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Abstract The deadly outbreak of the second wave of

Covid-19, especially in worst hit lower-middle-in-

come countries like India, and the drastic rise of

another growing epidemic of Mucormycosis, call for

an efficient mathematical tool to model pandemics,

analyse their course of outbreak and help in adopting

quicker control strategies to converge to an infection-

free equilibrium. This review paper on prominent

pandemics reveals that their dispersion is chaotic in

nature having long-range memory effects and features

which the existing integer-order models fail to capture.

This paper thus puts forward the use of fractional-

order (FO) chaos theory that has memory capacity and

hereditary properties, as a potential tool to model the

pandemics with more accuracy and closeness to their

real physical dynamics. We investigate eight FO

models of Bombay plague, Cancer and Covid-19

pandemics through phase portraits, time series, Lya-

punov exponents and bifurcation analysis. FO con-

trollers (FOCs) on the concepts of fuzzy logic,

adaptive sliding mode and active backstepping control

are designed to stabilise chaos. Also, FOCs based on

adaptive sliding mode and active backstepping syn-

chronisation are designed to synchronise a chaotic

epidemic with a non-chaotic one, to mitigate the

unpredictability due to chaos during transmission. It is

found that severity and complexity of the models

increase as the memory fades, indicating that FO can

be used as a crucial parameter to analyse the progres-

sion of a pandemic. To sum it up, this paper will help

researchers to have an overview of using fractional

calculus in modelling pandemics more precisely and

also to approximate, choose, stabilise and synchronise

the chaos control parameter that will eliminate the

extreme sensitivity and irregularity of the models.
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1 Introduction

With the second wave of Covid-19 turning grim in

third world, lower-middle-income countries like India,
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where numbers of infected cases and deaths per day

until 12 May 2021 are reaching record highs of 0.4

million and 4000, respectively [38]; it is the urgent

requirement for an efficient mathematical tool to

model and analyse epidemics and pandemics to

predict their future course of outbreak and help

develop rapid control strategies. To add to this is the

spread of another growing epidemic of a rare fungal

infection Mucormycosis or the ‘Black fungus’ typi-

cally infecting Covid-19 recovered patients as

reflected by the exponential surge of 9000 cases

reported in India by May 2021 [12, 16, 19]. Since

interactions among the species in a pandemic have a

greater complexity, it is difficult to solve their models

that describe the disease analytically. Henceforth,

formulating the model mathematically with a suit-

able tool that can imitate the disease more accurately

helps in detecting its behavioural dynamics [58].

A chaotic propagation of a pandemic is charac-

terised by extreme sensitivity to slight variation in

initial conditions (ICs) of physical factors such as rise

in the number of asymptomatic carriers, number of

infected cases and small increase in the number of

undetected cases.[82].While studying a novel ongoing

pandemic, chaos theory has been a powerful approach

to define, model and analyse the exponentially prop-

agating dynamics and extracting the underlying

deterministic component by taking into account cru-

cial factors as: variables relevant for the pandemic,

equations that govern these variables, parameter

values, constraints of the model and reformulation of

the equations based on existing observations [53].

In order to determine whether the dissemination of

a pandemic is chaotic, the following criteria may be

taken into account [39]:

1. Aperiodicity, i.e. multiple solutions of the pan-

demic model exist, such that no two solutions

repeat,

2. Sensitive, i.e. the epidemic is highly sensitive and

give rise to divergent dynamics on a slight change

of physical factors,

3. Long-term unpredictability, i.e. the propagation of

the pandemic is unexpected and cannot be fore-

seen from one point to another,

4. Determinism, i.e. the outcome, amount and rate of

spread, is determined by real changes in the

physical conditions of the system.

Chaotic behaviour of pandemics have been exten-

sively reported in low-mid-income countries such as,

Plague epidemic in Bombay, India [51], chaotic

epidemic crisis management in Mexico [72], Ebola

Virus epidemic in Guinea, Liberia and Sierra Leone

[52] and Dengue in Pakistan [4]; a brief review of this

is given in the next section.

1.1 A brief review on impact of chaos

on prominent epidemics

This section surveys some prominent epidemics that

reveal chaotic dispersal.

1. Plague epidemic, India (1896–1911)

The Bombay epidemic, India, has been one of the

earliest closely monitored diseases to have been

recorded for investigating its causes, effect and

control. The bubonic plague in 1896 did not stay

confined to Bombay alone, it hit all over India [62].

The bacillus Yersinia Pestis, causing the bubonic

plague, develops buboes in the infected, along with

other symptoms such as fever, vomiting, bleeding and

organ failure.

Impact of chaos (IOC): The earlier models of the

bubonic plague [7] assume that a single species of rat

and flea is responsible for the bubonic plague

progression, and thus human infections are modelled

as a by-product of rat infections. On the contrary,

multiple epizootics of rats such asMus decumanus and

Mus rattus are reported to have caused the bubonic

plague [61]. In 2015, a new model of plague, proposed

in Mangiarotti [51] that took into account multiple

epizootics of rats, led to the finding that the progres-

sion of the disease is chaotic in nature.

2. Spanish flu (1918–1920)

The Spanish flu is one of the first global pandemic

reported to have occurred in the era of modern

medicine where the nature and course of the disease

were studied as it unfolded [35]. The H1N1 strain of

the influenza virus activates a cytokine storm which

damages the immune system. With a mortality rate of

20%, this pandemic is said to have killed more than

100 million people, hampering the economy during

the World War I.

IOC: Though chaotic dynamics of the Spanish Flu is

not extensively reported, however Upadhyay et al. [79]
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reports that such influenza epidemics have bidirec-

tional spread and are characterised by wave of chaos in

a dominant mode.

3. HIV AIDS (1980–…)

The early eighties gave birth to a gradually growing

pandemic of HIV/AIDS [35]. According to the recent

WHO report, 76 million people have been infected

with the HIV epidemic so far, 33 million have lost

their lives and 38 million are presently infected by the

end of 2019.

IOC: Bairagi et al. [8] reports that self-proliferation

of host cells in non-delayed HIV models has chaotic

immune response. Chaos is responsible for consider-

able fluctuations in host cells count in blood plasma of

HIV patients.

4. Smallpox outbreak (1972)

The smallpox epidemic killed hundreds of millions of

people up till the twentieth century with a mortality of

30%. Smallpox was eradicated in 1960s with mass

vaccination on a global scale. However, the former

Yugoslavia in 1972 saw a new wave of outbreak of

smallpox. Though this outbreak was controlled within

two months with mandatory revaccination, contain-

ment zones, quarantine measures, sealed borders and

travel ban, yet it is significant for the research

community to study the course of the outbreak as it

marked the reappearance of an already eradicated

epidemic.

IOC: Chaotic phenomenon has been reported to

exist in smallpox epidemic models [29, 70]. Though

smallpox is eradicated, however, its reappearance may

be possible. As a result, Seward et al. [70] have

devised an algorithm to supervise clinical and public

health responses with respect to suspected smallpox

cases.

5. Swine flu pandemic (April 2009–May 2010)

The Swine flu outbreak in Mexico in 2009, considered

as a reprise of Spanish flu pandemic of 1918, rose

steeply to pandemic proportions within weeks [77]

infecting over 10% of the world population [26]. It was

caused by H1N1 strain of the influenza virus.

IOC: The propagation of the epidemic in terms of

chaotic waves is modelled in Upadhyay et al. [79],

where conditions for Hopf and Turing bifurcations are

evaluated. The reported models suggest that the Swine

Flu epidemic has a complex dynamics of spatial

spread through chaotic waves. Also the H1N1 flu

strain can propagate both in forward and backward

direction, i.e. the spread of influenza is bidirectional

and that chaos phenomenon is an intrinsic property of

dissemination of this epidemic.

6. Ebola virus epidemic (2013–2016)

The epidemic of the Ebola virus disease (EVD)

appeared in Guinea, December 2013, from which it

extended rapidly to Liberia and Sierra Leone and

proved lethal until 2016. According toWHO database,

the case fatalities rose till 90%. Ebola-Zaire, one of the

five species of the Ebola virus, is responsible for

infecting with a dangerous mortality rate of 70% [52].

IOC: The complex dynamical behaviour of the

EVD epidemic, particularly in the middle stage of

uncontrolled rapid propagation has been effectively

defined by a chaotic model [52]. The chaotic model is

derived from observational data released by WHO,

and depicts that the diversified key parameters are

difficult to be predicted and are dependent on the

slightest change in ICs. This indicates that an uncon-

trolled case of chaos may result in an exponential rise

in the number of infections and fatalities.

7. Cancer epidemic

As per WHO, cancer, one of the leading causes of

death, is accounted for 9.6 million deaths in 2018

alone globally, with statistics of one in six deaths due

to cancer. Cancer may be caused by chemical

carcinogens such as drinking arsenic contaminated

water and alcohol and smoking tobacco; physical

carcinogens, such as being subjected to ultraviolet

radiation; and biological carcinogens such as obesity,

lack of physical activity or infections from viruses,

bacteria etc. Recent literature reports studies on

various forms of cancer epidemics, such as lung

cancer epidemic [63], virus-related head and neck

cancer epidemic [55] and liver cancer epidemic [23].

IOC: Itik and Banks [36] first reported the explicit

existence of chaos in Cancer epidemic. Cancer models

have been found to display deterministic chaos giving

birth to complex oscillations indicative of long-term

tumour relapse (Khajanchi et al., 2018) through period

doubling route and Hopf bifurcations.
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8. Dengue epidemic

WHO reports severe dengue epidemics re-emerged in

1950s in the South Asian countries of Philippines and

Thailand with a comparatively recent outbreak in

Singapore, 2005 [59]. Dengue is a mosquito-borne

viral epidemic infecting 3.9 billion people in 128

countries, killing more than 20,000 people in 2012

[18].

IOC: Chaos results in high seasonality and com-

plexity in the Dengue models [56]. This explains the

irregular fluctuations in the empiric outbreak data of

the Dengue epidemic [2]. Also, it is discovered that

temporary cross-immunity expands the parameter

range of chaotic dynamics leading to coexisting

attractors [2] eventually causing multiple routes to

chaos in Dengue epidemic models.

9. Cholera epidemic

The epidemic of Cholera first appeared in India in

1817 [24] and later spread to 52 countries infecting 4.3

million people worldwide. Cholera quickly spreads in

densely populated areas with poor water sanitation.

The prime symptoms of infection are severe watery

diarrhoea, vomiting, body ache, fall in blood pressure,

kidney failure, and if untreated may lead to death

within 24 h [73].

IOC: Righetto et al. [68] have reported that the

spread of cholera is chaotic with increasing values of

the degree of seasonality. Parameter estimation and

sensitivity analysis reveal the deterministic behaviour

of the Cholera epidemic model [10].

10. Covid-19 pandemic

The most lethal of pandemics recently known with a

deadly rate of exponential dissemination is the

Coronavirus disease that broke out in 2019 (Covid-

19). Jones and Strigul [39] considered global data set

from 22 January to 30May 2020, corresponding to 267

countries and have suggested that COVID-19 mani-

fests the major qualitative characteristics of a chaotic

system.

IOC: The vital factors for modelling Covid-19

pandemic such as number of confirmed cases per day,

number of critical cases under intensive care per day

and the cumulated number of fatalities per day have

been found to interact chaotically [53]. The fractal

dimension and the phase portrait analyses carried out

in [31] reveal that Covid-19 is chaotic in nature. In

fact, application of chaos theory to model Covid-19 is

reported to be a promising tool in decision-making,

thereby helping in tracking the effectiveness of control

measures especially in countries where the number of

cases are relatively low and rapid enforcement of

control measures need to be adopted to prevent a

catastrophic evolution of the pandemic [39].

1.2 Fractional-order (FO) dynamics of chaotic

epidemic models

The literature survey carried out in previous section

indicates that the modelling of epidemics is confined

to IOmodels (IOMs) which often fail to encompass in-

depth understanding of the dynamics of the epidemic

such as contribution of asymptomatic transmission,

range of unpredictability, critical cases with comor-

bidities and effect of past history of data. [41]. These

limitations can be overcome by incorporating the

extraordinary advantages of FO models (FOMs) in

modelling real physical phenomena and improving

control performance. The differences between FOM

and IOM are as follows:

1. FO derivative being a non-ideal operator can

incorporate non-ideal, i.e. non-integer values

along with integer values, unlike models governed

by IO derivatives which can incorporate only

ideal, i.e. IO values.

2. FO derivative being a non-local operator has the

capacity to store infinite memory of the past values

calculated until the present time, unlike IO

derivative which is a memory-less operator.

3. The FO parameter of FO derivatives is an

additional parameter that grants the control engi-

neers flexibility to incorporate more constraints

for an efficient design.

4. The FO controllers have a larger stability region

[25] and robustness [50] against plant uncertain-

ties compared with IO controllers.

The solutions to the diffusion equation with frac-

tional-order propagation are obtained at a quicker rate

than the ordinary diffusion equation and may be

asymmetric [30]. The FO chaotic epilepsy model

proposed by Tene et al. [76] reported that the FOM

induces faster synchronisation than IOM. Jan et al.

[37], proposed the FOM of Dengue epidemic and

found that the additional properties of heredity and
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memory effects of fractional calculus provide more

realistic information about Dengue transmission

through asymptomatic carriers. Recently, FOMs of

Diabetes, HIV, Dengue, Migraine, Parkinson’s and

Ebola Virus diseases proposed in Borah et al. [12, 16]

revealed inherent unobserved dynamics as the FO

varies. FOMs have lesser error compared to IOMs

while delivering a closer fit to real data [65, 66]. As the

propagation of COVID-19 is chaotic with long-range

memory, it is essential to use a memory-enabled tool

to model it. We blend the superior merits of fractional

calculus with chaos theory [13, 14] to derive an

adequate mathematical model, which behaves as close

as possible to the practical epidemic.

1.3 Control of chaos in mathematical models

of epidemics

This section presents a brief review on existing control

strategies to stabilise and synchronise chaos in the

mathematical models of epidemics as given in Table 1.

A state-dependent impulsive feedback controller is

proposed [64] to regulate the spread of infectious

epidemics like SARS, Dengue and Zika virus. Zhang

et al. [86] have reported that an epidemic converges to

a disease-free periodic solution if its threshold

dynamics is controlled via reproduction number Ro.

He and Banerjee [33] proposes a hard limiter

controller to mitigate the dissemination of common

influenza and H1N1 influenza epidemic. Seasonal

outbreak of these types of infectious diseases is a

natural phenomenon, so it is important to study

epidemic models with seasonal fluctuation [85]. The

hard limiter controller is applied to an epidemic model

with seasonality and external noise, and it was found

that variation in parameters such as temporary immu-

nity rate, seasonality degree, noise degree and frac-

tional order induce high sensitivity resulting in a

chaotic model. For smaller values of the limiter, the

system tends to a periodic system or a stable system,

i.e. the disease tends to vanish. The dissipative control

strategy [22] for a susceptible, infected and recovered

(SIR)-type descriptor epidemic system like HBV

(Hepatitis B virus) with nonlinear incidence rates

bound by fuzzy characteristics is designed to control

the change in the birth rate of population in the

epidemic model to suppress chaos. A robust H?

controller [21] is designed for discrete SI-type

epidemic model with nonlinear incidence rates where

the intrinsic birth rate is varied so that chaotic

responses of the states of susceptible and infected in

the epidemic disappear. A tracking controller [84] is

designed such that the percentage of infective disease

converges to zero to stabilise chaos in the epidemic

model. Similarly, the tracking controller for stabilising

hyperchaos in SEIR-type epidemic system with non-

linear transmission rate is designed in Yi et al. [83].

Active control method is proposed in Ansari et al. [6]

such that the error states which are functions of

susceptible, infected and information variables con-

verge to zero [40] and thereby synchronisation is

accomplished. Tan et al., [74] and Zhang et al. [85]

propose a feedback control technique applied to SIR-

type epidemic model with seasonal fluctuations for

H1N1 and common influenza where Neimark-Sacker

bifurcation perioddoubling route to chaos is discovered.

Some other control strategies such as optimal

control based on two time-dependent control vari-

ables, viz insecticide use and vaccination [10] and

predictive control strategy to determine the time and

duration of social distancing policies [32], have been

applied to Cholera epidemic, Dengue epidemic [4] and

Covid-19 pandemic, respectively. However, they are

all confined to IOMs only.

This paper aims to bridge the research gap between:

1. application of FO chaos theory to model pandemic

propagation dynamics (chaotic and non-chaotic)

that are not captured by IOMs,

2. application of FO strategies in controlling and

synchronising these chaotic epidemic models to a

disease-free equilibrium.

2 Fundamentals of FO calculus for modelling

and control

The modelling of the epidemics and design of

controllers to attain synchronisation is determined by

FO stability theorems whose preliminaries are pre-

sented below.

The Caputo fractional derivative of order a of a

continuous function f ðtÞ is defined as in (1).
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Da
t f tð Þ ¼ daf tð Þ

dta
¼

1

C w� að Þ

Z t

0

f wð Þ sð Þ
t � sð Þa�wþ1

ds; w� 1\a\w; w 2 N

dw

dtw
f tð Þ; a ¼ w

8>>>><
>>>>:

ð1Þ

Table 1 Recent survey of control methods applied to epidemics modelled using chaos theory

Sl.

no

Works Year Control method Chaotic epidemic model Fractional

order

1 Borah et al 2021 Backstepping, Adaptive

Feedback, SMC

Diabetes, HIV, Dengue, Migraine, Parkinson’s and

Ebola Virus diseases

Yes

2 Mangiarotti

et al

2020 No COVID-19 No

3 Rihan et al 2019 No SIR (Ebola Virus, Dengue, Influenza A, HIV) Yes

4 Li et al 2019 State-dependent feedback

control

SIR (SARS, Dengue fever, Zika Virus) No

5 Duarte et al 2019 No SIR (Avian Influenza) No

6 He et al 2018 Hard Limiter Control SIR (common influenza and H1N1 influenza outbreak) Yes

7 Abdelaziz

et al

2018 No Discrete SI (Avian influenza) Yes

8 Chang et al 2018 Dissipative control SIR (Hepatitis B Virus) No

9 Chang et al 2017 Robust H-infinity control SI (SARS, MERS, Ebola, HIV, Hepatitis) No

10 Upadhyay

et al

2016 No SEIR Ebola virus No

11 Mangiarotti

et al

2016 No Ebola virus No

12 Tan et al 2015 Feedback control method Discrete SI (SARS, MERS, Ebola) No

13 Magiarotti 2015 No Plague (1896–1911) No

14 Ansari et al 2014 Active control method SIR (Avian Human influenza, measles) Yes

15 Upadhyay

et al

2014 No SI (Influenza virus) No

16 Hu et al 2014 No Discrete SIR epidemic model (HIV, measles, SARS) No

17 Pedro et al 2014 No Rift Valley Fever epidemic model No

18 Zhang et al 2013 Feedback controller SIR epidemic model

(common influenza and H1N1 influenza)

No

19 Kooi et al 2013 No Multi-strain epidemiology model (Dengue fever) No

20 Yi et al 2011 Tracking controller Discrete SI epidemic model (Hepatitis B and C, HIV) No

21 Li et al 2010 No SI (SARS, influenza) No

22 Yi et al 2009 Tracking controller SEIR (measles and SARS) No

23 Ahmed et al 2007 No Foot and Mouth disease, SARS and Avian flu Yes
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Let us define an FO nonlinear system (FONLS) as

in (2),

Da
t x tð Þ ¼ f x tð Þ; tð Þ ð2Þ

where the FOs lie in 0\a\1 and x tð Þ ¼ x1; x2;½
. . .; xn�T ; f x tð Þ; tð Þ ¼ f1 x tð Þð Þ; f2 x tð Þð Þ; . . .; fn x tð Þð Þ½ �T
i ¼ 1; 2; :::; nð Þ.

Theorem 1 ([20]). The equilibrium points of a

commensurate FONLS are asymptotically stable if

for all the eigenvalues ki; i ¼ 1; 2; :::; nð Þ of the

Jacobian matrix J ¼ of=ox, where f ¼ f1; f2; :::; fn½ �T,
evaluated at the equilibrium point, satisfy the condi-

tion: arg eig Jð Þð Þj j ¼ jarg kið Þjiap=2; i ¼ 1; 2; . . .; n.

Lemma 1 ([3, 15]). If x tð Þ 2 R is a continuous and

derivable function, then, for any time instant � 0,

1

2
Dax2 tð Þ� x tð ÞDax tð Þ; 8a 2 0; 1ð �

where Dax tð Þ is the Caputo fractional derivative of
x tð Þ of FO a.

2.1 Computation of the fractional-order

differential equations (FODEs)

The Adams–Bashforth–Moulton method established

on the predictor–corrector technique [27] is used to

solve the FODEs. The FONLS (2) may be written in a

Volterra integral equation as in (3),

xi tð Þ ¼ xi 0ð Þ þ 1

Ca
r
t

0

ðt � sÞa�1fiðx1; x2; . . .; xnÞds

ð3Þ

where xi 0ð Þ are ICs of xiðtÞ.
The corrector equation obtained by substituting

h ¼ T
N ; tn ¼ nh, for ðn ¼ 0; 1; . . .;NÞ for a unique

solution in ½0; T � is as in (4).

xih tnþ1ð Þ ¼ xi 0ð Þ þ ha

C aþ 2ð Þ
fi x

p
1h tnþ1ð Þ; xp2h tnþ1ð Þ; . . .; xpnh tnþ1ð Þ

� �

þ ha

C aþ 2ð Þ
X

ai;j;nþ1fi x1 tj
� �

; x2 tj
� �

; . . .; xn tj
� �� �

ð4Þ

where ai;j;nþ1 ¼
naþ1 � n� að Þ nþ 1ð Þa; if j ¼ 0

n� jþ 2ð Þaþ1 þ n� jð Þaþ1 � 2ðn� jþ 1Þaþ1; if 1� j� n
1; if j ¼ nþ 1

8<
:

The predicted value xpih tnþ1ð Þ is determined by (5),

xpih tnþ1ð Þ ¼ xi 0ð Þ þ 1

C að Þ
Xn
j¼0

bi;j;nþ1fi xih tj
� �� �

ð5Þ

where bi;j;nþ1 ¼ ha

a n� jþ 1ð Þa� n� jð Það Þ; 0� j� n:
Errors are estimated by (6),

e ¼ max max x1 tj
� �

� x1h tj
� ��� ��;max x2 tj

� �
� x2h tj

� ��� ��;�
. . .;max xn tj

� �
� xnh tj

� ��� ��� ¼ O hqð Þ
ð6Þ

where j ¼ 0; 1; 2; . . .;Nð Þ; q ¼ min 2; 1þ af g.
These theorems and definitions will be used in the

proposed models and controllers designed in Sect. 5.

3 Proposed FO epidemic models (FOEMs)

and design of FO controllers

This section presents FO chaotic models of three

pandemics: Plague, Cancer and Covid-19, and design

of FO control strategies to stabilise and synchronise

chaos in the models.

3.1 FO Plague epidemic models (FOPEMs)

IOMs of chaotic plague epidemic models were

proposed in Mangiarotti [51]. We present six

FOPEMs, where x1; x2 and x3 represent the numbers

of human plague deaths, captured infected rats of the

M. decumanus species and captured infected rats of the

M. rattus species, respectively [12, 16].

(a) FOPEM M0

M0 is a 10-term chaotic model given as in (7),

where the tuning parameter # ¼ 0:598.

Dax1 ¼ �0:0976x23 þ 0:045x2x3 � 12:6237#x1
Dax2 ¼ 0:0107x22 � 0:0237x1x2
Dax3 ¼ 0:0108x23 þ 1:4512x2 � 5:912x1 � 0:0147x1x3

þ0:0041x1x2

8>><
>>:

ð7Þ

(b) FOPEM M1

M1 is a 11-term chaotic model given as in (8),

where # ¼ 1.
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Dax1 ¼ �0:0976x23 þ 0:045x2x3 � 12:6237#x1
Dax2 ¼ 0:0107x22 � 0:0237x1x2
Dax3 ¼ 0:0213x23 þ 2:0814x2 � 6:917x1 � 0:0255x1x3

þ0:0078x1x2 � 0:0013x22

8>><
>>:

ð8Þ

(c) FOPEM M2

M2 is also a 11-term chaotic model given as in (9),

where # ¼ 0:9:

Dax1 ¼ �0:1434x23 þ 0:0674x2x3 � 12:7264#x1
�0:0025x22

Dax2 ¼ 0:0107x22 � 0:0237x1x2
Dax3 ¼ 0:0108x23 þ 1:4512x2 � 5:912x1

�0:0147x1x3 þ 0:0041x1x2

8>>>><
>>>>:

ð9Þ

(d) FOPEM M3

M3 is a 12-term chaotic model given as in (10),

where # ¼ 0:945.

Dax1 ¼ �0:0936x23 þ 0:0431x2x3 � 12:0677#x1
Dax2 ¼ 0:0103x22 � 0:0227x1x2ð10Þ
Dax3 ¼ 0:0318x23 þ 1:7263x2 � 6:6007x1

�0:0355x1x3 þ 0:005967x1x2�
0:004x21 � 0:00007x22

8>>>><
>>>>:

ð10Þ

(e) FOPEM M4

M4 is a 10-term periodic model given as in (11),

where # ¼ 1.

Dax1 ¼ �0:0976x23 þ 0:045x2x3 � 12:6237#x1
Dax2 ¼ 0:0107x22 � 0:0237x1x2
Dax3 ¼ 0:0108x23 þ 1:4512x2 � 5:912x1

�0:0147x1x3 þ 0:0041x1x2

8>><
>>:

ð11Þ

(f) FOPEM M5

M5 is a 11-term periodic model given as in (12),

where # ¼ 1

Dax1 ¼ �0:1434x23 þ 0:0674x2x3
�12:7264#x1 � 0:0025x22

Dax2 ¼ 0:0107x22 � 0:0237x1x2
Dax3 ¼ 0:0108x23 þ 1:4512x2 � 5:912x1

�0:0147x1x3 þ 0:0041x1x2

8>>>><
>>>>:

ð12Þ

Table 2 lists the dynamical analyses of FOPEMs to

help predict critical transitions in biological systems

[12, 16, 57].

Figure 1 depicts the attractors of the FOPEMs

where M0;M1;M2;M3 are chaotic and M4;M5 are

periodic. A representative bifurcation diagram is

plotted for the FOPEM M3 at a ¼ 0:995 against the

tuning parameter # as the bifurcation parameter in

Fig. 1g. The gradual evolution of chaos is distinctly

visible through a period doubling pathway. The ranges

of the tuning parameter for the corresponding attractor

dynamics are 0; 0:265½ �: (period 1), [0.265,0.576]:

(period 2), [0.576, 0.874]: (period 4) and [0.875, 1]:

(chaos). The value of # is chosen as 0.945 for M3 for

chaotic dispersal. Similarly, # for other FOPEMs are

chosen.

3.1.1 FO controllers (FOCs) for stabilisation

of chaos in FOPEMs

Three stabilisation controllers are designed in three

subsections dedicated to FO fuzzy logic control

(FOFLC), FO adaptive sliding mode control

(FOASMC) and FO active backstepping control

(FOABC). It is to be noted that these controllers are

applied to stabilise chaos only in those FOPEMs

which have chaotic dynamics, i.e.M0,M1,M2 andM3

as discussed in Table 2.

3.1.1.1 FOFLC: The design of an IO-based TS

fuzzy logic control (TSFLC) is reported in

Vaidyanathan [80]. The configuration of the system

with a fuzzifier which converts the crisp inputs to

linguistic variables using the membership functions

stored in the database, the inference engine which

simulates decisions by performing approximate

reasoning, and the defuzzifier which converts the

fuzzy output values into crisp values is represented in

the block diagram of Fig. 2.

Let a chaotic, nonlinear system be defined as in (2)

and controlled system as in (13).

Dax tð Þ ¼ f x tð Þ; tð Þ þ B:u ð13Þ

Here, u ¼ ðu1; u2; . . .; unÞT is the control signal.

The control input u in (13) is defined as in (14),

ui ¼ ueqi þ uLi ð14Þ

where i ¼ 1; 2; 3; . . .; n, and ueq ¼ mðx1; x2; x3; . . .; xnÞ
is an n-dimensional vector field containing continu-

ous, nonlinear functions. In FOFLC, u is calculated by

weighted sum defuzzification method, and B is an n�
n identity matrix. Let X be the universe of discourse

for the system defined in (13) and uL be based on fuzzy

control rules.
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Table 2 Investigation of dynamics of the FO Plague epidemic models

Model ICs Equilibrium points Eigen values
(ki; i ¼ 1; 2; 3Þ

FO Bounds of # LEs Dynamics

M0 (166.8903,

1070.193,

138.7208)

E1 ¼ (- 2723.906,0,

- 459.002)

k1;2;3 ¼ (64.556,

- 9.44,32.0185)

0.98 [0.375, 0.75] LE1 ¼ 0.059548

LE2 ¼ 0

LE3 ¼- 3.0896

Chaotic

E2 ¼ (0,0,0) k1;2;3 ¼ (- 7.5489, 0,0)

E3 ¼ (428.4239,948.939,

97.436)

k1;2;3 ¼(- 7.2477,

2.8296 ? 11.2178 i,
2.8296–11.2178 i)

M1 (895.9957,

2391.688,

312.7087)

E1 ¼ (0,0,0) k1;2;3 ¼ (- 12.623, 0,0) 0.98 [0.57,1] LE1 ¼ 0.22158

LE2 ¼ 0

LE3 ¼- 0.45977

Chaotic

E2 ¼ (- 1112.367,0,

- 379.308)

k1;2;3 ¼ (26.363,

- 19.1324, 18.7156)

E3 ¼ (533.355,1181.3568,

200.333)

k1;2;3 ¼ (- 7.8815,

1.4159 ? 12.3523 i,
1.4159–12.3523 i)

M2 (836.9658,

1721.620,

328.9299)

E1 ¼ (0,0,0) k1;2;3 ¼ (- 11.453,0,0) 0.995 [0.83,0.92] LE1 ¼ 0.32517

LE2 ¼ 0

LE3 ¼- 6.099

Chaotic

E2 ¼ (- 2659.1148,0,

- 460.8589)

k1;2;3 ¼ (63.0210,

- 14.0915, 31.7721)

E3 ¼ (512.1487,1134.3856,

178.6772)

k1;2;3 ¼ (- 7.9728,

2.4939 ? 12.7008 i,

2.4939–12.7008 i)

M3 (344.0896,

627.7882,

101.5058)

E1 ¼ (810.5939,1786.4544,

145.9542)

k1;2;3 ¼ (- 17.624,

2.5635 ? 19.2493 i,

2.5635–19.2493 i)

0.995 [0.875,1] LE1 ¼ 0.76966

LE2 ¼ 0

LE3 ¼- 15.0367

Chaotic

E2 ¼(1125.8296,2481.1972,

1006.1933)

k1;2;3 ¼ (- 6.9833

? 14.03 9 i,

- 6.9833–14.039 i,

52.146)

E3 ¼ (0,0,0) k1;2;3 ¼ (- 11.403, 0, 0)

M4 (166.8903,

1070.193,

138.7208)

E1 ¼ (0,0,0) k1;2;3 ¼ (- 12.623,

0,0)

0.937 [0.75,1] LE1 ¼ 0

LE2 ¼- 0.33791

LE3 ¼- 6.4779

Periodic

E2 ¼ (- 1911.3082,0,

- 497.203)

k1;2;3 ¼ (45.298,

- 16.6145,

21.3474)

E3 ¼ (532.1154,1178.6108,

200.9904)

k1;2;3 ¼ (- 6.1764,

1.3416 ? 12.8042 i,

1.3416–12.8042 i)

M5 (836.9658,

1721.620,

328.9299)

E1 ¼ (0,0,0) k1;2;3 ¼ (- 12.726, 0,0) 0.96 [0.92, 1] LE1 ¼ 0

LE2 ¼- 0.059592

LE3 ¼- 6.4876

Periodic

E2 ¼ (534.5436,1183.9892,

203.8006)

k1;2;3 ¼ (- 7.4083,

1.9474 ? 13.0348 i,

1.9474–13.0348 i)

E3 ¼ (654.4082,1449.4837,

486.6842)

k1;2;3 ¼ (4.9346,

- 0.6295 ? 19.7595 i,

- 0.6295–19.7595 i)
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The ith fuzzy control rule base for the FOFLC is

defined as in (15),

Rule: IF x1 isXi;1 AND. . .AND xn isXi;n,THEN uL
¼ ui xð Þ; i ¼ 1; . . .; r; r 2 N

ð15Þ

where Xi;1;Xi;2; . . .;Xi;n are fuzzy sets describing the

linguistic terms (LTs) of input variables, uL ¼ uiðxÞ is
the control input of rule i and r is the total number of

fuzzy rules.

Each fuzzy rule defined in (15) generates a weight

defined as in (16).

xi 2 0; 1½ �; i ¼ 1; . . .; r ð16Þ

From (16), it is assumed that for any x 2 X in the

input universe of discourse X, there exists at least one

weighted output among all rules that is nonzero. FO

Lyapunov stability theorem applied to control the

epidemic to a disease free equilibrium is as follows.

Theorem 2: ([47]). Let the originbeanequilibriumof

the controlled epidemic (13), and there exists a

Lyapunov function,V xð Þ ¼ xTTx, where T is a positive

definite matrix, on domain X containing the origin of

Rn such that DaV xð Þ� 0, for x 2 X. LetS ¼ fx 2 X :
DaV xð Þ ¼ 0g. If except the trivial solution x tð Þ � 0,

there is no solution of (13) that exists identically in S;

then, the infection-free equilibrium at the origin is

asymptotically stable in the domain X.

On adding FOFLC to the FOPEM M0 (7), we get

(17).

Dax1 ¼ �0:0976x23 þ 0:045x2x3 � 12:6237#x1 þ u1
Dax2 ¼ 0:0107x22 � 0:0237x1x2 þ u2
Dax3 ¼ 0:0108x23 þ 1:4512x2 � 5:912x1

�0:0147x1x3 þ 0:0041x1x2 þ u3

8>><
>>:

ð17Þ

On comparing (17) with (13), we have,

f x1; x2; x3ð Þ

¼

�0:0976x23 þ 0:045x2x3 � 7:5489726x1

0:0107x22 � 0:0237x1x2

0:0108x23 þ 1:4512x2 � 5:912x1 � 0:0147x1x3

þ0:0041x1x2

2
6664

3
7775

andB:u ¼
1 0 0

0 1 0

0 0 1

2
64

3
75:

u1

u2

u3

2
64

3
75 ð18Þ

ueq1; ueq2 and ueq3 of (14) are selected as in (19).

ueq1 ¼ 0:0976x23 � 0:045x2x3
ueq2 ¼ �0:0107x22 þ 0:0237x1x2
ueq3 ¼ �0:0108x23 þ 0:0147x1x3 � 0:0041x1x2

8<
:

ð19Þ

Replacing (19) in (17) and (18), we get (20).

Dax1 ¼ �7:5489726x1 þ uL1
Dax2 ¼ uL2
Dax3 ¼ 1:4512x2 � 5:912x1 þ uL3

8<
: ð20Þ

The fuzzification module of FOFLC in Fig. 3

shows the triangular membership function of the LTs

of the chosen linguistic variable x1. Notations

P; Z and N represent ‘positive’,’zero’ and ‘negative’,

respectively, and the parameters chosen are b3 ¼ 200;

b2 ¼ 190; b1 ¼ 10; a1 ¼ 10; a2 ¼ 1590 and a3 ¼
1600:

Table 3 describes the set of fuzzy control rules.

The universe of discourse is,

X ¼ �200; 1600½ � � 0; 2500½ � � �200; 400½ �.
The Lyapunov function is chosen as (21).

V xð Þ ¼ 1

2
x21 þ x22 þ x23
� �

ð21Þ

Using Lemma 1,

DaV xð Þ� x1uL1 � 7:5489726x21 þ x2uL2
þ 1:4512x2x3 � 5:912x1x3 þ x3uL3 ð22Þ

Using Theorem 2, DaV xð Þ ¼ 0 () x ¼ 0; 0; 0½ �T
which implies S ¼ f0; 0; 0g. Since Theorem 2 is

satisfied in the FO sense, the designed FOFLC

converges the controlled epidemic M0 to an infec-

tion-free asymptotically stable equilibrium. Similarly,

the FOFLCs for the chaotic FOPEMs Mk,k ¼ 0; :::; 3,

and fuzzy rules Ri i ¼ 1; 2; 3 are designed as given in

Table 4.

3.1.1.2 FOASMC: The function f ðx tð Þ; tÞ ¼
½f 1 xð Þ; f 2 xð Þ; . . .; f n xð Þ�T in FONLS (2) is an n-

dimensional vector field which can be further broken

into smooth functions as in (23),
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where a 	ð Þ; b 	ð Þ; c 	ð Þ; d 	ð Þ; e 	ð Þ; . . .; g 	ð Þ are smooth

functions belonging to Rn ! R space and u; b; c; . . .; s
are positive constants [69].

An adaptive switching surface s tð Þ is considered

such that the system satisfies the following condition

in (24) to operate in sliding mode.

s tð Þ ¼ x1 tð Þ þ h tð Þ ¼ 0 ð24Þ

h tð Þ is an adaptive function whose fractional

derivative is given in (25),

Fig. 1 Dynamical analysis of the FO Plague epidemic models

Dax1 ¼ a x1; x2; x3; . . .; xnð Þ � ux1
Dax2 ¼ x1:b x1; x2; x3; . . .; xnð Þ þ x3:d x1; x2; x3; . . .; xnð Þ � bx2
Dax3 ¼ x1:c x1; x2; x3; . . .; xnð Þ � x2:d x1; x2; x3; . . .; xnð Þ � cx3

:
:
:

Daxn ¼ x1:e x1; x2; x3; . . .; xnð Þ � xn�1:g x1; x2; x3; . . .; xnð Þ
� . . .� sxn

:

8>>>>>>>>>><
>>>>>>>>>>:

ð23Þ
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Dah tð Þ ¼ x2:b x1; x2; x3; . . .; xnð Þ
þ x3:c x1; x2; x3; . . .; xnð Þ þ . . .
þ xn:e x1; x2; x3; . . .; xnð Þ þ ux1 þ qx1

ð25Þ

where q is an arbitrary positive constant.

Using Caputo fractional derivative in (24), we

obtain (26).

Dax1 tð Þ ¼ �x2:b x1; x2; x3; . . .; xnð Þ
� x3:c x1; x2; x3; . . .; xnð Þ � . . .
� xn:e x1; x2; x3; . . .; xnð Þ � ux1 � qx1

ð26Þ

Replacing the value of Dax1 tð Þ from (26) into (23)

yields (27).

Table 3 Fuzzy rule base of FOFLCs for FOPEM M0

Fuzzy rule Antecedent x1 Consequent UL DaV xð Þ Stability

1 P

UL1 ¼
5:912x3

�x2 � 1:4512x3
�x3

2
4

3
5 �7:5489726x21 � x22 � x23\0 Stable in FO sense

2 N

UL2 ¼
5:912x3

�8:5x2 � 1:4512x3
�x3

2
4

3
5 �7:5489726x21 � 8:5x22 � x23\0

3 Z

UL3 ¼
5:912x3

�8:5x2 � 1:4512x3
�11x3

2
4

3
5 �7:5489726x21 � 8:5x22 � 11x23\0

Dax1 ¼ �x2:b x1; x2; x3; . . .; xnð Þ � x3:c x1; x2; x3; . . .; xnð Þ � . . .� xn:e x1; x2; x3; . . .; xnð Þ � ux1 � qx1
Dax2 ¼ x1:b x1; x2; x3; . . .; xnð Þ þ x3:d x1; x2; x3; . . .; xnð Þ � bx2
Dax3 ¼ x1:c x1; x2; x3; . . .; xnð Þ � x2:d x1; x2; x3; . . .; xnð Þ � cx3

:
:
:

Daxn ¼ x1:e x1; x2; x3; . . .; xnð Þ � xn�1:g x1; x2; x3; . . .; xnð Þ � . . .� sxn

8>>>>>>>><
>>>>>>>>:

ð27Þ

Fig. 2 Fuzzy logic control

system

Fig. 3 Membership function for FOFLC
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Using the Lyapunov function in (21) and Lemma 1,

we have (28).

DaV xð Þ� � uþ qð Þx21 � bx22 � cx23 � . . .� sx2n
ð28Þ

According to fractional-order Lyapunov stability

theorem [20], DaV xð Þ� 0 indicates the system is

stable.

The ASMC law used in the sliding surface so that

Das tð Þ ¼ 0 is defined as in (29),

u ¼ ur þ ueq ð29Þ

where ur ¼ rsgn sð Þ is the reaching control law, r is

the reaching gain achieved by the adaptive law

_r ¼ �; sj j; ; is a constant, and ueq is the equivalent

control law as in (30).

ueq ¼ Dax1 tð Þ � a x1; x2; x3; . . .; xnð Þ þ ux1 ð30Þ

Replacing Dax1 tð Þ from (26) into (30), ueq is

obtained as (31).

ueq ¼ �x2:b x1; x2; x3; . . .; xnð Þ
� x3:c x1; x2; x3; . . .; xnð Þ � . . .
� xn:e x1; x2; x3; . . .; xnð Þ � qx1
� a x1; x2; x3; . . .; xnð Þ ð31Þ

Therefore, ASMC u of (29) is obtained as in (32),

u ¼ �x2:b x1; x2; x3; . . .; xnð Þ � x3:c x1; x2; x3; . . .; xnð Þ
� . . .� xn:e x1; x2; x3; . . .; xnð Þ � qx1
� a x1; x2; x3; . . .; xnð Þ þ rsgn sð Þ

ð32Þ

where q; r and s are to be suitably chosen.

Now, the above ASMC strategy is applied to the

FOPEM M0 (7).

Dax1 ¼�0:0976x23þ0:045x2x3�7:5489726x1þu1
Dax2 ¼ 0:0107x22�0:0237x1x2
Dax3 ¼ 0:0108x23þ1:4512x2�5:912x1
�0:0147x1x3þ0:0041x1x2

8>><
>>:

ð33Þ

Here, u ¼ ðu1; 0; 0ÞT; u1 ¼ ur1 þ ueq1 is the control

signal.

Comparing system (33) with (23), we obtain (34).

a x1; x2; x3ð Þ ¼ �0:0976x23 þ 0:045x2x3
u ¼ 7:5489726
b x1; x2; x3ð Þ ¼ �0:0237x2
b ¼ �0:0107x2
c x1; x2; x3ð Þ ¼ �5:912� 0:0147x3 þ 0:0041x2
d x1; x2; x3ð Þ ¼ �1:4512
c ¼ �0:0108x3

8>>>>>>>><
>>>>>>>>:

ð34Þ

From (31) and (32), the ASMC u1 is obtained as in

(35).

u1 ¼ 0:0237x22 þ 5:912x3 þ 0:01123x23 � 0:0491x2x3
� qx1 þ rsgn sð Þ

ð35Þ

Suitable values of q; r and s render the FOPEM,M0

globally asymptotically stable. Similarly, the

FOASMC for the chaotic FOPEMs, M1;M2 and M3

are designed as given in Table 5.

3.1.1.3 FOABC: The recursive active backstepping

control is designed for the ith step, where the ith-order

sub-system is stabilised with respect to a Lyapunov

function Vi and virtual control li in the control input

ui.

Let, w1 ¼ x1,

Daw1 ¼ Dax1 ¼ f1 x tð Þ; tð Þ þ u1 ð36Þ

such that x2 ¼ l1 w1ð Þ is the virtual control input.
To stabilise sub-system w1, a Lyapunov function is

chosen as in (37).

V1 ¼
w2
1

2
ð37Þ

Using FO Lemma 1, the Caputo fractional deriva-

tive of V1 is obtained as in (38).

DaV1 �w1D
aw1 ¼ w1 f1 x tð Þ; tð Þ þ u1½ � ð38Þ

Considering l1 ¼ 0, an appropriate expression of

u1 is chosen such that DaV1\0, and sub-system w1 is

asymptotically stable. The error between x2 and l1 is
given by (39).

w2 ¼ x2 � l1 ð39Þ

Therefore, the ðw1;w2Þ sub-system is obtained,

where x3 ¼ l2 w1;w2ð Þ is the virtual controller. The

stabilisation of ðw1;w2Þ sub-system is done by choos-

ing a Lyapunov function, V2 as in (40).
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V2 ¼ V1 þ
w2
2

2
ð40Þ

Its Caputo derivative is as in (41).

DaV2 �DaV1 þ w2D
aw2 ¼ DaV1

þ w2 f2 x tð Þ; tð Þ þ u2½ �
ð41Þ

Considering l2 ¼ 0, an appropriate expression of

u2 is chosen such that DaV2\0, making ðw1;w2Þ sub-
system asymptotically stable.

Similarly, virtual controllers are designed for

subsequent sub-systems ðw1;w2; . . .;wnÞ, which are

stabilised by choosing Lyapunov functions as in (42)

and appropriate controller expressions.

Vi ¼ Vi�1 þ
w2
i

2
ð42Þ

If DaVi\0, for i ¼ 1; 2; . . .; n., the controlled

system (13) is asymptotically stable.

Now, we apply FOABC to FOPEM M0 7ð Þ. From
(36), we have,

Daw1 ¼ �7:5489726w1 � 0:0976x23 þ 0:045x2x3:

ð43Þ

From (38), we have (44).

DaV1 ¼ �7:5489726w2
1

þ w1 �0:0976x23 þ 0:045l1x3w1 þ u1
� �

ð44Þ

DaV1 ¼ �7:5489726w2
1 � w2

1\0, if l1 ¼ 0 and

u1 ¼ 0:0976x23 � w1, and sub-system w1 is asymptot-

ically stable.

From (41), we get,

DaV2 ¼ �7:5489726w2
1 � w2

1 þ 0:045w1w2a2
þ w2 0:0107w2

2 � 0:0237w1w2 þ u2
� �

ð45Þ

DaV2 ¼ �7:5489726w2
1 � w2

1 � w2
2\0, when l2 ¼

0 and u2 ¼ �0:0107w2
2 þ 0:0237w1w2 � w2, and sub-

system ðw1;w2Þ is asymptotically stable.

Similarly, DaV3 ¼ �8:5489726w2
1 þ

0:045w1w2w3 þ w3 0:0108w2
3 þ 1:4512w2�

�
5:912w1 � 0:0147w1w3 þ 0:0041w1w2 þ u3Þ\0, and

the sub-system ðw1;w2;w3Þ is asymptotically stable.

Thus, chaos in FOPEM M0 is stabilised using

FOABC. Similarly, the FOABC for remaining chaotic

FOPEMs, M1;M2 and M3 are designed as enlisted in

Table 5.

3.1.2 FO Controllers for synchronisation of chaos

in FOPEMs

The controllers in this section are applied to two pairs:

a. Chaotic FOPEMM0 acting as a slave synchronises

with periodic FOPEM M4 acting as a master

b. Chaotic FOPEMM2 acting as a slave synchronises

with periodic FOPEM M5 acting as a master

Let the FO master system be a periodic system

defined in (46).

Day tð Þ ¼ f y tð Þ; tð Þ ð46Þ

where y tð Þ ¼ y1; y2; . . .; yn½ �T is the state vector, yi 0ð Þ
represents the ICs and i ¼ 1; 2; . . .; n. f y tð Þ; tð ÞÞ ¼
f1 yð Þ; f2 yð Þ; . . .; fn yð Þ½ �T is an n-dimensional vector

field containing continuous functions of the master

system.

Let the FO slave system be a chaotic system defined

in (47).

Dax tð Þ ¼ f x tð Þ; tð Þ þ u ð47Þ

The errors between the master and slave are defined

as in (48),

e ¼ x� y ð48Þ

where e ¼ e1; e2; . . .; en½ �T are the error states.

The FO error dynamics are obtained as in (49).

Dae ¼ Dax� Day ð49Þ

Therefore, the goal is to design u such that the error

states converge to zero as time approaches infinity, i.e.

the trajectory of the slave system (47) asymptotically

approaches and synchronise with the trajectory of the

master system (46).

Two control strategies for synchronisation are

proposed in the following subsections: FO fuzzy logic

synchronisation control (FOFLSC) and FO active

backstepping synchronisation control (FOABSC).

3.1.2.1 FOFLSC: The ith fuzzy control rule for the

FOFLSC is defined as in (50),
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Rule i : IF e1 isEi;1 AND. . .AND en isEi;n;THEN uL
¼ ui eð Þ; i ¼ 1; . . .; r; r 2 N


ð50Þ

where Ei;1;Ei;2; . . .;Ei;n are fuzzy sets describing the

LTs of input variables, uL ¼ ui eð Þ is the control input
of rule i and r is the total number of fuzzy rules

following the same defuzzification process as in

Sect. 5.1.1.1.

The Lyapunov function is defined as in (51).

V eð Þ ¼ 1

2
e21 þ e22 þ e23 þ . . .þ e2n
� �

ð51Þ

From Theorem 2, it can be derived that if the origin

is an equilibrium of the controlled system and V eð Þ ¼
1
2
e21 þ e22 þ e23 þ . . .þ e2n
� �

is a positive definite func-

tion on domain E containing the origin of Rn such that

DaV eð Þ� 0, for i ¼ 1; 2; . . .; r and e 2 E, and

S ¼ e 2 E : DaV eð Þ ¼ 0f g, and suppose no solution

of (49) can stay identically in S except the trivial

solution e tð Þ � 0, then, the equilibrium at the origin is

asymptotically stable in the domain E.

We now apply FOFLSC to synchronise FOPEMM0

withM4. The periodic FOPEM,M4 is chosen as master

and chaoticM0 as slave. The error dynamics are given

by (52).

Dae1¼�0:0976ðx23�y23Þþ0:045ðx2x3�y2y3Þ
�7:5489726x1þ12:6237y1þu1
Dae2¼0:0107ðx22�y22Þ�0:0237ðx1x2�y1y2Þþu2
Dae3¼0:0108 x23�y23

� �
þ1:4512e2�5:912e1

�0:0147ðx1x3�y1y3Þþ0:0041ðx1x2�y1y2Þþu3

8>>>><
>>>>:

ð52Þ

ueq1; ueq2 and ueq3 are selected as in (53).

ueq1¼0:0976ðx23�y23Þ�0:045ðx2x3�y2y3Þ
þ7:5489726x1�12:6237y1

ueq2¼�0:0107ðx22�y22Þþ0:0237ðx1x2�y1y2Þ
ueq3¼�0:0108 x23�y23

� �
þ0:0147ðx1x3�y1y3Þ

�0:0041ðx1x2�y1y2Þ

8>>>><
>>>>:

ð53Þ

From (49) and (50), we get

Dae1 ¼ uL1
Dae2 ¼ uL2
Dae3 ¼ 1:4512e2 � 5:912e1 þ uL3

8<
: ð54Þ

and

E ¼ �1500; 1500½ � � �2500; 2000½ � � ½�800; 600�.

From (51), the Lyapunov function is chosen as in

(55).

V eð Þ ¼ 1

2
e21 þ e22 þ e23
� �

ð55Þ

Using Caputo derivative, we have,

DaV eð Þ ¼ e1uL1 þ e2uL2 þ 1:4512e2e3 � 5:912e1e3
þ e3uL3

ð56Þ

Since, DaV eð Þ ¼ 0 , e ¼ 0; 0; 0½ �T which implies

S ¼ 0; 0; 0f g. The fuzzy rules are derived as follows:

i. For Rule 1, R1: for antecedent e1 as P, we have the

consequent as,

UL1 ¼
uL1
uL2
uL3

2
4

3
5 ¼

�e1 þ 5:912e3
�e2 � 1:4512e3

�e3

2
4

3
5, then

DaV eð Þ ¼ �e21 � e22 � e23\0:

ii. For Rule 2, R2: for antecedent e1 as N, we have

the consequent as,

UL2 ¼
uL1
uL2
uL3

2
4

3
5 ¼

�6:5e1 þ 5:912e3
�9:5e2 � 1:4512e3

�e3

2
4

3
5, then

DaV eð Þ ¼ �6:5e21 � 9:5e22 � e23\0.

iii.

For Rule 3, R3: for antecedent e1 as Z, we have the

consequent as

UL3 ¼
uL1
uL2
uL3

2
4

3
5

¼
�6:5e1 þ 5:912e3
�9:5e2 � 1:4512e3

�13e3

2
4

3
5; thenDaV eð Þ

¼ �6:5e21 � 9:5e22 � 13e23\0

Thus, the errors, e ¼ ½e1; e2; e3�T; converge to zero

and the slave M0 synchronises with the master M4:

Similarly, the FOFLSC designed to synchronise

FOPEMs, the chaotic M2 with the periodic M5 is as

in Table 6.

3.1.2.2 FOABSC: The periodic FOPEM,M4 is

chosen as master and chaotic M0 as slave. According

to the design procedure mentioned in subsection

3.1.1.3, e3 ¼ l1ðw1Þ is the virtual control input. The
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Lyapunov function is chosen as in (37) and its FO

derivative is as in (57).

DaV1 ¼ �7:5489726w2
1 þ w1ð�0:0976ðy3 þ x3Þl1

þ 0:045ðx2x3 � y2y3Þ þ 5:0747274y1 þ u1Þ
ð57Þ

DaV1 ¼ �7:5489726w2
1 � w2

1\0, i.e. sub-system

w1 is asymptotically stable when l1 ¼ 0 and

u1 ¼ 0:045 x2x3 � y2y3ð Þ � 5:074727y1 � w1.

For the Lyapunov function, V2 in (58), we get its FO

derivative in (59).

V2 ¼ V1 þ
z23
2

ð58Þ

DaV2 ¼ �8:5489726w2
1 � 0:0976 y3 þ x3ð Þw1w3

þ w3 0:0108 y3 þ x3ð Þw3 þ 1:4512l2ð
�5:912w1 � 0:0147ðx1x3 � y1y3Þ
þ 0:0041 x1x2 � y1y2ð Þ þ u3Þ

ð59Þ

DaV2 ¼ �8:5489726w2
1 � w2

3\0, when l2 ¼ 0

and u3 ¼ 0:0976 y3 þ x3ð Þw1 � 0:0108 y3 þ x3ð Þw3þ
5:912w1 þ 0:0147ðx1x3 � y1y3Þ � 0:0041 x1x2�ð
y1y2Þ � w3, which makes sub-system ðw1;w3Þ asymp-

totically stable.

Similarly, DaV3 ¼ �8:5489726w2
1 � w2

3 � w2
2\0,

which makes ðw1;w2;w3Þ sub-system asymptotically

stable.

Therefore, the synchronisation errors e ¼
e1; e2; e3½ �T converge to zero and the controlled

system, i.e. chaotic FOPEM M0 asymptotically

approaches the trajectory of the periodic master

system, FOPEM M4. Similarly, FOABSC is designed

to synchronise chaotic FOPEM, M2 with periodic

FOPEM, M5 as shown in Table 7.

3.2 FO cancer epidemic model (FOCEM)

The proposed FOCEM is given as in (60), where x1, x2
and x3 represent the tumour cell population, numbers

of healthy cells and effector immune population,

respectively. The IOM for the same was reported in

Valle et al. [81].

Dax1 ¼ x1 1� x1ð Þ � a12x1x2 � a13x1x3
Dax2 ¼ r2x2 1� x2ð Þ � a21x1x2

Dax3 ¼
r2x1x3
x1 þ 1

� a31x1x3 � d3x3

8><
>: ð60Þ

Here, a12 denotes fractional tumour cells killed by

healthy cells, a13 is fractional tumour cells killed by

effector cells, r2 is healthy host cells growth rate, a21
denotes fractional healthy cells killed by tumour cells,

a31 denotes fractional effector cells inactivated by

tumour cells, d3 denotes death rate of effector cells

Valle et al. [81]. The phase solutions of the above

system (60) with the parameter set

{a12 ¼ 1; a13 ¼ 2:5, r2 ¼ 4:5; a21=1.5,

a31 ¼ 0:2; d3 ¼ 0:5} give rise to chaos [36]. The

dynamical analysis of the FOCEM is given in Table 8.

The phase portraits of the FOCEM (60) in Fig. 4

confirm that they are chaotic in nature in their

fractional dynamics.

3.2.1 FO Controllers for stabilisation of chaos

in FOCEM

Using the design procedure discussed in Sec-

tion 3.1.1.1, the FOFLCs for stabilising chaos in the

FOCEM are given in Table 9.

Similarly, using the design procedure discussed in

Sects. 3.1.1.2 and 3.1.1.3, the FOASMC and FOABC

for stabilising chaos in the FOCEM are given in

Table 10.

Having designed the controllers for stabilisation

and synchronisation in FOPEMs and FOCEM, we now

proceed to their results, discussion and comparison.

4 Comparison of the FOCs in FOPEMs

and FOCEM

Comparisons of stabilisation and synchronisation

FOCs are presented in the following two subsections.

4.1 Comparison of the FOCs to stabilise chaos

The numerical simulation results of FOFLC,

FOASMC and FOABC applied to the epidemics

FOPEMs and FOCEM as designed in Sects. 3.1.1

and 3.2.1 to stabilise chaos are shown in Figs. 5, 6, 7, 8

and 9. A comparison is drawn in Table 11 where

‘state’ denotes the number of state variables

controlled.

From Table 11, it is noted that FOFLC is the fastest

controller in terms of settling time, while FOASMC

requires the least control effort to stabilise chaos. The
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designed controllers stabilise chaos in these models,

and further illustrate that taking appropriate measures

to reduce the number of infected rats will bring about a

reduction in disease propagation. The proposed con-

trol strategies for chaos stabilisation may be accom-

plished by an efficient route of human action through

medical intervention to methodically slow down the

disease spread. The FOCEM stabilised using the

proposed FOCs highlight the importance of maximum

recruitment rate of effector cells being stronger than

their inactivation rate by Cancer cells, on failure of

which, necessary treatment is to be delivered to

control tumour growth. In order to bring about zero

tumour survival, the designed controllers aim at

controlling the parameter assigned as fractional

tumour cells killed by healthy cells.

4.2 Comparison of the FOCs to synchronise chaos

The numerical simulation results of applying the

controllers FOFLSC and FOABSC for synchronisa-

tion as designed in Sect. 3.1.2 are shown in Figs. 10

and 11.

Chaotic models have a degree of unpredictability.

The purpose of synchronisation is to synchronise the

chaotic dynamical model with that of an unchaotic or

periodic model so that the system is no longer chaotic,

and the unpredictability in the epidemic spread is

mitigated. As shown in Figs. 10 and 11, the error states

E ¼ ½e1; e2; e3�T converge to zero and the controlled

slave system asymptotically approaches the trajectory

of the master system. The comparison drawn in

Table 12 reveal that FOFLSC is faster than FOABSC.

Since our models are chaotic and strongly sensitive to

ICs, we analyse the robustness of the control of the

proposed models by perturbing the models with

different ICs. Then, the corresponding integral

squared error ISE =
RT
0

e2 tð Þdt is computed after

application of the same control action. The results

obtained are listed in Tables 11 and 12 which prove

that the control strategies applied to the proposed

models are robust, since the controllers are successful

in attaining the desired stabilisation dynamics even

after perturbation in the ICs. Such robustness provides

a good argument for the controllers to be effective in

suppressing and synchronising chaos in the proposed

models.

Table 8 Investigation of dynamics of FOCEM

Epidemic ICs Equilibrium points Eigen values

(ki; i ¼ 1; 2; 3Þ
FO LEs Observation

Cancer (0.1,0.1,0.1) E1 ¼(0,0,0) k1;2;3 ¼(- 1/2, 3/5,1) 0.99 LE1 ¼ 0.013852

LE2 ¼ 0

LE3 ¼- 0.52734

Chaotic

E2 ¼(1,0,0) k1;2;3 ¼(- 1,- 9/10,31/20)

E3 ¼(0,1,0) k1;2;3 ¼(- 3/5,- 1/2,0)

Table 9 Proposed FOFLC to stabilise chaos in FOCEM in antecedent x1

Epidemic FO Fuzzy rules FOFLC

FOCEM 0.99 Rule 1

U1 ¼
u1
u2
u3

2
4

3
5 ¼

x1x2 þ 2:5x1x3 � x1
1:5x1x2 � x2

� 4:5x1x3
x1 þ 1

þ 0:2x1x3

2
64

3
75

Rule 2

U2 ¼
u1
u2
u3

2
4

3
5 ¼

x1x2 þ 2:5x1x3 � 2x1
1:5x1x2 � x2

� 4:5x1x3
x1 þ 1

þ 0:2x1x3

2
64

3
75

Rule 3

U3 ¼
u1
u2
u3

2
4

3
5 ¼

x1x2 þ 2:5x1x3 � 2x1
1:5x1x2 � 3x2

� 4:5x1x3
x1 þ 1

þ 0:2x1x3

2
64

3
75

123

1206 M. Borah et al.



4.3 FO Covid-19 pandemic model (FOCovM)

The IOM of chaotic Covid-19 pandemic model is

reported in Mangiarotti et al. [53]. The FOCovM is

proposed in (61).

Dax1¼�0:10530723x23þ2:343�10�5x21
�0:15204x2ðx3�0:01451520x1Þ

Dax2¼�0:20517824x1þ0:44040714x2þ0:16060376x23
Dax3¼�0:00011493x1x3�1:215�10�5x1x2

þ0:2844499x3þ2:38�10�6x1x2

8>>>><
>>>>:

ð61Þ

where x1; x2; x3 are the numbers of confirmed cases,

critical cases under intensive care and cumulated

number of fatalities per day, respectively.

The bifurcation diagram shown in Fig. 12 reveals

the rich complex dynamics of Covid-19 pandemic as it

progresses on increasing the FO parameter a in (61),

which otherwise remain concealed in the IO chaotic

model. The FOCovM displays a period 1 attractor

(P1), in the range a�½0:95; 0:96�, and bifurcates in two

curves to give birth to a period 2 attractor (P2), in

[0.96, 0.97]. On further splitting, P2 bifurcates into P4

(period 4) which eventually routes to chaos from a ¼
0:973 onwards.

The phase portraits of the FOCovM shown in

Fig. 13 illustrate the gradual evolution of the chaotic

attractor at a ¼ 0:98 from a P1 at a ¼ 0:95, complying

with the bifurcation analysis of Fig. 12.

The design of controllers in the FOCovM for

stabilisation of chaos to a disease-free equilibrium or

synchronisation of the chaotic trajectory with a

disease-free one is left open to interested researchers.

The review carried out in this paper highlights the

research gaps in epidemic modelling and control and

leads to focus on some unexplored areas that may be a

scope of research:

1. FO chaos theory in modelling pandemics: The

spread of pandemics such as COVID-19 is determin-

istic chaos having long-range memory. The present

existing IO chaotic models are memory-less models.

Chaos theory along with the memory-enabled frac-

tional calculus can be a promising tool in modelling

these epidemic/pandemics by capturing real, physical

and unmodelled dynamics compared to IOMs. Also

the FOMs are capable of presenting more robust

models compared to their IO counterparts [49, 50]

2. FO chaos theory in decision-making: The

investigation of FO models and their analysis of

propagation can be applied to other infected regions to

help recognise the closest scenarios to predict the

future behaviour of the course of the epidemic. These

will serve as an efficient tool in decision making [53]

to generate an early alert system and aid in adopting

economic control strategies of vaccination,ICU facil-

ity, etc., especially in low-income countries with

limited health infrastructure.

3. FO chaos theory in destination crisis manage-

ment: Chaos theory provides a viable framework for

the management of disaster in countries whose income

is largely dependent on tourism [72] as was the case

with the H1N1 influenza crisis in Mexico. FO chaos

theory can be a new tool to define tourism crisis.

4. FO controllers for FO chaotic epidemics: In an

epidemic governed by chaotic behaviour, a seemingly

trivial event may initiate a set of events leading to a

major crisis. FO controllers provide robust stability

conditions for uncertain chaotic systems [17]. Com-

pared with their IO counterparts, FOCs have more

flexibility in choosing the suitable control parameters

to control and stabilise the chaotic equilibrium to an

infection-free equilibrium. This is another scope of

research since such wide range of flexibility of FOCs

will enhance adopting preventive control measure in a

Table 10 Proposed controllers FOASMC and FOABC to stabilise chaos in FOCEM

Epidemic Control technique FO Parameter values Controller

FOCEM FOASMC 0.99 q ¼ 800;

r ¼ 0:5;

s ¼ 0:5

u ¼ 1:5x22 �
4:5x2

3

x1þ1
þ 0:2x23 þ x21 þ x1x2 þ 2:5x1x3 � 800x1 þ 0:5sgnð0:5Þ

FOABC 0.99 w1 ¼ x1,

w2 ¼ x2 � l1,

w3 ¼ x3 � l2,

l1 ¼ l2 ¼ 0

u1 ¼ �w1 þ 2:5w1x3,

u2 ¼ �w2 þ 0:6w2
2 þ 1:5w1w2 þ w1,

u3 ¼ � 4:5w1w3

w1þ1
þ 0:2w1w3
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rapidly propagating epidemic. As an instance, the

design of FOCs for stabilising and synchronising

chaos in the ongoing chaotic Covid-19 model dynam-

ics may be explored.

5 Conclusions

This brief survey reveals that chaotic waves are a

dominant mode of epidemic/pandemic dispersal.

Fractional calculus, possessing the features of flexi-

bility, heredity and memory, can provide more accu-

rate models of the chaotic pandemics by incorporating

Fig. 4 Chaotic attractors of proposed FO Cancer epidemic model at a ¼ 0:993

Fig. 6 Chaos stabilisation in FO Plague epidemic model M1 at a ¼ 0:98

Fig. 5 Chaos stabilisation in FO Plague epidemic model, M0 at a ¼ 0:98
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unmodelled dynamics as ultra-diffusive, undetected or

asymptomatic transmission, critical cases with comor-

bidities, etc., that often fail to be encompassed by

integer-order models. A conclusion drawn is that on

applying fractional-order chaos to model Plague,

Cancer and Covid-19 pandemics based on actual data,

realistic transmission revealing in-depth insights to

their propagation dynamics such as asymptotically

periodic attractors that evolve into chaos is discovered.

The stability of the disease-free equilibrium is

achieved and synchronised using fractional-order

control. The designed controllers in practical scenario

may denote controlling the number of infected rats in

Plague model, rate of recruitment of effector cells in

Cancer model, injection of vaccine and prophylactic

drug to susceptible individuals, social distancing,

restriction of mobility, prior prediction of spread,

etc., in Covid-19 model. Knowledge of propagation

dynamics of pandemics as studied in this work

facilitate judicious decision-making on timely and

Fig. 8 Chaos stabilisation in FO Plague epidemic model M3 at a ¼ 0:995

Fig. 7 Chaos stabilisation in FO Plague epidemic model M2 at a ¼ 0:995

Fig. 9 Chaos stabilisation in FO Cancer epidemic model at a ¼ 0:99
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Fig. 10 Synchronisation control for FOPEMs, M4(master) and M0(slave)

Table 11 Comparison of the FOCs designed to stabilise chaos in FOPEMs and FOCEM

Epidemic FOC State Settling time ðtsÞ
(s)

Convergence to equilibrium

point

Original

ICs

Perturbed ICs ISE

FOPEM

M0

FOFLC 3 3.24 E2(Fig. 5a) (166.8903,

1070.193,

138.7208)

(100, 1000,100) 0.04

FOASMC 1 5.41 E3(Fig. 5b) 0.34

FOABC 3 6.23 E2(Fig. 5c) 0.152

FOPEM

M1

FOFLC 3 1.46 E1(Fig. 6a) (895.9957,

2391.688,

312.7087)

(200, 2000,

300)

0.0004

FOASMC 1 4.12 E3(Fig. 6b) 0.025

FOABC 3 4.81 E1(Fig. 6c) 0.25

FOPEM

M2

FOFLC 3 3.42 E1(Fig. 7a) (836.9658,

1721.620,

328.9299)

(900,1000,400) 0.176

FOASMC 1 4.7 E3(Fig. 7b) 0.0061

FOABC 3 6.72 E1(Fig. 7c) 0.42

FOPEM

M3

FOFLC 3 3.39 E3(Fig. 8a) (344.0896,

627.7882,

101.5058)

(200, 500, 100) 0.425

FOASMC 1 5.52 E1(Fig. 8b) 0.0023

FOABC 3 6.41 E3(Fig. 8c) 0.419

FOCEM FOFLC 3 25.8 E1(Fig. 9a) (0.1,0.1,0.1) (10,10,10) 0.0049

FOASMC 1 59 E3(Fig. 9b) 0.3868

FOABC 3 61.5 E1(Fig. 9c) 0.057
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cost-effective control measures in low- and middle-

income countries like India, which is struggling to

battle the second wave of Covid-19 due to limited

medical infrastructure: shortage of vaccines, oxygen

supply, ICU beds, etc. Chaos and its unpredictability

increase as FO operator increases; hence, it can be

used as a parameter to analyse the progression of a

pandemic and is an excellent tool to obtain a closer fit

to the disease dynamics. It is to be noted that since

chaos indicates hyped sensitivity to initial conditions,

so a long-term prediction of the spread of the epidemic

is never possible and substantial changes may occur

unexpectedly. Nonetheless, this review will prove

helpful to design quicker control measures to

Table 12 Comparison of the FOCs designed to synchronise chaos in FOPEMs

Master system Slave system Controller State Error settling time ðtsÞ (s) Original ICs Perturbed ICs ISE

M4 M0 FOFLSC 3 5.52 (166.8903,

1070.193, 138.7208)

(100, 1000, 100) 0.81

FOABSC 3 6.15 0.16

M5 M2 FOFLSC 3 6.61 (836.9658,

1721.620, 328.9299)

(700, 1800, 420) 0.49

FOABSC 3 8.63 1.04

Fig. 11 Synchronisation control for FOPEMs, M5(master) and M2(slave)

Fig. 12 Bifurcation of Covid-19 pandemic model against the

FO parameter a
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eliminate chaos, induce crisis management and deci-

sion-making in the pandemic using the more realistic

approach of fractional-order chaos theory and thus

curtail the unpredictability in the spread of the disease.
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