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Abstract This paper introduces new methods to
study behaviours among the 52 largest cryptocurren-
cies between 01-01-2019 and 30-06-2021. First, we
explore evolutionary correlation behaviours and apply
a recently proposed turning point algorithm to iden-
tify regimes in market correlation. Next, we inspect the
relationship between collective dynamics and the cryp-
tocurrency market size—revealing an inverse relation-
ship between the size of the market and the strength of
collective dynamics. We then explore the time-varying
consistency of the relationships between cryptocurren-
cies’ size and their returns and volatility. There, we
demonstrate that there is greater consistency between
size and volatility than size and returns. Finally, we
study the spread of volatility behaviours across the
market changing with time by examining the structure
of Wasserstein distances between probability density
functions of rolling volatility. We demonstrate a new
phenomenon of increased uniformity in volatility dur-
ing market crashes, which we term volatility dispersion.
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1 Introduction

Over the last several years, the cryptocurrency market
has attracted substantial interest from both institutional
and retail investors. The market has experienced signif-
icant growth in total assets, accompanied by commen-
surate levels of volatility. Following the COVID-19 and
BitMEX market crash in early 2020, cryptocurrency
prices had a strong rally and then a subsequent decline
in prices across the market. Given the differing views
on their long-term viability, understanding the chang-
ing nature of cryptocurrencies’ returns and volatility as
the market grows in size is a timely priority for investors
and policymakers alike. Our paper meets this purpose
by analysing the collective dynamics of cryptocurren-
cies over time regarding returns, volatility, and market
size.

Our paper builds on a long literature studying
the dynamics of financial markets. Across several
fields, researchers have been interested in the time-
varying nature of financial market behaviours for some
time, particularly correlations [1-7]. The application
of classical statistical techniques, such as ARCH and
GARCH models [8-10] and other parametric mod-
els, can encounter difficulties due to the non-stationary
nature of financial markets. Certain models for descrip-
tive analysis or portfolio selection that perform well
during extended bull market periods can suffer dur-
ing sudden market crises. The literature has split into
two approaches to this problem. Statistical researchers
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have introduced explicit methodologies to model non-
stationarity [11], while nonlinear dynamics researchers
have taken a more descriptive approach to the time-
varying dynamics.

In the nonlinear dynamics community, such market
dynamics have been studied with a range of method-
ologies, including chaotic systems [12—14], clustering
[15,16], sample entropy [17,18], and principal com-
ponents analysis [19-21]. Various asset classes have
attracted interest, including equities [22], fixed income
[23], and foreign exchange [24]. Researchers have also
explored extreme behaviours [25] and the propaga-
tion of structural breaks [26,27] in price and volatility
time series. The evolutionary nature of volatility, often
studied via the framework of volatility clustering and
regimes, has been of interest for many years [8,10,28—
36]. Overall, such financial research uses many of the
same techniques from time series analysis that are used
in other domains [37—45].

In recent years, substantial research has focused
specifically on the unique dynamics of cryptocurren-
cies. Various topics of interest include Bitcoin and
other cryptocurrencies’ price dynamics [46—50], fractal
patterns, [51-54], cross-correlation and scaling effects
[55-60]. A great deal of this work has addressed how
these dynamics have changed over time, in particular
during market crises such as the COVID-19 market
crash [61-73].

This paper prioritises understanding the changing
nature of time-varying parameters that describe the
market dynamics of cryptocurrencies. We are partic-
ularly interested in a descriptive analysis of these non-
stationary dynamics and an identification of differ-
ent patterns of behaviour, particularly around crises.
Our primary parameters of interest are cryptocurrency
returns R(t), volatility X (¢), which have been well-
studied and known to be highly non-stationary, as well
as market size M (¢). This latter quantity is particularly
relevant to a nascent market such as cryptocurrencies
to determine if market dynamics change meaningfully
as the market develops.

This work aims to study the changing dynamics of
the cryptocurrency market, incorporating and building
on much of the aforementioned literature. We take an
interest both across our entire 2.5-year window of anal-
ysis as well as in several distinct periods, which are
outlined in Sect. 2. In Sect. 3, we begin by building
on the rich literature studying cryptocurrencies’ signif-
icant correlations, proposing a new framework to anal-
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yse the correlation structure of the market. In Sect. 4,
we investigate the relationship between the collective
dynamics of the market and the time-varying total mar-
ket capitalisation of all cryptocurrencies. From there in
Sect. 5, we study the relationship between market size
and returns and volatility, demonstrating greater quan-
titative consistency between market size and volatility
than size and returns. Finally, Sect. 6 introduces a new
technique for understanding the changing spread of
volatility across the cryptocurrency market as a whole,
terming this volatility dispersion. There we introduce a
new quantity Var(p(¢)) to describe the spread of volatil-
ity across a market that we also observe is highly non-
stationary. Overall, we propose a new methodology
to understand the evolution of correlation structures,
reveal new insights about the relationship between mar-
ket size and attributes such as collective dynamics,
returns, and volatilities, and propose a new way to
understanding the spread of volatility with time. Our
insights are summarised in Sect. 7.

2 Data

In the proceeding sections, we analyse cryptocurrency
data between 01-01-2019 and 30-06-2021. We study
52 cryptocurrencies that possess sufficient histories. In
Sect. 3, we partition our analysis into five discrete peri-
ods to explore correlation behaviours at varying times.
These periods are defined as follows:

1. Pre-COVID: 01-01-2019 to 28-02-2020;
2. Peak COVID: 01-03-2020 to 30-05-2020;
3. Post-COVID: 31-05-2020 to 31-08-2020;
4. Bull: 01-09-2020 to 14-04-2021;

5. Bear: 15-04-2021 to 30-06-2021.

Cryptocurrency data are sourced from https://coinmar
ketcap.com/. A full list of cryptocurrencies studied in
this paper is available in Appendix A.

3 Temporal evolution of market correlation

Like many asset classes in financial markets, cryptocur-
rency returns are characterised by distributions that
exhibit significant tail risk. In particular, their relative
infancy and polarising views of the asset’s long-term
viability make their price behaviour more susceptible
to extreme volatility and erratic behaviours [27]. Fig-
ure la displays the general volatility in log returns, and
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Fig.1 Cryptocurrency market log returns, depicted (a) as a function of time and (b) as a distribution

Fig. 1b highlights the negative skew in the returns dis-
tribution throughout our analysis window.

Prior research has demonstrated that correlations
are most strongly positive during market crises, where
many investors engage in the systematic sale of assets
[74,75]. This may be due to the growth of quantitatively
driven asset managers and their use of algorithms that
may induce simultaneous indiscriminate selling. That
is, market systematic behaviours, particularly during
bear markets, appear to be more pronounced due to an
algorithmic herd mentality. Behaviour has been partic-
ularly volatile since 2020, where after the COVID-19
and BitMEX crash, the cryptocurrency market experi-
enced an unprecedented rise (and subsequent fall) in
total market capitalisation. With all this in mind, our
objective is to study the temporal evolution of the mar-
ket’s correlation structure and contrast the market’s col-
lective similarity between different periods.

3.1 Analysis of collective correlation over time

Let our period of analysis 01-01-2019 to 30-06-2021 be
indexedt = 0,1, ..., T,where T =911.Letc¢;(t),i =
1,...,N,t =0, ..., T be the multivariate time series of
cryptocurrency daily closing prices. We first generate
a multivariate time series of log returns, R;(¢),t =
1,..., T, as follows:

Ri(1) = log (%) . 1)

Our primary objects of study in this section are cor-
relation matrices of log returns data across specified
periods. These periods may roll forward with time or
remain static. Let a < ¢t < b be such a period of analy-
sis, an interval of S = b — a + 1 days. We standardise
the cryptocurrency log returns over such a period by
defining R; (1) = [Ri(1) — (Ri)l/o(Ri),a <t < b,
where (.) is an average and o (.) is a standard devia-
tion operator, each computed over the same interval.
The correlation matrix ¥ is then defined as follows:
let Rbe a N x S matrix defined by ﬁit = Ié,- 1), =
1,...,.N,t =a,..., band define

@)
Explicitly, individual entries are defined by

S0y (Ri®) = (RDR; (1) = (R;)))
I/
(Sl (R0 = (RD2 04 (R; (1) = (R)))?)

)

¥ =

3

for1 <i,j < N. All entries ¥;; lie in [-1, 1]. If we
wish to explicitly note the interval over which these are
defined, we may denote this matrix ¥!“*1. To quantify
the total strength in correlation behaviours across the
market, we compute an appropriately normalised L'
norm of the matrix ¥ . That is, let

N
1
1%l = <5 2 1%, )
i j=1
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This gives the average absolute correlation of all cryp-
tocurrencies over the interval a < ¢t < b. To explore
the temporal evolution of collective strength in correla-
tion behaviours, we examine the changes in matrix ¥
as our interval [a, b] rolls forward. Specifically, we set
S = 90 and compute the time-varying L' norm of a 90-
day rolling window, v¥ (r) = ||wl=SH10) ;. We also
apply a Savitzky—Golay filter to produce a smoothed
function v¥ (r). We then apply a recently introduced
turning point algorithm [76], detailed in Appendix B,
to generate a set of non-trivial local maxima and min-
ima in the total correlation behaviours. While some
previous work explores the evolution of the first eigen-
value [21], our methodology is the first we know to
study the L' norm of the correlation matrix and apply
a bespoke turning point algorithm to study non-trivial
peak and trough propagation. The norm function v¥ (z),
its smoothed analogue v;p (t), and the detected turning
points are all displayed in Fig. 2.

Examining Fig. 2 reveals six non-trivial local max-
ima and minima in the overall magnitude of correla-
tions. Of particular note are the local maximum identi-
fied on 08-05-2020 and the minimum on 13-08-2020.
These dates reflect the COVID-19 market crash and
the subsequent recovery in the cryptocurrency mar-
ket, respectively. Clearly, correlations are most signif-
icant during the crash and weakest during the subse-
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quent growth in the market. The local maximum on
30-06-2020 reflects a significant increase in correlation
behaviours during the latter part of our analysis win-
dow. This is most likely indicative of the aggressive
sell-off in cryptocurrency assets from approximately
mid-April until the present. Again, we see a striking
pattern where the general growth of the cryptocurrency
market is inversely related to the collective strength of
correlations.

This is broadly consistent with general economic
intuition. There is a substantial amount of literature in
the quantitative finance and applied mathematics com-
munities that highlights that an increase in correlation
among financial securities is observed during times of
crisis [21]. This corresponds to spikes in the first eigen-
value in the correlation matrix—indicating increases in
collective market behaviour. When money flows out of
the cryptocurrency market, through losses and sale of
assets, this would lead to increased correlations and
a spike in the first eigenvalue. Thus, the inverse rela-
tionship we identify is consistent with what one would
expect based on prior research [1].

However, our findings go further and may have fruit-
ful implications for investment managers. Identifying
such peaks and troughs in correlation behaviours may
provide a decision support tool as to whether they are
in a market environment where security selection is
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of greater or less importance. In market environments
where correlations are strongly positive, it may be more
difficult for managers to produce return streams that
exhibit lower market beta. The approximate periodicity
we observe in local maxima and minima may encour-
age cryptocurrency investors to engage in cyclical pat-
terns of more bullish and bearish investing to avoid
exposure in riskier periods.

3.2 Comparison of particular periods

To further elucidate the findings of the previous sec-
tion, we partition our analysis window into five peri-
ods and analyse the correlations separately within each
of these windows. Let wPre  yPeak gPost pBull 1o
the correlation matrices obtained across the entire time
intervals specified in Sect. 2. In the notation of Sect.
3.1, wPre — @59 and so on.

Figure 3 displays kernel density estimates of the
entries of our 5 correlation matrices. The findings are
generally consistent with Fig. 2. The distribution of ele-
ments ¥;; in the four matrices gPre yPost ypBull 514
B are highly similar. All four distributions have
means in the range 0.38 to 0.46 and exhibit similar
variability around their means. By contrast, ¥ % has
a mean value of 0.78—highlighting the spike in cor-

0.2 0.4 0.6 0.8 1.0

relations during the COVID-19 crisis. One finding of
slight surprise is the Bear partition exhibiting correla-
tions more like the Pre-COVID, Post-COVID, and Bull
windows than the Peak COVID window. It is quite pos-
sible that if the dates of the Bear period were brought
closer to the present day, including beyond 30-06-2021,
this distribution would yield a significantly higher aver-
age correlation score. The means and standard devia-
tions of the entries of all five matrices are recorded in
Table 1.

The observed increase in correlations during market
crises is consistent with prior research that has been
published in the literature. However, one new observa-
tion is the stark contrast in correlation behaviours in
periods directly adjacent to an acute period of crisis.
One could imagine that the distribution of cryptocur-
rency correlations transitions gradually downwards fol-
lowing a market crisis. Instead, periods directly after
such crises exhibit correlations that are more similar to
relatively stable market conditions.

4 Collective dynamics and market size

In the previous section, we observed weaker correlation
behaviours while the market grew and stronger corre-
lation behaviours when the market was in crisis or con-
tracting. In this section, we take a closer examination
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Table 1 Mean and standard deviation of correlation matrix
entries across the five periods, as analysed in Sect. 3.2

Period Mean of entries ¥;; Standard deviation
Pre-COVID 0.456 0.164
Peak COVID 0.784 0.166
Post-COVID 0.421 0.182
Bull 0.383 0.135
Bear 0.421 0.182

of the underlying market effect of collective dynamics
and how this relates to the current market size.

First, we apply principal components analysis (PCA)
to our time-varying correlation matrices. This proce-
dure learns the linear map £2 such that our standard-
ised returns matrix R is transformed into a matrix of
uncorrelated variables Z, that is, Z = QR. The rows
of Z represent the principal components (PCs) of the
matrix R, while the rows of £2 consist of the princi-
pal component coefficients. The matrix is ordered such
that the first row is along the axis of most variation in
the data. Its corresponding eigenvalue A1 is thus of sub-
stantial practical importance, quantifying the greatest
extent of variance in the data. It has been referred to
as representative of the collective strength of the mar-
ket [1]. All subsequent PCs, subject to the constraint
that they are mutually orthogonal, maximise the vari-
ance along their respective axes. Continuing this pro-
cedure effectively diagonalises the correlation matrix,
¥ = EDET, where D is a diagonal matrix of eigen-
values and E is an orthogonal matrix. By (3), ¥ is a
symmetric positive semi-definite matrix with all eigen-
values real and non-negative, so we may order them
A1 > ... = Any > 0. Each A; quantifies the extent
of variance along the ith principal component axis.
Thus, we may normalise the eigenvalues by defining
A= in to determine the proportion of all vari-

ance acclo_lint,ed for by each step in the PCA.

This quantity is related to the norm of the correla-
tion matrix defined in Sect. 3.1. Indeed, by the spectral
theorem, the largest (absolute value) eigenvalue of a
symmetric matrix coincides with the matrix’ operator

norm [77]. That is,
[P x|

max .
xeRV {0} |lx]|

Al = 1¥llop = ®)

Next, every diagonal entry of ¥ is equal to 1, so the
trace of ¥ is equal to NV, and thus Z?’Zl Aj = N.Hence
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A1 = % ¥ lop. Thus, both &1 and [|¥||;, as defined in
(4), are appropriately normalised norms, with values
in [0, 1]. Succinctly put, A is a normalised operator
norm while ||¥||; is a normalised L! norm. For the
remainder of this section, our central object of study
is the changing value of A1, which represents both the
first proportion of explanatory variance, as well as a
normalised operator norm of the matrix.

Just like Sect. 3.1, we set S = 90 and analyse a 90-
day rolling window. Let A1 (¢) be the normalised first
eigenvalue of the matrix ¥!=S1/1 We plot this over
our analysis window in Fig. 4. There are two primary
findings of interest. First, consistent with earlier exper-
iments, there is a spike in A (r) during early 2020. This
reflects the highly correlated behaviours of cryptocur-
rencies and indiscriminate selling during the COVID-
19 pandemic. Subsequently, A;(r) declines until May
2021. This most evident decline corresponds to the
cryptocurrency bull market, where total cryptocurrency
assets grew by several orders of magnitude. Next, there
is a significant rise in X1(1) towards the end of our
analysis window, corresponding to higher collective
strength in the market. This increase occurred contem-
poraneously with the aggressive sell-off in cryptocur-
rency assets, suggesting that there may be a relationship
between the size of the market and the strength of the
underlying collective dynamics. Broadly, the trajectory
of A (t) is highly similar to that of v (1) as depicted
in Fig. 2.

To investigate further, we quantitatively incorporate
the size of the cryptocurrency market changing over
time. Let M;(t),i = 1,..,N,t = 0,...,T be the
multivariate time series of cryptocurrency market sizes
M; (t) over our analysis window. Due to the significant
volatility exhibited by the market, we compute arolling
average of the entire market, defined by
M) = L3 s S Mi(k),t = S, .., T. We
include the plot of this varying over time in Fig. 4.

While previous work [21] has studied the first eigen-
value in isolation and compared its properties between
cryptocurrency and equity markets, this work is the
first we know of to examine its relationship with mar-
ket size over time. In particular, we reveal an inverse
relationship between the size of the market and the first
eigenvalue of the correlation matrix A1 (7). To quantify
this observation, we compute the correlation between
the rolling size of the cryptocurrency market, A1 (),
and the collective strength of the market, M(1). The
correlation between these two series is computed to be
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suggests a possibility that as the market grows in size,
the strength of collective dynamics may decline.

This would be a noteworthy finding with important
implications for the future of the cryptocurrency mar-
ket, especially given the divided views on the future of
the market’s viability. Suppose one of two contrived
scenarios exist; a “bull case” where cryptocurrency
prices recover and cryptocurrency becomes a system-
ically important asset class, and a “bear case” where
prices continue to decline and cryptocurrencies lose the
interest of institutional investors. Our findings indicate
that in the bull case, behaviours may become increas-
ingly fragmented and heterogeneous, and there will
be opportunities for skilful security selection to gen-
erate portfolio alpha. In the bear case, where prices
decline and the size of the market decreases, behaviours
may become more homogeneous. This could mean
fewer opportunities for alpha generation through secu-
rity selection, as correlations will be strongly positive.

5 Inconsistency analysis between market size,
returns, and volatility

We now extend our study of cryptocurrency mar-
ket sizes to incorporate their relationship with returns
and volatility behaviours individually. Specifically, we
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investigate the consistency among cryptocurrencies
between the attributes of market size, returns and
volatility, and how this changes over time. For this pur-
pose, we define three distance matrices and appropri-
ately normalise them.

Let our full period of analysis 01-01-2019 to 30-06-
2021 be indexed t = 0, 1, ..., T, where T = 911. Let
M;(t),t =0, ..., T, be the multivariate time series of
market size on each day and let R;(¢),t =1, ..., T, be
the multivariate time series of log returns, as defined by
(1). Let S = 90 days and let 0; (t),t = S, ..., T be the
multivariate time series of 90-day rolling volatility. At
each 1, this is defined as the standard deviation of the
log returns of the prior 90 days. Now, we may construct
distance matrices for eachr = S, ..., T as follows:

t

1
D;y(z)zg > M) — M) (6)
k=t—S+1
1
pEwy=| Y [Rik)—R;j(0)]|; @
k=t—S+1
Df5 (1) = |oi(1) = 0;(1)|. ®

Thus, DM (1), DR (t) and D (1), respectively, measure
discrepancy between cryptocurrencies with respect to
average market size, total returns, and rolling volatility,
each over the 90-day period concluding on day ¢, just
like our study of correlation norms and market size in
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Sects. 3.1 and 4. We now convert these three distance
matrices into affinity matrices whose elements lie in
[0, 1]:

AM(t)—l—ﬂ' 9)
YU max{DY ()
DX(1)
Ay =1-—"L——; 10
i@ maxg {DF (1)} 1o
DX (1)
i) maxg { D (1)} (b

These affinity matrices are appropriately normalised
and can be compared directly to study the consistency
between cryptocurrency market size and returns or
volatility. We generate two inconsistency matrices as
follows:

INCM-R(1)y = AM (1) — AR (1); (12)
INCM-% (1) = AM (1) — A% (1). (13)

Larger absolute values of the entries of INCM-R indi-
cate that the relationship between two cryptocurren-
cies regarding market size and returns is quite differ-
ent, analogously for INCM-* To study the degree of
consistency between these attributes in totality across
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our collection, we compute the L' norm of the result-
ing inconsistency matrices and study how these norms
evolve over time. That is, forr = S, ..., T, we compute
an analogous quantity as defined in (4):

i g (0 = [INCMR(1)]; (14)
Vg @) = [INCYZ@)]]. (15)

Figure 5 displays the time-varying inconsistency
norms. It is clear that throughout our period of analysis,
there is greater consistency between volatility and size
than returns and size, as indicated by the smaller values
of vl{,INg (t). This is what one would expect in a more
established asset class such as equities. For instance,
large-cap equities typically exhibit lower volatility than
small-cap equities, creating some consistency between
market size and volatility. By contrast, returns and size
are shown to be significantly more inconsistent, high-
lighting that the relationship between size and returns
is less clear than that between size and volatility. Fur-
thermore, it suggests that the size of cryptocurrencies is
by no means a good representation of the future expec-
tation of returns.

Previous work [27] has used inconsistency matrices
to study the extent of inconsistency between returns
and volatility. There, we identified the most anoma-
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lous individual cryptocurrencies in these attributes. In
this work, we take quite a different direction. First, our
inconsistency matrices are time-varying. Next, rather
than identifying individual cryptocurrencies, we study
temporal trends in the collective extent of inconsistency
by examining the inconsistency matrices’ norms as a
function of time. Further, we compare the inconsis-
tency between returns and market size with volatility
and market size, incorporating a new parameter. Our
finding is also new and of interest, namely that size—
returns is more inconsistent than size—volatility. Such
a finding could be of great interest to risk managers
looking to find factors or exposures their portfolios are
most in need of diversifying away from.

6 Temporal changes and dispersion of volatility

Having identified greater consistency in volatility and
market size behaviours, we now more closely exam-
ine the structure of collective volatility over time. The
behaviour of volatility and the general identification of
regimes in financial markets is a topic of great interest.
Many parametric statistical models, such as regime-
switching models, assume a fixed number of volatil-
ity regimes for a candidate modelling problem. Often
the selection of this number is quite arbitrary. Like all
parametric models, if assumptions are misspecified, the
resulting estimates can be highly inaccurate.

We take a different approach to the analysis of col-
lective volatility behaviours and detect a new phe-
nomenon that we term volatility dispersion. To do so,
set our window length as S = 90 days. For each r =
S, ..., T,we may consider the 90-day rolling volatilities
0; (1), as discussed in the previous section. For a fixed 7,
we normalise the vector (o7 (?), ..., on (1)) € RV by its
total sum to produce a probability vector p(¢) that mea-
sures the concentration of volatility across a selection
of cryptocurrencies. That is, let
i) = —2

2 j=10j()
For example, if p(r) = %(1, I,...,1) € RV, this
indicates that the 52 cryptocurrencies have identical
volatility measured over the past 90 days, while a value
of (1,0,...,0) € RY indicates that all volatility is
observed in the first currency, with none in any of the
others. Thus, p; (t) is a measure not of the absolute size

(16)

of volatility but the proportional contribution of one
cryptocurrency to the total volatility of the collection.

With these probability vectors p(¢), t = S, ..., T, we
definea (T'—S+1) x (T — S+ 1) distance matrix using
the Wasserstein distance between these distributions at
all points in time. That is, let d W be the L!-Wasserstein
metric [78], and let

DY (s, 1) =dY (p(s), p(t)) Vs,t,€[S,...T]. (17)

We then apply hierarchical clustering to our distance
matrix, D! (s, 1), and study the resulting dendrogram
(Fig. 6a). It is worthy to note that the Wasserstein dis-
tance, unlike the L! norm between vectors, does not
distinguish probability vectors based on their order; it is
essentially a distance between vectors as sets (possibly
with repetition). We make this choice because we are
not interested in distinguishing periods where a partic-
ular cryptocurrency is highly volatile, but whether the
volatility is, broadly speaking, spread out or concen-
trated among the collection as a whole.

Figure 6a highlights several interesting findings.
First, two volatility clusters are identified, one dom-
inant cluster of volatility behaviours (with two sub-
clusters) and a smaller cluster that is highly different
to the rest of the collection. The latter cluster consists
of probability vectors p(¢) generated at times within
the COVID-19 market crash. Interestingly, this cluster
does not display overwhelming self-similarity; instead,
it is relatively diffuse but exhibits significant differ-
ences with the concentrated subcluster of the majority
cluster. The anomalous behaviours of the COVID-19
market crash are further demonstrated, with such pro-
found distances to other (highly variable) periods in the
market over the past several years.

To further investigate the nature of this split, we
perform a closer analysis of the probability vectors
p(¢?) over time. Considered as a distribution over [0, 1],
we compute the time-varying intra-volatility variance
Var(p(t)). We display this as a function of time in Fig.
6b. This supports the separation of behaviours seen in
Fig. 6a. The COVID-19 market crash exhibits markedly
lower variance among the individual rolling volatilities
pi (). Interestingly, this is also observed towards the
end of our analysis window. A lower value of the vari-
ance of p(¢#) means that the contribution to the vari-
ance of each individual cryptocurrency is more uni-
form across the collection. That is, the proportion of
the market’s total volatility is more spread out among
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Fig. 6 In (a), we perform
hierarchical clustering on
the matrix DV between
normalised vectors of
rolling volatility. The
dendrogram groups dates
s,t €[S, ..., T] according
to similarity between their
corresponding vectors p(s)
and p(¢). Two clusters are
observed, with the
secondary cluster associated
with times ¢ observed
during COVID-19. In (b),
we elucidate this finding
more closely, plotting the
variance of the probability
vector p(t) over time. The
variance of this vector is
lower during COVID-19,
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all the cryptocurrencies during the COVID-19 market
crisis. While it is predictable that the absolute volatility
would spike during a crisis, it is an unexpected finding
that there would be less deviation between the different
volatilities of individual cryptocurrencies—essentially,
everything is similarly volatile together.

In Appendix C, we present two theoretical results on
the distances D% (s, ) between normalised volatility
vectors and intra-volatility variance Var(p(z)). These
propositions identify the uniform distribution of volatil-
ity po = (1, 1, ..., 1) € RY and the one-shot distri-
butions of volatility qx = (0,...,0, 1,0, ...,0) as the
two extremal possible spreads of volatility. The uniform
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Time

has the lowest intra-volatility variance, a one-shot has
the greatest intra-volatility variance, and the greatest
possible value of the Wasserstein distance is between
the uniform and a one-shot distribution. These proposi-
tions demonstrate that, in a precise sense, our study of
volatility dispersion investigates the extent that rolling
volatility vectors sit between two extremes: the case
where all the volatility of the market is uniformly dis-
tributed across every asset, and a case where all volatil-
ity is concentrated in a single asset.

Fund managers are often warned of the potential
issues when over-fitting models to study parameters
such as volatility. The volatility dispersion framework
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we introduce in this section supports the “Occam’s
Razor” principle familiar to many in statistical learning.
Rather than trying to capture the true complexity of the
volatility process, using just two regimes to capture low
and high volatility periods, may work best. However,
the interpretations of volatility dispersion are new and
different from those gained from traditional volatility
clustering, indicating periods where volatility is rela-
tively uniform and less avoidable regardless of asset
selection.

7 Conclusion

In Sect. 3, we study the time-varying evolution of cor-
relations among our collection of cryptocurrencies, and
explicitly compare the distribution of correlation coef-
ficients over five discrete time windows. The most
notable findings were the spike in correlations during
the COVID-19 market crash and the drop in corre-
lations during the subsequent bull market run in late
2020 to early 2021. Broadly, both experiments in this
section allude to a clear association between strong col-
lective correlation among cryptocurrencies and periods
of declining value in the market.

In Sect. 4, we investigate the aforementioned associ-
ation more closely. First, we explore the time-varying
explanatory variance of the correlation matrix’s first
eigenvalue X (1), where a noticeable spike is seen dur-
ing the COVID-19 pandemic. Next, we directly com-
pare A1 (1) with the rolling size of the cryptocurrency
market, and show a negative correlation therein. This
suggests that as cryptocurrency assets rise, the strength
of collective dynamics may weaken. Thus, in a sce-
nario where cryptocurrency assets rise significantly and
the asset class gains further prominence, the strength
of collective dynamics may decline—leading to more
heterogeneous behaviours. This would place greater
importance on high-quality security selection when
investing in cryptocurrencies.

In Sect. 5, our experiments reveal greater consis-
tency in volatility and market size behaviours, wherein
cryptocurrencies similar in market size are more likely
to exhibit commensurate levels of volatility. By con-
trast, there is less consistency between cryptocurrency
size and returns—suggesting that the cryptocurren-
cies’ size does not provide a good indication of future
expected returns.

Finally, in Sect. 6, we study the structure of volatility
behaviours over time, applying hierarchical clustering
to the distances between distributions of rolling volatil-
ity at all points in time. Our technique suggests that
there are two volatility patterns—times where the total
volatility of the market is more dispersed across the
entire collection, and times where it is more concen-
trated in fewer particular cryptocurrencies. We reveal
that the COVID-19 market crash not only features
higher volatilities in general, but that the total volatility
is more evenly spread across all individual cryptocur-
rencies. This technique could be used as an accom-
panying tool to estimate the number of regimes in
more traditional, parametric regime-switching models
in the econometric and statistical modelling literature.
Volatility dispersion also provides independent confir-
mation of and a new approach to studying increased
heterogeneity of market dynamics during crises, com-
plementing our study of collective correlations. It is
effectively a more direct measure of assets being uni-
formly volatile together than the first eigenvalue of the
correlation matrix.

Many possibilities exist for future work building
upon the techniques and findings of this paper. First,
one could study the associations between market size
and the strength of collective dynamics in the cryp-
tocurrency market with alternative methodologies. For
example, suitable distances between normalised trajec-
tories could replace the use of correlations. Second, one
could compare studied relationships between the size of
the cryptocurrency market and its underlying dynam-
ics with those of more traditional asset classes. Third,
given the cryptocurrency market’s relative infancy, our
findings may turn out to be transient; if the market con-
tinues to grow, perhaps the inverse relationship between
total market size and collective dynamics will not hold
in future crises.

Several of our new methodologies and findings may
have particular promise in future research and applica-
tions. Our time-varying analysis of the total extent of
inconsistency between parameters could reveal suitable
predictors to incorporate in trading strategies either
aimed at maximising returns or minimising volatil-
ity. Our volatility dispersion analysis is also promis-
ing. Unlike typical methods of volatility clustering
or regime-switching models, we compare similarity
between all windows of time, not just adjacent periods.
In this paper, our analysis has been entirely descrip-
tive, but future work could employ it in a predictive
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context where we expect volatility to be rather uni-
form across the market. Such times could prompt an
entire withdrawal of funds to safe-haven assets such as
gold or cash, as a uniform spread of volatility could
mean any investment in the cryptocurrency market
would carry significant risk. Finally, volatility disper-
sion could be applied to other financial and economic
securities beyond cryptocurrencies. For instance, one
could identify clusters of macroeconomic behaviour
using data such as interest rates, GDP, inflation, unem-
ployment, and others. One could explore the dispersion
of these factors individually, or identify clusters of eco-
nomic behaviour with a higher dimensional distance
measure where a variety of metrics are incorporated.

Overall, this paper reveals several key relationships
between cryptocurrencies’ collective dynamics, mar-
ket size, returns, and volatility and analyses these
behaviours over time. During COVID-19 and towards
30 June 2021, correlation behaviours are stronger, and
volatility is more uniformly spread across the entire
market. Individual cryptocurrencies’ market sizes are
shown to be more consistent with volatility than returns,
while the total market size is inversely associated with
the quantifiable strength of collective dynamics. Both
the lack of consistency between market size and returns
and the high correlations across the market during
crises present significant challenges to investors aim-
ing to select optimal portfolios of cryptocurrencies on
either a long or short-term basis.
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Appendix A: Securities analysed

In Table 2, we list the 52 cryptocurrencies analysed in
this paper, both their tickers and names.

@ Springer

Table 2 Cryptocurrency tickers and names

Ticker  Coin Name Ticker Coin Name

BTC Bitcoin WAVES WAVES

ETH Ethereum CEL Celsius

BNB Binance Coin DASH  Dash

ADA Cardano ZEC Zcash

XRP XRP MANA  Decentraland
DOGE Dogecoin ENJ Enjin Coin
BCH Bitcoin Cash HOT Holo

LTC Litecoin QNT Quant

LINK Chainlink KCS KuCoin

ETC Ethereum Classic NEXO  Nexo

XLM Stellar BAT Basic Attention Token
THETA Theta ZIL Zilliga

VET VeChain BTG Bitcoin Gold
FIL Filecoin BNT Bancor

TRX Tron ONT Ontology
SMR Monero ZEN Horizen

EOS EOS SC Siacoin

CRO Crypto.com DGB Digibyte
MKR Maker QTUM QTUM

BSV Bitcoin SV CHSB  SwissBorg
NEO NEO ZRX 0x

XTZ Tezos RVN Ravencoin
MIOTA 1I0OTA OMG OMG Network
DCR Decred NANO Nano

HT Huobi Token IcX ICON

XEM NEM FTM Fantom

Appendix B: Turning point algorithm

In this section, we provide more details for the identifi-
cation of turning points (local maxima and minima) of
the smoothed function v;p (t), used in Sect. 3. We begin
by linearly adjusting this function to ensure that the
global minimum of the resulting function is 0. Specif-
ically, let D(t) = v¥ (1) — min, V¥ (1)}, = S, ..., T.
Following [76], we apply a two-step algorithm to
the smoothed and minimum-adjusted ¥ (¢). The first
step produces an alternating sequence of local min-
ima (troughs) and local maxima (peaks), which may
include some immaterial turning points. The second
step refines this sequence according to chosen condi-
tions and parameters. The most important conditions
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to initially identify a peak or trough, respectively, are
the following:

V(t9) = max{v(r) : max(0, o — ) <t <min(to +1, T)},
(13)

V(t9) = min{v(¢) : max(0, fo — 1) <t <min(ty +1,T)},
(19)

where / is a parameter to be chosen. We follow [76]
in their choice of / = 17. Defining peaks and troughs
according to this definition alone has some flaws, such
as the potential for two consecutive peaks.

Instead, we implement an inductive procedure to
choose an alternating sequence of peaks and troughs.
Suppose t( is the last determined peak. We search in
the period ¢ > fq for the first of two cases: if we find a
time t; > ty that satisfies (19) as well as a non-triviality
condition D(¢1) < D(#p), we add #; to the set of troughs
and proceed from there. If we find a time #; > f( that
satisfies (18) and ¥ (f9) > D(#;), we ignore this lower
peak as redundant; if we find a time #; > ¢ that sat-
isfies (18) and v(¢;) > D (fy), we remove the peak 7,
replace it with #; and continue from #1. A similar pro-
cess applies from a trough at 7.

At this point, the time series is assigned an alter-
nating sequence of troughs and peaks. However, some
turning points are immaterial and should be removed.
Let 11 < t3 be two peaks, necessarily separated by a
trough. We select a parameter § = 0.2, and if the peak
ratio, defined as ”(”; < 4, we remove the peak #3. If
two consecutive troughs 7, #4 remain, we remove
if D(t2) > v(t4), otherwise remove t4. That is, if the
second peak has size less than 6 of the first peak, we
remove it.

Finally, we use the same log-gradient function
between times t; < fp, defined as

log v(ry) — log V(¢
log-grad(ty, ) = ogV( Zt; — :g ) 1). (20)

The numerator equals log(”(m) a “logarithmic rate

of change”. Unlike the standard rate of change given
by E(?; — 1, the logarithmic change is symmetrically
between (—o0, 00). Let 1, t> be adjacent turning points
(one a trough, one a peak). We choose a parameter

€ =0.01;if

|log-grad(t1, 12)| < e, 1)

that is, the average logarithmic change is less than 1%,
we remove t, from our sets of peaks and troughs. If 7,
is not the final turning point, we also remove #;. After
these refinement steps, we are left with an alternating
sequence of non-trivial peaks and troughs—these are
marked in Fig. 2.

Appendix C: Theoretical properties of volatility dis-
persion

In the two propositions below, let p(z) be an arbi-
trary probability vector of volatilities. That is, p(¢) =
(a,...,ay) € RYN witha; > 0 and Y a; = 1. Let
the uniform distribution of volatility be the probability
vector given by po = %(1, 1,...,1) € RN, For any
j =1, ..., N, let the one-shot distribution of volatil-
ity on asset j be qx = (0, ...,0, 1,0, ..., 0), where the
k-th coordinate is a 1. That is, py signifies a uniform
spread of volatility across all assets, while qj repre-
sents a spread of volatility exhibited entirely by one
asset, with all other assets having zero volatility.

We prove two properties concerning the distance
DY (s, 1) = d"(p(s), p(t)) and the intra-volatility
variance Var(p(t)), as defined in Sect. 6.

Proposition 1 Let p(t) be a volatility vector. The least
possible value of Var(p(t)) is zero, exhibited uniquely
by the uniform pg. The greatest possible value is 1 — #
exhibited only by the one-shot distributions .

Proof The variance can be expressed as

N

1 2
Var(p(t)) = Z (ai — ﬁ) , (22)

i=1

which is clearly at most zero, equality if and only if all
a; = %, that is, for p(¢) = po.
An alternative formulation of the variance is

Var(p(1)) = i af - % 23)
1;1 1
=Y @ +2Y aia; - 13 (24)
i=1N X i<j
= (Xl:ai) - % (25)
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1
=1- e (26)
Equality is obtained if and only if all cross terms a;a; =
0 for i # j. This means that only one value of a@; may
be nonzero, say i = k. By the condition that a; sum to
1, this nonzero value must be 1, so p(t) = qx. |

Proposition 2 The greatest possible distance D! (s, 1)
= dW(p(s), p(1)) occurs between the uniform distri-
bution po and a one-shot distribution qy. Specifically,

2 1
D, n<=(1-—), 27
(s,1) = N( N) (27
and equality occurs only if {p(¢t), p(s)} = {po, qr} as
sets.

Proof Let p(t) = (ay, ..., ay) be an arbitrary proba-
bility vector of volatilities. As discussed in Sect. 6, our
implementation of the Wasserstein distance is essen-
tially between vectors treated as sets (possibly with
repetition in their elements). Specifically, we associate
to each probability vector p(¢) a probability measure
defined as a weighted sum of Dirac delta measures

1 N
= Z%- (28)
i=1

When p and v are probability measures on R that have
cumulative distribution functions F and G, there is a
simple representation of the Wasserstein distance as
follows [78]:

1
4" (u, v)=f0 \F' — G Vdx, 29)

where F~! and G~! are the quantile functions asso-
ciated with F and G, respectively [79]. In our sce-
nario, we integrate p in (28) to compute F. Let
agy, aq), --., acyy be theuniquereordering of ay, ..., ay
in non-decreasing order. That is, a(;) < ap) < ... <
a(n) and {a(l), A(2)y +es a(N)} ={ay,...,an}. Integrat-
ing u, we can see that F is a piecewise-constant increas-
ing step function:

N—-1 .
l
Z ; lag)-ai+1) T ]l[aw)’OO)' (30)

Thus, its associated quantile function is

N

F = Za(,-)n(%%]. (31)

i=1

@ Springer

Now let p(s) = (b1, ..., by) be an alternative proba-
bility vector of volatilities. Let v, G and G ~1 be its
associated measure, cumulative distribution function
and quantile function associated, respectively. In par-
ticular,

meﬂ 1 gy (32)
Thus,
1
d" (p(s), p()) = / |F~'— G 'dx (33)
0
1| N
:[) ;(a(i) —b(,'))]l(%%] dx (34)
1 N
=% 2 lagy — bl (35)
= L i — bl 4 St — 5y by~ L
=N o ag) (i) N a(N) N (N) N
(36)
N—1

<IZ( b+~ (( L)t L))
=N 1 ag) (] N a(N) N (N) N

(37)
N N

1 1 2

RIS PR 9
2 2

=N 7 (39)
2 1

== (1 = ﬁ) . (40)

These inequalities hold by the triangle inequality, and
the non-negativity of agy, b(,’), anNy — % and b(N) —
%. These last two are non-negative as the condition
Za,' =1 implies anNy = %

Finally, suppose equality holds. Then for each i =
1,..., N — 1, we must have |a(,-) — b(,’)| =ag + b(,‘).
This means at least one of a(;) or b(;) is zero, for each i.
Without loss of generality, suppose a(y—1) = 0. As0 <
aqy =ap) < ... < aw-1) = AN, this immediately
showsa(y = Oforalli =1,..., N—1.Soay) = 1 and
up to reordering, p(¢) is a one-shot probability vector
(1,0, ...,0). Thus, p(t) = qx for some k.

In addition, equality forces |(a(v) — %) — (bvy —
%)| = (aw) — ﬁ) + (bvy — %). As both terms are
non-negative, this implies one of a(y) — % by — %

must be zero. But we’ve established a vy — % =1- %
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is nonzero. Thus, b(y) — % must be zero. So by = %
And yet by is the largest of the b;, elements that sum
to 1. This implies all the b; must be equal to % Sop(s)
must be the uniform distribution py. It is then routine
to demonstrate that " (qx, po) attains the theoretical
upper bound of 3 (1 — ). O

Remark 1 The above proof can be made more concep-
tual by noticing that the condition ZINZI a; = 1 shows
directly that

! 1
-1
/ F dx = —.
0 N

Thus, there is a quick bound on fol |F~! — G~ !dx of
% . To tighten the bound, one can notice that the quantile
functions F ~! and G~! necessarily have a “rectangle in
common” in their area under the curve. This rectangle
has area #, which provides the strengthening of the
bound. If x is the coordinate on the domain of F~!
and G~ ! and y is the coordinate on the codomain, this
rectangle can be described as 1 — % <x<1,0<y<

(41)

% (so is in fact a square).

Viewed together, these propositions demonstrate
that, in a precise sense, our study of volatility disper-
sion investigates the extent that real rolling volatility
data sits between two extremes: the case where all the
volatility of the market is uniformly distributed across
every asset, and a case where all volatility is concen-
trated in a single asset.
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