferent application fields (e.g., physics, economic sci-
ences, biology, engineering, and robotics), such as,
for example, synchronization, leader-tracking, con-
tainment, formation-containment, rendezvous [7]. The
great diffusion of this control approach depends on its
capability of overcoming some limits of the central-
ized control architectures, as the spatial distribution
of devices and sensors, short-range of communication,
computational burden [11].

In the above-distributed control context, it is well-
knownhow themain challenges stem from the hypothe-
ses that should be made on the agents model. Dis-
tributed protocols are commonly designed for deal-
ing with homogeneous MAS, where all agents share
a unique dynamical model (see for example [28,29]
and the references therein).However, as the cooperative
control theorywent improving,more complex and real-
istic scenarios have been treated bringing to the birth of
the so-called heterogeneousMASs [12,43], where each
agent acts according to its own dynamics. Along this
line, a major issue is that some of the tools proposed
for the homogeneous framework cannot be exploited
for the heterogeneous one, making this scenario harder
to deal with and inducing the necessity of deriving ana-
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lytical approaches able to specifically treat the agents
heterogeneity [19].

To solve consensus problems in the heterogeneous
framework, where agents are modeled as linear sys-
tems, different protocols have been recently proposed,
ranging from the H∞ for ensuring robust leader-
tracking performances in the presence of external per-
turbation [1,15,22,63], to adaptive approaches such as
the ones proposed in [5,57] for tackling the leader–
follower control problem, or in [19,20,31] for solving
containment and formation problems.

In this context, the presence of the leading behavior
is usually modeled as an autonomous agent (leader)
generating the reference trajectories, belonging to a
prescribed family that have to be tracked by all agents
(followers). For the case of heterogeneous, but linear,
MASs, it is possible to prove that this goal can be
reached if a set of linear matrix equations, defined as
regulator equations, are verified for each agent (e.g., see
[22] and references therein). To this aim, most of the
approaches in the technical literature propose joining
the solutions of the regulator equations to the design
of distributed observers in order to estimate the leader
behavior (or a convex combination of the leaders states
in the multi-leader case) [22,45]. However, this esti-
mation funds on the precise knowledge of the leader
matrix [64]. To overcome this limitation, distributed
adaptive protocols, guaranteeing the online estimation
of the regulator equations solution, seem to be the most
promising approach, as proved in [4] for solving the
leader-following problem, or in [65] for achieving the
formation-tracking.

More recent approaches aim at getting over the
restrictive assumption of linear agentswhen solving the
set of regulator equations, or estimating them, in order
to deal with consensus problems in heterogeneous non-
linear MASs. For example, [58] proposes a control law
based on the duplex proportional and integral action
for ensuring the synchronization of a nonlinear Lips-
chitz heterogeneousMAS. Event-triggered approaches
have been also adopted as, for example, in [35,39,56],
while the problem of unknown and nonidentical con-
trol directions has been addressed in [51] by exploit-
ing the Nussbaum functions via a two-layer distributed
hierarchical control scheme. The same problem is also
dealt with in [38], where the Nussbaum functions are
used by mean of a particular transformation, the so-
called PI error transformation, for heterogeneous and
unknown second-order nonlinear MASs. Classical dif-

fusive protocols have been also proposed, as for exam-
ple in [47], where the aim is to guarantee some leader-
following performance in the case of nonlinear Lips-
chitz heterogeneous MASs by considering the leader
as a non-autonomous system with unknown bounded
input, and in [37], where the consensus is ensured in
finite time.Under the assumption of boundedness of the
nonlinear uncertainties dynamics, authors in [55] pro-
pose a distributed adaptive observer-based consensus
protocol along with an adaptive mechanism for updat-
ing the coupling weight values. Leveraging, instead,
neural networks tools, a distributed learning consensus
protocol is suggested in [27,41,53,59] for solving a
leader tracking problem with undirected communica-
tion graph topologies. Moreover, by combining a lin-
ear and discontinuous feedback terms with neural net-
work approximation, [62] proposes a robust adaptive
distributed controller for solving consensus of uncer-
tain MAS.

The same control problem is also addressed via
distributed backstepping adaptive approaches. Along
this line, [17] solves the consensus problem by assum-
ing that the leader/followers nonlinear dynamics can
be linearly parameterized with some known functions
while, by relaxing this latter assumption, [21] sug-
gests a similar approach for the solution of leader–
follower and leaderless consensus problems in a uni-
fied framework. Moreover, [50] proposes a backstep-
ping distributed adaptive control protocol based on
the boundedness assumption of the nonlinear dynam-
ics and the restrictive hypothesis of undirected com-
munication topologies. Again, this control method is
exploited in [18,48] to address the prescribed perfor-
mances consensus tracking problem in the more chal-
lenging framework of time-varying control coefficient.

Based on control theory, it is well-known that it is
possible improving the steady-state and the transient
performances using a Proportional-Integral-Derivative
(PID) controller, with the aim to take into account also
the “past” and the “future” information, beyond the
“present” ones [14]. For these reasons, aswell as for the
robustness purpose, versatility and ease of implementa-
tion, the PID control and its variations have beenwidely
used. However, although the well-known advantages,
distributed PID-like protocols are still lightly covered
in the MAS literature, and generally the approaches
restrict their focus to the homogeneous framework. For
example, distributed PID has been exploited in [14]
where authors ensure synchronization of a homoge-
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neousMAS in the presence of Lipschitz nonlinearities,
or in [49], where the synchronization over a switching
delayed topology is addressed in the case of first-order
homogeneous nonlinear Lipschitz MAS leveraging the
Lyapunov–Krasovskii theory.

A more tricky scenario, which deals with both com-
munication time-delay and time-varying parameter
uncertainties, has been tackled in [40], where a descrip-
tor transformation has been exploited for enlarging the
statewith the derivative control action, and in [8],where
a suitable derivation of the closed-loop MAS allows
overcoming some of the difficulties arising from the
exploitation of the descriptor approach. In addition,
robust distributed PID protocols have been also pro-
posed for solving the problemof coordinating an homo-
geneous linear vehicular platoon in the presence of
communication delays and parameter uncertainties in
smart roads scenarios [9,10]. Distributed and adaptive
PI controllers havebeen insteadproposed in [6]with the
aim of ensuring consensus in the presence of state satu-
ration constraints, again in the context of homogeneous
nonlinear Lipschitz MASs, while PI and PD protocols
were designed in [46] for achieving synchronization in
the case of linear homogeneous second-order MAS in
the presence of external disturbances, so also provid-
ing an H2 norm metric to evaluate the coherence of
the group, i.e., the variance of nodal state fluctuations.
The same problem has been tackled via robust PID in
[42], but in the case of high-order homogeneous linear
agents under the restrictive assumption of undirected
communication graph. Instead, in the context of non-
linear homogeneous Lipschitz MASs, very recently, a
distributed adaptive PI control has been proposed in
[13], to ensure the synchronization of dynamic agents,
in the presence of stochastic coupling.

A first attempt to solve the leader-tracking control
problem for heterogeneous nonlinear MAS in cooper-
ative driving applications via distributed PID-like con-
trol can be found in [36]. However, the design is based
on theQUADassumptions of vehicle nonlinear dynam-
ics and does not take into account agent uncertainties.

All the recent aforementioned works, suggesting
PID approaches both for linear and nonlinear agents,
are mainly based on the assumption of homogeneous
MASs. Indeed, the heterogeneous case is usually less
addressed in the current technical literature and, in
general, in the heterogeneous context, the control pro-
tocols mostly require some strict constraints on the
agents structure. More in detail, the mathematical tools

exploited for dealing with linear heterogeneous MASs
demand the fulfillment of restrictive assumptions on the
agents input matrix, thus limiting the practical appli-
cability of the control protocols. For example, a dis-
tributed adaptive PI protocol has been designed in [33],
where however there is the need for a full row rank
input matrix, which turns to be a very strong assump-
tion to accomplish in practical applications. Further-
more, with respect to the model commonly assumed
for the leader, further restrictions usually allow gener-
ating just constant behaviors to be tracked by theMAS.
As, for example, in [34], where authors propose a dis-
tributed PI control strategy able to track only a con-
stant leading behavior under the main hypothesis that
the input matrix of each agent (follower) is structured
in order to guarantee that there exists a specific control
action for each state variables, limiting by this way the
applicability of the approach to a specific system cate-
gory. Some of these drawbacks have been very recently
overcome for heterogeneous, but linear, MASs in [32],
where an optimal distributed PID protocol is proposed,
able to solve both leader-tracking and output contain-
ment problems (i.e., when more leaders are present),
without requiring restrictive assumptions on the agents
matrix structures.

Based on the above facts, in this work, we pro-
pose a fully distributed adaptive PID protocol for het-
erogeneous nonlinear and unknown high-order multi-
agent systems, able to ensure leader-tracking in the
presence of parameter uncertainties, arising from the
unavoidable simplifications occurring during the mod-
eling phase, from the not-complete knowledge of the
system dynamics and from the presence of external dis-
turbances. Specifically, the proposed Lyapunov-based
approach is able to adapt the gains of the fully dis-
tributed PID-like protocol so to copewith uncertainties,
to emulate the effect of an optimal control action, and to
guarantee the closed-loop asymptotic stability, as well
as the boundedness of the control gains. Differently
from the technical literature, the proposed control strat-
egy involves a limited amount of time-varying informa-
tion for the computation of adaptive control actions.
Thus, according to the metric in [30], it is able to save
communication channel bandwidth and to reduce the
computational burden.

Numerical simulations, involving coupled harmonic
oscillators networks, confirm the theoretical deriva-
tion and disclose the ability of the adaptive approach
in solving the leader tracking control problems. Most
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notably, to better appreciate the potential applications
of our approach, we also apply ourmethod for solving a
practical problem in the engineering literature, namely
the cooperative driving of autonomous connected
ground vehicles. Summarizing, the main contributions
are:

– we propose a fully distributed adaptive PID control
approach, able to solve the leader-tracking problem
for heterogeneous, nonlinear and unknown high-
order multi-agent systems sharing information on
directed graph. To the best of our knowledge and
according to the literature overview, there are no
works dealing with this framework;

– differently from the distributed PID approaches
proposed in [13,33,34], the our one enlarges the
protocol with a derivative action so to improve the
closed-loop performance (see [10,32] for a detailed
comparison analysis w.r.t. generic diffusive proto-
cols) and does not require any restrictive assump-
tion on the agents model structure, hence, enabling
its concrete application in a wide range of leader-
tracking engineering problems such as the cooper-
ative driving one. Note that to deal with the deriva-
tive action, we do not need the exploitation of the
descriptor transformation [40];

– concerning the heterogeneous nonlinear MAS
framework, the proposed approach does not require
any assumption about the leader/follower agents
dynamics, e.g., boundedness/ Lipschitz nonlin-
ear vector field [21,50,55,58], QUAD assumption
[36], or complex adaptive neural-network-based
procedure for a specific linear parametrization of
leader dynamics [17];

– there is no need of exploiting distributed observers
to estimate the leader states or obtaining the solu-
tions of regulator equations, thus making the con-
trol design and implementation easier with respect
to the current approaches proposed for dealing with
heterogeneity in the linear field;

– the proposed approach allows guaranteeing the
asymptotic convergence of the tracking error differ-
ently from other adaptive approaches in the tech-
nical literature (as analyzed in [62]). In addition,
for the achievement of this control purpose, dif-
ferently from the aforementioned backstepping or
neural network techniques, our approach requires
less computational burden according to the metric
defined in [30].

Finally, the paper is structured as follows. The math-
ematical background is given in Sect. 2. Section 3
presents the problem statement, while Sect. 4 discusses
about the leader tracking framework and the proposed
distributed robust adaptive PID-like control strategy,
whose stability analysis is analytically carried out in
Sect. 5. Numerical simulations in Sect. 6 confirm the
theoretical derivation and disclose the effectiveness of
the proposed approach in ensuring the leader-tracking.
Conclusions are provided in Sect. 7.

2 Background

2.1 Sharing information among agents

The information exchanging among the N agents
within a MAS can be modeled by a N -order directed
graph GN = (V, E,A), where V = {1, . . . , N } is the
set of agents sharing information and E ⊆ V × V is
the set of the active communication links. The graph
topology is described by the Laplacian matrix L =
D −A, whereA = [

ai j
]
N×N is the adjacency matrix,

whose elements are equal to 1 only if agent j sends
information to the agent i , 0 otherwise, and D =
diag{Δ1,Δ2, ..., ΔN } is the in-degree matrix, being
Δi = ∑

j∈V ai j . If there exist an additional agent,
defined as leader and labeled with 0, which imposes
the reference behavior to the whole MAS, the resulting
communication structure is modeled via an augmented
directed graph Ḡ = GN+1 and described via the matrix
H = L+P ∈ R

N×N , whereP = diag{p1, p2, ..., pN }
is the pinning matrix, defined such that pi = 1 if the
leader information is directly available for the i − th
agent, 0 otherwise [24].

Moreover, in what follows, we consider the follow-
ing assumption to be held.

Assumption 1 ([52]) The communication graph Ḡ
contains a directed spanning tree with the leader as
the root.

Remark 1 Assumption 1 is not a restrictive for MAS
connected via a communication networking technol-
ogy in practical applications scenarios since it only
implies that information can be shared through a path
from the leader to any generic agent within MAS, but
it is not always assumed them to be directly linked.

Finally, we recall a useful lemma for our theoretical
derivation.
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Lemma 1 [50] The following inequality holds

0 ≤ |z| − z2
√
z2 + ξ2(t)

≤ ξ(t) (1)

for any z ∈ R and ξ(t) > 0.

3 Problem statement

Consider a group of N heterogeneous uncertain nonlin-
ear agents in the following strict-feedback form [61]:

ẋi,q(t) = xi,q+1(t)

ẋi,n(t) = fi (xi (t)) + biui (t),

q = 1, · · · , n − 1, i = 1, · · · , N ,

(2)

where xi (t) = [xi,1(t), · · · , xi,n(t)]� ∈ R
n is the state

vector; ui (t) ∈ R is the control input; fi (xi (t)) ∈ R is
an unknown nonlinear function vector and bi ∈ R is an
unknown scalar where only the sign is known.

Remark 2 The assumption of strict-feedback form is
not restrictive since it can be commonly encountered
in many nonlinear control problems [60,61]. More-
over, some diffeomorphisms exist which allow recast-
ing more general classes of nonlinear systems in such
form [2,44].

The leader behavior is described as the following
autonomous nonlinear uncertain system:

ẋ0,q(t) = x0,q+1(t)

ẋ0,n(t) = f0(x0(t)), q = 1, · · · , n − 1
(3)

being x0(t) = [x0,1(t), · · · , x0,n(t)]� ∈ R
n the leader

state vector and f0(x0(t)) ∈ R an unknown nonlinear
function. Note that this nonlinear dynamics can be used
to emulate a large class of useful command trajectories
[24] (e.g., unit step, sinusoidal waveform, trapezoidal
signals and so on).

Now, the leader-tracking control problem for het-
erogeneous high-order nonlinear uncertain MAS can
be stated as follows.

Problem 1 (Leader-tracking problem) Consider the
heterogeneous uncertain nonlinear multi-agent system
defined in (2) and (3). Then, leader-tracking consen-
sus is achieved by designing suitable distributed con-
trol actions ui (t) such that each follower tracks the
leader dynamics as time approaches infinity, i.e., (i =
1, 2, · · · , N ):

lim
t→∞ ‖xi (t) − x0(t)‖ = 0. (4)

To deal with the leader-tracking consensus problem,
we first introduce the following synchronization signal
for each i-th agent (i = 1, · · · , N ):

δi (t) =
N∑

j=1

ai j (xi (t) − x j (t)) + pi (xi (t) − x0(t)),

(5)

being ai j the (i, j)-element of the adjacency matrix
accounting for the communication link between agents
i and j according the communication topology (i.e.,
ai j = 1 if this link exists, 0 otherwise), while pi is the
i-th element along the diagonal of the pinning matrix
(i.e., pi = 1 when the leader directly communicates to
the agent i , 0 otherwise).

Furthermore,we also define for each agent i the state
error w.r.t. the leader as:

ei (t) = xi (t) − x0(t), i = 1, 2, · · · , N , (6)

and, hence, we rewrite the synchronization vector in
(5) as

δi (t) =
N∑

j=1

ai j (ei (t) − e j (t)) + pi ei (t)

=
(
pi +

N∑

j=1

ai j
)
ei (t) −

N∑

j=1

ai j e j (t)

= ci ei (t) −
N∑

j=1

ai j e j (t),

(7)

being ci = pi + ∑N
j=1 ai j ∈ R+. Note that according

to Assumption 1, the parameter ci is always positive,
i.e., there is no a time instant such that a single agent
is isolated.

Making explicit the vector in (7), it can be rewritten
as:

δi (t) =

⎡

⎢⎢⎢
⎣

δi,1(t)
δi,2(t)

...

δi,n(t)

⎤

⎥⎥⎥
⎦

=ci

⎡

⎢⎢⎢
⎣

ei,1(t)
ei,2(t)

...

ei,n(t)

⎤

⎥⎥⎥
⎦

−
N∑

j=1

ai j

⎡

⎢⎢⎢
⎣

e j,1(t)
e j,2(t)

...

e j,n(t)

⎤

⎥⎥⎥
⎦

= ci

⎡

⎢⎢⎢
⎣

ei,1(t)
ei,2(t)

...

ei,n(t)

⎤

⎥⎥⎥
⎦

−

⎡

⎢
⎢⎢⎢
⎣

∑N
j=1 ai j e j,1(t)∑N
j=1 ai j e j,2(t)

...∑N
j=1 ai j e j,n(t)

⎤

⎥
⎥⎥⎥
⎦

,

(8)

where each generic element of the vector is expressed
as

δi,l(t) = ci ei,l(t) −
N∑

j=1

ai j e j,l(t), i, j = 1, · · · , N ,
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l = 1, · · · , n. (9)

Now, taking into account the agents and leader dynam-
ics, in (2) and (3), respectively, we derive the dynamics
of the state error vector in (6) as:

ėi,q(t) = ei,q+1(t),

ėi,n(t) = ( fi (xi (t)) − f0(x0(t))) + biui (t),
(10)

∀i = 1, · · · , N ; q = 1, · · · , n − 1 and accordingly,
from (9), we derive the dynamics of the synchroniza-
tion error vector in (8) as

δ̇i,q(t) = δi,q+1(t), q = 1, · · · , n − 1

δ̇i,n(t) = ci ( fi (xi (t)) − f0(x0(t))) + cibi ui (t)

−
N∑

j=1

ai j ė j,n(t)

= ci f̃i (xi (t), x0(t)) + ci bi ui (t) + wi (t)

(11)

where f̃i (xi (t), x0(t)) = fi (xi (t)) − f0(x0(t)) and
wi (t) = −∑N

j=1 ai j ė j,n(t).
Given (11), the dynamics of the synchronization vector
in (8) can be expressed in a more compact form as

δ̇i (t) = Aδi (t) + Bi ( f̃i (xi (t), x0(t))

+biui (t) + c−1
i wi (t)), (12)

where

A=
[
0n−1 In−1

0 0�
n−1

]
∈R

n, Bi =
[
0n−1

ci

]
∈ R

n×1 (13)

being 0n−1 and In−1 the null and identity matrices,
respectively.

Remark 3 Since ci 
= 0 ∀i , each couple A, Bi is con-
trollable (i = 1, · · · , N ).

4 Control protocol design and closed-loop system

Before designing the control action in (12) able to
solve the leader-tracking problem in uncertain condi-
tions (see Problem 1), it is worth noting that in the ideal
case of perfect knowledge of the plant (12), it would be
possible to design an ideal control law, say u�

i (t), as:

u�
i (t) = 1

bi
(− f̃i (xi (t), x0(t)) − c−1

i wi (t)

−K �
i δi (t)), (14)

where K �
i ∈ R

1×n is a gain vector to be optimally
tuned.

Substituting the control into (12), the closed-loop
dynamics can be easily derived for each agent i ∈ GN
as

δ̇i (t) = (A − Bi K
�
i )δi (t) = �iδi (t). (15)

In this case, where the plant matrices in (15) are per-
fectly known, the asymptotic stability of the tracking
error under the control action u�

i in (14) can be shown
according to the following Lemma.

Lemma 2 The closed-loop system (15) under the
action of the ideal control u�

i (t) (14) is asymptotically
stable for each agent i ∈ GN if the control gain matrix
K �
i ∈ R

1×n is selected such that �i is Hurwitz.

Proof Consider the following Lyapunov candidate
function:

Vδi (t) =
N∑

i=1

δ�
i (t)Piδi (t), (16)

being Pi , ∀i , a symmetric and positive definite matrix.
Based on the Remark 3, select an optimal control gain
K �
i in (14) such that matrix�i is Hurwitz and compute

the derivative of (16) along the solutions of the closed-
loop system (15) as

V̇δi (t) =
N∑

i=1

δ�
i (t)(Pi�i + ��

i Pi )δi (t)

= −
N∑

i=1

δ�
i (t)Qiδi (t), (17)

where Qi is a symmetric and positive definite matrix
solution of the Lyapunov equation Pi�i + ��

i Pi =
−Qi (∀i ∈ GN ).

This implies that limt→∞ δi (t) = 0 and, hence,
δi (t) ∈ L∞, ∀i . In so doing, the proof is complete. ��
Remark 4 According to Remark 3, different control
gains tuning procedures can be exploited for the selec-
tion of the vector K �

i , such as the pole-placement tech-
nique or the LQR one [23].

Now, the uncertain leader-tracking control problem
for heterogeneous nonlinear MAS in Sect. 3 is here
solved via the following distributed protocol with a
PID-like structure:

ui (t) = uiP I D (t)+σi (t)=KiP (t)δi (t)

+KiI (t)
∫ t

0
δi (s)ds+KiD (t)δ̇i (t) + σi (t), (18)
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where KiP (t), KiI (t) and KiD (t) ∈ R
1×n are adaptive

control gains vectors shaping the proportional, integral
and the derivative actions, respectively,whileσi (t) ∈ R

is an auxiliary control signal that has to be properly cho-
sen to handle the effect of uncertainties and unknown
dynamics affecting the MAS.

Defining θ�
i (t) = [KiP (t) KiI (t) KiD (t)] ∈

R
1×3n and
ϕi (t) = [δ�

i (t)
∫ t
0 δ�

i (s)ds δ̇�
i (t)]� ∈ R

3n×1,
the control protocol (18) can be rewritten in a more
compact form as

ui (t) = uiP I D (t) + σi (t) = θ�
i (t)ϕi (t) + σi (t). (19)

Let u�
iP I D

(t) the optimal PID protocol that uniformly
approximates the optimal controller u�

i (t) designed
according to Lemma 2. This means that there must
exists an optimal parameter vector, say θ�

i ∈ R
1×3n ,

such that the approximation between the optimal PID
action u�

iP I D
(t) = θ��

i ϕi (t) and the optimal controller
u�
i (t) can be bounded by an unknown positive constant

ε̄i (i = 1, · · · , N ). Accordingly, we can define the
following bounded approximation:

u�
iP I D

(t) − u�
i (t) = εi (t), (20)

being |εi (t)| ≤ ε̄i < +∞, (i = 1, · · · , N ).
Now, substituting the proposed control protocol (19)

in (12) and adding zero sum terms according to (20),
the closed-loop dynamics can be obtained as:

δ̇i (t) = Aδi (t) + Bi ( f̃i (xi (t), x0(t)) + c−1
i wi (t)

+ biθ
�
i (t)ϕi (t)

+ biσi (t)) + Bi (biεi (t) − biθ
��
i ϕi (t)

+ biu
�
i (t)).

(21)

Finally, taking into account (14)–(15), after some alge-
braic manipulations, the closed-loop system (21) can
be recast as (∀i ∈ GN ):

δ̇i (t) = �iδi (t) + Bi (bi θ̃
�
i (t)ϕi (t)

+ biσi (t) + biεi (t)),
(22)

being θ̃i (t) the errors between the control parameters
and their optimal value, i.e.,

θ̃i (t) = θi (t) − θ�
i . (23)

5 Stability analysis

In what follows, we introduce the adaptive control law
updating gains θ�

i (t) = [KiP (t) KiI (t) KiD (t)] ∈

R
1×3n and the auxiliary signal σi (t) in (18) (i ∈ GN ).

The stability conditions for the closed-loop MAS are
analytically provided according to the following The-
orem.

Theorem 1 Consider the closed-loop MAS in (22).
The leader-tracking consensus as in Problem 1 is
solved under the action of the distributed adaptive con-
trol (19), given the auxiliary signal of the form

σi (t) = −sign(bi )
B�
i Piδi (t)√

‖B�
i Piδi (t)‖2 + ν2i (t)

ε̂i (t), (24)

where ε̂i (t) is the estimation of the unknown upper-
bound ε̄i of the approximation error in (20), which is
updated according to

˙̂εi (t) = αi
‖B�

i Piδi (t)‖2√
‖B�

i Piδi (t)‖2 + ν2i (t)
, (25)

and adaptive laws for updating the control gains θi in
(19) as

θ̇i (t) = −sign(bi )iϕi (t)δ
�
i (t)Pi Bi , (26)

where ∀i , αi ∈ R+ are positive scalars, i are positive
diagonal matrices which can be arbitrarily chosen to
shape the adaptive rates; Pi ∈ R

n×n are symmetric
and positive definite matrices, such that the Lyapunov
equation Pi�i + ��

i Pi = −Qi holds for free sym-
metric and positive definite matrix Qi , ∀i ; νi (t) are
positive free functions chosen such that νi (t) > 0 and∫ t
0 νi (s)ds ≤ ν̄i < +∞, being ν̄i a positive bounded
constant (i = 1, · · · , N).

Furthermore, as the tracking errors ei (t) = xi (t) −
x0(t) converge to zero asymptotically, the adaptive con-
trol gains θi (t) ∈ R

3n×1 and ε̂i (t) ∈ R (i = 1, · · · , N )

are bounded signals over the time.

Proof Given the closed-loopMAS in (22), consider the
following candidate Lyapunov function:

V (t) = V1(t) + V2(t) + V3(t), (27)

where

V1(t) = ∑N
i=1 δ�

i (t)Piδi (t),

V2(t) = ∑N
i=1

|bi |
αi

ε̃2i (t),

V3(t) = ∑N
i=1 |bi |θ̃�

i (t)−1
i θ̃i (t),

(28)

being Pi symmetric and positive definite matrices (i.e.,
Pi = P�

i > 0); αi is a positive parameters; i ∈
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R
3n×3n are positive diagonal matrices; ε̃i (t) is com-

puted on the basis of the estimation of the upper bound
of the approximation error in (20) and the unknown
bound ε̄i as

ε̃i (t) = ε̄i − ε̂i (t). (29)

Consider the term V1(t) of the Lyapunov function in
(27). Computing its time derivative along the solutions
of (22), it yields:

V̇1(t) =
N∑

i=1

δ�
i (t)(Pi�i + ��

i Pi )δi (t)

+ 2
N∑

i=1

biδ
�
i (t)Pi Bi θ̃

�
i (t)ϕi (t)

+ 2
N∑

i=1

biδ
�
i (t)Pi Biσi (t)

+ 2
N∑

i=1

biδ
�
i (t)Pi Biεi (t).

(30)

Focusing on the last term of (30) and leveraging the
boundedness of εi (t) (see (20)), we can write:

2
N∑

i=1

biδ
�
i (t)Pi Biεi (t) ≤ 2

N∑

i=1

|bi |‖δ�
i (t)Pi Bi‖ε̄i . (31)

Furthermore, consider the arbitrary auxiliary control
signal in (24). Exploiting the sign(·) properties, it can
be proven that

|bi |sign(bi ) = bi → bi sign(bi ) = |bi |. (32)

Thus, substituting σi (t) as in (24) in (30), we obtain:

V̇1(t) < −
N∑

i=1

δ�
i (t)Qiδi (t)

+ 2
N∑

i=1

biδ
�
i (t)Pi Bi θ̃

�
i (t)ϕi (t)

− 2
N∑

i=1

|bi | ‖B�
i Piδi (t)‖2√

‖B�
i Piδi (t)‖2 + ν2i (t)

ε̂i (t)

+ 2
N∑

i=1

|bi |‖δ�
i (t)Pi Bi‖ε̄i ,

(33)

where νi (t) is the positive free function (i = 1, . . . , N ),
where we have also leveraged the fact that Pi�i +

��
i Pi = −Qi , with Qi = Q�

i > 0, ∀i (see Lemma
2 and Remark 3) and that for all q ∈ R it holds:
q�q = ‖q‖2, being q = B�

i Piδi (t).
Finally, since ε̂i (t) = ε̄i−ε̃i (t) (see (29)), inequality

(33) can be rewritten as

V̇1(t) < −
N∑

i=1

δ�
i (t)Qiδi (t) + 2

N∑

i=1

biδ
�
i (t)Pi Bi θ̃

�
i (t)ϕi (t) + 2

N∑

i=1

|bi |
(
‖δ�

i (t)Pi Bi‖

− ‖B�
i Piδi (t)‖2√

‖B�
i Piδi (t)‖2 + ν2i (t)

)
ε̄i

+ 2
N∑

i=1

|bi | ‖B�
i Piδi (t)‖2√

‖B�
i Piδi (t)‖2 + ν2i (t)

ε̃i (t).

(34)

It isworth noticing that for any z ∈ R
n ,‖z‖ > 0 implies

that |‖z‖| = ‖z‖ > 0. Thus, since Pi is a symmetric
matrix ∀i , ‖δ�

i (t)Pi B‖ = ‖B�
i Piδi (t)‖ hence, placing

z = B�
i Piδi (t) and exploiting Lemma 1, inequality

(34) can be recast as

V̇1(t) < −
N∑

i=1

δ�
i (t)Qiδi (t)

+ 2
N∑

i=1

biδ
�
i (t)Pi Bi θ̃

�
i (t)ϕi (t)

+ 2
N∑

i=1

|bi |ε̄iνi (t)

+ 2
N∑

i=1

|bi | ‖B�
i Piδi (t)‖2√

‖B�
i Piδi (t)‖2 + ν2i (t)

ε̃i (t).

(35)

Now, compute the time derivative of the function V2(t)
in (27) and summing it to (35), we obtain:

V̇1(t) + V̇2(t) < −
N∑

i=1

δ�
i (t)Qi δi (t)

+2
N∑

i=1

bi δ
�
i (t)Pi Bi θ̃

�
i (t)ϕi (t)

+2
N∑

i=1

|bi |ε̄iνi (t)
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+2
N∑

i=1

|bi |
‖B�

i Pi δi (t)‖2√
‖B�

i Pi δi (t)‖2 + ν2i (t)
ε̃i (t)

−2
N∑

i=1

|bi |
αi

ε̃i (t) ˙̂εi (t). (36)

Adopting the adaptation law for ε̂i (t) in (25), inequality
(36) becomes:

V̇1(t) + V̇2(t) < −
N∑

i=1

δ�
i (t)Qiδi (t)

+ 2
N∑

i=1

biδ
�
i (t)Pi Bi θ̃

�
i (t)ϕi (t)

+ 2
N∑

i=1

|bi |ε̄iνi (t).

(37)

Consider now the third term of the Lyapunov function
V3(t) in (27). Evaluating again its time derivative and
summing up to V̇1(t) + V̇2(t), from (37) it yields:

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t)

< −
N∑

i=1

δ�
i (t)Qi δi (t) + 2

N∑

i=1

bi δ
�
i (t)Pi Bi θ̃

�
i (t)ϕi (t)

+ 2
N∑

i=1

|bi |ε̄iνi (t) + 2
N∑

i=1

|bi |θ̃�
i (t)−1

i θ̇ (t).

(38)

Since the following relation holds for each agent
i ∈ GN

2
N∑

i=1

bi δ
�
i (t)Pi Bi θ̃

�
i (t)ϕi (t) = 2

N∑

i=1

bi θ̃
�
i (t)ϕi (t)δ

�
i (t)Pi Bi ,

(39)

then, (38) becomes:

V̇ (t) < −
N∑

i=1

δ�
i (t)Qi δi (t) + 2

N∑

i=1

bi θ̃
�
i (t)ϕi (t)δ

�
i (t)Pi Bi

+ 2
N∑

i=1

|bi |ε̄iνi (t) + 2
N∑

i=1

|bi |θ̃�
i (t)−1

i θ̇ (t).

(40)

Choosing θ̇ (t) according to the adaptive law in (26) and
exploiting (32), from (40) after some algebraic manip-
ulation it follows:

V̇ (t) < −
N∑

i=1

δ�
i (t)Qiδi (t) + 2

N∑

i=1

|bi |ε̄iνi (t). (41)

Finally, integrating (41) over the time interval [0, t]
and applying the Rayleigh inequality [3] on symmetric
matrices Qi , i = 1, · · · , N , since the parameters |bi |
and ε̄i , as well as the free functions νi (t), are bounded
∀i , we obtain:

V (t) +
N∑

i=1

λi (Qi )

∫ t

0
‖δi (s)‖2ds < V (0)

+2
N∑

i=1

|bi |ε̄i ν̄i < ∞, (42)

where λi (Qi ) is the smallest eigenvalues of Qi , and
ν̄i is the upper-bound of the integral

∫ t
0 νi (s)ds, i.e.,∫ t

0 νi (s)ds ≤ ν̄i < +∞.
Given (42), from (27) along with (29) and (23) we

establish that δi (t), ε̂i (t) and θi (t) are bounded signals
∀i [50].
Furthermore, it is worth noticing that (42) also implies
[26]:

lim
t→+∞

N∑

i=1

λi (Qi )

∫ t

0
‖δi (s)‖2ds ≤ V (0) + 2

N∑

i=1

|bi |ε̄i ν̄i . (43)

Hence, since limit for t → +∞ in (43) exists and is
finite, leveraging the Barbalat Lemma and following
the same mathematical steps presented in [16,25,26],
it is possible showing that

lim
t→+∞ ‖δi (t)‖ = 0, i = 1, · · · , N .

Now, introduce the following global vectors for the
entire MAS:

δ(t) = [δ�
1 (t), δ�

2 (t), · · · , δ�
N (t)]� ∈ R

Nn×1,

and

e(t) = [e�
1 (t), e�

2 (t), · · · , e�
N (t)]� ∈ R

Nn×1.

From the definition of δi (t) in (7), it follows:

δ(t) = (L + P ⊗ In)e(t) = (H ⊗ In)e(t) (44)

where from Assumption 1, we have that H = L + P
is a positive definite M-matrix.

Therefore, since δi → 0 ∀i , from (44) we also have
ei (t) → 0, ∀i , and hence, from (6), that also xi (t) →
x0(t), for i = 1, · · · , N .

In so doing, the statement is proved. ��
Remark 5 The proposed distributed PID-like control
(18) leverages a double adaptive mechanism, i.e., θ̇i (t)
as in (26) and ˙̂εi (t) as in (25). The first adaptive law
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allows updating the values of the control gains on the
basis of the value of the synchronization vectors, while
the second one allows estimating the approximation
error εi (t) in (20) so that it can be compensated via the
auxiliary signal σi (t) as in (24).

Remark 6 It is worth noting how the combined action
of the two adaptive mechanisms with the auxiliary
control signal σi (t) guarantees the asymptotic stabil-
ity of the synchronization error with a proper trade-off
w.r.t. the computational burden. Indeed, according to
the metric proposed in [30], since the proposed con-
trol strategy involves a limited amount of time-varying
information for computing the adaptive control, our
approach is able to save communication channel band-
width and to reduce the computational burden w.r.t. the
current related literature (see e.g., [21,50,62] and the
references therein).

6 Numerical validation

6.1 Synchronization of coupled harmonic nonlinear
oscillators

Consider the exemplary case of a second-order MAS
composed of five nonlinear oscillators, modeled as in
(2), plus a leader which imposes the oscillating refer-
ence behavior according to (3). Unknown vector fields
are defined ∀i = 1, · · · , 5 as

fi (xi (t)) = {sin4(x1,1(t)), x22,2(t), cos(x3,2(t)),

x4,2(t)e
−sin(x4,1(t)), sin2(x5,1(t))}

while bi = {0.001, −0.002, 0.005, 0.07, −0.5},
being xi,1(t) and xi,2(t) the angular position and veloc-
ity of the i-th agent, respectively. Instead, the pos-
itive free functions are selected as νi (t) = e−0.1t

(i = 1, 2, · · · , 5). The leader behavior is modeled
as f0(x0(t)) = 5sin(1.5t). The information exchang-
ing among agents are described by the communication
graph as in Fig. 1 whose Laplacian and Pinning matri-
ces are defined as

L =

⎡

⎢⎢
⎢⎢
⎣

1 −1 0 0 0
−1 2 0 −1 0
−1 0 2 0 −1
0 −1 −1 2 0
0 −1 0 0 1

⎤

⎥⎥
⎥⎥
⎦

, P = diag{1, 0, 1, 0, 0}, (45)

while the optimal control gains vector K �
i in (14) is

tuned by leveraging pole-placement technique. The

0
1

2

3 4

5

Fig. 1 Communication graph topology for coupled harmonic
nonlinear oscillators

effectiveness of the proposed distributed adaptive PID
approach is disclosed in Fig. 2a, where the time his-
tories of the agent trajectories confirm the theoreti-
cal results and prove the good performances of each
agent in tracking the dynamical leader behavior. The
leader-tracking errors, instead, are shown in Fig. 2b.
According to the results of Theorem1, once the consen-
sus is reached, the adaptive proportional, integral and
derivative control gain, KP,i (t), KI,i (t) and KD,i (t) ∈
R
2×1, i = 1, 2, 3, 4, 5, respectively, as well as signals

ε̂i (t), i = 1, 2, 3, 4, 5, converge toward a constant
steady-state value, as shown in Figs. 3–4, respectively.

6.2 Cooperative driving of nonlinear uncertain
heterogeneous autonomous vehicles platoon

In order to show the effectiveness of the proposed
approach in solving practical engineering problems,
here we focus on the leader-tracking control problem
arising in the autonomous driving field, also known as
platooning. Platooning mainly consists of a cohesive
fleet of cars that, connected through a communication
wireless network via the Vehicle-to-Vehicle (V2V) or
Vehicle-to-Infrastructure (V2I) paradigm, moves for-
ward with a required common velocity, imposed by
a leading vehicle (the first vehicle within the group)
or a road infrastructure acting as a virtual leader,
while keeping at the same time a prescribed safe inter-
vehicular distance (see [10] and reference therein for a
more detailed discussion on platooning). Traveling as
a platoon formation brings very relevant benefits, such
as the mitigation of traffic congestion, the reduction
in the fuel consumption and the environmental pollu-
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Fig. 2 Synchronization of coupled harmonic nonlinear oscilla-
tors. Leader-tracking performances under the action of the dis-
tributed adaptive PID protocol in (18). Time history of: a angular
position xi,1(t) (solid lines) and angular velocity xi,2(t) (dashed

lines) ∀i = 0, 1, 2, 3, 4, 5; b angular position error w.r.t. the
leader ei,1(t) = xi,1(t) − x0,1(t) (solid lines) and angular veloc-
ity error w.r.t. the leader ei,2(t) = xi,2(t)− x0,2(t) (dashed lines)
∀i = 0, 1, 2, 3, 4, 5

Fig. 3 Synchronization of coupled harmonic nonlinear oscillators. Leader-tracking performances under the action of the distributed
adaptive PID protocol in (18). Time history of the adaptive control gains

tion, an increase in the safety and the efficiency of road
transportation.

Consider a platoon composed of N = 5 heteroge-
neous uncertain vehicle (named followers) plus a leader
labelled as agent 0. The behavior of each agent/follower
within the platoon is described by its inherently non-
linear longitudinal motion [54] (i = 1, . . . , 5):

ṗi (t) = vi (t)

v̇i (t) = ηi

mi Ri
ui (t) − CA,i

mi
v2i (t) − g fr,i (t),

(46)

where pi (t) [m] and vi (t) [m/s] are the longitudi-
nal position and velocity of the i-th vehicle, respec-
tively, ui (t) [Nm] is the control input representing
the vehicle propulsion torque, i.e., the driving/braking
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Fig. 5 Leader–
Predecessor–Follower
topology for a platoon of
five heterogeneous
uncertain vehicles/agents
plus the leader (the first
vehicle in the string
formation)
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Fig. 4 Synchronization of coupled harmonic nonlinear oscilla-
tors. Leader-tracking performances under the action of the dis-
tributed adaptive PID protocol in (18). Time history of the adap-
tive signal ε̂i (t) i = 1, 2, · · · , 5

torque , mi [kg] is the vehicle mass, ηi is the drive-
train mechanical efficiency, Ri [m] is the wheel radius;
CA,i [kg/m] is the aerodynamic drag coefficient;
g [m/s2] is the gravity acceleration, while fr,i is the
rolling resistance coefficient.

Setting fi (xi (t)) = −CA,i
mi

v2i (t) − g fr,i and bi =
ηi

mi Ri
, it is possible to recast the longitudinal dynamics

of the vehicles (46) as in (2). Note that as in our the-
oretical framework, the vector field fi (xi (t)) are con-
sidered uncertain, since, in practice, it is very difficult
to estimate or measure the effective rolling radius, the
road friction information or the aerodynamic effects
or to have a precise knowledge of the actual driving
parameters, such as the exact drive-train efficiency.
Conversely, the leader dynamics are simply modeled
as a trajectories generator in order to evaluate the pla-
toon response to different useful command trajectories,
such as ramp, trapezoidal waveform and so on [24].
Moreover, all vehicles/agents are connected and share
their kinematic information (position, velocity) accord-
ing to the so-called leader–predecessor–follower (LPF)
topology that is one of the typical communication struc-
tures in the vehicular field [10] (see Fig. 5).

The leader-tracking performances have been eval-
uated leveraging the MATLAB/Simulink simulation
platform. Simulation parameters, as well, the initial
conditions for autonomous vehicles platoon (including

the ones for the leader) are given in Table 1. The pos-
itive free functions are selected as νi (t) = e−0.1t (i =
1, 2, · · · , 5), the desired constant distance between
adjacent vehicles is set equal to 20 [m], while the opti-
mal control gains vector K �

i in (14) is tuned by lever-
aging pole-placement technique.

In order to disclose the performance of the cooper-
ative adaptive control strategy, results presented here
refer to an exemplary platoon maneuver where the
leader travels with an initial velocity of 10 [m/s] until,
at time instant t = 15 [s], it begins to accelerate with
a constant acceleration equal to 2.35 [m/s2], reach-
ing the constant velocity of 21.75 [m/s]. Then, at
t = 26.8 [s], the leader starts to decelerate with a con-
stant deceleration of −1.06 [m/s2] until it reaches the
constant speed of 18.35 [m/s]. Finally, at t = 38.2 [s],
it accelerates again with a constant acceleration equal
to 1.62 [m/s2], reaching the final constant velocity of
26.15 [m/s].

Results in Fig. 6 disclose the ability of the pro-
posed distributed adaptive PID-like protocol in ensur-
ing excellent leader-tracking performances despite the
presence of uncertainties, i.e., all vehicles effectively
track the leader speed, as shown in Fig. 6b), while
maintaining the desired inter-vehicular distance (see
Fig. 6a). Small bounded errors occur, as expected,
only in the correspondence of the leader speed changes
(see Fig. 6c). Furthermore, according to the theoret-
ical derivation, the proportional, integral and deriva-
tive adaptive control gains, KiP (t) = [KiP1 KiP2 ]�,
KiI (t) = [KiI1 KiI2 ]�, and KiD (t) = [KiD1 KiD2 ]�
(i = 1, . . . , 5), respectively, aswell as the adaptive esti-
mate of ε̂i (t) (i = 1, . . . , 5) are bounded and converge
to finite steady-state value as shown in Fig. 7a–d.

7 Conclusions

In this work, the leader tracking control problem for
heterogeneous nonlinear high-order MAS has been
addressed and solved through a fully distributed robust
PID-like algorithm whose control gains are able to
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Table 1 Autonomous
vehicle parameters

Vehicle mass m1 = 1450, m2 = 1300, m3 = 1250,
mi [kg] m4 = 1400, m5 = 1600

Vehicle mechanical η1 = 0.85, η2 = 0.87, η3 = 0.80,

efficiency ηi η4 = 0.81, η5 = 0.83

Vehicle aerodynamic CA,1 = 0.41, CA,2 = 0.45, CA,3 = 0.44,

coefficient CA,i [kg/m] CA,4 = 0.44, CA,5 = 0.50

Vehicle wheel R1 = 0.272, R2 = 0.285, R3 = 0.275,

radius Ri [m] R4 = 0.278, R5 = 0.270

Vehicle rolling f1 = 0.02, f2 = 0.022, f3 = 0.019,

resistance fr,i [m] f4 = 0.021, f5 = 0.023

Initial position

[p0(0), · · · , p5(0)]� [m] [100, 78, 61, 39, 20, 1]�
Initial speed

[v0(0), · · · , v5(0)]� [m/s] [10, 10, 8, 11, 9, 8.5]�
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Fig. 6 Cooperative driving of nonlinear uncertain heteroge-
neous autonomous vehicles platoon. Leader tracking perfor-
mance under the adaptive distributed PID control in (18). Time

history of: a inter-vehicle distances pi (t) − pi−1(t) (i =
1, . . . , 5); b vehicles speed vi (t) (i = 0, 1, 2, 3, 4, 5); c position
errors ei (t) computed as pi (t) − p0(t) − di,0 (i = 1, 2, 3, 4, 5)

123



376 D. Giuseppe et al.

0 10 20 30 40 50 60 70

Time [s]

-2000

-1500

-1000

-500

0

500

A
da

pt
iv

e 
Pr

op
or

tio
na

l G
ai

ns

(a)

0 10 20 30 40 50 60 70

Time [s]

-600

-400

-200

0

200

400

600

A
da

pt
iv

e 
In

te
gr

al
 G

ai
ns

(b)

0 10 20 30 40 50 60 70

Time [s]

-600

-400

-200

0

200

400

600

A
da

pt
iv

e 
D

er
iv

at
iv

e 
G

ai
ns

(c)

0 10 20 30 40 50 60 70

Time [s]

0

10

20

30

40

50

60

70

A
da

pt
iv

e 
G

ai
ns

(d)

Fig. 7 Cooperative driving of nonlinear uncertain heteroge-
neous autonomous vehicles platoon. Leader tracking perfor-
mance under the adaptive distributed PIDcontrol in (18). Conver-
gence of the adaptive gains. Time history of: a Proportional gains

KP,i(1,2)(t) i = 1, 2, 3, 4, 5; b Integral gains KI,i(1,2)(t) i =
1, 2, 3, 4, 5; c Derivative gains KD,i(1,2)(t) i = 1, 2, 3, 4, 5; d)
Signals ε̂i (t) i = 1, 2, 3, 4, 5

adapt their values so to counteract the presence of
uncertainties and external disturbances acting on the
agents dynamics. Exploiting the Lyapunov theory, we
have provided specific adaption laws for the control
parameters and we have proved the asymptotic stabil-
ity of the overall closed-loop MAS under the action
of the proposed control action. An illustrative MAS,
composed of five harmonic nonlinear heterogeneous
oscillators agents, has been used to confirm the effec-
tiveness of the theoretical derivation. Moreover, to bet-
ter appreciate the advantages and the potential applica-
tions of the proposed approach, we apply our method
for solving the practical engineering problem of the
cooperative driving for autonomous connected ground
vehicles.
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