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Abstract This paper deals with the problem of dis-
tributed fault detection and isolation in multi-agent
systems with disturbed high-order dynamics sub-
ject to communication uncertainties and faults. Dis-
tributed finite-frequency mixed H− /H∞ unknown
input observers are designed to detect and distinguish
actuator, sensor and communication faults. Further-
more, an agent is capable of detecting not only its own
faults but also faults in its neighbouring agents. Suf-
ficient conditions are then derived in terms of a set
of linear matrix inequalities while adding additional
design variables to reduce the conservatism. A numer-
ical simulation is carried out in order to demonstrate
the effectiveness of the proposed approach.
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1 Introduction

During the past couple of decades, multi-agent sys-
tems have received considerable amount of attention
from researchers thanks to their wide range of poten-
tial applications in different areas, such as formation
control, constellations in satellite systems [1,2], coop-
erative unmanned aerial vehicles [3], transport systems
[4], power grids and mobile robots [5–7], to mention a
few.

The growing size and complexity of such systems
render their safe operation and reliability critical top-
ics of research. Indeed, in order to achieve their mis-
sion, the agents communicate between themselves over
a given network. Hence, their vulnerability does not
only stem from the fact that each agent can be faulty
at any given time instant but also from the fact that
the communication links between them can be faulty
or subject to an attack. Indeed, on top of actuator and
sensor faults, MASs can be subjected to multiple types
of cyber-attacks [8–13].

In fact, many cyber-attacks have recently occurred
around the world. Some examples include: multiple
power blackouts in some countries like Brazil [14],
the attack on the water distribution system in Australia
[15], the Stuxnet attack that took control of actuators
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and sensors in an Iranian nuclear facility prompting the
replacement of thousands of failed centrifuges [16], the
cyber-attack against an Ukrainian power grid [17], etc.
Clearly, these types of malicious attacks aim at degrad-
ing or interrupting the operation of connected systems,
exploit their aforementioned vulnerabilities and can
have extremely detrimental effects, not only fromapro-
cess point of view but also from an environmental and
financial one as well. It is shown in [18] that informa-
tion security techniques such as adding encryption and
authentication schemes can help make some attacks
more difficult to succeed, but that they are far from
being sufficient against cyber-attacks. Indeed, these
malicious attacks may go unnoticed and lead to erro-
neous behaviours in the overall MAS’s dynamics and
compromising the mission. This makes understanding
their effects on the MAS dynamics, modelling them,
detecting them, identifying them as well as isolating
them, important issues.

There is a multitude of ways to detect and isolate
faults and cyber-attacks inMASs. The reader is referred
to [19] for a recent comprehensive survey. Some works
proposed centralised architectures to detect faults or
attacks [20,21], due to their simplicity, whereby the
analysis of all data is done by a central unit. However, in
order to avoid long-distance data transmissions, reduce
complexity and improve scalability, namely in larger
systems, the detection and isolation process should be
distributed.

A great deal of existing works in the literature
either focuses on linear MASs [22–29], do not con-
sider the effect of disturbances [22,30], or do not con-
sider the effect of measurement and communication
noise [23,31,32]. However, it is a well-known fact
that disturbances and noise are practically inevitable.
Furthermore, some works focus only actuator faults
[23,29,31,33] or on sensor faults [25–27].

In [26,30,31,34], UIOs were used for fault detec-
tion. Nevertheless, most of the existing works on fault
detection using UIOs consider that the generated resid-
ual signals are completely decoupled from theunknown
input. Indeed, they usually require a strict rank condi-
tion to decouple the unknown input vector, which can
be infeasible. In [31] for instance, an UIO residual-
based scheme for nonlinear homogeneous MASs with
actuator faults was proposed, where faults and distur-
banceswere decoupled from the error dynamics assum-
ing some rank conditions. In [26],UIOswere combined
with the mixed H−/H∞ method for fault detection

purpose where only sensor faults were considered. Fur-
thermore, theH− performance index method proposed
therein, as well as in [25,27] for instance, is only appli-
cable when the distribution matrix of the sensor faults
is of full column rank. In our work, one contribution
is to relax such condition using the finite-frequency
approach introduced in [35]. Furthermore, in [27,36]
for instance, multiple faults cannot occur in the MAS,
which is a drawback, especially in large-sized MASs.

In [23,27–29,31], information from neighbouring
FDI filters was transmitted among agents, which
may weaken the distributed property of the detection
scheme. Indeed, if and when an observer fails to accu-
rately give an estimate at a given instant for an agent, all
surrounding observers in its neighbourhood are com-
promised, which in turn compromises their respec-
tive neighbours’ observers, thus creating a destructive
snowball effect that might lead to confusing results,
trigger false alarms, etc. In our work, such drawback is
removed since observers do not communicate between
themselves.

Unlike [23,28,29,31], where the topology is assu-
med to be undirected, a directed communication graph
is considered in this work. Additionally, the proposed
scheme in this paper does not require knowledge
beyond its 1-hop neighbourhood and is independent
on the graph topology of the overall MAS, making it
more scalable. Furthermore, as opposed to the detec-
tion filters proposed in [23,29,31,33] where their size
increases as the graph topology grows, in the proposed
scheme, the size of the filter is only limited to the size of
the neighbourhood of each agent independently, hence
improving the scalability and reducing the computa-
tional burdens.

Given the limitations discussed above with respect
to the existing studies, the main contributions of this
work are summarised as follows:

– A more general problem is studied where actua-
tor, sensor and communication faults are consid-
ered in the robust detection and isolation process
for Lipschitz nonlinear heterogeneous MASs with
disturbances and communication parameter uncer-
tainties, without global knowledge about the com-
munication graph and under-directed graphs.

– A distributed finite-frequencymixedH−/H∞ non-
linear UIO-based FDI scheme is designed such that
actuator and sensor faults along with the commu-
nication faults are treated separately. Hence, the
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rank condition on the measurement fault distri-
bution matrix as required by [27,28] for instance
is relaxed. Additionally, the scheme is capable of
detecting and distinguishing multiple faults and
attacks at a given time instant.

– Sufficient conditions in terms of a set of LMIs
are provided for the proposed finite-frequency
H−/H∞ UIO-based method, where the coupling
betweenLyapunovmatrices and the observermatri-
ces is avoided. This LMI characterisation enables
to reduce conservatism by introducing additional
design variables.

A brief comparison of the proposed method with
some existingworks in the literature is given in Table 1.
To the best of the authors’ knowledge, a distributed
finite-frequency mixedH−/H∞ nonlinear UIO-based
scheme for FDI in heterogeneous networked MASs
subject to disturbances, noise, actuator faults, sensor
faults and communication attacks, is investigated for
the first time in this paper.

The rest of the manuscript is organised as follows.
Section 2 presents the problem formulation and some
preliminaries. The proposed finite-frequencyH−/H∞
UIO-based method and the corresponding algorithms
are laid out in Sect. 3. In Sect. 4, an illustrative exam-
ple is given to show the effectiveness of the pro-
posed scheme. Finally, some conclusions are inferred
in Sect. 5.

Notations: Given a transfer function Txy(s) linking y
to x , itsH∞ norm is defined as

||Txy ||∞ = supωσ̄ (Txy( jω)).

where σ̄ is the maximum singular value of Txy(s). Its
H− index is defined as

||Txy ||− = infωσ(Txy( jω)).

where σ is the minimum singular value of Txy(s). For
a square matrix A, He(A) = A + A∗ where the super-
script A∗ corresponds to the conjugate of A. tr(A) is
the trace of A. 1n and In refer to a column of all
entries 1 and an identity matrix, respectively, and of
dimensions n. 0m×n denotes a null matrix of dimen-
sion m × n. diag(a1, a2, . . . , an) denotes the diago-
nal matrix containing a1, a2, . . . , an on the diagonal.
Blkdiag(A1, A2, . . . , An) denotes the block diagonal
matrix with matrices A1, A2, . . . , An on the diagonal.
Col(A1, A2, . . . , An) denotes the column block matrix
(AT

1 , AT
2 , . . . , AT

n )T . Throughout this paper, for a real

square matrix P ∈ R
n×n , P > 0 implies that P is

symmetric and positive-definite.

2 Problem formulation

Consider a heterogeneousMAS composed of N agents
labelled by i ∈ {1, . . . , N } and described by the fol-
lowing uncertain dynamics
⎧
⎨

⎩

ẋi (t) = Ai xi (t)+Bui ui (t)+Bdi di (t)+B fi fai (t)
+ϕi (xi (t))

yi (t) = Ci xi (t) + Ddi di (t) + D fi fsi (t)
,

(1)

where xi ∈ IRnx , ui ∈ IRnu , yi ∈ IRny , di ∈ IRnd ,
fai ∈ IRn fa , fsi ∈ IRn fs are the state vector, the control
input, the output, the L2-norm bounded disturbances
and noise, the actuator fault and the sensor fault signals,
respectively. Matrices Ai ∈ IRnx×nx , Bui ∈ IRnx×nu ,
Bdi ∈ IRnx×nd , B fi ∈ IRnx×n fa , Ci ∈ IRny×nx , Ddi ∈
IRny×nd , D fi ∈ IRny×n fs are known constant matrices.
ϕi (xi (t)) ∈ IRnx is a known function representing the
nonlinearity of agent i .

2.1 Graph theory and communication faults

The topology is represented by a directed graph G =
(V, E), where V = {1, . . . , N } is the node set and
E ⊆ V × V is the edge set. It is described by an adja-
cency matrixA ∈ IRN×N that contains positive weight
entries. If information flows from node j to i , then
ai j > 0, otherwise ai j = 0. The neighbouring set of
node i , denoted by Ni ⊆ V , is the subset of nodes
that node i can sense and interact with. Alternatively,
one could noteNi = {i1, i2, . . . , iNi } ⊆ [1, N ], where
Ni = |Ni |.

Themeasuredoutputs are exchangedbetweenneigh-
bouring agents. Hence, an agent i receives from each
neighbour j ∈ Ni its output (resp. input), corrupted
by parameter uncertainties associated with the com-
munication link between i and j , �ai j (t) ∈ IR and by
faults due to link faults, packet losses or potential cyber-
attacks denoted f zi j (t) ∈ IR

n fzi j (resp. f ui j (t) ∈ IRn fu ),
i.e.
zi j (t) = ai j (1 + �ai j (t))y j (t) + Dzi j f

z
i j (t),

ui j (t) = ai j (1 + �ai j (t))u j (t) + Dui j f
u
i j (t),

(2)

with zii (t) = yi (t) and uii (t) = ui (t). Dzi j ∈
IR

ny×n fzi j and Dui j ∈ IRnu×n fu are known constant
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Table 1 Brief comparison with some existing works, where the
following acronyms are used: P.S.: Proposed Scheme; D&N:
Both Disturbances and Noise; A&S Faults: Both Actuator and

Sensor Faults; UTR: Undirected Topology Required; RISR: Rel-
ative Information Sensors Required; AGIR: Access to the Col-
lective Input Required; GK: Global Knowledge

Reference Linear D&N Heterogeneous A&S Faults Attacks UTR RISR ACIR GK

[22] Yes No No No Yes Yes No No Yes

[23] Yes No No No No Yes No No Yes

[27] Yes Yes No No No Yes Yes No Yes

[30] Yes No No No Yes Yes No No Yes

[26] Yes Yes Yes No No Yes Yes No No

[34] No No No No No Yes No Yes Yes

[37] Yes No No No Yes Yes No No Yes

[38] Yes No No No Yes Yes No No No

P. S. No Yes Yes Yes Yes No No No No

matrices. It is also assumed that the parameter uncer-
tainties �ai j (t) satisfy |�ai j (t)| < ai j .

Remark 1 It is worth noting that the considered faults
cover awide range of cyber-attacks that have been stud-
ied in the literature. For instance, assume that�ai j = 0
for the sake of clarity,

– In the case of a communication parametric fault
[30] for i , affecting all its incoming information
from agent j , one has

zi j (t) = (ai j + fai j (t)(t))y j (t)

= ai j y j (t) + fai j (t)y j (t),

where analogously to (2), one could note that
f zi j (t) = fai j (t)y j (t) and Dzi j = Iny . fai j (t) rep-
resents a parametric fault affecting the communi-
cation parameter ai j .

– In a denial of service attack situation affecting
all incoming information from agent j , one has
f zi j (t) = −ai jδ(t − ti j )y j (t) and Dzi j = Iny [39],
where

δ(t − ti j ) =
{
1, t � ti j
0, else

,

and ti j is the instant at which the attack occurs.
– Conversely, in a false data injection situation in
the transmitted information, agent j transmits or
agent i receives fake/invalid information, that is,
f zi j (t) contains the injected malicious information
[12]. In the case where the malicious information
f zi j (t) ∈ IR affects all incoming transmitted data
equally, then one could set Dzi j = 1ny .

– Under replay attacks, the attacker intercepts the
transmitted information and replays it with a delay
instead of the actual information. In this case, one
could write [10], f zi j (t) = δi j (t − ti j )(−ai j y j (t) +
y j (t − Ti j )) and Dzi j = Iny , where

δi j (t − ti j ) =
{
1, t � ti j
0, else

,

and ti j > 0 is the instant at which the attack occurs
and Ti j ∈ IR is the time delay.

The same remarks could bemadew.r.t. ui j (t). Contrary
to agent/node attacks or faults in the form of the signals
fai (t), fsi (t), edge/communication attacks cannot be
detected locally by an emitting agent j and thus need
its neighbours to detect them. It is worth mentioning
that the introduced problem can represent many poten-
tial practical applications to FDI in networked MASs.
As discussed in introduction section, such applica-
tions include electric power networks and micro-grids,
multi-robot andmulti-vehicle systems, etc. [37,38,40].

2.2 Concatenated local model

In this subsection, a concatenated model is developed
for each agent. Let us first denote
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xvi = [xTi , xTi1 , . . . , x
T
iNi

]T ∈ IRnix ,

dvi = [dTi , dTi1 , . . . , d
T
iNi

]T ∈ IRnid ,

fvsi = [ f Tsi , f Tsi1
, . . . , f TsiNi

]T ∈ IRnifs ,

fvai = [ f Tai , f Tai1
, . . . , f TaiNi

]T ∈ IRnifa ,

zi = [(yi − yi1)
T , . . . , (yi − yiNi )

T ]T ∈ IRniz ,

yvi = [yTi1 , . . . , yTiNi ]
T ∈ IRniz ,

uvi = [uTi1 , . . . , uTiNi ]
T ∈ IRniu ,

(3)

the concatenated state, disturbance, fault signals, rela-
tive information, output and input of agent i (i j ∈ Ni ),
where nix = nx (Ni + 1), nid = nd(Ni + 1), nifa =
n fa (Ni + 1), nifs = n fs (Ni + 1), niz = nyNi and

niu = nuNi . A virtual output is given as

zvi = Zi
(
yi
zi

)

+ �Zi
(
yi
yvi

)

+ Dvzi f
z
i ∈ IRniz , (4)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Zi =
(

Iny 0ny×niz
0niz×ny Ai

)

∈ IRniz×niz ,

�Zi =
(
0ny×ny 0ny×niz
0niz×ny Ai�Ai

)

∈ IRniz×niz ,

�Ai = diag(�aii1 , . . . ,�aii1︸ ︷︷ ︸
ny times

, . . . ,�aiiNi , . . . , �aiiNi )

∈ IRniz×niz ,

Ai = diag(aii1 , . . . , aii1︸ ︷︷ ︸
ny times

, . . . , aiiNi , . . . , aiiNi )

∈ IRniz×niz ,

Dvzi =
(

0ny×nifz−Blkdiag[Dzii1
, Dzii2

, . . . , DziiNi
]

)

∈ IRniz×nifz ,

zvi = [yTi , zTii1 , . . . , z
T
iiNi

]T ∈ IRniz ,

f zi = [ f zii1 , f zii2 , . . . , ( f
z
iiNi

)T ]T ∈ IRnifz ,

with nifz = ∑
j∈Ni

n fzi j
�= 0, niz = ny(Ni + 1). zvi

and f zi are the concatenated measured vector available
for agent i and the associated communication fault sig-
nals, respectively. Āi = Ai + �Ai ∈ IRniz×niz is the
actual local adjacency matrix of agent i which takes
into account the parametric uncertainty associated with

the communication links. Replacing outputs and inputs
with their respective values from (1) yields
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋvi (t)= Ãi xvi (t)+ B̃ui uvi (t)+ B̃ui ui (t)+ B̃di dvi (t)

+ B̃ fi fvai (t) + ϕvi (xvi (t))

zvi (t) = Zi (C̃i xvi (t) + D̃di dvi (t) + D̃ fi fvsi (t))

+ Dvzi f
z
i (t) + �Zi

(
yi (t)
yvi (t)

)

,

(5)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕvi (xvi (t)) = Col(ϕi (xi (t)), . . . , ϕiNi (xiNi (t))),

Ãi = Blkdiag(Ai , Ai1 , . . . , AiNi
),

B̃ui = Col(Bui , 0nx×nu , . . . , 0nx×nu ),

B̃ui = Col(0nx×niu
,Blkdiag(Bui1

, . . . , BuiNi
)),

B̃di = Blkdiag(Bdi , Bdi1
, . . . , BdiNi

),

B̃ fi = Blkdiag(B fi , B fi1
, . . . , B fiNi

),

C̃i , D̃di and D̃ fi correspond to the following tilde notation

Θ̃i =

⎡

⎢
⎢
⎢
⎣

Θi 0 . . . 0
Θi −Θi1 . . . 0
.
.
.

.

.

.
. . .

.

.

.

Θi 0 . . . −ΘiNi

⎤

⎥
⎥
⎥
⎦

,

with Ãi ∈ IRnix×nix , B̃ui ∈ IRnix×niu , B̃ fi ∈ IRnix×nif a ,

C̃i ∈ IRniz×nix , D̃di ∈ IRniz×nid , D̃ fi ∈ IRniz×nif s . Let
us make the following assumption on the parametric
uncertainties

Assumption 1 There exist a time-varying matrix νi (t)
∈ IRniz×niz and known matrices Xi and Mi with appro-
priate dimensions such that

�Zi = Xiνi (t)Mi , (6)

with σ̄ (νi ) ≤ δM .

Remark 2 It is worth noting that this assumption stems
from the definition of the graph topology in this paper
and is standard for bounded uncertainties [41].

Under this assumption, one could rewrite system (5)
as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋvi (t) = Ãi xvi (t) + B̃ui uvi (t) + B̃ui ui (t) + B̃di dvi (t)

+ B̃ fi fvai (t) + ϕvi (xvi (t)),

zvi (t) = Zi C̃i xvi (t) + Zi D̃di dvi (t) + DFi
Fi (t)

− Xiφi (t),

,(7)

123



2524 A. Taoufik et al.

where Fi (t) =
(
fvsi (t)
f zi (t)

)

, DFi = (
Zi D̃ fi Dvzi

)
,

φi (t) = −νi (t)Dφi

⎛

⎝
xvi (t)
dvi (t)
fvsi (t)

⎞

⎠,

Dφi = Mi

⎛

⎜
⎜
⎝

Blkdiag(CT
i , . . . ,CT

iNi
)

Blkdiag(DT
di

, . . . , DT
diNi

)

Blkdiag(DT
fi
, . . . , D fiNi

)

⎞

⎟
⎟
⎠

T

.

Note that, in the casewhere D̃ fi = 0, DFi is selected
as DFi = Dvzi . The robust distributed FDI objec-
tive is the design of residual generators for each agent
using locally exchanged information capable of detect-
ing and isolating not only the agent’s own faults but also
the faults of its neighbours as well as attacks targeting
incoming communication links.

The following assumption and lemma are going to
be used in the next section.

Assumption 2 The nonlinear functions ϕi (xi (t)) are
Lipschitz, with Lipschitz constant θi , ∀i = {1, 2, . . . ,
N }, i.e. ∀xi , x̂i ∈ IRnx

||ϕi (xi ) − ϕi (x̂i )|| � θi ||xi − x̂i ||.

Remark 3 It isworth noting thatAssumption 2 restricts
the class of considered nonlinearities in Eq. (1) and has
been considered in many works [42].

Lemma 1 [43] Given realmatrices Fi and Ji of appro-
priate dimensions, then the following inequality holds
for any strictly positive scalar εi :

Fi J
T
i + Ji F

T
i � εi Ji J

T
i + ε−1

i Fi F
T
i .

3 Distributed fault detection and isolation scheme

The aim here is to design robust residual generators
which are sensitive to all types of faults in spite of
the presence of uncertainties using UIOs. Consider the
following observer
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q̇vi (t) = Niqvi (t) + G1i ui (t) + G2iUi (t) + Li zvi (t)

+ Tiϕvi (x̂vi (t))

x̂vi (t) = qvi (t) − Hi zvi (t)

ẑvi (t) = Zi C̃i x̂vi (t)

,(8)

where Ui (t) = Col(uii1(t), . . . , uiiNi (t)). The matri-
ces Ni , G1i , G2i , Li , Ti and Hi will be described

hereafter. Define the state estimation error as evi (t) =
xvi (t) − x̂vi (t). Then

evi (t) = (I + Hi Zi C̃i )xvi (t) − qvi (t) + HiVvi vi (t),

where Di (t) =
(
dvi (t)
φ(t)

)

, Vvi = (
Zi D̃di −Xi DFi

)

and vi (t) =
(
Di (t)
Fi (t)

)

. Therefore, its dynamics is

expressed as

ėvi (t)

= Ni evi (t) + (Ti Ãi − Si Z
i C̃i − Ni )xvi (t) + Tiϕ

evi
vi

+ (Ti B̃ui − G1i )ui (t) + SiXiφi (t) − Si DFi
Fi (t)

+ (Ti B̃di − Si Z
i D̃di )dvi (t) + Ti B̃ fi fvai (t)

+ Ti B̃ui uvi (t) − G2i ((Au,i�Au,i + Au,i )uvi (t)

+ Dui fui (t)) + Hi Vvi v̇i (t)

(9)

where

Ti = I + Hi Z
i C̃i , (10a)

Si = Li + Ni Hi , (10b)

ϕ
evi
vi (t) = ϕvi (xvi (t)) − ϕvi (x̂vi (t)), and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fui (t) = Col( f uii1 (t), . . . , f uiiNi
(t)),

Dui = Blkdiag(Duii1
, . . . , DuiiNi

),

�Au,i = diag(�aii1 , . . . , �aii1︸ ︷︷ ︸
nu times

, . . . , �aiiNi , . . . , �aiiNi ),

Au,i = diag(aii1 , . . . , aii1︸ ︷︷ ︸
nu times

, . . . , aiiNi , . . . , aiiNi ).

with νi (t) = �Ai . By imposing the following

HiVvi = 0, (11a)

Ti Ãi − Si Z
i C̃i = Ni , (11b)

Ti B̃ui − G1i = 0, (11c)

Ti B̃ui − G2iAu,i = 0, (11d)

(9) becomes

ėvi (t) = Nievi (t) + (Ti B̃di − Si Z
i D̃di )dvi (t)

+ Ti B̃ fi fvai (t) − Si DFiFi (t) + SiXiφi (t)

− Ti B̃ui (A−1
u,iAu,i )�Au,i uvi (t)

− Ti B̃uiA−1
u,i Dui fui (t) + Tiϕ

evi
vi (t).

(12)
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By setting new concatenated uncertainties vector as

φ
i
(t) =

(
φi (t)

�Au,i uvi (t)

)

, the error dynamics becomes

ėvi (t) = Nievi (t) + (Ti B̃di − Si Z
i D̃di )dvi (t)

+ Tiϕ
evi
vi (t)

− Si DFiFi (t) + (SiXi − Ti X̄i )φi
(t)

− TiBiF i (t),

(13)

where Bi =
(
−B̃ fi B̃uiA−1

u,i Dui

)
, F i (t) =

(
fai (t)
fui (t)

)

,

Xi =
(
Xi 0niz×(nu ·Ni )

)
, X̄i =

(
0nix×niz

−B̃ui

)
.

On the other hand, define the following residual vec-
tor

ri (t) = Wi (zvi (t) − ẑvi (t)), (14)

where Wi is a pre-set post-residual gain matrix used to
highlight the effects of the faults on the residual signals.
In this work, since it does not directly affect the residual
signals, it is considered that F i (t) affects the residual
signals over a finite-frequency domain, which can be
uniformly expressed as [44]

ΩF i
:= {ω f ∈ IR | κ(ω f − ω f1)(ω f − ω f2) � 0},(15)

where κ ∈ {1,−1}, ω f1 and ω f2 are given positive
scalars characterizing the frequency range of the fault
vector F i . Indeed, if one selects

– κ = 1 andω f1 < ω f2 , then the setΩF i
corresponds

to the middle frequency range

ΩF i
:= {ω f ∈ IR | ω f1 � ω f � ω f2}.

– κ = 1 and −ω f1 = ω f2 = ω fl , then the set ΩF i

corresponds to the low-frequency range

ΩF i
:= {ω f ∈ IR | |ω f | � ω fl }.

– κ = −1 and −ω f1 = ω f2 = ω fh , then the set ΩF i

corresponds to the high-frequency range

ΩF i
:= {ω f ∈ IR | |ω f | � ω fh }.

The objective here is to simultaneously achieve
local state estimation (asymptotic stability of the error
dynamics) and fault/attack detection. Theorems 1, 2
and 3 are proposed in this section to solve this prob-
lem through a set of matrix inequalities using the
H∞, H− performance indexes. Hence, to summarise,
the proposed fault/attack detection scheme is obtained
through simultaneously satisfying the following, for
some performance scalar variables γi , �iβi and ηi∀i ∈
{1, . . . , N }.

(i) To guarantee asymptotic stability of error dynamics
(13).

(ii) To ensure a reasonable sensitivity of the residuals to
the possible output attacks/faults over all frequency
ranges, by satisfying

||TrFiFi ||− > γi , (16)

where rFi is the residual signal defined for the case
with no disturbance dvi = 0, no uncertainty φ

i
= 0

and no fault F i = 0.
(iii) To ensure a reasonable sensitivity of the residu-

als to the possible input attacks/faults over a finite-
frequency range defined in the set ΩF i

, by satisfy-
ing

||TrF iF i
||− > �i , (17)

for all solutions of (13) such that,
∫∞
0

(
κ(ω f1evi (t)+ j ėvi (t))(ω f2evi (t)− j ėvi (t))

T
)
dt

� 0,

(18)

where κ , ω f1 , ω f2 are as defined in ΩF i
, and rF i

is the residual signal defined for the case with no
disturbance dvi = 0, no uncertainty φ

i
= 0 and no

fault Fi = 0.
(iv) To guarantee a good disturbances and uncertainties

rejection performance w.r.t. to the residual signals
over all frequency ranges, i.e.

||TrDi dvi
||∞ < ηi , ||TrDi φi

||∞ < βi , (19)

where rDi is the residual signal defined without
fault Fi = 0 and F i = 0.

For the rest of the manuscript, the time argument is
omitted where it is not needed for clarity.

Theorem 1 For dvi = 0, φ
i
= 0, F i = 0, Fi �= 0, let

γi , θmi , σ1i and εi be strictly positive scalars, error
dynamics (13) is asymptotically stable and perfor-
mance index (16) is guaranteed if ∀i ∈ {1, . . . , N },
there exist symmetric positive definite matrices Pi ,
matrices Ui , Ri and unstructured nonsingular matri-
ces Yi such that the following optimisation problem is
solved

max
Pi ,Yi ,Ui ,Ri

γi

subject to
⎛

⎜
⎜
⎝

Ψ 1
i Ψ 2

i Ψ 3
i Ψ 4

i
∗ Ψ 5

i 0 Ψ 6
i∗ ∗ −εi I Ψ 7
i∗ ∗ ∗ Ψ 8
i

⎞

⎟
⎟
⎠ < 0, (20)
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2526 A. Taoufik et al.

UiVvi = 0, (21)

where

Ψ 1
i = Yi Ãi +Ui Z

i C̃i Ãi − Ri Z
i C̃i

+ ÃT
i Y

T
i + ÃT

i (Zi C̃i )
TUT

i − (Zi C̃i )
T RT

i

+ εiθmi I − (Zi C̃i )
T WT

i Wi Z
i C̃i ,

Ψ 2
i = −Ri DFi − (Zi C̃i )

T WT
i Wi DFi ,

Ψ 3
i = Yi +Ui Z

i C̃i ,

Ψ 4
i = −Yi + Pi + σ1i Ã

T
i Y

T
i + σ1i Ã

T
i (Zi C̃i )

TUT
i

− σ1i (Z
i C̃i )

T RT
i ,

Ψ 5
i = −DT

Fi
W T

i Wi DFi + γ 2
i I,

Ψ 6
i = −σ1i D

T
Fi

RT
i ,

Ψ 7
i = σ1i Y

T
i + σ1i (Z

i C̃i )
TUT

i ,

Ψ 8
i = −σ1i (Yi + Y T

i ),

and the observer gains are specified as

Si = Y−1
i Ri ,

Hi = Y−1
i Ui ,

Ni = (I + Y−1
i Ui Zi C̃i ) Ãi − Y−1

i Ri Z i C̃i ,

G1i = (I + Y−1
i Ui Zi C̃i )B̃ui ,

G2i = (I + Y−1
i Ui Zi C̃i )B̃uiA−1

u,i ,

Li = Y−1
i Ri − NiY

−1
i Ui .

(22)

Proof Performance index (16) corresponds to the fol-
lowing function

JFi =
∫ ∞

0

(
rTFi

rFi − γ 2
i FT

i Fi

)
dt > 0. (23)

Let us select the candidate Lyapunov function
Vi (evi ) = eTvi Pi evi , then

V̇ (evi ) = eTvi (N
T
i Pi + Pi Ni )evi + (ϕ

evi
vi )T T T

i Pi evi

+ eTvi Pi Tiϕ
evi
vi + FT

i (−Si DFi )
T Pi evi

+ eTvi Pi (−Si DFi )Fi .

(24)

On the other hand, (23) can be expressed as

JFi =
∫ ∞

0

(
[eTvi (t)(Zi C̃i )

T + FT
i (t)DT

Fi
)]WT

i Wi

× (Zi C̃i evi (t) + DFiFi (t))

− γ 2
i FT

i Fi − V̇ (evi )
)
dt

+
∫ ∞

0

(
V̇ (evi )

)
dt > 0.

(25)

According to Assumption 2, it can be shown that

(ϕ
evi
vi )Tϕ

evi
vi =||ϕevi

vi ||2 � θ2i ||xi (t) − x̂i (t)||2
+ θ2i1 ||xi1(t) − x̂i1(t)||2 + · · ·
+ θ2iNi

||xiNi (t) − x̂iNi (t)||2

� θMi e
T
vi
evi ,

(26)

where θMi = max(θ2i , θ2i1 , . . . , θ
2
iNi

).

Since V (evi ) = eTvi Pi evi ≥ 0 and using Lemma 1
and equation (26), (25) can be shown to be equivalent
to
(

Υi −Pi Si DFi − (Zi C̃i )
T WT

i Wi DFi

� −DT
Fi
W T

i Wi DFi + γ 2
i I

)

< 0, (27)

whereΥi = NT
i Pi + Pi Ni +εiθMi I +ε−1

i Pi Ti T T
i Pi −

(Zi C̃i )
T WT

i Wi Zi C̃i . Using the Schur complement,
(27) can be re-written as

T1i + V1iS1i + ST
1iVT

1i < 0, (28)

with
T1i

=
⎛

⎝
εi θMi I − (Zi C̃i )

T WT
i Wi Zi C̃i −(Zi C̃i )

T WT
i Wi DFi 0

∗ −DT
Fi

W T
i Wi DFi + γ 2

i I 0
∗ ∗ −εi I

⎞

⎠ ,

S1i = (
Ni −Si DFi Ti

)
, V1i =

⎛

⎝
Pi
0
0

⎞

⎠ .

Using the congruence transformation
(
I T T

1i

)
, (28) is

equivalent to(
T1i + K1iS1i + ST

1iK
T
1i −K1i + V1i + ST

1iY
T
1i

∗ −(Y1i + YT
1i )

)

<0,

(29)

for new general matricesK1i andY1i . Hence, by select-
ing

KT
1i = (

Y T
i 0 0

)
, Y1i = σ1i Yi ,

for a scalar σ1i and a nonsingular general matrix Yi ,
one can obtain the following sufficient condition
⎛

⎜
⎜
⎝

Π1
i Π2

i Yi Ti Π3
i

∗ Π4
i 0 Π5

i∗ ∗ −εi I σ1i T T
i Y T

i∗ ∗ ∗ −σ1i (Yi + Y T
i )

⎞

⎟
⎟
⎠ < 0,

with
Π1

i = Yi Ni + NT
i Y

T
i + εiθMi I

− (Zi C̃i )
T WT

i Wi Z
i C̃i ,

Π2
i = −Yi Si DFi − (Zi C̃i )

T WT
i Wi DFi ,

Π3
i = −Yi + Pi + σ1i N

T
i Y

T
i ,

Π4
i = −DT

Fi
W T

i Wi DFi + γ 2
i I,

Π5
i = −σ1i D

T
Fi
STi Y

T
i .
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Replacing Ni and Ti with their respective values,
and applying the linearising change of variables Ui =
Yi Hi , Ri = Yi Si , (20) is obtained. Furthermore, pre-
multiplying (11a) with Yi yields (21). Therefore, solv-
ing (20) under imposed constraints (21) and using
observer gains (22) guarantees residual performance
index (16) and the asymptotic stability of error dynam-
ics (9). 
�
Theorem 2 For dvi = 0, φ

i
= 0, Fi = 0, F i �=

0, let �i , θMi , σ2i and εi be strictly positive scalars,
an arbitrary design matrix Ki , error dynamics (13) is
asymptotically stable and performance index (17) is
guaranteed if ∀i ∈ {1, . . . , N } over a finite-frequency
domain defined in (15), there exist symmetric positive
definite matrices Xi , symmetric matrices Xi , matrices
Ui , Ri and unstructured nonsingular matrices Yi such
that the following optimisation problem is solved

max
Xi ,Xi ,Yi ,Ui ,Ri

�i

subject to
⎛

⎜
⎜
⎝

Σ1
i Σ2

i Σ3
i Σ4

i
∗ Σ5

i Σ6
i Σ7

i∗ ∗ −εi I Σ8
i∗ ∗ ∗ Σ9
i

⎞

⎟
⎟
⎠ < 0,

κXi � 0,

(30)

where

Σ1
i = Yi Ãi +Ui Z

i C̃i Ãi − Ri Z
i C̃i + ÃT

i Y
T
i

+ (Zi C̃i Ãi )
TUT

i − (Zi C̃i )
T RT

i − ω f1ω f2Xi

+ εiθMi I − (Zi C̃i )
T WT

i Wi Z
i C̃i ,

Σ2
i = −Ui Z

i C̃iBi + ÃT
i Y

T
i K T

i

+ (Zi C̃i Ãi )
TUT

i K T
i − (Zi C̃i )

T RT
i K

T
i ,

Σ3
i = Yi +Ui Z

i C̃i ,

Σ4
i = −Yi + Xi − jω faXi + σ2i Ã

T
i Y

T
i

+ σ2i (Z
i C̃i Ãi )

TUT
i − σ2i (Z

i C̃i )
T RT

i ,

Σ5
i = �2

i I − KiYiBi − KiUi Z
i C̃iBi

− BT
i Y

T
i K T

i − BT
i (Zi C̃i )

TUT
i K T

i ,

Σ6
i = KiYi + KiUi Z

i C̃i ,

Σ7
i = −KiYi − σ2iBT

i Y
T
i − σ2iBT

i (Zi C̃i )
TUT

i ,

Σ8
i = σ2i Y

T
i + σ2i (Z

i C̃i )
TUT

i ,

Σ9
i = −(Xi + σ2i Yi + σ2i Y

T
i ),

andBi =
(
−B̃ fi B̃uiA−1

u,i Dui

)
. The observer gains are

then computed as in (22).

Proof Let us select the candidate Lyapunov function
Vi (evi ) = eTvi Xi evi , then

V̇ (evi ) = eTvi (N
T
i Xi + Xi Ni )evi + (ϕ

evi
vi )T T T

i Xi evi

+ eTvi Xi Tiϕ
evi
vi − FT

i (TiBi )
T Xi evi

− eTvi Xi (TiBi )F i .

(31)

To solve (17) over a finite-frequency domain as defined
in (15), one could define the following function

JF i
=
∫ ∞

0

(
�2
i FT

i F i − rTF i
rF i

− tr(He(Wi )Xi )

+ V̇ (evi )
)
dt < 0,

(32)

where Wi = (ω f1evi + j ėvi )(ω f2evi + j ėvi )
∗ and Xi

is a symmetric matrix. From (18), one gets
∫ ∞

0
κWidt � 0.

Moreover, it can be shown through the Parseval’s the-
orem [45] that
∫ ∞

0
Widt = 1

2π

∫ +∞

−∞

(
(ω f1 − ω)(ω f2

−ω)ěi (ω)ěTi (ω)
)
dω,

where ěi (ω) is the Fourier transform of evi (t). Choos-
ing Xi such that κXi � 0, it yields

tr((
∫∞
0 Widt)∗Xi ) + tr((

∫∞
0 Widt)Xi ) � 0,

or equivalently, tr(He(Wi )Xi ) � 0. Therefore, (17) is
guaranteed for all solutions of (13) satisfying (18), if

�2
i FT

i F i − rTF i
rF i

+ V̇ (evi ) − tr(He(Wi )Xi ) < 0.(33)

By setting ω fa = ω f1+ω f2
2 , then

− tr(He(Wi )Xi )

= −eTvi ω f1ω f2Xi evi − ėTviXi ėvi − eTvi jω faXi ėvi

+ ėTvi jω faXi evi

= −eTvi ω f1ω f2Xi evi − eTvi N
T
i Xi Ni evi

− (ϕ
evi
vi )T T T

i Xi Ni evi + FT
i BT

i T
T
i Xi Ni evi

− eTvi N
T
i Xi Tiϕ

evi
vi − (ϕ

evi
vi )T T T

i Xi Tiϕ
evi
vi

+ FT
i BT

i T
T
i Xi Tiϕ

evi
vi + eTvi N

T
i Xi TiBiF i

+ (ϕ
evi
vi )T T T

i Xi TiBiF i − FT
i BT

i T
T
i Xi TiBiF i

− eTvi jω faXi Tiϕ
evi
vi + eTvi jω faXi TiBiF i

− eTvi jω fa Ni evi

+ eTvi N
T
i jω faXi evi + (ϕ

evi
vi )T T T

i jω faXi evi

− FT
i BT

i T
T
i jω faXi evi .

(34)
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On the other hand, using Lemma 1 and (26), one has

V̇ (evi ) < eTvi (N
T
i Xi + Xi Ni + εiθMi I

+ ε−1
i Xi Ti T

T
i Xi )evi − FT

i (TiBi )
T Xi evi

− eTvi Xi (TiBi )F i .

(35)

Replacing (34) and (35) into (33) gives
⎛

⎝
Ξ1

1i Ξ2
1i Ξ3

1i
∗ Ξ4

1i Ξ5
1i∗ ∗ Ξ6
1i

⎞

⎠ < 0, (36)

where

Ξ1
1i = −ω f1ω f2Xi − NT

i Xi Ni − jω faXi Ni

+ jω fa N
T
i Xi

+ NT
i Xi + Xi Ni + εiθMi I

− (Zi C̃i )
T WT

i Wi Z
i C̃i ,

Ξ2
1i = NT

i Xi TiBi + jω faXi TiBi − Xi TiBi ,

Ξ3
1i = −NT

i Xi Ti − jω faXi Ti + Xi Ti ,

Ξ4
1i = −BT

i T
T
i Xi TiBi + �2

i I,

Ξ5
1i = BT

i T
T
i Xi Ti ,

Ξ6
1i = −T T

i Xi Ti − εi I.

It can be re-written as

T2i + V2iS2i + ST
2iVT

2i − ST
2iXiS2i < 0, (37)

with

T2i =
⎛

⎝
−ω f1ω f2Xi + εi θMi I − (Zi C̃i )

T WT
i Wi Zi C̃i 0 0

∗ �2
i I 0

∗ ∗ −εi I

⎞

⎠ ,

S2i = (
Ni −TiBi Ti

)
, V2i =

⎛

⎝
Xi − jω faXi

0
0

⎞

⎠ .

Similar to Theorem 1, (37) can be shown to be equiv-
alent to
(
T2i + K2iS2i + ST

2iKT
2i −K2i + V2i + ST

2iYT
2i∗ −(Xi + Y2i + YT

2i )

)

< 0,
(38)

for new general matricesK2i andY2i . Hence, by select-
ing

KT
2i = (

Y T
i Y T

i K T
i 0

)
, Y2i = σ2i Yi ,

for a scalar σ2i , an arbitrary matrix Ki and a nonsin-
gular general matrix Yi , one can obtain the following

sufficient condition
⎛

⎜
⎜
⎝

Ξ1
2i Ξ2

2i Yi Ti Ξ3
2i

∗ Ξ4
2i KiYi Ti Ξ5

2i∗ ∗ −εi I σ2i T T
i Y T

i∗ ∗ ∗ Ξ6
2i

⎞

⎟
⎟
⎠ < 0,

with

Ξ1
2i = Yi Ni + NT

i Y
T
i − ω f1ω f2Xi + εiθMi I

− (Zi C̃i )
T WT

i Wi Z
i C̃i ,

Ξ2
2i = −Yi TiBi + NT

i Y
T
i K T

i ,

Ξ3
2i = −Yi + Xi − jω faXi + σ2i N

T
i Y

T
i ,

Ξ4
2i = �2

i I − KiYi TiBi − BT
i T

T
i Y T

i K T
i ,

Ξ5
2i = −KiYi − σ2iBT

i T
T
i Y T

i ,

Ξ6
2i = −(Xi + σ2i Yi + σ2i Y

T
i ).

By replacing Ni and Ti with their respective values,
and applying the linearising change of variables Ui =
Yi Hi , Ri = Yi Si , (30) is obtained. This guarantees
residual performance index (17) and the asymptotic
stability of error dynamics (9). 
�
Remark 4 Given that LMIs (30) ∀i are in the com-
plex domain, most solvers cannot directly handle them.
Hence, the following equivalent statements are used for
a complex Hermitian matrix L(x)

1. L(x) < 0.

2.

(
Re(L(x)) Im(L(x))

−Im(L(x)) Re(L(x))

)

< 0.

where Re(L(x)) represents the real part of L(x) and
Im(L(x)) its imaginary part. More details can be found
in [46].

Theorem 3 For Fi = 0, F i = 0, dvi �= 0, φ
i
�= 0, let

βi , ηi , θMi , σ3i and εi be strictly positive scalars, error
dynamics (13) is asymptotically stable and perfor-
mance indexes (19) are guaranteed if ∀i ∈ {1, . . . , N },
there exist symmetric positive definite matrices Qi ,
matrices Ui , Ri and unstructured nonsingular matri-
ces Yi such that for all possible uncertainties, under
imposed constraint (21)

min
Qi ,Yi ,Ui ,Ri

βi + ηi

subject to
⎛

⎜
⎜
⎜
⎜
⎝

Φ1
i Φ2

i Φ3
i Φ4

i Φ5
i∗ Φ6

i Φ7
i 0 Φ8

i
� ∗ Φ9

i 0 Φ10
i∗ ∗ ∗ −εi I Φ11
i∗ ∗ ∗ ∗ Φ12
i

⎞

⎟
⎟
⎟
⎟
⎠

< 0, (39)
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where

Φ1
i = Yi Ãi +Ui Z

i C̃i Ãi − Ri Z
i C̃i + ÃT

i Y
T
i

+ εiθMi I + (Zi C̃i Ãi )
TUT

i − (Zi C̃i )
T RT

i

+ (Zi C̃i )
T WT

i Wi Z
i C̃i ,

Φ2
i = Yi B̃di +Ui Z

i C̃i B̃di − Ri Z
i D̃di

+ Zi C̃iW
T
i Wi Z

i D̃di ,

Φ3
i = RiXi − Yi X̄i

−Ui Z
i C̃i X̄i − (Zi C̃i )

T WT
i WiXi ,

Φ4
i = Yi + Yi Hi Z

i C̃i ,

Φ5
i = −Yi + Qi + σ3i Ã

T
i Y

T
i + σ3i (Z

i C̃i Ãi )
TUT

i

− σ3i (Z
i C̃i )

T RT
i ,

Φ6
i = (Zi D̃di )

T WT
i Wi Z

i D̃di − η2i I,

Φ7
i = −XT

i W
T
i Wi Z

i D̃di ,

Φ8
i = σ3i B̃

T
di Y

T
i

+ σ3i B̃
T
di (Z

i C̃i )
TUT

i − σ3i Z
i D̃T

di R
T
i ,

Φ9
i = XT

i W
T
i WiXi − β2

i I,

Φ10
i = σ3iXT

i R
T
i − σ3i X̄

T
i Y

T
i − σ3i X̄

T
i (Zi C̃i )

TUT
i ,

Φ11
i = σ3i Y

T
i + σ3i (Z

i C̃i )
TUT

i ,

Φ12
i = −σ3i (Yi + Y T

i ).

The observer gains are then computed as in (22).

Proof Let us select the candidate Lyapunov function
Vi (evi ) = eTvi Qi evi , then

V̇ (evi )

= eTvi (N
T
i Qi + Qi Ni )evi + (ϕ

evi
vi )T T T

i Qi evi

+ eTvi Qi Tiϕ
evi
vi + φT

i
(t)(SiXi − Ti X̄i )

T Qievi

+ eTvi Qi (SiXi − Ti X̄i )φi
(t)

+ dTvi (Ti B̃di − Si Z
i D̃di )

T Qievi

+ eTvi Qi (Ti B̃di − Si Z
i D̃di )dvi (t).

(40)

The performance index is equivalent to

JDi =
∫ ∞

0

(
rTDi

rDi − β2
i φ

T
i
φ
i
− η2i d

T
vi
dvi

)
dt<0.

(41)

Combining the two yields

JDi =
∫ ∞

0

([
eTvi (Z

i C̃i )
T

+ dTvi (Z
i D̃di )

T ]WT
i Wi

[
Zi C̃i evi (t)

+ Zi D̃di dvi (t)
]

− η2i d
T
vi
dvi − eTvi (Z

i C̃i )
T WT

i WiXiφi
(t)

− dTvi (Z
i D̃di )

T WT
i WiXiφi

(t) − β2
i φ

T
i
φ
i

+ φT
i
XT
i W

T
i WiXiφi

− φT
i
XT
i WiW

T
i Zi C̃i evi

− φT
i
XT
i W

T
i Wi Z

i D̃di dvi + V̇ (evi )
)
dt

−
∫ ∞

0
V̇ (evi )dt

<0. (42)

The above inequality can be expressed as
(

Γi1 Γi2 + Υ de
i

� Υ dd
i

)

< 0,

where Γi1 = NT
i Qi + Qi Ni + (Zi C̃i )

T WT
i Wi Zi C̃i +

εiθMi I + ε−1
i Qi Ti T T

i Qi ,
Γi2 = Qi

(
Ti B̃di − Si Zi D̃di (SiXi − Ti X̄i )

)
,

Υ de
i = (

Zi C̃iWT
i Wi Zi D̃di −(Zi C̃i )

T WT
i WiXi

)
and

Υ dd
i =

(
(Zi D̃di )

T WT
i Wi Z

i D̃di − η2i I −XT
i W

T
i Wi Z

i D̃di
� XT

i W
T
i WiXi − β2

i I

)

.

Similar to Theorem 1, the above is equivalent to

T3i + V3iS3i + ST
3iVT

3i < 0, (43)

where

T3i

=

⎛

⎜
⎜
⎜
⎝

(Zi C̃i )
T WT

i Wi Zi C̃i + εi θMi I Zi C̃iWT
i Wi Zi D̃di

∗ (Zi D̃di )
T WT

i Wi Zi D̃di − η2i I

∗ ∗
∗ ∗

−(Zi C̃i )
T WT

i WiXi 0

−XT
i W

T
i Wi Zi D̃di 0

XT
i W

T
i WiXi − β2

i I 0

∗ −εi I

⎞

⎟
⎟
⎟
⎠

,

S3i =
(
Ni Ti B̃di − Si Zi D̃di SiXi − Ti X̄i Ti

)
,

V3i =

⎛

⎜
⎜
⎜
⎝

Qi

0

0

0

⎞

⎟
⎟
⎟
⎠

.

By selecting

KT
3i = (

Y T
i 0 0 0

)
, Y3i = σ3i Yi ,

for a scalar σ3i and a nonsingular general matrix Yi ,
one can obtain the following sufficient condition
⎛

⎜
⎜
⎜
⎜
⎝

Λ1
i Λ2

i Λ3
i Yi Ti Λ4

i∗ Λ5
i −XT

i W
T
i Wi Zi D̃di 0 Λ6

i
� ∗ Λ7

i 0 Λ8
i∗ ∗ ∗ −εi I σ3i T T
i Y T

i∗ ∗ ∗ ∗ −σ3i (Yi + Y T
i )

⎞

⎟
⎟
⎟
⎟
⎠

< 0,
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where

Λ1
i = Yi Ni + NT

i Y
T
i + (Zi C̃i )

T WT
i Wi Z

i C̃i + εi θMi I,

Λ2
i = Yi Ti B̃di − Yi Si Z

i D̃di + Zi C̃iW
T
i Wi Z

i D̃di ,

Λ3
i = Yi SiXi − Yi Ti X̄i − (Zi C̃i )

T WT
i WiXi ,

Λ4
i = −Yi + Qi + σ3i N

T
i Y

T
i ,

Λ5
i = (Zi D̃di )

T WT
i Wi Z

i D̃di − η2i I,

Λ6
i = σ3i B̃

T
di T

T
i Y T

i − σ3i Z
i D̃T

di S
T
i Y

T
i ,

Λ7
i = XT

i W
T
i WiXi − β2

i I,

Λ8
i = σ3iXT

i S
T
i Y

T
i − σ3i X̄

T
i T

T
i Y T

i .

Replacing Ni and Ti with their respective values, and applying
the linearising change of variables Ui = Yi Hi , Ri = Yi Si , (39)
is obtained. This guarantees residual performance index (19) and
the asymptotic stability of error dynamics (9). 
�

Remark 5 One could note that it is possible to relax
constraint (21). Indeed, this equality constraint implies
that the span of the rows of Ui is included in ker(Vvi ).
Hence, one could turn this into a minimisation of its
maximum singular value which could be minimised,
i.e. for a scalar ϑi > 0

min
Ui

ϑi

subject to

−ϑi I +UiVvi ϑ
−1
i (UiVvi )

T < 0. (44)

Applying the Schur complement to (44) yields the fol-
lowing LMI
(

ϑi I Ui Vvi

∗ ϑi I

)

< 0. (45)

Remark 6 Note that here, as opposed to what is typi-
cally done in literature, we do not impose that Ti B̃di −
Si Zi D̃di = SiXi = 0. Indeed, maintaining this con-
straint while solving the proposed inequalities can be
unfeasable for some systems. Contrary to other works
using unknown input observer, our approach does not
require invertibility conditions except on Yi which is
inherently required by the proposed LMIs. Thus, no
rank condition is required for the existence of the
unknown input observer to solve the LMIs.

Residual evaluation

In order to isolate the faulty element (the specific faulty
agent and/or faulty link), the residuals are evaluated
by comparing them with an offline computed thresh-
old defined hereafter. For this purpose, let us select the

following root-mean-square evaluation functions [41],
∀p ∈ Ni ∪ i

J ei,p(t) = ||r pi (t)||rms

=
( 1

Tw

∫ t+Tw

t (r pi (τ ))T r pi (τ )dτ
) 1

2
,

(46)

where Tw is a finite evaluation window with

rTvi (t) = [(r ii (t))T , (r i1i (t))T , . . . , (r
iNi
i (t))T ],

and r pi (t) ∈ IRny ,∀p ∈ Ni ∪ i . Noise, distur-
bances, communication uncertainties (etc.) are treated
as unstructured unknown inputs, and the RMS thresh-
old is computed as

J eipth = sup
attack/fault free

||r pi (t)||rms, (47)

where one could set J eith = max{J eiith , . . . , J eiiNi th }. For
isolation purpose, let us define the secure detection
flags πi , such that if J ei,i (t) � J eith then πi = 0 and
πi = 1 when J ei,i (t) > J eith . An agent i is assumed
to request the secure detection flag of its neighbours
when a fault or an attack has been detected through the
generated residual functions J ei, j (t), j ∈ Ni .

In order to summarise the proposed scheme, two
algorithms are proposed hereafter. Optimisation Algo-
rithm 1 is ran offline and proposes steps to compute the
observer matrix gains using a finite-frequency mixed
H∞/H− approach by simultaneously combining The-
orems 1–3 and Remark 5. Define the multi-objective
cost function

si = λi1ηi + λi2βi + λi3ϑi

λi4γi + λi5�i
, (48)

where λi1, λi2, λi3, λi4, λi5 are positive trade-off
weighing constants.

Algorithm 1: Observer–Detector module param-
eter computation at agent i (offline)
1. Construct local model (7)
2. Define ΩF i

and choose the multi-objective weights
λi1, λi2, λi3, λi4 and λi5,

3. Set σ1i , σ2i , σ3i , Wi , Ki and εi ,
4. Minimise si by simultaneously solving Theorems 1–3 and

(45) in Remark 5,
5. Compute the observer matrix gains Si , Hi , Ni , G1i , G2i

and Li from (22) and Ti from (10a),
6. Compute thresholds (47).
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Remark 7 It should be noted that Algorithm (48)
ensures that the best solution with respect to cost func-
tion (48) is obtained. This renders the residual func-
tions as sensible as possible to the fault and attack
signals while guaranteeing the best possible attenua-
tion performance of the disturbances and communica-
tion uncertainties with respect to the residual evalua-
tion functions. It is also worth mentioning that the pro-
posed method introduces additional design variables
to the optimisation problem (e.g. matrix variables Yi ),
and no products between Lyapunov matrices (Pi , Qi

or Xi ) and the observer matrices Ni . It allows the use
of different Lyapunov matrices for each Theorem, and
solving Algorithm 1 with the common design variable
Yi which, unlike Lyapunov matrices, is only required
to be nonsingular. This fact, along with the addition
of variables σ1i , σ2i , σ3i and matrix Ki , allows more
degree of freedom and reduces the conservatism of the
overall solution.

Algorithm 2 given in the following is ran online and
summarises the detection and isolation logic where an
agent i is said to be faulty if fai (t) �= 0 and/or fsi (t) �=
0.

Algorithm 2: Decision logic for agent i (online)
1. Apply evaluation functions (46),
2. If ∃ j ∈ Ni such that J ei, j (t) > J eith , and J ei,i (t) � J eith then

request π j . If π j �= 0 then node j is faulty, else the link
(i, j) incident to agent i is faulty,

3. If J ei,p(t) > J eith , ∀p ∈ Ni ∪ i , then agent i is faulty.
Request π j , j ∈ Ni , if π j �= 0 then agent j is also faulty,
else the link {i, j} incident to node i is faulty,

4. If J ei,p(t) < J eith , ∀p ∈ Ni ∪ i , then no fault/attack has
occurred.

4 Illustrative example

To show the effectiveness of the proposed algorithm,
let us consider a heterogeneousMAS composed of one-
link flexible joint manipulator robots. In the following,
there are three followers labelled 1 to N = 3 and one
virtual leader labelled 0. They are connected according
to the directed graph topology represented in Fig. 1.

Fig. 1 Communication topology

The associated adjacency matrix is given as

A =
⎛

⎝
0 0.5 0.5
1 0 0
0 0 0

⎞

⎠ .

Their dynamics is expressed as [42]
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

θ̇mi = ωmi ,

ω̇mi = ki
Jmi

(θli − θMi ) − Bi
Jmi

ωmi + Kτi

Jmi

ui ,

θ̇li = ωli ,

ω̇li = − ki
Jli

(θli − θMi ) − mighi
Jli

sin(θli ),

where θmi is the rotation angle of the motor, θli is the
rotation angle of the link, ωmi and ωli are their angular
velocities. The following table summarises the param-
eters.

Parameter Unit

Link inertia Jli kg m2

Motor inertia Jmi kg m2

Viscous friction coefficient Bi Nm V−1

Amplifier gain Kτi Nm V−1

Torsional spring constant ki Nm rad−1

Link length hi m
Mass mi kg
Gravitational acceleration g ms−1

By setting, for all i = 1, 2, 3, xTi =(
θmi ωmi θli ωli

)

= (
xi1 xi2 xi3 xi4

)
and xT0 = (

x01 x02 x03 x04
)
where

x0 is the virtual leader state, the state space represen-
tation can be given as

Ai =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0

− ki
Jmi

− Bi
Jmi

ki
Jmi

0

0 0 0 1
ki
Jli

0 − ki
Jli

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Bui =

⎛

⎜
⎜
⎜
⎜
⎝

0
Kτi

Jmi

0
0

⎞

⎟
⎟
⎟
⎟
⎠

,
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Bdi =

⎛

⎜
⎜
⎝

0
0.1
0
0.5

⎞

⎟
⎟
⎠ , ϕi (xi (t)) =

⎛

⎜
⎜
⎜
⎜
⎝

0
0
0

−migbi
Jli

sin(θli )

⎞

⎟
⎟
⎟
⎟
⎠

,

B fi = Bui , D f1 =
(
1
1

)

, D f2 = D f3 =
(
0
0

)

,

Dd1 =
(
0.05
0.1

)

, Dd2 =
(
0.1
0.2

)

, Dd3 =
(
0.5
0.7

)

,

C1 =
(
1 0 0 0
0 1 0 0

)

,C2 =
(
0 0 1 0
0 0 0 1

)

,

C3 =
(
1 0 0 0
0 0 1 0

)

,

Dz13 = 1, Du13 = 1, Dz31 = 1, Du31 = 1, Dz12 = I ,
Du12 = 1, Dz21 = I , Du21 = 1.

In the following simulations, the parameter uncer-
tainties are considered as �ai j (t) = 0.1 sin(ai j t) and
the perturbations di (t) as Gaussian white noise with
values in [−0.2, 0.2]. For the followers, the param-
eters are chosen as m1 = m2 = m3 = 0.21kg,
k1 = 0.18Nm · rad−1, k2 = 0.1Nm · rad−1,
k3 = 0.22Nm · rad−1, B1 = 4.6 × 10−2NmV−1,
B2 = 3.6 × 10−2NmV−1, B3 = 5.6 × 10−2NmV−1,
Jm1 = Jm2 = Jm3 = 3.7 × 10−3kgm2, Jl1 =
Jl2 = Jl3 = 9.3 × 10−3kgm2, Kτ1 = 0.08NmV−1,
Kτ2 = 0.085NmV−1, Kτ3 = 0.09NmV−1, g =
9, 8m/s2, h = 0.3m. The leader parameters are given
as m0 = 0.21kg, k0 = 0.18Nm · rad−1, B0 =
4.6 × 10−2NmV−1, Jm0 = 3.7 × 10−3kgm2, Jl0 =
9.3 × 10−3kgm2, Kτ0 = 0.08NmV−1.

It is thus easy to verify that θM1 = θM2 = θM3 = 3.3.
The initial conditions are given as x0(0) = (0, 0, 0, 0),
x1(0) = (0.1, 0, 0.2, 0), x2(0) = (0.5, 0, 0.1, 0),
x3(0) = (0.3, 0, 0.4, 0). In this example, a tweaked
version of the leader–follower control algorithm pro-
posed in [47] is used based on the estimated state:

ui = −Mi
[∑3

j=1 ai j (x̂i − x̂ j
i ) + g0i (x̂i − x0)

]
,

where x̂ Tvi =
(

x̂ ii x̂ i1i . . . x̂
iNi
i

)
, eTvi =

(

eii e
i1
i . . . e

iNi
i

)

=
(

eii1 . . . eii4 e
iNi
i1 . . . e

iNi
i4

)
, x̂ p

i ∈ IR4, epi = xp −
x̂ p
i ∈ IR4, ∀p ∈ Ni ∪ i , Mi is a control gain matrix
and g0i defines the communication link between agent
i and leader 0 (g0i = 1 when 0 communicates with i
and g0i = 0 otherwise). The control gains are given as

⎧
⎨

⎩

M1 = [
1.6207 0.2210 −0.5444 3.2570

]
,

M2 = [
1.6924 0.2308 −0.5685 3.4011

]
,

M3 = [
1.7642 0.2405 −0.5925 3.5452

]
.

The multi-objective weights are chosen as λi1 = λi2 =
λi3 = λi4 = λi5 = 1, ∀i . The vector F i is assumed
to belong to the finite-frequency domain [0, 0.1). It is
worth noting that inequalities (20), (30), (39) and (45)
can be solved using an appropriate solver (YALMIP,
etc. [48]).

∀i ∈ {1, 2, 3}, Algorithm 1 is applied for σ1i = 1,
σ2i = 0.2, σ3i = 0.1, Ki = −2Bui , εi = 0.04
and Wi = I , yielding η1 = 0.2, β1 = 0.2, ϑ1 =
0.01, γ1 = 0.1, �1 = 0.81, η2 = 0.15, β2 =
0.15, ϑ2 = 0.02, γ2 = 0.1, �2 = 0.85, η3 =
0.04, β3 = 0.4, ϑ3 = 0.01, γ3 = 0.7, �3 = 0.77.

Remark 8 It should be highlighted that the computa-
tion of the matrix gains is done offline and once. Based
on Theorems 1–3, for each agent, the observer matrix
gains are computed according to Algorithm 1. There-
fore, a set of LMIs has to be solved offline and once.
One can note that the dimension and number of LMIs
linearly increase as the state and number of agents
increase. Here, 4N LMIs (N is the number of agents)
should be solved. For an agent i , their dimensions are:
(3nix + nifs + nifz ) × (3nix + nifs + nifz ) for Theorem 1,

(3nix + nifa + Nin fu )× (3nix + nifa + Nin fu ) for Theo-

rem 2, (3nix +nid +niz +niu)× (3nix +nid +niz +niu) for
Theorem 3 and nix × nix for Remark 5. These dimen-
sions are given in Table 2 for the illustrative example.
Additionally, for each agent, the size of the FDI mod-
ules (i.e. Eq. (8)) is only dependent on the number of
neighbouring agents regardless of the agents’ control
inputs, which makes the proposed scheme highly scal-
able.

Remark 9 It is interesting to note that for implementa-
tion of the method proposed in this work, each agent

Table 2 LMI dimensions for each agent, where LMIST1: LMI
Size in Theorem 1, LMIST2: LMI Size in Theorem 2, LMIST3:
LMI Size in Theorem 3, LMIST1: LMI Size in Remark 5

Agent LMIST1 LMIST2 LMIST3 LMISR5

1 40 × 40 39 × 39 46 × 46 12 × 12

2 27 × 27 26 × 26 30 × 30 8 × 8

3 13 × 13 13 × 13 14 × 14 4 × 4
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Fig. 2 Faults signal in scenario 1

Fig. 3 Residual evaluation functions at agent 1 in scenario 1.
The dashed red lines represent the threshold

sends its corrupted output and its corrupted control
input (dimension nu + ny). This can increase the com-
munication cost in contrast with [27] for instance,
where the FDI modules only require estimated out-
puts to be broadcasted (dimension ny). However, as
opposed to [27], the proposed method does not require
the agents to be equippedwith relative information sen-
sors. Indeed, requiring that the agents are equippedwith
both relative information sensors and wireless commu-
nicationmodules, can limit the cost-effectiveness of the
method proposed therein.

Let us consider hereafter two scenarios. In the first
one, two faults occur in the network: a sensor fault

Fig. 4 Residual evaluation functions at agent 2 in scenario 1

Fig. 5 Residual evaluation functions at agent 3 in scenario 1

fs1(t) at agent 1 and an actuator fault fa3(t) at agent
3, as represented in Fig. 2. Figures 3, 4 and 5 show
the generated residual evaluation functions by agents
1, 2 and 3, respectively. The worst case analysis of
the evaluation functions corresponding to the non-
faulty operation of the network under disturbances and
uncertainties leads to the following thresholds J e1th =
0.048, J e2th = 0.03 and J e3th = 0.027 under the eval-
uation window Tw = 10s. It is usually not easy to
accurately compute the value of the supremum of the
RMS function in (47) to simultaneously prevent false
alarms and avoidmissed detections. As such, a series of
Monte Carlo simulations have been conducted where
the supremumof the RMS function in (47) is calculated

123



2534 A. Taoufik et al.

Fig. 6 Simulated attack signals in scenario 2, where f z21(t) =
[ f z21,1(t), f z21,2(t)]T

Fig. 7 Residual evaluation functions at agent 1 in scenario 2

under the healthy operation of the MAS, with different
noises, disturbances and uncertainties. The correspond-
ing maximum value has been taken as an appropriate
threshold. The sampling period is set as Ts = 10−1

s. One could see from Figs. 3, 4 and 5 that the faults
could be clearly distinguished. Additionally, according
to Algorithm 2, one can see from Fig. 3 that all gen-
erated functions J e1,1(t), J

e
1,2(t) and J e1,3(t) increase

at around t = 20s and exceed the defined threshold
due to the sensor fault fs1(t) occurring at agent 1. This
confirms that a fault has occurred at agent 1. Figure 4
further confirms this, since only J e2,1(t) increases due to
this fault. At t = 40s, the actuator fault fa3(t) occurs

Fig. 8 Residual evaluation functions at agent 2 in scenario 2

Fig. 9 Residual evaluation functions at agent 3 in scenario 2

at agent 3, where one can see in Fig. 3 that agent 1
detects it (its residual evaluation function for agent 3,
i.e. J e1,3(t), is greater than J e1th even though both J e1,1(t)
and J e1,2(t) are lower than J e1th). Hence, according to
Algorithm2, agent 1 can distinguish that the fault fs1(t)
has disappeared and that agent 3 is now faulty. This is
confirmed for agent 3 in Fig. 5.

Remark 10 It is worth mentioning that the sensor fault
matrices D f2 and D f3 are not full column rank. Hence,
the methods proposed in [27,28] for instance cannot
be applied. Moreover, the effectiveness of the pro-
posedmethodhas been shown for heterogeneousMASs
under directed topologies. Besides, compared with the
decentralised observer proposed in [49] for example, in
which faults occurring at agent i can only be detected
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Fig. 10 Control efforts in: a the faultless case, b scenario 1, c scenario 2

Fig. 11 Estimation errors: a at agent 1 in the faultless and attack-
less case, b at agent 2 in the faultless and attackless case, c at
agent 3 in the faultless and attackless case, d at agent 1 in sce-

nario 1, e at agent 2 in scenario 1, f at agent 3 in scenario 1, g at
agent 1 in scenario 2, h at agent 2 in scenario 2 and i at agent 3
in scenario 2
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by the agent itself, our distributed observer can detect
both the agent’s faults and its neighbours’ faults. At
last, it can be noticed that the matching condition, i.e.
rank(Ci B fi ) = n fa , required in many existing works
(e.g. [50]), is not needed in our methodology. Indeed,
this condition is not satisfied for agents 2 and 3.

In the second scenario, two types of faults are consid-
ered: a data injection attack incident to agent 1 targeting
the link going from agent 3 to 1, i.e. f z13(t) = f u13(t)
occurring at 15s � t � 40s, and a replay attack
incident to agent 2 at the link going from agent 1
to 2 at t = 70s, i.e. f z21(t) and f u21(t) with a delay
of T12 = 70s. f z13(t), f u13(t), f z21(t) and f u21(t) are
represented in Fig. 6. Figures 7, 8 and 9 show the
generated evaluation functions by agents 1, 2 and 3,
respectively, in the second scenario. The worst case
analysis of the evaluation functions corresponding to
the attack-less operation of the network under distur-
bances and uncertainties leads to the following thresh-
olds J e1th = 0.016, J e2th = 0.017, J e3th = 0.02. It is
clear from the evaluation functions that the attacks can
be distinguishedwhen surpassing the computed thresh-
olds. Indeed, from Fig. 7, one can see that the data
injection attack in the link from 3 to 1 has been detected
according to Algorithm 2. It is confirmed that this fault
is an edge fault upon requesting agent 3’s detection
flag, as J e3,3 stays below the defined threshold through-
out the duration of the attack. From Fig. 8, the replay
attack in the link from agent 1 to 2 has been detected
by J e2,1(t) at t = 70s which is confirmed by the fact
that J e1,1 does not react to the attack.

The control efforts corresponding to the faultless
case and scenarios 1 and 2 are depicted in Fig. 10.
Figure 11 shows the estimation errors generated by the
FDI modules for agents 1, 2 and 3, respectively. It can
clearly be seen that the estimation errors converge to
zero in the absence of any fault or attack.

From these simulations, it can be seen that the pro-
posed FDI scheme is able to detect and isolate attacks,
actuator faults and sensor faults in the presence of dis-
turbances, noise and communication uncertainties.

5 Conclusion

In this paper, the problem of FDI in Lipschitz nonlin-
earMASswith disturbances, subject to actuator, sensor
and communication faults has been addressed. Amulti-
objective finite-frequency H−/H∞ design along with

nonlinear UIOs has been proposed. Sufficient condi-
tions have been derived in terms of a set of LMIs. The
combination of UIOs, removal of strict rank conditions
and finite-frequencymethod has been shown to provide
extra degrees of freedom in the FDI filter design. Addi-
tionally, the multi-objective method guarantees that
the evaluation functions are robust with respect to all
admissible disturbances and uncertainties and sensitive
to all types of faults. A numerical example has been
studied in order to showcase the effectiveness of the
proposed scheme.As futureworks, instead of consider-
ing Lipschitz nonlinear systems, one could investigate
other classes of nonlinear uncertain systems including
chained-form dynamics. Based on the proposed FDI
scheme, it would also be possible to design some fault
accommodation strategies.
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