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Abstract Scientific research and engineering prac-

tice often require the modeling and decomposition of

nonlinear systems. The dynamic mode decomposition

(DMD) is a novel Koopman-based technique that

effectively dissects high-dimensional nonlinear sys-

tems into periodically distinct constituents on

reduced-order subspaces. As a novel mathematical

hatchling, the DMD bears vast potentials yet an equal

degree of unknown. This effort investigates the

nuances of DMD sampling with an engineering-

oriented emphasis. It aimed at elucidating how

sampling range and resolution affect the convergence

of DMD modes. We employed the most classical

nonlinear system in fluid mechanics as the test

subject—the turbulent free-shear flow over a prism

—for optimal pertinency. We numerically simulated

the flow by the dynamic-stress Large-Eddies Simu-

lation with Near-Wall Resolution. With the large-

quantity, high-fidelity data, we parametrized and

identified four global convergence states: Initializa-
tion, Transition, Stabilization, and Divergence with

increasing sampling range. Results showed that

Stabilization is the optimal state for modal conver-

gence, in which DMD output becomes independent

of the sampling range. The Initialization state also

yields sufficient accuracy for most system recon-

struction tasks. Moreover, defying popular beliefs,

over-sampling causes algorithmic instability: as the

temporal dimension, n, approaches and transcends the
spatial dimension, m (i.e., m\n), the output diverges
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and becomes meaningless. Additionally, the conver-

gence of the sampling resolution depends on the

mode-specific dynamics, such that the resolution of

15 frames per cycle for target activities is suggested

for most engineering implementations. Finally, a bi-

parametric study revealed that the convergence of the

sampling range and resolution are mutually

independent.

Keywords Dynamic mode decomposition ·

Sampling convergence · Sampling resolution ·

Turbulent free-shear flow · Reduced-order model ·

Large-eddies simulation

List of symbols

Latin letters
A Infinite-dimensional Koopman operator
~A Similarity-matrix approximation of A
ae ae=0.53. Empirical constant for LESIQ
αν av=0.05. Empirical constant for LESIQ
b Scalar Magnitude of Z-transform z=bejθ

CD,

RMS

Root-mean-square deviation of Drag

coefficient

CDh i Mean Drag coefficient

CL Lift coefficient

CL,

RMS

Root-mean-square deviation of Lift

coefficient

CL′ Fluctuating component of Lift coefficient

Cp Wall pressure coefficient

Cs Smagorinsky constant

Cs Dynamic Smagorinsky coefficient

D Side length of prism/diameter of cylinder

Dα Diagonal matrix of α
d Distance from a cell centroid to the closest

wall

ECL′ Spectrum of fluctuating Lift coefficient

ER Portion of ETKE resolved by the filtered

Navier–Stokes equations

ETKE Spectrum of total turbulence kinetic energy

ek k2;ins Mean l2-norm of reconstruction error by

DMD

G Hexahedral grid of 4.3 million elements

G(x) Filter function in three-dimensional space

G ek k2 Grand mean l2-norm of reconstruction

error by DMD

f.p.c. Frames per cycle

gj Growth rate of DMD mode ϕj
Ij I-criterion for dominant mode selection

= The imaginary space

kall Total turbulence kinetic energy

knum Pseudo-energy term for discretization

error/numerical residual

kr Portion of kall resolved by the filtered

Navier–Stokes equations

ksgs Portion of kall modeled by subgrid-scale

model(s)

LESIQ Index quantifying the resolution of a LES

grid

Lij The Germano identity relating grid-and

test-filtered stresses

Ld
ij Deviatoric component of Lij

LS
ij Smagorinsky model for Ld

ij

ls Smagorinsky lengthscale

lx Characteristic length of a boundary layer

Mij A definition for least square analysis after

Lilly [1]

m DMD temporal dimension (i.e., number of

snapshots)

NG Spatial dimension of G
NR Spatial dimension of R
n DMD spatial dimension (i.e., number of

nodes per snapshot)

�p Modified pressure

R Region with refined hexahedral grid within

G
r Order of truncation

Re Reynolds number based on D
Rex Reynolds number based on lx
Re The real space

St (Stj) (jth) Strouhal number. Reduced frequency
�Sij Filtered rate of strain
�S Filtered characteristic rate of strain

T SGS
ij Test-filtered stress

T
sgs
ij Deviatoric component of T SGS

ij

t* Normalized time-step for DMD sampling

tDNS Time step of detached-Eddy simulation

tDNS Time step of direct numerical simulation

twashout Time step of washout

U Matrix containing all POD modes

u Instantaneous velocity field

u Flow velocity in the x-direction
Uh i Mean magnitude of flow velocity

uh i Mean component of u
U(z) Z-transform of u[k]
U∞ Free-stream flow velocity

uj Component of U, jth POD mode
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u[k] Arbitrary discrete signal as input of

Z-transform

u0 Fluctuating component of u
u0 Fluctuating component of u
ui Filtered velocity

V Volume of computational cell

V Matrix containing temporal information of

spatial matrix U
Vand The Vandermonde matrix

v Flow velocity in the y-direction
vj Component of V, temporal evolution of uj
v0 Fluctuating component of v
W Matrix containing all eigenvectors of ~A
w Flow velocity in the z-direction
wj Component of W, jth eigenvector of ~A

w0 Fluctuating component of w
X1 Input snapshot sequence spanning from 1

to m−1
X2 Input snapshot sequence spanning from 2

to m
xDMD;k;i DMD reconstructed data at node k and

instant i
xi Component of X1 and X2, individual input

snapshot

xk;i Original input data at node k and instant i
x+ Non-dimensional wall distance in the x-

direction

y+ Non-dimensional wall distance in the y-
direction

z+ Non-dimensional wall distance in the z-
direction

Z Z-transformation

Greek letters
α Modal amplitude, α-criterion for

dominant mode selection

αj Modal amplitude of DMD mode ϕj
D Grid-dependent filter of LES

Δt Time-step of LES simulation in second

Δt* Normalized time-step of LES simulation

Δxmin Minimum x-dimension of wall-adjacent

cells

Δymin Minimum y-dimension of wall-adjacent

cells

Δz Z-dimension of cells
~D Secondary test filter of dynamic stress

model

dBL; 99% Laminar boundary layer thickness at 99%

of U∞

dij The Kronecker Delta

κ The von Kármán constant κ=0.40
Λ Matrix containing all eigenvalues of ~A

λj Component of Λ, jth eigenvalue of ~A
ν Fluid molecular kinematic viscosity

νsgs Subgrid viscosity

ρ Fluid density

Σ Diagonal matrix containing all singular

values of matrix U
σj Component of Σ, singular value (energy

content) of uj
sSGSkk Isotropic component of sSGSij

sSGSij Subgrid stress

ssgsij Deviatoric component of sSGSijgsSGSij Test-filtered subgrid stress

Φ Matrix containing all DMD modes

ϕj Component of Φ, jth DMD mode

(complex shape)

ωj Continuous-time frequency of DMD

mode ϕj

Others
T Conjugate transposition
y Moore–Penrose pseudoinverse

║ ║F Frobenius normalization
SF Binary index of sampling resolution

Bold Vector quantity

Normal Scalar quantity

i,j,k,l Indicial notation for vector/tensor

quantities

1 Introduction

In today’s realm of science and engineering, nonlin-

earity remains one of the few unanswered questions

of classical physics. Nonlinear systems are often

high-dimensional and have intertwining dynamics, so

modeling them can be extremely strenuous. Seeking

engineering solutions, applied mathematicians

invented the Reduced-Order Models (ROM) that

serve precisely for the purpose of dimension reduc-

tion and modeling of nonlinear systems. After

decades, ROMs proved effective and crucial for

nonlinear analysis. In fact, its value in data process-

ing is so prominent that it has already become a well-

defined discipline with a vast collection of literature

[2].
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The Dynamic Mode Decomposition (DMD) is a

new addition to the ROM family [3, 4]. Like its

closest cousin, the Proper Orthogonal Decomposition

(POD) [5], the DMD is purely data-driven. This

undiscriminating nature permits broad applications.

Kutz et al. [6] offered an excellent collage of DMD

implementations on nonlinear systems from fluid

mechanics, video processing, signal and controls,

epidemiology, neuroscience, finance, etc. For most

systems, the DMD proved powerful in generating

spatiotemporally accurate representations of complex

dynamics and, subsequently, in producing visual

decompositions with insightful revelations [4, 7–11].

Nonetheless, like any other brand-new mathematical

hatchlings, its potential comes with many unknowns.

Perhaps the greatest uncertainty that prohibits the

pervasive dissemination of the DMD in engineering

practices is the nuances in data sampling. Till today,

most contributions to the DMD literature come

directly from applied mathematicians. Their expertise

in linear algebra and signal processing translates to

intuitive decisions on the sampling state space, range,

resolution, truncation order, etc. However, it is

unrealistic to expect these mathematical intuitions

from most engineering practices. Moreover, the

transition from a priori findings to practical successes

may not always be straightforward. For example,

Klus et al. [12] and Korda and Mezić [13] laid the

theoretical basis for the sampling convergence on the

observable space and state space, respectively, but

the realization of such convergence in practice

remains a knowledge gap.

In this effort, we look to bridge some major gaps

in the DMD sampling. Specifically, we offer a

parametric, a posteriori investigation on the sampling

range and resolution. To this end, Schmid briefly

discussed the sampling convergence as the dimension

of the Krylov subspace in the DMD’s debut [4].

However, the shortage of a dedicated follow-up led to

vast uncertainties in the subsequent literature. Take

the fluid mechanics community as an example, there

are major inconsistencies in the data sampling of

DMD implementations (Table 1). The sampling

range varies from as few as 20 snapshots to as large

as 89 oscillation cycles. The sampling resolution, on

the other hand, lacks any discernible uniformity,

accruing in units from the non-dimensional timescale

frame-per-cycle (f.p.c) to the numerical timescale

tDNS to the physical timescale Hertz. Some did not

even specify a clear resolution scale. In terms of

convergence, although some studies relied solely on

the l2-residual for assessment, most works neglected

the convergence assessment altogether. The incon-

sistencies in data sampling, as observed by our

parametric study and presented subsequently, resulted

in substantial differences in DMD output. Therefore,

this alarming gap needs to be filled with precise

knowledge of sampling range, resolution, and

convergence.

Intending to fill this gap, we investigated the

sampling convergence by significantly extending the

sampling range from 2.09103 to as large as 2.39104

snapshots and refining the resolution from 50 to as

fine as 105 Hz. We also inspected both the global and

mode-specific behaviors of the DMD algorithm for

the convergence assessment. Importantly, we con-

ducted our investigation using the canonical turbulent

free-shear flow for the optimal reproducibility and

pertinency to other nonlinear systems. We employed

a moderately-high subcritical flow regime at Re=2.2
9104 in a prism wake for the parametric study

herein.

We chose the bluff-body wake as the test subject

with several justifications. As free-shear flows (i.e.,

the velocity of one direction dominates) are behav-

iorally similar, the conclusions herein will apply to a

wide range of flow configurations, such as jets,mixing

layers, other wakes, etc. Including the bluff body, the

applicability further extends to many wall-bounded

boundary layer flows. Moreover, the prism wake is

simplistic yet sophisticated enough for a parametric

study. The simplicity refers to the configuration’s

commonality in engineering application and the

abundance of knowledge we share on its fluid

mechanism [24–28]. The sophistication refers to its

simultaneous inclusion of many fluid phenomena like

stagnation, separation, reattachment, secondary sep-

aration, vortex roll-up, etc.

On the other hand, we also selected a moderately

high Reynolds number in the subcritical regime,

where the shear layer experiences the turbulence

transition and remains phenomenologically similar

for a significant range of Re [29]. The selected Re

also accommodates high-fidelity simulation with

common computing power for engineering applica-

tions. To this end, we numerically simulated the flows

by the Large-Eddy Simulations with Near-Wall

Resolution (LES-NWR) [30]. Rigorous tests on the
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numerical results certify the fidelity of the DMD

input.

This comprehensive parametric effort expended

tremendous computational resources. On two 64- and

80-core high performance computers (HPCs), the

investigation took over 16 months to complete,

tallying over 800,000 core-hours excluding those

dedicated to the LES-NWR, and more than 1.5
million core-hours altogether. Investing the vast

resource, we aim to provide an insightful and reliable

reference for future applications of the DMD, espe-

cially with its rapid dissemination in the engineering

domain.

In composition, we lay out the contextual intro-

duction in Sect. 1, formulate the DMD algorithm in

Sect. 2, describe and validate our LES-NWR simu-

lation in Sect. 3, establish a benchmark on the

sampling range in Sect. 4, examine the effect of the

sampling range with a bi-parametric study in Sect. 5,

and finally conclude the major findings in Sect. 6.

2 Dynamic mode decomposition

We introduce the conceptual and mathematical

formulations of the vanilla Dynamic Mode Decom-

position in this section. Conceptually, one may

reckon the DMD as a joint Koopman-modal analysis.

Koopman [31] outlined the possibility to represent a

nonlinear dynamical system in terms of an infinite-

dimensional linear operator acting on a Hilbert space

of measurement functions of the state of the system

[32]. The Koopman Operator Theory later developed

into a whole mathematical subdiscipline for nonlinear

systems. To this end, by applying the purely data-

driven, physics-uninformed DMD technique, the

Koopman operator linearly approximates the dynam-

ics that evolve the input data in time, and the modal

analysis decomposes the operator into discernible

features for interpretation. For simplicity, we dissect

the conceptual process of the DMD into five parts, as

illustrated by Fig. 1.

Table 1 Examples of DMD implementations on fluid systems with various sampling range and resolution

Sampling range [snapshots] Sampling resolutiona Configuration Contribution

251 2 tDNS Jet flow Rowley et al. [3]

20–30 u.c Prism wake Schmid et al. [4]

500 2000 Hz Flexible membrane wake Schmid et al. [4]

280 280 f.p.c Cylinder wake Jardin and Bury [14]

3000 20 tDES Wall-mounted cube Muld et al. [15]

89 cycles 112 f.p.c Cylinder wake He et al. [16]

1000 1000 Hz Cylinder wake Tissot et al. [17]

896 40 f.p.c Wind turbine Sarmast et al. [18]

1200 45 twashout Pipe flow Gómez et al. [19]

501 u.c Transitional jet Roy et al. [20]

123 30 Hz Bluff-body wakes Wan et al. [21]

300 17 f.p.c SD7003 airfoil Ducoin et al. [22]

300 u.c Transonic backward step Statnikov et al. [23]

a u.c. unclear, f.p.c frames per cycle

Fig. 1 An illustration of the conceptual process of the dynamic

mode decomposition
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2.1 Input data curation

The first step is the curation of the input data. The

DMD’s data-driven nature appeals to neural networks

in machine-learning. Therefore, the attribute of the

input signal is essentially unbounded. For the vanilla

DMD, the input signal shall be (1) of transient nature,

(2) sampled by a uniform frequency, and (3) captured

on a fixed domain. Inadequate input may result in

numerical degeneration. Researchers have recently

developed some DMD variants to target these input

constraints, though by different degrees of success

and practicality. We refer readers to Schmid [4] and

Kutz et al. [6] for non-uniform sampling and

Erichson et al. [33] for unfixed signal domains.

The input signal may also require noise elimina-

tion. The DMD is highly sensitive to frequency

content, so excessive contamination may lead to the

mistreatment of noise as the dynamics of high-

wavenumber turbulence. Thus, noise elimination is

critical for experimental data. By contrast, while

numerical error (due to discretization and residual) is

possible in CFD data, noise is unlikely. With proper

numerical settings, the DMD algorithm can also sieve

out the erroneous dynamics in the order-reduction

and the dominant mode selection processes. For these

reasons, we justify our preference for numerical data

for the present work. We also refer readers to Dawson

et al. [34] and Hemati et al. [35] for noise elimination

techniques in the DMD.

With properly treated data, one shall arrange the

input signal into two snapshot sequences, such that:

X1 ¼ x1; x2; x3; . . .; xm�1f g ð2:1:1Þ
X2 ¼ x2; x3; x4; . . .; xmf g ð2:1:2Þ
where xi2 Cn are snapshots sampled at a uniform

interval t*. The spatial dimension n corresponds to

that of the fixed sampling domain (i.e., number of

data entries per snapshot). The temporal dimension

m corresponds to that of the time series (i.e., number

of snapshots).

2.2 Spatiotemporal mapping

Spatiotemporal mapping is the core of the Koopman

analysis. We suppose a mapping matrix, or a

Koopman operator, A, that connects the matrices X1

and X2:

X2 ¼ AX1 ð2:2:1Þ
A encompasses all the dynamics to evolve a nonlinear

system by a single time step. In the scenario herein,

A is closely an implicit representation of the Navier–

Stokes equations.

We use the adverb ‘closely’ because, as Eq. 2.2.1

implies, A is strictly linear. It is to say, while A is

exact for a linear system, it is only a best-fit

approximation for a nonlinear system. Even so, it is

of tremendous merit. As the readers may be aware,

acquiring exact solutions or representations for many

nonlinear systems is often a herculean, if not

impossible, task. The yet-to-be claimed Millenium

Prize for the Navier–Stokes equations is a prime

example of such a conundrum. Although A is linear,

it becomes an increasingly more accurate represen-

tation of a nonlinear system with increasing

dimensionality and resolution. In an analogous sense,

the Koopman approximation is a numerical dis-

cretization of the nonlinear dynamics. In the absence

of an analytical solution, the numerical solution

provides the most convincing alternative, especially

for engineering practices.

One shall also reckon the acquisition of A is by no

means straightforward. The elegance of the DMD

exudes precisely from the mathematical possibility

that it offers in this aspect [20, 21, 25, 26]. Compared

to the companion matrix formulation [4], the approx-

imation of A using a similarity matrix [6, 36] proves

more robust and tractable for high-dimensional

systems [37]. Accordingly, one may assume a low-

dimensional similarity matrix Ã for the approxima-

tion of the full-rank A.
To obtain Ã, one first performs the Singular Value

Decomposition (SVD), economy-sized to avoid null

spaces, on X1:

X1 ¼ URVT ð2:2:2Þ
where U∈ Cn9r contains spatially orthogonal modes

uj on an optimal POD subspace; Σ∈Cr9r, a diagonal

matrix, contains singular values σj that describe the

modal energy of uj; V ∈ Cm9r contains temporally

orthogonal modes vj which pertains to the evolution

of uj; the superscript T denotes the conjugate

transposition; r denotes the truncation rank. One

may also manipulate the rank of Ã, hence the
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dimensionality of the low-order approximation, by

adjusting r.
With it, the POD-projected Ã∈ Cr9r relates to A

by:

A ¼ U ~AUT ð2:2:3Þ
Recall Eq. 2.2.1, it is intuitive to minimize the

difference between X2 and AX1 to find the optimal

subspace:

minimize
A

X2 � AX1k k2F ð2:2:4Þ

where ║ ║F denotes the Frobenius normal.

One may re-express Eq. 2.2.4 by substituting in

Eqs. 2.2.2 and 2.2.3:

minimize
~A

X2 � U ~ARVT
�� ��2

F
ð2:2:5Þ

Finally, one acquires Ã based on the

approximation:

A � ~A ¼ UTX2VR
�1 ð2:2:6Þ

And the reduced-order similarity matrix Ã replaces

A in Eq. 2.2.1:

X2 ¼ ~AX1 ð2:2:7Þ
Equation 2.2.7 provides an all-inclusive, finite-

dimensional, linearly approximated, and highly accu-

rate representation for the dynamics of a nonlinear

system.

2.3 Modal decomposition

The acquisition of ~A signals one’s full possession of a

system’s spatiotemporal information. The modal

decomposition aims to dissect the implicit informa-

tion into discernible constituents, thus permitting user

interpretations.

A commonplace technique to analyze a dynamical

model ~A is the eigen decomposition:

~AW ¼ WK ð2:3:1Þ
where W contains the eigenvectors wj, and Λ contains

the corresponding discrete-time eigenvalues λj.
The eigen tuples yield the exact DMD modes [36]:

U ¼ X2VR
�1W ð2:3:2Þ

where Φ contains the mode shape ϕj.

Every mode ϕj corresponds to a physical fre-

quency ωj in continuous time:

xj ¼ = logðkjÞ
� �

=t� ð2:3:3Þ
and a modal growth rate gj:

gj ¼ < logðkjÞ
� �

=t� ð2:3:4Þ

2.4 Dominant mode selection

The singular value σj, while dictating the modal

dominance of POD modes, merely offers a reference

to the DMD truncation. The modal dominance of the

DMD involves more complications because DMD

modes are only temporally orthogonal. The original

DMD modal amplitude [36] or the α-criterion [8, 9]

projects DMD modes onto the input signal, mapping

out weighted coefficients α based on the initial

conditions:

a ¼ Uyx1 ð2:4:1Þ
where the superscript y denotes the Moore–Penrose

pseudoinverse.

The amplitude αj dictates the modal dominance of

DMD modes. However, coefficients based on initial

conditions can be obtuse for highly capricious

systems, especially those involving random tran-

sience. Therefore, Kou and Zhang [37] proposed an

evolution-informed amplitude, or the I-criterion, for
modal dominance. One shall obtain the Vandermonde

matrix Vand, such that:

X1 ¼ UDaVand ¼ /1;/2; . . .;/r½ �
a1

a2

. .
.

ar

266664
377775

1 k1 � � � ki�1
1

1 k2 � � � ki�1
2

1 ..
.

1 kr

. .
.

� � �
..
.

ki�1
r

2666664

3777775
ð2:4:2Þ

where i denotes time instant in the input signal.

One then obtains the I-amplitude Ij by:

Ij ¼
XN
i¼1

ajk
i�1
j

��� ��� /j

�� ��2
F
Dt ð2:4:3Þ

We remind readers that in addition to those intro-

duced herein, an array of algebraic criteria or deep-

learning techniques, each with advantages and
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limitations, have been developed for the selection of

the most spatiotemporally dominant DMD modes

[35, 38–40]. Users may employ various criteria

accordingly to preference and analytical need.

2.5 User interpretation

Being physics-uninformed, the output of the DMD

demands user interpretation. Needless to reiterate the

importance of acumen and background knowledge,

we briefly comment on the mathematical implications

of the DMD in hope to inspire better insights into its

essence.

In the humblest scenario, suppose we have a fluid

system in the steady state. The sampling of the flow

field snapshots inevitably yields discrete signals.

Meanwhile, by finding a linear approximation to the

nonlinear fluid dynamics, the DMD produces a

linearly time-invariant (LTI) system. Therefore, in

the eigen space, the seek for complex frequencies is

equivalent to finding eigenfunctions of a linear

operator (i.e., A or Ã). Similarly, DMD modes render

poles on a Region of Convergence (ROC) of a Z-

transformation [2], where if we suppose an input data

u[k], then U(z) becomes:

U zð Þ ¼ Z u k½ �f g ¼
X1
k¼0

u k½ �z�k ð2:5:1Þ

where k∈ℤ+ yields a unilateral Z-transform and z=
bejθ.

As such, the DMD modes, or the poles, contain

vast information about the LTI system like stability,

causality, etc. The DMD also intakes data of inter-

twined dynamics, and sorts them out in terms of

frequency-content, and returns distinct representa-

tions of periodicities in the form of Ritz pairs.

Therefore, for the turbulence system herein, each

standalone DMD frequency represents a group of

fluid particles travelling at similar convective speeds

or eddies forming in similar sizes. Therefore, the

DMD decomposition echoes with the Richardson-

Kolmogorov decomposition of turbulence into eddies

of difference wavenumber and the process of energy

cascade [30].

3 Numerical details and validation

We present the numerical details and validations of

our LES in this section. The purpose is to assure the

subsequent DMD analysis is driven by accurate data,

eliminating the possibility of erroneous input. To

main concision, we direct readers to “Appendix” for

the mathematical formulation of the Large-Eddy

Simulation with Near-Wall Resolution.

3.1 Numerical domain

The ensuing Fig. 2 illustrates the computational

domain and the boundary conditions prescribed to our

LES-NWR. The configuration is a classic turbulent,

free-shear flow around an infinite square prism with

side length D. The inflow, with the free-stream

velocity U∞, has a uniform profile and is free of initial

perturbation. We replicated the dimensions of the

inlet, outlet, and laterals from the DNS domain in

Portela et al. [41]. Yet, we employed a spanwise

dimension of 4D for numerical ease in filtering in the

physical (Cartesian) space, whereas [41] used πD for

that in the wavenumber space. For this particular flow

during the shear layer transition (Re=22,000), 4D suf-

fices and has been adopted by most works in the

literature [29].

However, readers are reminded that during the 2D-

to-3D transition of the prism wake between Re=150–
250, modes A, B, and S produce spanwise vortices as

large as 5.2D, 1.2D, and 2.8D, respectively. Inter-
ested readers may refer to [29, 42–44] for details.

Likewise, in the high-Re subcritical regime, another

type of spanwise vortex occurs in scales as large as

9D and 14D in circular cylinder and prism wakes,

respectively [45, 46]. This vortex is unique to ultra-

slender structures and therefore beyond the scope of

the present work. Nevertheless, we reiterate the

importance of an appropriate spanwise dimension

for different configurations of interest.

Our LES-NWR employed a strictly hexahedral

grid to minimize numerical errors (Fig. 3). The grid

G consists of 4.3 million elements in sum and 2.9

million elements in a refinement region Ɍ around the

prism. Ɍ always encloses the shear layers and near

wake, thus capturing all the global phenomena and

local extremities of turbulence. Four regions with

coarser elements, namely the inlet, the outlet, and the

two laterals adhere to Ɍ in a non-conformal fashion,
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as described by [47]. The non-conformal griding

significantly lowered the mesh size while preserving

high accuracy (shown later). Table 2 summarizes the

details of the grid G.
We estimated the thickness of the viscous sublayer

to determine the height of the wall-adjacent cells. The

estimation relied on an analogy of the laminar

boundary layer over a flat plate, as pointed out by

White [48]:

dBL;99% � 3:5

ffiffiffiffiffiffiffiffi
2mlx
U1

r
� 5:0lxffiffiffiffiffiffiffiffi

Rex
p ¼ 0:024D ð3:1:1Þ

where lx denotes the characteristic length of the

boundary layer, which is taken as 0.5D after Cao

et al. [49]. We set a fine resolution of 1/4000D to keep

the y+ strictly under unity. We also set a grading ratio

of 1.05 to resolve the viscous sublayer by as many as

36 layers. Finally, we followed Menter [50] for

suggested resolution in the x- and z-directions.

3.2 Numerical methods

We employed a finite-volume, segregated, pressure-

based solution algorithm for this low-Mach-number

incompressible flow. The projection-based method

obtains the velocity field from the momentum

equation and satisfies the continuity by corrections

of the pressure equation. To this end, we chose the

Pressure-Implicit with the Splitting of Operators

(PISO) scheme for the pressure–velocity coupling.

The neighbor and skewness corrections of the PISO,

particularly for transient simulations, notably

improve the efficiency and robustness of the original

SIMPLE-based solver. We also chose second-order

schemes for the pressure interpolation and the spatial

discretization of the viscous term, and the second-

order bounded central-differencing scheme for that of

the convection term.

In temporal discretization, we selected the bounded

second-order scheme for time integration. We set a

small time-interval Δt*, such that the Courant-

Friedrichs-Lewy (CFL) convergence condition is

Fig. 2 A schematic

illustration of the

computational domain and

boundary conditions
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always satisfied, which eliminates the time marching

issues in solving partial differential equations:

Dt� ¼ DtU1
D

¼ 1:61� 10�3 ð3:2:1Þ

We sampled data at t*=5Δt* and only in Ɍ to expedite

the simulation and avoid excessive data storage.

Finally, we selected the least-squares method for the

evaluation of gradients and derivatives in the post-

analysis.

3.3 Statistical stationarity

In turbulent flows, the so-called steady state is not an

entirely appropriate description. The ever-changing

nature of turbulence makes two identical flow

snapshots nearly impossible, let alone the predictabil-

ity implied by the term steadiness. In practice, one

may only identify a ‘steady state’ in the statistical

descriptions of turbulence called the statistical

stationarity.

3.3.1 Global statistics

First, we eyed on the global fluctuating lift coefficient

for stationarity (Fig. 4). Despite persistent fluctua-

tions due to unsteady motions, the root-square-mean

(RMS) and the mean lift reached statistical station-

arity before 1.29105t*. Consequently, we began

sampling for the DMD analysis thereafter. We

sampled a range of 24 oscillation cycles at the

highest frequency 1/t*, which pushed the storage limit

of our HPC server by amassing more than 2.39104

field snapshots.

3.3.2 Local statistics

We further assured the statistical stationarity by local

statistics. Figure 5a illustrates the seven nodes

selected to monitor the mean local velocities. With

respect to the prism, the nodes are characteristic of

the inflow, the pulsating shear layers, and the

turbulent wake. At all monitor points, vast instabil-

ities are observed in the early and transitional stages.

By contrast, the normalized mean velocities exhibited

stationarity by approaching clear asymptotes before

1.09105 t*, reaffirming the observations on global

statistics.

Fig. 3 A hexahedral and non-conformal grid of 4.3 million

elements

Table 2 Details of the hexahedral, non-conformal grid G

Δxmin Δymin Δz NR NG

3/400 D
1/4000 D

1/20 D 2,903,400 4,287,864

Fig. 4 Time histories of instantaneous, RMS, and mean lift

coefficients. The DMD sampling range consists of 24

oscillation cycles in the statistical stationary state
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3.4 Grid resolution

The resolution of our structured grid G is critically

important to the accuracy of LES-NWR, so we

adopted stringent criteria for its assessment.

3.4.1 Resolved spectrum

Recall the definition of LES-NWR, a proper imple-

mentation shall resolve all the large-scale eddies in

the energy-containing range and only model the

smaller, more trivial ones toward the dissipation

range. This is to say that, if an LES filter sits inside

the inertial subrange, then the Navier–Stokes

equations guarantee the accuracy of large-scale

turbulence. Therefore, grid resolution is often the

most indicative evidence of LES accuracy. In his

masterpiece on turbulence, Pope [30] defined a

demarcation between the energy-containing range

and the inertial subrange – 80% resolution for the

total turbulence kinetic energy (TKE).

To quantify the resolved portion, we denote the

resolved TKE by kr, the subgrid TKE by ksgs, and the

numerical TKE by knum. We then express the

resolved spectrum, E, by:

E � G xð ÞEall � kr
kall

ð3:4:1:1Þ

where kall denotes the total TKE:

kall ¼ kr þ ksgs þ knum ð3:4:1:2Þ

kr ¼ 1

2
u02 þ v02 þ w02

� �
ð3:4:1:3Þ

ksgs ¼ m2sgs=l
2
s ð3:4:1:4Þ

where G(x) denotes the filter function in three-

dimensional space; u02, v02, and w02 denote variance of
the fluctuating velocities u0, v0, and w0, respectively.
knum is a pseudo-energy term that accounts for

discretization error and numerical residual. Celik

et al. [51] pointed out that knum is sufficiently small

for a LES-NWR with an overall second-order

discretization. As introduced before, our discretiza-

tion is at least second-order, producing minimal

numerical dissipation. As we also strictly maintained

the Courant-Friedrichs-Lewy (CFL) condition, the

numerical dispersion is insignificant. Our conver-

gence criteria are also stringent, at 1910–6, for both

the continuity and momentum equations. Therefore,

we treated knum as negligible.

The ensuing Fig. 6 presents the resolved spectra of

the mid-span x–y plane and the prism walls. Given

the incompressible Newtonian fluid and a grid-

dependent filter, E is inversely proportional to the

local velocities and cell volume. Evidently, our grid

resolved at least 90% of the TKE. The same was true

for the prism walls, except for some narrow strips

near the corners A and B, where the resolved TKE is

about 77%. We anticipated them because local

accelerations occur as the result of sharp corner

separation. Since TKE is proportional to local Re, the

resolution requirement becomes more stringent near

the corners. In general, the resolved spectra prove

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5 a A schematic illustration showing the locations of

monitor points 1–7; b–h normalized mean velocity magnitude

versus time step at monitor points 1–7, showing statistical

stationarity
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that our filter sits inside the inertial subrange, hence

the resolution of our grid is suitable for LES

simulation.

3.4.2 LESIQ index

In the fluid mechanics community, some researchers,

like Davidson [52], had challenged the 80% demar-

cation. Though this topic is beyond our scope, we still

looked for an alternative assurance to our grid

resolution. Celik et al. [51] proposed the LESIQ, an

index quantifying the resolution of a LES grid, as:

LESIQ ¼ 1þ av
msgs þ m

m

	 
� ��ae

ð3:4:2:1Þ

where αν=0.05 and ae=0.53 are empirically derived

constants. Accordingly, LESIQ\80% indicates a

Very Large-Eddy Simulation (VLES), LESIQ[80%

signals a proper LES-NWR, and LESIQ[95% sug-

gests a Direct Numerical Simulation (DNS).

Accordingly, Fig. 7 presents the LESIQ contours of

the mid-span x–y plane and the prism walls. Our grid

achieved the DNS resolution in most fluid domains

and on all prism walls. It also achieved at least the

LES resolution in all fluid domains of interest,

including the shear layers and the near wake.

Although a few patches of VLES resolution existed

in the far wake, but being neither influential to the

upstream activities nor partial to the sampled domain,

they are of trivial importance. Overall, the LESIQ
confirms the quality of our grid resolution.

3.5 Simulation accuracy

Since numerical accuracy is indispensable to our

subsequent DMD analysis, beside the grid resolution,

we compare the simulated results to the literature for

further validation.

Fig. 6 Contours showing the time-averaged resolved spectra

of the turbulence kinetic energy of a the mid-span x–y plane

and b prism walls. An 80% resolves at least the energy-

containing range

Fig. 7 Contours showing the LESIQ index proposed by Celik

et al. [51] of a the mid-span x–y plane and b prism walls. 80%

signals satisfactory LES resolution
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3.5.1 Global statistics and spectral density

Table 3 summarizes global force coefficients and the

Strouhal number St of our simulation compared to

previous experiments. The statistics not only agree

with the experiments performed at exactly Re=

22,000, but also an array of others in the subcritical

regime, because one expects the universal occurrence

of the shear layer transition II and an asymptotic

convergence vortex formation length in this flow

regime [29].

On the other hand, we determined the Strouhal

number St by performing the Fourier transformation

and power spectral density analysis for the fluctuating

global lift coefficient, CL
0. Apart from the stellar

agreement in global St, the periodogram (Fig. 8)

supports our previous conclusions on the grid reso-

lution. The curve lucidly exhibits the Kolmogorov −
5/3 Law before St=1.1. As a fundamental pillar to the

Richardson-Kolmogorov energy cascade, the -5/3

power-law is unique to the inertial subrange and often

regarded as its most indicative icon [30]. Therefore,

its appearance signifies that at least a significant

portion of the inertial subrange was resolved by the

Navier–Stokes equations based on our grid G. On a

different note, one shall expect an exponential decay

in the dissipation range of the full turbulence

spectrum, instead of the linear decay herein toward

the high-frequency space. Nevertheless, we find the

observed linearity truthful to the subgrid dynamics,

especially considering the one-equation, linear mix-

ing-length hypothesis undertaken by the Smagorinsky

model. The linearity shows the filtering process only

takes place inside and beyond the inertial subrange,

depicting the anticipated spectrum of a proper LES-

NWR.

3.5.2 Prism walls

Next, we examine the grid resolution at the prism

walls for validation. Figure 9 presents the x+ and y+,
or the dimensionless wall distances, calculated from

wall shear and the notion of friction velocity. Our

grid met the x+≈30 and y+≈1 requirements proposed

by Menter [50]. The z+ is trivial in this infinite length

configuration. Moreover, we compared the time-

averaged, normalized pressure coefficient on the

prism walls to the literature (Fig. 10). Our results

agree well with a range of wind tunnel and DNS

studies, especially the more recent empirical results

like Nishimura [62] and Nishimura and Taniike [63].

Table 3 Global force coefficients and the Strouhal number compared to the literature

Re (103) CDh i CD, RMS CL, RMS St Contribution

22 2.048 0.200 1.173 0.127 Present work

22 2.069 0.146 1.221 0.126 Li et al. [8]

100 2.05 0.17 1.3 0.12 Vickery [53]

176 2.04 0.22 1.19 0.122 Lee [54]

22 2.1 – 1.2 0.13 Bearman/Obasaju [55]

27 1.9–2.1 0.1–0.2 0.1–0.6 – Cheng et al. [56]

23 1.9–2.1 0.1–0.2 0.7–1.4 – McLean/Gartshore [57]

22 2.10 – – 0.130 Norberg [58]

34 2.21 0.18 1.21 0.13 Luo et al. [59]

21.4 2.1 – – 0.132 Lyn et al. [60, 61]

Fig. 8 Periodogram of the normalized spectrum of the

fluctuating global lift coefficient, showing the Strouhal number

for the Kármán vortex shedding and an agreement with the

Kolmogorov -5/3 Law [30]
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Notably, some variations occur on the downstream

wall across the existing studies. Nonetheless, the

present result falls well within the comparative range

of wind tunnel and DNS studies, validating the

accuracy and fidelity of our LES-NWR.

3.5.3 Velocity field

As the final piece of validation, we examine the

velocity field. Figure 11 presents the time-averaged,

normalized u along the zero-ordinate. Our results sit

fittingly among the array of experiments and DNS

studies. To ensure such an agreement is not

fortuitous, we also examine the fluctuating velocities

that characterize turbulence. Figure 12 presents the

time-averaged, normalized u′, v′, and w′ along the

zero-ordinate. Besides the self-evident validation of

our results, we also made an interesting observation

between the experiments and simulations.

For fluctuating velocities, unlike the instantaneous

velocity u, high-fidelity simulations (DNS and proper

LES-NWR) tend to agree closely with each other and

only moderately with the experiments. The experi-

mental results are somewhat scattered even among

themselves. Although one can hardly judge the right

and wrong, we reflect on the necessary symbiosis

between experiments and numerical simulations.

Since the former is the most direct portrayal of

physics, one often sees it as the unwavering shrine of

truth. However, for many elusive phenomena like

turbulence, limitations in apparatus or simply in the

number of sampling points may cause perspectives

partial to the whole. With the potentials of quantum

computing, so the foreseeable ubiquity of LES-NWR

or even DNS in the near future, we see the CFD as the

finest wingman, if not the missing puzzles, for

empirical investigations in addition to experiments.

The duo will elevate physical insights and engineer-

ing applications to unprecedented heights.

Fig. 9 Time-averaged values of a x+ and b y+

Fig. 10 Time-averaged and normalized pressure coefficient of

prism walls compared to the literature. Markers: experiments.

Curves: black-DNS, orange-LES, blue-present work. (Color

figure online)

Fig. 11 Time-averaged and normalized u along the zero-

ordinate compared to the literature. Markers: experiments.

Curves: orange-DNS, blue-present work. (Color figure online)
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4 Benchmark on sampling range

The sampling range and resolution are the two

independent variables in this parametric investigation

of DMD sampling. Before assessing their combined

effect, we establish a benchmark by parametrizing

only the sampling range while keeping the sampling

resolution constant and at its highest frequency. The

convergence of the sampling range indicates that of

the Krylov sequence, which signals minimal

ensemble differences, or time-mean differences in

the statistical stationary case, with data repetition

[16].

4.1 Convergence and modal frequency

We quantify the sampling range by the number of

cycles–an intuitive measure for this statistically

stationary, oscillatory, and turbulent free shear flow.

Figure 13 presents the Strouhal numbers St of the

most dominant DMD modes 1–3 versus the number

of oscillation cycles. Clearly, the modes exhibit

different degrees of fluctuation below cycle 10. By

contrast, they universally stabilize above cycle 11,

tending asymptotically toward the St=0.127, 0.121,
and 0.006, for the DMD modes 1, 2, and 3,

respectively. On this note, for some modes like mode

1, fluctuations are sufficiently small even after cycle

5. We point out that the mechanism portrayed by

mode 1 may be vastly different from those by the

others, so we try to make the best judgment on the

global state Ã instead of over-relying on the behavior

of a single mode. Overall, Fig. 13 lucidly demon-

strates the convergence of the DMD with increasing

(a)

(b)

(c)

Fig. 12 Time-averaged and normalized fluctuating a u, b v,
and c w along the zero-ordinate compared to the literature

Fig. 13 The Strouhal number St versus the number of DMD-

sampled oscillation cycles of dominant DMD a mode 1,

b mode 2, and c mode 3
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sampling range up to 20 cycles, and the sudden

divergence in the subsequence.

4.2 Convergence and stability

In Fig. 13, we take note of an unanticipated behavior

toward the high-cycle end —the convergence dete-

riorates drastically and almost universally on cycle 22

and beyond. The observation contradicts the logical

intuition that convergence becomes progressively

better, or at least consistent, with an increasing

sampling range. This divergence also disobeys the

predictions of previous investigations on sampling

convergence [4, 12, 13]. To this end, we eye on the

growth rate to analyze the perplexity. Figure 14

displays a distinct constancy of the growth rate up to

cycle 22. The infinitesimal magnitudes (\±10–6)

also appeal to excellent modal stability. On the zoom-

in sub-figure, one may note that small fluctuations

begin to build up between cycles 15 to 21, but the

magnitudes are well within the 10–6 tolerance there-

fore negligible.

What triggers the sudden, colossal (by nine orders

of magnitude) divergence on cycle 22? We anticipate

it is due to the loss of modal stability. To validate the

notion, we examine the DMD spectrum. Figure 15

presents the DMD spectra for cycles 1, 21, 22, and

24. In a perfectly oscillatory, or marginally stable sys-

tem, the modes, or the poles of the system, represent

singularities where the system behaves with regular-

ity and will lie exactly on the ℜ2+ℑ2=1 unit circle.

As expected, the DMD modes for cycles 1 and 21,

although not perfectly oscillatory, are infinitely close

to the unit circle. The corresponding radius free of

poles, or the Region of Convergence (ROC), also

contains the ℜ2+ℑ2=1, manifesting the system’s

stability. The ROC’s inclusion of the origin also

indicates an acausal, or anti-causal system, which

means the system depends only on future input and

not the past input. This is concrete evidence of a

time-invariant Koopman description. On the contrary,

the modal stability experiences a clear and drastic

deterioration for cycle 22. The scattered poles lie far

from and on either side of ℜ2+ℑ2=1. The ROC also

no longer encloses the unit circle, indicating the loss

of system stability. A pole also appears near the

origin, shrinking the ROC down to an annulus.

Therefore, the system is no longer acausal. With

more encroachment of the unit circle, the stability

and causality further exacerbate for cycle 24.

Despite the observations, the origin of the insta-

bility might not be straightforward. With a well-

established DMD algorithm, the likelihood of numer-

ical fault is scant. From a fluid dynamics point-of-

view, the turbulence characteristics of cycles 21 and

22 cannot be vastly different, especially given the

flow’s statistical stationarity. Thus, the only possibil-

ity lies in the nuances of sampling. After scrutiny, we

found our grid G yields a spatial dimension (i.e.,

number of nodes)of n=21,257 for the tested plane.

The 24-cycle sampling range yields a temporal

dimension (i.e., number of snapshots) of m=23,400.Fig. 14 Growth rate versus the number of DMD-sampled

oscillation cycles of dominant DMD modes 1–3

Fig. 15 The DMD spectra of a 1, b 21, c 22, and d 24 DMD-

sampled oscillation cycles
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Here, readers are reminded of one tacit and often

taken-for-granted assumption of the DMD, which is

m≪n. The temporal dimensions of cycles 21 and 22

are m21=20,475 and m22=21,450, respectively. The

stability overturn takes place precisely over the range

in which m transcends n, that is, between cycle 21

and 22. As such, we conclude the violation of m≪
n results in unstable and spurious DMD decomposi-

tions. Moreover, empirical observation of this

parametric test reveals that although the m≪n must

be strictly met, the extent of m≪n is not as

substantial as we anticipated. For engineering prac-

tices, m\n generally suffices for modal stability.

The m\n condition originates from the Singular-

Value Decomposition (SVD). The violation of the

condition produces zero singular values or principal

components, null spaces, and nontrivial cokernels. If

we consider the geometric implication of the SVD, it

is the transformation of a Euclidian unit sphere into a

hyper-ellipse. Violation of the condition is equivalent

to forcing a stretch of the sphere into an ellipse along

a zero principal semiaxis. As the result, the DMD

becomes ill-conditioned, and its outputs are bound to

diverge.

4.3 Convergence and reconstruction

The analysis of the Strouhal number revealed the

convergence with sampling range. The investigation

of modal stability also disclosed the importance of

meeting the m\n condition. In this section, we

augment existing findings with an examination on the

reconstruction accuracy.

4.3.1 Reconstruction accuracy

We quantify the reconstruction accuracy by the mean

l2-norm of reconstruction error:

ek k2;ins¼
1

n

Xn
k¼1

xDMD;k;i � xk;i
xk;i

	 
2
" #1=2

ð4:3:1:1Þ

where xk,i is the original input data, and

xDMD;k;i ¼
Xr

j¼1

/j expðxjt
�
i Þaj ð4:3:1:2Þ

is the DMD reconstructed data at node k and instant

i. Figure 16 presents the reconstruction error versus

time step t*. Given the increasing temporal dimension

n, we conveniently divided the cycles into four

groups, Groups 1, 2, 3, and 4, consisting of 1–8, 9–14,

15–20, and 21–24 cycles, respectively. Figure 16a

illustrates the supreme reconstruction accuracy of

Group 1, echoing with the findings in [8, 9]. The error

is limited to 0.1 and has only a few singularities

exceeding the threshold. Given the erratic nature of

turbulence, the singularities are both expected and

trivial to global performance.

On the other hand, Fig. 16b illustrates an entirely

different trend. Conforming to the accuracy of Group

1 in the early stage, Group 2 universally exhibits a

spike in error after~7800 time-steps. Afterward, the

spike immediately drops off and plateaus on an

elevated level (~0.8). In this range, not only is the

accuracy slightly compromised, the spiking phe-

nomenon per se is transfixing.

Fig. 16 Mean l2-norm of reconstruction error versus time step

t* of a 1–8 (Group 1), b 9–14 (Group 2), c 15–20 (Group 3),

and d 21–24 (Group 4) DMD-sampled oscillation cycles
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What causes the spike? First, we note a behavioral

contradiction between St and reconstruction. Recall

Fig. 13b, c, the convergence of St for modes 2 and 3

begins after cycle 8, which coincides precisely with

the timeline of the error spike. Before cycle 8, one

would naturally assume that the fluctuations in St are

due to the incomplete capture of flow mechanisms.

However, the excellent reconstruction accuracy sug-

gests the otherwise. To this end, we remark the

sampling of a few cycles (Group 1) sufficiently

capture all the flow dynamics, and the fluctuations in

St are attributed to the DMD’s pursuit of an optimal

subspace. It is to say, with a small sample, although

the DMD provides a sufficiently accurate description

of the system, the set of descriptors (i.e., DMD modes

as Ritz pairs) are subjected to great variability.

Sometimes, even the same set of descriptors are in

play, it displays vastly different ranking in domi-

nance. These observations imply the modal

characteristics of the individual DMD mode are far

from temporal convergence, and that ~A is not

invariant. Upon inspection of individual mode

shapes, we confirmed this conclusion. So, Group 2

marks a transition stage in the algorithm’s pursuit of

optimal subspace.

Expectedly, Group 3 (Fig. 16c) restores the

reconstruction accuracy after the establishment of

an optimal subspace. Up to Cycle 19, only occasional

singularities violate the 0.1 threshold. This signifies

the temporal convergence in both global dynamics

and individual modal characteristics. ~A is also

invariant. By contrast, the curve of Cycle 20 begins

to exhibit exponential growth after 16,000 time-steps,

showing an early sign of divergence. Cycle 21 in

Group 4 (Fig. 16d) confirms this notion. The expo-

nential growth becomes apparent and signifies a rapid

deterioration of the DMD representation of the fluid

system. It implies the Ritz pairs, manifested as the

DMD modes, cease to provide good approximations

of an invariant ~A.
One may also note cycles 22–24 exhibit the same

exponential growth, except shooting off in the very

early stage. We attribute the deterioration to the

violation of the m\n condition. Although cycle 21

sets a somewhat threshold of stability, the effect of

divergence emerges as m approaches n. Before the

actual violation, the behavioral change is gradual,

where the reconstruction accuracy in the early stage

remains intact. Upon violation, the behavioral change

is bi-polar, so the DMD representation becomes

spurious and entirely meaningless.

4.3.2 The convergence states

To better generalize our findings, we define the grand

mean l2-norm of reconstruction error from

Eq. 4.3.1.1:

G ek k2 ¼
1

m

Xm
i¼1

ek k2;ins;i ð4:3:2:1Þ

The grand mean is a spatiotemporally averaged

statistic that essentializes the behaviors of the recon-

struction error into a single index. Figure 17 presents

the grand mean error versus the number of cycles.

The generalization of the convergence is lucid. We

found four distinct states:

Stage 1, the Initialization, defines the early stage in

which, by sampling only a small range of data, the

algorithm captures a system’s spatiotemporal

dynamics for fair reconstruction accuracy. How-

ever, the algorithm cannot find the optimal

subspace nor a set of temporally stable Ritz

descriptors, so the modal characteristics of indi-

vidual modes are subject to great variability. The

global Ã has also yet to reach invariance. This

stage is characterized by fluctuating St and small

reconstruction error.

Stage 2, the Transition, marks the intermediate

phase in which the algorithm seeks the optimal

subspace with more sampled data. Yet the tradeoff

is a drastic deterioration of reconstruction accu-

racy. This stage is characterized by stabilizing St

and elevated reconstruction error.

Stage 3, the Stabilization, describes the optimal

state in which the algorithm fully establishes the

temporal convergence of modal characteristics and

Fig. 17 Grand mean l2-norm of reconstruction error versus the

number of DMD-sampled oscillation cycles
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reconstruction accuracy. In this stage, sufficient

data yields an optimal subspace and an invariant Ã,
so the output of the decomposition becomes

independent from additional sampling. This stage

is characterized by near-constant St and minimal

reconstruction error.

Stage 4, the Divergence, depicts the case in which

excessive sampling violates the DMD’s tacit

condition m\n, so the decomposition loses stabil-

ity, and the algorithm yields meaningless output.

This stage is characterized by the sudden loss of

integrity in both the global and mode-specific

DMD characteristics.

Finally, the benchmark reveals the sampling of

15–20 oscillation cycles achieves the Stabilization
state for the turbulent flow herein, which appeals to a

spatial–temporal ratio of m~2/3n. We also suggest

the achievement of the Stabilization state for the most

analytical effort on nonlinear systems, while the

Initialization state suffices for most reconstruction

tasks.

5 Parametrization of range and resolution

Based on the benchmark in previous section, we

investigate the effect, both standalone from and

combined with the sampling range, of the sampling

resolution. We quantify the sampling resolution by a

binary system 2SF where SF∈ℤ0+. In practice, the

temporal dimension m dictates the upper limit of SF.

The benchmark adopted the highest resolution, SF=0,

which translates to the sampling of every single

snapshot. Table 4 summarizes all the tested scenarios

of SF.

5.1 Convergence of resolution

We first examine the standalone effect of the

sampling resolution on the Stabilization state. Fig-

ure 18 presents the Strouhal number St versus the

sampling resolution of dominant modes 1–3 with 20

sampled cycles. The convergence of the sampling

resolution is apparent up to SF=8. Close inspection

reveals that SF=6 is more appropriate because the

constancy of St is slightly altered thereafter for

modes 1 and 2. Given the global vortex-shedding

frequency is St=0.127, mode 1 (St=0.127) and mode

2 (St=0.121) describe the Strouhal and Bloor-Gerrard
instabilities that make up the Kármán vortex, respec-

tively [64]. SF=6 resolves the oscillation periods of

modes 1 and 2 by using approximately 15 frames per

cycle. We extend this observation to a suggestion of

15 frames per cycle for most fluid systems. Addi-

tionally, we advise users to tailor the resolution

according to the dynamics of interest. For example, if

one investigates the Kelvin–Helmholtz instability, SF

=6 (St=1.945) might be insufficient given its high-

frequency, so the DMD may produce unsatisfactory

results [48, 65]. However, an even coarser SF=7 (St=

0.9723) is like to be sufficient to resolve the periodic

motions of separation bubbles [66].

5.2 Combined effect of range and resolution

In this last section, we examine the combined effect

of the sampling range and resolution by simultane-

ously parametrizing the number of cycles and 2SF.

Figure 19 presents the Strouhal number St after

omitting the unstable range (Stage 4). For all three

modes, the observations are consistent with previous

findings. Cycle 8 generally marks the beginning of

the St stabilization (Transition state), and SF=6

marks the end of the resolution convergence. More

importantly, the figures show that, within the con-

vergence state, variations in range and/or resolution

do not affect the DMD output. This is to say, there is

no apparent interaction or nonlinear complications

between the sampling range and resolution. However,

one shall reckon that the convergence of both is

necessary for an optimal DMD decomposition.

After all, we draw several key remarks from this

bi-parametric study:

● The convergence of the sampling range depends

primarily on the global state of the system. The

modal behaviors shift universally as the system

transitions across the four states.

● The convergence of the sampling resolution

depends primarily on the mode-specific periodic-

ity. The convergence of one mode does not

necessarily translate to that of another.

● For the fluid system herein, the convergence of

the sampling range and resolution are mutually

independent.

● For most analytical engineering implementations

of the DMD, users are advised to sample a
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sufficient range to reach the Stabilization state

without violating the m\n condition and resolve

the periodicity of target dynamics by at least 15

frames.

● For most reconstruction tasks, the Initialization
state suffices but the convergence of sampling

resolution shall be maintained. The Transition and
Instability state shall generally be avoided.

6 Conclusion

In this effort, we parametrically investigated the

nuances of DMD sampling from an engineering

point-of-view. We presented a parametric work, and,

from which some practical suggestions on the

sampling range and resolution for the DMD algo-

rithm are provided. Based on high-fidelity LES-NWR

data of a canonical fluid system, we found the

convergence domains for both the sampling range

and resolution, on which the DMD output is

independent and Ã is invariant to the respective

variables.

Specifically, we discovered four states of mode

convergence: Initialization, Transition, Stabilization,
and Divergence depending on the sampling range.

The Stabilization is the preferred state in which the

decomposition reaches full statistical and modal

convergence. Meanwhile, the Initialization suffices

for most system reconstruction tasks. In addition,

contrary to popular beliefs, excessive sampling

violates the m\n condition and produces meaning-

less DMD output. Finally, the convergence of the

sampling range is a global transition of the system.

On the other hand, the convergence of the

sampling resolution is mode-specific—the conver-

gence of one mode does not necessarily translate to

those of the others. We found an appropriate practical

rule-of-thumb, which suggests that an oscillatory

cycle of a target dynamical activity shall be resolved

by 15 frames. Besides, we observed no apparent

entanglement between the sampling range and

resolution.

Finally, we must clarify that the conclusions drawn

based on the model herein may not be exactly the

same for its experimental counterpart, especially

given the disparities in the restrictions of numerical

and experimental procedures. A direction of future

work can study the sensitivity of the parameters

Table 4 The sampling resolution quantified by a binary system 2SF

SF Sampling interval (2SF) Sampling frequency (St)

0 1 124.5

1 2 62.22

2 4 31.11

3 8 15.56

4 16 7.778

5 32 3.889

6 64 1.945

7 128 0.9723

8 256 0.4862

9 512 0.2430

10 1024 0.1215

11 2048 0.0608

Fig. 18 The Strouhal number versus the sampling resolution

2SF of dominant Modes 1–3 for 20 DMD-sampled oscillation

cycles
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through empirical data to assess the applicability of

the conclusions herein.
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Appendix: Large-Eddy simulation with near-wall
resolution

Large-eddy simulation

Governing equations

We simulated the turbulent flows by the Large-Eddy

Simulation with Near-Wall Resolution. The LES-

NWR does not employ any modeling in the near-wall

viscous regions, hence the high accuracy. It is,

however, computationally prohibitive for many

high-Re flows. But for the moderate-Re subcritical

regime herein, LES-NWR is feasible. In formulation,

the filtered, time-dependent Navier–Stokes equations

for an incompressible Newtonian fluid resolve the

large-scale eddies and govern the fluid dynamics,

which include the continuity equation:

oui
oxi

¼ 0 ðA:1:1:1Þ

and the momentum equation:

oui
ot

þ ouiuj
oxj

¼ � 1

q
op
oxj

þ m
o2uj
oxioxi

� ossgsij

oxi
ðA:1:1:2Þ

where ui denotes the filtered velocities; ρ denotes the

fluid density; ν denotes the fluid molecular viscosity;

p denotes the modified pressure; ssgsij denotes the

deviatoric subgrid stress.

The filtered equations differ slightly from the

original Navier–Stokes, insofar as the continuity

equation commutes, but an additional pseudo-stress

term arises in the momentum equation. Like the

Reynolds stress, the subgrid stress sSGSij originates

from the nonlinear convection term. One may also

decompose it into the isotropic and deviatoric parts:

sSGSij � 1

3
sSGSkk dij þ ssgsij ðA:1:1:3Þ

While the former straightforwardly merges into the

modified pressure term �
p , the latter instigated an

entire sub-domain of mathematical modeling called

the subgrid stress models.

Smagorinsky-Lilly model

Perhaps the most widely accepted subgrid stress

model, as adopted in this work, is the Smagorinsky

model [67] with the Lilly formulation [68]. The

Smagorinsky model consists of two parts. First, the

linear eddy-viscosity model by the Boussinesq

hypothesis relates the deviatoric subgrid stress to

the filtered rate of strain Sij:

ssgsij ¼ �2msgsSij ðA:1:2:1Þ
where the coefficient νsgs is named the subgrid

viscosity. Henceforth, one may model the subgrid

viscosity by the mixing-length hypothesis:

msgs ¼ l2sS ðA:1:2:2Þ
where

ls ¼ minðjd;CsDÞ ðA:1:2:3Þ
denotes the Smagorinsky lengthscale; S denotes the

filtered characteristic rate of strain; κ=0.40 denotes

the von Kármán constant; d denotes the distance from
a cell centroid to the closest wall; Cs denotes the

Smagorinsky constant; Δ denotes the filter width. For

filtering, we adopted a grid-dependent filter in the

physical space, Δ=V1/3, where V denotes the cell

volume. Also, ls takes in the smaller of d and Δ to

accommodate the near-wall viscous regions.

Dynamic-stress model

The original Lilly formulation derived a universal

Smagorinsky constant Cs=0.17, yet experiments

found ‘excessive damping of large scale fluctuations

in the presence of mean shear and transitional flows

as near-solid boundary’ [69]. Despite efforts to find

the optimal value, one shall reckon that Cs appeals to

no universality and depends on the scale of fluid

motions. Decades later, Germano et al. [70] and Lilly

[1] developed a dynamic concept for Cs, which we

have adopted herein. The dynamic-stress model

imposes a second filter ~D ¼ 2D to compute the

Smagorinsky constant based on the dynamics of the

inter-filter eddies. The grid- and test-filtered stresses

are:
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sSGSij ¼ uiuj � uiuj ðA:1:3:1Þ
T SGS

ij ¼ guiuj � eui euj ðA:1:3:2Þ
One may also derive the deviatoric part as:

ssgsij ¼ �2CsD
2SSij ðA:1:3:3Þ

T
sgs
ij ¼ �2Cs

~D2eSeSij ðA:1:3:4Þ
where Cs replaces Cs in the original equations and

may take in negative values to accommodate

backscatter—the energy transfer from the subgrid

scale to the resolved scale in depiction of the inverse

energy cascade.

The Germano identity [70] relates the stresses by:

Lij ¼ T SGS
ij � gsSGSij ¼ guiuj � eui euj ðA:1:3:5Þ

Taking Cs as uniform, one may define:

Mij � 2D2gSSij � 2 ~D2eSeSij ðA:1:3:6Þ
Substituting Eq. A.1.3.4 into Eq. A.1.3.5 and

combining with Eq. A.1.3.6, one obtains:

LS
ij � T

sgs
ij �gssgsij ¼ CsMij ðA:1:3:7Þ

which is the Smagorinsky model for the deviatoric

part of Lij,

Ld
ij � Lij � 1

3
Lkkdij ðA:1:3:8Þ

At last, the dynamic coefficient Cs takes the

minimized mean-square error that best approximates

Ld
ij by LS

ij [1]

Cs ¼ MijLij
MklMkl

ðA:1:3:9Þ
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