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Abstract The nonlinear dynamics of two-wheeled
trailers is investigated using a spatial 4-DoF mechan-
ical model. The non-smooth characteristics of the tire
forces caused by the detachment of the tires from the
ground and other geometrical nonlinearities are taken
into account. Beyond the linear stability analysis, the
nonlinear vibrations are analyzedwith special attention
to the nonlinear coupling between the vertical and lat-
eral motions of the trailer. The center manifold reduc-
tion is performed leading to a normal form up to third
degree terms. The nature of the emerging periodic solu-
tions, and, thus, the sense of the Hopf bifurcations are
verified semi-analytically and numerically. Simplified
models of the trailer are also used in order to point
out the practical relevance of the study. It is shown
that the linearly independent pitch motion affects the
sense of the Hopf bifurcations at the linear stability
boundary. Namely, the constructed spatial trailermodel
provides subcritical bifurcations for higher center of
gravity positions, while the commonly used simplified
mechanical models explore the less dangerous super-
critical bifurcations only. Domains of loss of contact of
tires are also detected and shown in the stability charts
highlighting the presence of unsafe zones. Experiments
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are carried out on a small-scale trailer to validate the
theoretical results. A good agreement can be observed
between themeasured andnumerically determined crit-
ical speeds and vibration amplitudes.

Keywords Two-wheeled trailer · Stability · Nonlinear
dynamics · Bifurcation analysis · Center manifold
theory · Experiment

1 Introduction

Vehicle handling and stability are critical factors in road
transportation; hence, they became relevant research
topics a long time ago. First, analyses of linear vehicle
modelswere in focus (see, for example, [22,36]),which
provided the basic rules of vehicle design. However,
some of the phenomena of the field remained unex-
plored since they are related to the nonlinear dynamics
of the vehicles. Thanks to the developed mathematical
tools and computational methods, the nonlinear anal-
ysis could come to the front in the academic area and
started to be utilized in the industry too. Stability charts,
phase portraits and nonlinear bifurcation diagrams
were composed for the most intricate nonlinear prob-
lems of vehicle dynamics, like the shimmy motions of
steered wheels (see [2–4,19,21,25]) and aircraft land-
ing nose gears (see [33,34]), the wobble motion of
motorcycles and bicycles (see [9,17,18,20,23,26,27]).
Vehicle handling in close to critical maneuvers is also
in the focus of recent studies (see [12,24]), which
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allow the development of the new generation of vehi-
cle motion control that utilizes the results of nonlinear
analyses.

In this paper, the very interesting and complex sta-
bility problem of trailers is under investigation. Trailers
are very commonly used on the roads in very different
combinations with respect to the mass ratio of the tow-
ing vehicle and the trailer. Several road accidents hap-
pen due to the not appropriately chosen amount of pay-
load and/or payload position/distribution, which easily
leads to the so-called snaking and/or rocking motions
of the trailer. These unwanted vibrations are also often
associatedwith high towing speeds and are often gener-
ated by some initial impulses/perturbations caused by
the driver or other circumstances (such as wind gusts or
uneven roads), see [1,5,7,16,28,35]. In the past, the-
oretical and numerical investigations have been made
on the stability properties of car-trailer combinations
considering different level of complexity of the inves-
tigated mechanical models, see the 3-DoF model of
[5,16], the 4- or 6-DoF models of [1] or the 32-DoF
model of [28]. A systematic experimental investiga-
tion by Darling et al. [7] was also carried out using a
car-adjustable trailer combination and drew the conclu-
sions that the key factors that affect the stability prop-
erties are the yaw inertia, the mass distribution and the
position of the trailer axle.

In theoretical stability analyses, the bounce, roll and
pitch motions of the trailer are often separated from
the lateral dynamics, which is a commonly used and
accepted approach in vehicle dynamics. Namely, the
use of in-plane models is a conventional solution in
the field. Sometimes, the single track model, the so-
called bicycle model, is also applied to simplify the
analysis, see, e.g., [2–4,19]. As a result, the governing
equations have a relatively simple form and analytical
calculations can be performed regarding the nonlinear
properties of car-trailer systems.Thesemodels partially
explain unsafe parameter zones and related nonlinear
phenomena. For example, it is shown in [2,4] that the
Hopf bifurcations emerging at the critical towing speed
are subcritical. Namely, the global stability of the recti-
linearmotion is not ensured in the linearly stable towing
speed range, and large enough perturbations may lead
to unwanted large amplitude vibrations of the trailer.

In this study, a spatial mechanical model of a two-
wheeled trailer with non-rigid wheel suspensions is
used, where all the yaw, pitch and roll motions are
considered, see Model A in Fig. 1a. In order to have

a relatively low degree-of-freedom model, the towing
car is imitated by a lateral spring and damping at the
king pin. This simplification may seem inappropriate,
but in this study, we focus on the effect of the pitch
motion on the nonlinear vibrations. The main contri-
bution of the paper is the analysis of the nonlinear cou-
pling between the vertical and lateral motions of the
trailer. Our hypothesis is that the linearly independent
pitch motion affects the local bifurcations, namely it
changes the sense of the Hopf bifurcations at the linear
stability boundaries. In order to verify this assumption,
threemodels are compared to each other in our analysis,
see Fig. 1. These models represent different levels of
complexity, beginning with the most complex, spatial
model (Model A) with 4 DoF, see panel (a). Model B in
panel (b) is a reducedmodel with blocked bounce/pitch
motion, but it considers the effect of the roll motion
on the stability. Model C is the simplest, 2-DoF in-
plane model with blocked pitch and roll motions, see
panel (c).

The rest of the paper is organized as follows. The
mechanical model of towed, two-wheeled trailers and
the main sources of the nonlinearities are presented in
Sect. 2. In Sect. 3, the governing equations are lin-
earized around the rectilinear motion and linear sta-
bility charts are shown for the mechanical models of
Fig. 1. The effects of the wheel suspension parame-
ters and the payload positions on the linear stability are
analyzed. The nonlinear vibrations are investigated in
Sect. 4. Namely, we perform local bifurcation analy-
sis with the center manifold reduction and numerical
investigations using continuation. The limit cycles of
the three different models are compared to each other
both analytically and numerically. Unsafe zones and
regions where the loss of contact of tires happens are
also shown for the spatialmodel.Basedon themechani-
calmodel, a small-scale experimental rig is designed on
which some measurements are performed. The exper-
imental setup and experimental results are shown in
Sect. 5. Finally, our theoretical, numerical and experi-
mental results are concluded in Sect. 6.

2 Modeling

2.1 Mechanical model and generalized coordinates

The spatial mechanical model (represented asModel A
in Fig. 1) of two-wheeled trailers can be seen in Fig. 2.
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(a)

(b)

(c)

Fig. 1 Mechanical models of a trailer with different levels of
complexity: a full spatial model, b reduced model with blocked
bounce/pitch motion, c in-plane model

The trailer is moving in the (X,Y, Z) ground-fixed
coordinate system. The towing speed v is kept con-
stant in the X direction, while the movement of the
king pin (point A) is not constrained in the Y direction.
The trailer is considered as a rigid body with mass m
and mass moment of inertia tensor JC at the center of
gravity C with respect to the moving reference frame
(x, y, z). The longitudinal and vertical positions of the
center of gravity are given relative to the axle of the
wheels by the parameters e and h, respectively. We
consider that the trailer is symmetric with respect to
the (x, z) plane, i.e., point C is located in this cen-
ter plane of the trailer. The constant vertical distance
between the king pin and the ground is denoted by h0,
the track width is 2b and the caster length, i.e., the
longitudinal distance between the axle of the massless
wheels and the king pin, is l. In the mechanical model,
the pitch dynamics of the trailer is considered; accord-
ingly, the overall stiffness and the damping of the tires
and their suspensions are denoted by the parameters k
and c, respectively. The interaction between the tow-
ing vehicle and the trailer is modeled here by the lateral
stiffness klat and by the lateral damping clat. However,
this assumption seems to be an oversimplification, but
it is often used in the literature (see [31,32]) in order
to keep the complexity of vehicle models and the cor-

(b)

(a)

Fig. 2 The spatial, 4-DoF model of towed two-wheeled trailers.
a Axonometric view with the generalized coordinates and geo-
metrical parameters. b The interpretations of the distances dR
and dL and the lateral tire forces

responding mathematical formulas on a manageable
level. Accordingly, the number of parameters is mod-
erate in our model. However, in order to help the under-
standing of the following sections, all the parameters
with their notations and names are listed in Table 1,
close to the stability charts where their numerical val-
ues are first referred.

The spatial motion of the trailer would have six
degrees of freedom without any constraints. However,
the constant towing speed assumption manifests in the
rheonomic geometric constraint XA = vt . In addi-
tion, the vertical position of the towing point is fixed
ZA ≡ h0. As a result, the system has n = 6 − 2 = 4
degrees of freedom, and the vector of generalized coor-
dinates can be composed as:

q = [
ψ ϑ ϕ u

]T
, (1)

where ψ is the yaw angle, ϑ is the pitch angle, ϕ is the
roll angle of the trailer, and u is the lateral displacement
of the king pin, see Fig. 2a.

In order to avoid the presence of kinematic con-
straints, which could be originated in the rolling of
the wheels, we rather use an elastic tire model that
is based on the creep-force idea considering the side
slip of the wheels [21]. Thus, no kinematic constraint
is taken into account; correspondingly, the system is
holonomic and the equations of motion can be derived
with the Lagrange equation of the second kind [11].
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2.2 Nonlinearities

Details of the derivation of the governing equations
can be found in [14,15]. Here, we present the essential
assumptions of the mechanical model, pointing out the
different sources of the relevant nonlinearities and non-
smoothness. On the one hand, geometric nonlinearities
are present in the model, but we do not emphasize them
here, since they are straightforwardly provided by the
derivation of the equations of motion with mathemat-
ical rigor. On the other hand, nonlinearities originated
in the tire forces and in the suspension system have cru-
cial roles in the nonlinear behavior of the trailer. Thus,
they are in focus in this subsection.

The active forces acting on the trailer are the grav-
itational force G; the lateral tire forces F tire

R and F tire
L

(see Fig. 2b) acting at the (possible) contact points R′
and L′ of the right and the left tires, respectively; the
wheel suspension forces FR and FL; the lateral force
Flat = −klatu−clatu̇ acting at point A due to the defor-
mation of the lateral spring and damper.

The effect of the tires is taken into account bymeans
of the lateral tire forces only, which are calculated
based on Pacejka’sMagic Formula [21] via the side slip
angles αR and αL of the right and left wheels, respec-
tively. Thus,

F tire
� = μ(α�)N� , (2)

where� refers to R or L accordingly to the right or left
wheel. With this formula, we assume that the lateral
tire force depends linearly on the vertical load N� =
F� cosϑ cosϕ, which is calculated as the vertical Z -
component of the suspension force F�. Namely, we
neglect the effect of the unsprung mass by considering
zero masses for the wheels. The characteristics μ(α)

are

μ(α) = D sin (C arctan (Bα − E (Bα − arctan(Bα)))) ,

(3)

where B is the stiffness factor, C is the shape fac-
tor, D is the peak factor, and E is the curvature fac-
tor. In practice, these parameters are not constant, and
they may depend on the vertical load, the static and
dynamic coefficients of friction, the temperature, the
camber angle, etc., see [21]. For the sake of simplicity,
we neglect these dependencies and consider fixed val-
ues in our analysis. We also notice that we neglect the
self-aligning moments of the tires, which have negligi-
ble effect on the final results.

On the contrary, we pay special attention to the rock-
ing motion of the trailer, namely we take into account
that the tires can detach from the ground and the ver-
tical load N� becomes zero. As mentioned above, this
corresponds to zero suspension forces in our model.
Hence, we introduce the piece-wise smooth formula:

Fs(d) = ReLU (F0 · H(Lmax − d)

+F∞ · H(Lmin − d)) (4)

for both of the right FR = Fs(dR) and the left FL =
Fs(dL) suspension forces, where the distances dR and
dL are measured between the points R and R′ and L
and L′, respectively, as shown in Fig. 2b. To handle
the non-smooth characteristic of the suspension force,
we use the so-called Heaviside step-function H(s) [8],
often defined as H(s) = ∫ s

−∞ δ(s)ds, where δ(s) is
the Dirac-delta function. Thus, in Eq. (4), Lmin cor-
responds to the minimal distance, where the spring of
the suspension is compressed to its minimal length.
Namely, for d < Lmin, we consider higher stiffness
and damping for the suspension. The distance Lmax

relates to the maximal distance, where the suspension
of the wheel is totally expanded. Accordingly,

F0 = −k(d − L0) − c ḋ , (5)

and

F∞ = −k∞(d − Lmin) − c∞ḋ , (6)

where L0 is the free length of the spring. To imitate the
collision in the suspension, one should choose k∞ � k
and c∞ � c. Note that we did not take into account
that the suspension dampers can be highly nonlinear.
We used this simplification becausemost caravans only
have leaf springs without any dampers.

Note that the ReLU(s) = max{0, s} function in
Eq. (4) guarantees that the suspension force cannot
be negative even when the suspension expands rapidly
(i.e., ḋ � 0). For the steady-state condition ḋ = 0, the
schematic characteristics of the suspension forces can
be seen in Fig. 3.

Considering all the above-mentioned nonlinearities,
the equations of motion can be written in the general
form:

M(q) q̈ + C(q, q̇) = 0 (7)

whereM(q) is the mass matrix and C(q, q̇) is a vector
containing the remaining parts of the equation includ-
ing all the nonlinear and non-smooth characteristics.
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Fig. 3 The schematic non-smooth characteristic of the suspen-
sion force Fs(d) for the steady-state condition ḋ = 0 together
with the switchings

3 Linear stability analysis

For the linear stability analysis of the rectilinearmotion
of the trailer, the equations of motion are linearized
around q(t) ≡ q0. For the sake of simplicity, we con-
sider the case q0 = 0, namely

ψ(t) ≡ ψ0 = 0 ,

ϑ(t) ≡ ϑ0 = 0 ,

ϕ(t) ≡ ϕ0 = 0 ,

u(t) ≡ u0 = 0 .

(8)

Due to the symmetry of our model, ϕ0 = 0 is satisfied
for any parameter setup. Moreover, we tune the free
length of the spring in the suspensions to maintain zero
pitch angle ϑ0 = 0 in steady state, i.e.,

L0 = h0 + mg(l − e)

2kl
. (9)

We assume that none of the switches in Eq. (4) occur
in case of small amplitude vibrations around the recti-
linear motion. This can be guaranteed by the proper
choices of Lmin and Lmax. Using the perturbation
y(t) = q(t) − q0 around the rectilinear motion, the
linearized equations of motion can be written as:

Mlinÿ + Clinẏ + Kliny = 0 , (10)

where Mlin is the mass matrix, Clin is the damping
matrix and Klin is the stiffness matrix of the linearized
system:

Mlin =

⎡

⎢⎢
⎣

JAz 0 mh(l − e) −m(l − e)
0 JAy 0 0

mh(l − e) 0 JAx −mh
−m(l − e) 0 −mh m

⎤

⎥⎥
⎦ ,

(11)

Clin =

⎡

⎢⎢
⎣

2cl2 0 −2ch0l −2cl
0 2cl2 0 0

−2ch0l 0 2cb2 + 2ch20 2ch0
−2cl 0 2ch0 2c + clat

⎤

⎥⎥
⎦ , (12)

Klin =

⎡

⎢⎢
⎣

2BCDNl 0 −mg(l − e) 0
0 2kl2 − mgh 0 0

−2BCDNh0 0 2kb2 − mgh 0
−2BCDN 0 −mg

l (l − e) klat

⎤

⎥⎥
⎦ ,

(13)

where we use the mass moments of inertia about the
(x, y, z) axes with respect to the king pin:

JAx = JCx + mh2 , (14)

JAy = JCy + m(l − e)2 + mh2 , (15)

JAz = JCz + m(l − e)2 . (16)

In Eqs. (12) and (13), we also introduce the nominal
vertical load

N = mg

2

(
1 − e

l

)
(17)

and the tire related damping

c = BCD

v
N (18)

in order to shorten the formulas. Note that the stiffness
matrixKlin is asymmetric due to the terms related to the
lateral tire forces. See also [3] for similar asymmetry
properties introduced by tire forces.

As it can be seen in Eqs. (11), (12) and (13), the lin-
earized system can be separated into two subsystems:
One differential equation can be disjointed, namely the
pitch motion can be analyzed alone (1-DoF subsystem
with generalized coordinate ϑ), while the remaining
equations are coupled (3-DoF subsystem with general-
ized coordinates ψ , ϕ and u). Hence, the pitch motion
does not affect the linear stability of the rectilinear
motion of the trailer. In vehicle dynamics, this type
of separation of the lateral (handling) and the vertical
dynamics (bouncing and pitching) is commonly used
for linear analysis. For the dynamics of the trailer, this
approach is also confirmed by our mechanical model.

Using the exponential trial solution of the 3-DoF
subsystem, one can determine the characteristic equa-
tion of the system in the form of a sixth-order polyno-
mialwith respect to the characteristic root. The stability
of the rectilinear motion can be investigated by means
of the Routh–Hurwitz criteria [11] based on the coeffi-
cients of the characteristic equation. On the one hand,
no closed-form formula can be derived for the critical
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Fig. 4 The effects of the stiffness a and the damping b of the
wheel suspension on the linear stability. The dashed horizontal
lines correspond to the realistic trailer setup of Table 1 providing
the critical towing speed 29.9 m/s marked by red dots

towing speed, which is an essential parameter in sta-
bility analyses of vehicles. On the other hand, one can
evaluate the Routh–Hurwitz criteria numerically for a
specific set of parameters. Here, we utilize the param-
eter values of the experimental study of Darling et al.
[7], which were also used in [3] to validate an in-plane
car-trailer combination model. Some of the parame-
ters, which are also necessary for our spatial trailer
model, are not involved in the analysis [7]. Hence, we
tried to identify and/or estimate these parameters based
on the available information and our physical sense.
Moreover, we tuned the lateral stiffness klat and damp-
ing clat in our model with respect to the critical towing
speed and vibration frequencies detected in [7]. Note
that these parameters are used to imitate the interac-
tion between the trailer and the towing vehicle, and
one can tune them based on the natural frequency of
the vibration mode that is related to the stability loss of
the car-trailer system. We collect all the parameters in
Table 1 called as realistic trailer setup.

For this setup, our mechanical model provides a
Hopf bifurcation (dynamic/oscillatory loss of stabil-
ity) at the critical towing speed 29.9 m/s, which agrees
with the theoretical calculations of [3]. Namely, the
real part of the rightmost complex conjugate pair of
characteristic roots is negative for v < 29.9 m/s, i.e.,
the rectilinear motion is linearly stable and the oscilla-
tions decay in time. For v > 29.9 m/s, these roots have
positive real parts; accordingly, the rectilinear motion
is linearly unstable and the oscillations of the trailer
increase in time.

Fig. 5 The effects of the vertical a and the horizontal b posi-
tions of the center of gravity on the linear stability. The dashed
horizontal lines correspond to the realistic trailer setup of Table 1

In addition, one can also investigate the effect of dif-
ferent parameters on the linear stability. In Fig. 4, we
construct linear stability charts in wide speed range for
the stiffness k and damping c of the wheel suspension.
We use these parameters because they can be varied
independently from the other parameters of the trailer,
and their effects are not considered in the in-planemod-
els (like Model C). In the figure, the original setup is
illustrated by dashed horizontal lines. Shaded areas cor-
respond to linearly unstable rectilinear motion, where
snaking, rocking, roll-over of the trailer may appear in
practice; the white areas correspond to linearly stable
rectilinear motion. The theoretical vibration frequency
related to the stability boundary is not plotted in the
figure, but it is in the range of 0.8 − 1.3 Hz for our
system parameters. These values have good agreement
with the experimental results in [7].

As it can be observed in Fig. 4, the investigated
parameters influence the value of the critical speed
strongly. The stiffness k of the wheel suspension has a
relevant role since small variation of the original value
can significantly increase the critical speed. Thus, these
stability charts may suggest suitable parameter values
for the trailers and can support the engineering design
process.

Road accidents involving trailers are often related
to inappropriate values of the mass moment of inertia
and/or the vertical position of the payload. Hence, in
Fig. 5, stability charts are also constructed with respect
to the vertical h and longitudinal e positions of the cen-
ter of gravity C. Note that the mass moments of iner-

123



Stability and local bifurcation analyses of two-wheeled trailers 2121

tia of the trailer may depend on these parameters, and
to consider these effects we use the approximations
JCx = m(4b2 + 4h2)/6, JCy = m(l2 + 4h2)/6 and
JCz = m(l2 +4b2)/6. These formulas are based on the
mass andmassmoment of inertia data given byDarling
et al. [7], namely, JCz provides the same value as their
experimental setup and JCx and JCy are formulated
using the same approach. As shown in Fig. 5a, the criti-
cal towing speed can be relevantly increased by increas-
ing the height h. However, the critical speed drops again
for high payload positions, what has good agreement
with our physical sense. The effect of the longitudinal
position e is illustrated in Fig. 5b. The plotted stabil-
ity boundary suggests that the larger e is, the higher
the critical speed is. Note that our model does not take
into account that the so-called nose weight (the load on
the towing hook) increases together with e, which may
cause other stability issues. More detailed mechanical
models of the car-caravan combination describe this
phenomenon better and may give somewhat different
results with respect to the effect of the longitudinal
position e, see, e.g., [3,7].

4 Bifurcation analysis

In practice, the linear stability analysis given in Sect. 3
does not provide enough information about the behav-
ior of the trailer since the nonlinear vibrations often
have a key role in the dynamics. In several cases, the
presence of unstable limit cycles in linearly stable speed
ranges may cause safety critical large amplitude vibra-
tionswhen large perturbations occur. These limit cycles
can relate to subcritical Hopf bifurcations emerging
at the linear stability boundaries. In this section, first,
the local bifurcation of the system is investigated by
means of the center manifold reduction [6,29], which
is accomplished semi-analytically only due to the com-
plexity of the system. Then, we perform numerical
bifurcation analysis using continuation techniques in
order to obtain information about the global dynamics
of the trailer.

4.1 Local bifurcation analysis

Although the theory of the center manifold reduction
[6,29] is well known, it is rarely applied to higher
dimensional systems. Due to the complexity of the

method, even the sense of the Hopf bifurcation cannot
be determined analytically for such systems, because
at a certain point of the algorithm, one should evalu-
ate the formulas numerically. The scenario is the same
for our mechanical model, too. However, as we will
show, essential information is provided by the center
manifold reduction with respect to the nonlinear cou-
pling between the vertical and the lateral motions of
the trailer. Such information may never be obtained if
numerical continuation is applied only.

Although the algorithm of the center manifold
reduction is very conventional, we provide all the
details of the calculation in order to emphasize the key
steps where the above-mentioned nonlinear coupling
emerges and can be identified.

For the local bifurcation analysis, we rewrite the
equations of motion into a system of first order differ-
ential equations. To do this, let us introduce the vector
of state variables

z =
[
y
ẏ

]
, (19)

where y is the perturbation around the rectilinear
motion (cf. Eq. (10)). Based on this, the governing
equations (7) can be rewritten and expanded in power-
series form up to the third degree terms:

ż = Az + F2 + F3 (20)

where the coefficient matrix A reads

A =
[

0 I
−Mlin

−1Klin −Mlin
−1Clin

]
. (21)

The vectors F2 and F3 contain the second and third
degree terms, respectively. Since we are interested in
the local bifurcation, the non-smooth characteristics of
the suspension forces (4) do not appear in Eq. (20).
But it is worth to mention that our system is asymmet-
ric even in the linear domain due to the characteris-
tics of the lateral tire forces (see Eq. (13)). The second
degree terms (F2 �= 0) are also related to the tire forces,
and they make coupling between the linearly indepen-
dent lateral (described by ψ , ϕ and u) and the vertical
(described by ϑ) motions of the trailer. For example,
the first component of the vector F2 contains a term
related to ϑψ̇ .

By means of the center manifold reduction, our
eight-dimensional system is reduced to a
two-dimensional one [6]. First, the normal form of the
governing equations is determined by transforming the
equations of motion to the basis of the eigenvectors of
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Table 1 Parameter values for the realistic trailer and the experimental rig

Notation Parameter name Realistic trailer Experimental rig

l Caster length 3.77 m 0.2 m

b Half of the track width 0.95 m 0.065 m

h0 Height of the king pin 0.35 m 0.04 m

e Horizontal position of CG 0.24 m −0.043 m

h Vertical position of CG 0.21 m 0.132 m

m Mass of the trailer 879 kg 1.5 kg

(JCx , JCy, JCz) Mass moment of inertia (554, 2107, 2601) kgm2 (1.08, 3.85, 2.94)·10−2 kgm2

k Stiffness of the suspension 30 kN/m 550 N/m

c Damping of suspension 0.95 kNs/m 340 Ns/m

klat Lateral stiffness 12 kN/m 300 N/m

clat Lateral damping 0.71 kNs/m 1.05 Ns/m

Lmin Minimal length of the spring 28 cm 17.9 mm

Lmax Maximal length of the spring 42 cm 40 mm

L0 Free length of the spring 48.5 cm 47.4 mm

B Stiffness factor 14.17 5.47

C Shape factor 1.85 1.35

D Peak factor 1.00 1.18

E Curvature factor 0.97 0.39

the linear part. Let the eigenvalues and the eigenvectors
of A be denoted by λ j and s j , respectively. Here, we
investigate the case when six eigenvalues have nonzero
imaginary parts and two real eigenvalues exist, which
case holds for the parameter setup analyzed in this sec-
tion. At the linear stability boundary, a complex conju-
gate pair of eigenvalues exists with zero real part (see
the red dot corresponding to the linear stability bound-
ary of the realistic trailer setup in Fig. 5):

λ1,2 = ±iω , (22)

while the other eigenvalues are

λ j = σ j , j = 3, 4 , (23)

λ j, j+1 = σ j ± iω j , j = 5, 7 , (24)

with σ j < 0 and ω j > 0. Thus, the eigenvectors cor-
responding to the complex eigenvalues are:

s1 = s2 , s5 = s6 , s7 = s8 , (25)

where the overline refers to the complex conjugate.
Since the lateral and the vertical (pitch) motions are not
coupled linearly throughA (cf. Eqs. (11-13)), the eigen-
vectors corresponding to these linearly independent
motions are perpendicular to each other. Let us denote

λ7,8 and s7 = s8 to be the eigenvalues and the eigenvec-
tors of the 1-DoFsubsystemof the pitchmotion, respec-
tively. Namely, s1 · s7 = s3 · s7 = s4 · s7 = s5 · s7 = 0.

The columns of the transformation matrix can be
composed by means of the eigenvectors (for more
details, see [13]):

T = [
Re s1 Im s1 s3 s4 Re s5 Im s5 Re s7 Im s7

]
,(26)

which has the following structure due to the linear inde-
pendence of the lateral and vertical motions:

T =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

� . . . � 0 0
0 . . . 0 � �
� . . . � 0 0
� . . . � 0 0
� . . . � 0 0
0 . . . 0 � �
� . . . � 0 0
� . . . � 0 0

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

. (27)

In the matrix, symbols� refer to nonzero elements. By
means of this transformation matrix, we introduce the
new variable x = [x1 x2 . . . x8]T as

x = T−1z . (28)

Note that after the transformation, the new variables x7
and x8 still describe the pitch motion of the trailer. The
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system in the new basis can be formulated as:

ẋ = T−1ATx + T−1 (F2(Tx) + F3(Tx)) , (29)

where T−1AT is the so-called Jordan matrix, which
enables the separation of (29) as:

ẋc = Bxc + f(xc, xs), (30)

ẋs = Cxs + g(xc, xs) , (31)

where the subscript c refers to the so-called centerman-
ifold [6,29] with the center variables, while s denotes
the stable variables, which are in our case:

xc = [
x1 x2

]T
and xs = [

x3 x4 x5 x6 x7 x8
]T

.

(32)

In Eqs. (30) and (31), matrices B and C are

B =
[

0 ω

−ω 0

]
, C =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

σ3 0 0 0 0 0
0 σ4 0 0 0 0
0 0 σ5 ω5 0 0
0 0 −ω5 σ5 0 0
0 0 0 0 σ7 ω7

0 0 0 0 −ω7 σ7

⎤

⎥⎥⎥⎥
⎥⎥
⎦

,

(33)

respectively. Vectors f and g contain second and third
degree terms. Again, we notice that f have mixed sec-
ond degree terms related to x7, x8 and the center vari-
ables x1, x2. Thus, terms like x1x7, x1x8, x2x7 and
x2x8 with nonzero coefficients occur in f . Later, we
will show how the pitch motion affects the sense of the
Hopf bifurcation through these mixed terms.

In order to eliminate the stable variable xs and to
describe the dynamics of the system on the center man-
ifold by means of the center variables xc, the center
manifold can be approximated as a purely quadratic
surface:

xs = h(xc) =
⎡

⎢
⎣

h3(x21 , x1x2, x
2
2 )

...

h8(x21 , x1x2, x
2
2 )

⎤

⎥
⎦ , (34)

where hk = ck20x21 + ck11x1x2 + ck02x22 for k =
3, . . . , 8 contains 18 unknown constant coefficients.
We take the time derivative of Eq. (34):

ẋs = Dxch(xc)ẋc, (35)

where Dxc refers to the partial derivativewith respect to
xc.We substitute the expression of the quadratic surface

of the center manifold in Eqs. (30) and (31); thus, we
obtain the following set of equations:

ẋc = Bxc + f(xc,h(xc)), (36)

ẋs = Ch(xc) + g(xc,h(xc)) . (37)

Let us substitute Eq. (36) in (35):

ẋs = Dxch(xc) (Bxc + f(xc,h(xc))) . (38)

We subtract Eq. (37) from Eq. (38):

Dxch(xc) (Bxc + f(xc,h(xc)))+
− Ch(xc) − g(xc,h(xc)) = 0 ,

(39)

from which the coefficients cki j can be calculated.
Equation (39) consists of 6 scalar algebraic equations
with 18 unknowns. Equating coefficients of the poly-
nomials, one can solve this equation and can obtain that
h3 = h4 = h5 = h6 = 0. However, h7 and h8 are not
zeros; consequently, the variables x7 and x8 related to
the pitch motion influence the local nonlinear dynam-
ics on the center manifold. Namely, f in Eq. (30) pro-
vides third degree terms with respect to x1 and x2 when
the x7 = h7(x21 , x1x2, x

2
2 ) and x8 = h8(x21 , x1x2, x

2
2 )

are substituted in the mixed second degree terms (e.g.,
x1x7) mentioned above.

In our system, after substituting the calculated coef-
ficients into Eq. (30), namely using the second degree
approximation of the center manifold, the reduced
order system is given by
[
ẋ1
ẋ2

]
=

[
0 ω

−ω 0

] [
x1
x2

]
+

[∑
i+ j=3 ai j x

i
1x

j
2∑

i+ j=3 bi j x
i
1x

j
2

]

. (40)

Thus, there are no second degree terms in the nonlinear
part anymore, and the Poincaré–Lyapunov parameter
can be calculated via the third degree terms only, see
[30]:

Δ = 1

8
(3a30 + a12 + b21 + 3b03) . (41)

The sense of the bifurcation can be identified by investi-
gating the sign of the Poincaré–Lyapunov parameterΔ.
If Δ is positive, then the corresponding Hopf bifurca-
tion is subcritical and the emerging periodic solutions
are unstable. If Δ is negative, then the corresponding
Hopf bifurcation is supercritical and the emerging peri-
odic solutions are stable [30].

As mentioned before, due to the complexity of the
governing equations and the large number of parame-
ters of our mechanical model, no closed-form formula
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can be derived for the Poincaré–Lyapunov parameter.
However, for a certain parameter setup, the sign of Δ,
thus the sense of the Hopf bifurcation can be obtained
semi-analytically. Here we consider our realistic trailer
parameters given in Table 1 with the height h = 1 m
of the center of gravity. We apply the same approxima-
tion formulas for the mass moments of inertia like in
Sect. 3 to assume the dependence of these parameters
on the value of h. For this setup, the above detailed
center manifold reduction is applied (see Appendix A
for details) providing Δ = 6.475 · 10−4 > 0, namely
the Hopf bifurcation at the linear stability boundary
is subcritical. This is the more dangerous case from
engineering point of view, since an unstable periodic
solution coexists with the stable rectilinear motion.

If the nonlinear effect of the pitch motion is
neglected, i.e., the nonlinear coupling between the ver-
tical (pitch) and the lateral motions is omitted by con-
sidering h7 = h8 = 0 (see Appendix B), then we
obtain Δ = −8.031 · 10−4 < 0. Therefore, the Hopf
bifurcation is supercritical, which suggests that using
models neglecting pitch motion may not identify the
presence of the more dangerous subcritical Hopf bifur-
cation case.

In Fig. 6, stability charts are constructed in the plane
of the towing speed v and the height h of the center of
gravity. The subcritical and supercritical Hopf bifur-
cations are illustrated by dashed red and solid blue
curves, respectively. The sense of the Hopf bifurca-
tion is determined bymeans of numerical continuation,
detailed later in the next subsection. Panel (a) corre-
sponds to our spatial trailer model (Model A), while
panel (b) is related to the simplified model (Model B)
in which the pitch motion is blocked. As shown in
Sect. 3, the linear stability boundaries coincide for both
models. However, the sense of the Hopf bifurcation
disagrees for certain parameter setups. In the figures,
we marked the original h = 0.21 m and the modified
h = 1m trailer setups with dashed horizontal lines. For
h = 1 m, subcritical and supercritical bifurcations take
place for Model A and Model B, respectively. Thus,
the numerical continuation confirms the results of the
semi-analytical bifurcation analysis.

In Fig. 6c, the stability chart of the in-plane model
(Model C) is constructed, which does not describe the
dependence of the critical towing speed on the vertical
position of the center of gravity. By the way, this model
provides supercriticalHopf bifurcation at a smaller crit-
ical speed, namely, v = 23.8 m/s.

Fig. 6 Linear stability charts of the full spatial model a, the
reduced model with blocked bounce/pitch motion b and the in-
planemodel c. Supercritical/subcritical Hopf bifurcations related
to the stability boundaries are denoted with solid blue/dashed red
lines, respectively

4.2 Numerical bifurcation analysis

In order to validate the analytical calculations, numer-
ical bifurcation analysis is performed with the help
of DDE Biftool, see [10]. Namely, the Hopf bifurca-
tions corresponding to the linear stability boundaries
are located and the branches of the emerging periodic
solutions are followed. As it was already shown in
Fig. 6, the sense of the Hopf bifurcation is determined
by this methodology.

Of course, numerical continuation is not limited
to local bifurcation analysis, but it can also provide
information about the large amplitude vibrations of the
trailer. However, for this, one has to consider the non-
smooth nature of the governing equations detailed in
Sect. 2.2.

We approximate the Heaviside function by

H̃(s; ε) = 1

2

(
1 + tanh

( s
ε

))
, (42)

where ε is the so-called smoothing parameter. The
smaller ε is, the more sudden the switching is. Using
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Fig. 7 Stability chart of the nonlinear system in the plane of the
towing speed v and the vertical position h of the center of gravity.
Bifurcation diagrams are constructed in Fig. 8 for the parameters
marked by dashed horizontal lines

this function, the H(s) and the ReLU(s) functions
in Eq. (4) are formulated as: H(s) = H̃(s; εd) and
ReLU(s) = H̃(s; εF ) · s. The smoothing parame-
ters εd [m] and εF [N] are related to the smoothings
with respect to the suspension displacement d and the
resulted suspension force Fs. Thus, the originally non-
smooth governing equations are approximated by their
smoothed version during the continuation. In order to
tend to the real scenario, the limit case εd → 0 and
εF → 0 is investigatedby choosing smaller and smaller
εd and εF values as long as the numerical stability of
the computation is ensured.

Accordingly, parameters εd = 10−3 m and εF =
10−3 N are used in our calculations, which leads to
sudden changes within one time step of the detected
periodic solutions related to the suspension forces (cf.
Eq. (4)). We also take care how the number of mesh
points and the degree of the interpolation function
are selected in the collocation method. Namely, we
increased the number of mesh points to 144, while lin-
ear interpolation was applied. This set of the parame-
ters ensures an adequate convergence with acceptable
computational time.

A nonlinear stability chart is constructed in Fig. 7,
where the domains of different colors refer to different
nonlinear properties of the trailer. In the white area, the
rectilinear motion is globally stable. In the light and
dark gray domains, the rectilinear motion is linearly
unstable and a stable limit cycle takes place in the state
space. We differentiate the limit cycles with respect
to the minimum suspension forces (minimum vertical
force on the tires) corresponding to them. In the dark
gray zones, this minimum force is zero, namely the
tires lose contact with the ground. The red unsafe zone
refers to the parameter domainwhere the linearly stable
rectilinear motion is not globally stable due to the pres-
ence of an unstable limit cycle. Namely, large enough
perturbations may lead to large amplitude vibrations of
the trailer. Such unsafe zones typically appear at sub-
critical Hopf bifurcations, but saddle-node bifurcations
of periodic orbits can also provide such zones at super-
critical Hopf bifurcations. This latter case also happens
for our system parameters, see the figure.

To present more information about the nonlinear
properties of the system, bifurcation diagrams related
to dashed horizontal lines of Fig. 7 are plotted in Fig. 8.
The amplitudes of the generalized coordinates ψ , ϑ , ϕ
and u are plotted as functions of the towing speed v.
Dashed red lines and solid blue lines refer to unsta-
ble and stable motions, respectively. Red dots denote
the critical speeds where Hopf bifurcations take place.
Black dots characterize the towing speed above which
the loss of contact of the tires happen. This latter type
of limit cycles is marked with thick blue lines. Based
on the continuation, one can observe that symmetric
solutions exist for the lateral motion (ψ , ϕ, u), while
the pitch motion (ϑ) is asymmetric. Thus, both the
min/max values of the periodic solutions are illustrated
for ϑ .

Figure 8a shows the results of the original param-
eters of [7], providing supercritical Hopf bifurca-
tion without unsafe zone. More precisely, saddle-node
bifurcations of periodic orbits are within the linearly
unstable speed range. At the first sharp folding point
on the periodic bifurcation branch, the full compres-
sion of the wheel suspension appears leading to a qual-
itative change of the motion of the trailer thanks to the
non-smooth nature of the suspension force.

In Fig. 8b, we present an example for the case where
supercritical Hopf bifurcation and unsafe zone coexist.
In Fig. 8c, a simpler structure of the limit cycles can be
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Fig. 8 Bifurcation diagrams: supercritical case without unsafe
zone a, supercritical case with unsafe zone b, subcritical case
with unsafe zone c for low positions of the center of gravity;
subcritical case with negligible unsafe zone d for a high posi-

tion of the center of gravity. Dashed red curves correspond to
unstable, solid blue curves relates to stable motions. Thick blue
segments of the bifurcation branches of periodic orbits refer to
motions with loss of contact of tires

observed, namely subcritical Hopf bifurcation leads to
the unsafe zone.

Figure 8d relates to the parameter setup for which
we presented the results of the semi-analytical local
bifurcation analysis. The sense of the Hopf bifurcation
corresponding to the linear stability boundary is sub-
critical. As suggested by the small absolute value of the
calculated Poincaré–Lyapunov parameter Δ = 6.475 ·
10−4, the numerical continuation provides a steeply ris-
ing branch of unstable periodic solutions. The saddle-
node bifurcation of periodic solutions emerges result-
ing in a narrow bistable speed region, which is the rea-
son why no red unsafe zone can be observed in Fig. 7
for the larger values of h. Although our spatial trailer
model (Model A) shows subcritical Hopf bifurcation
instead of the supercritical one (related to Model B),
this phenomenonmay not have any practical relevance.

As shown by the bifurcation diagrams presented
here, the non-smooth characteristic of the suspension
forces influences relevantly the nonlinear behavior of
the system. The full compression/expansion of the

Fig. 9 The small-scale experimental setup

wheel suspension and the loss of contact of tires occur
for all investigated parameters. We will show more
details about these scenarios in Sect. 5 with respect
to our experiments.

5 Experiments

Based on the mechanical model described in Sect. 2, a
small-scale experimental rig was designed and manu-
factured, see Fig. 9. The trailer is placed on a conveyor
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Fig. 10 The normalized tire force characteristic (black curve)
μ(α) plotted for positive side slip angle α (see Eq. (3)). Blue
dots refer to the mean value of measurement data. The standard
deviation of the measurement points is marked by blue bars

belt,whose speed canbe tunedbetween0m/s and5m/s.
The motion of the king pin is constrained in the towing
direction by a roller bearing linear guide, while the king
pin can move in the lateral direction against the spring
and damper imitated by a rubber band in our experi-
ment. In order to be able to compare the experimental
resultswith the theoretical ones, the spring stiffness and
the damping of the rubber band were measured. The
position of the center of mass and the mass moment
of inertia of the trailer can be tuned by the positioning
of the dummy payloads. The caster length l can also
be modified by shifting the wheel suspension along the
longitudinal direction.

Measurements were carried out to determine the tire
force characteristics of the experimental rig. A pair of
wheels were towed on the conveyor belt by a rigid
caster. The side slip angle α was measured, while a
constant lateral force was applied to the wheels. The
measurement points normalized by the vertical load
are shown in Fig. 10. The parameters B, C , D and E
of the Magic Formula (3) were identified via the fitting
of the formula to the measurement data.

Since the mass moment of inertia depends on the
position of the payload, we fixed the parameters e and h
during the experiments, as well as the caster length l.
Thus, we set different towing speed values for the con-
veyor belt and examined the linear stability and the
nonlinear vibrations of the trailer. We measured the
lateral displacement of the king pin with a laser sensor
and collected and evaluated the data inMatlab.

Measurement data are compared to theoretical results
in Fig. 11 for the parameter setup of the experimental
rig (see Table 1). In panel (a) and (b), the measured
amplitude umax of the lateral displacement and the fre-
quencies f of detected vibrations are plotted versus

Fig. 11 Experimental results. The detected amplitude umax a
and frequency f b of the vibrations versus the towing speed v.
Black crosses refer to measurement data, blue curves represent
numerically determined stable solutions. Thick segments refer
to motions with loss of contact of tires. Stability chart c for the
damping c of the suspension; the dashed horizontal line corre-
sponds to the experimental setup. Numerically determined min
and max values of the suspension displacements d d and the
suspension force Fs e

the towing speed v, respectively. Measurement points
denoted by black crosses are compared to the results of
the numerical continuation shown by blue curves. Rel-
atively good agreement can be observed for the ampli-
tudes; however, some shift occurs with respect to the
linear stability boundary. In addition, there is some-
what larger difference between the predicted and the
measured frequencies.

In Fig. 11c, a stability chart is constructed by numer-
ical continuation for the experimental setup in the plane
of the towing speed v and the damping c of the wheel
suspension. As shown, there is a domain where the
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Fig. 12 Numerically determined time histories (solid lines) of
generalized coordinates, suspensiondisplacementsd and suspen-
sion forces Fs. Dashed black curves correspond to the measured

lateral position of the king pin. Panels refer to the parameter
points marked in Fig. 11c

loss of contact of the tires occurs. The experimental
setup ismarkedwith a horizontal dashed line, forwhich
the minimum and maximum values of suspension dis-
tance d (see Fig. 3) are also plotted in panel (d), high-
lighting that neither full compression nor full expansion
of the suspension happen for this setup. The minimum
and maximum values of the suspension force Fs are
plotted in panel (e).

In Fig. 12, we present some numerical results for the
parameter points M1, M2 and P of Fig. 11. We plot the
periodic solutions for all four generalized coordinates
(ψ , ϑ , ϕ and u) by solid blue lines for one period T
of the oscillation. The suspension displacements d and
suspension forces Fs are also illustrated with thin black
and thick gray curves corresponding to the right and left
wheels, respectively.

The measured time signals of the lateral displace-
ment u at parameter points M1 and M2 (see Fig. 12a–
b) are also plotted by dashed black curves. In order
to compare the shapes of the theoretical and the mea-
sured periodic motions meanwhile we neglect the dif-

ference of the vibration frequencies (cf. Fig. 11b), we
plot one period of the measured signal, too. A good
agreement can be observed between the shapes of the
measured and the theoretically calculated time histo-
ries. Asmentioned before, a loss of contact happens for
the parameter point M2, but the amplitude of the vibra-
tions remains almost the sameas forM1, no large ampli-
tude, so-called rocking motion of the trailer occurs.
Thiswas also the case in the experiment, namely no gap
between the wheels and the conveyor belt was visible.
Thewheel suspensionwas neither fully compressed nor
fully expanded as suggested by the theoretical results,
see the evolution of the suspension displacement in the
figures.

Point P is in the parameter domain of Fig. 11 where
full compression and full expansion of the wheel sus-
pensions occur together with the loss of contact of
the tires. The corresponding time signals are shown
in Fig. 12c. In this case, the vibration amplitudes are
significantly larger than in the former cases, namely a
rocking motion may occur in practice.
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6 Conclusions

In this study, we performed linear and nonlinear analy-
ses of three possible mechanical models of trailers, see
Fig. 1. The in-plane model, which is commonly used in
vehicle dynamics, neglects the pitch and roll motions
of the trailer, and it provides a smaller critical speed
and supercritical Hopf bifurcation for the investigated
parameter setup. Model B, the reduced model with
blocked bounce/pitch motion, yields the same linear
stability boundaries as the full spatialmodel (ModelA).
However, the linearly independent pitch motion affects
the sense of the Hopf bifurcation at the linear stability
boundary. The full spatial model provides subcritical
Hopf bifurcation for higher center of gravity positions,
but this does not lead to the occurrence of relevant
unsafe parameter domains. Nevertheless, as the crit-
ical speed is crossed, large amplitude vibrations can
suddenly appear, which means a relevant safety risk on
roads that can be identified only by the use of the full
spatial trailer model.

The different types of motions of the trailer were
also explored by our study. Domains of loss of contact
of tires were shown for the realistic trailer setup. An
unsafe zone with practical relevance was detected at
lower center of gravity positions, which significantly
reduces the speed range, where the rectilinear motion
is globally stable.

Laboratory experiments were used to validate the
theoretical results. The numerically determined stable
limit cycles were compared to the measured vibra-
tion amplitudes and frequencies, and a good qualitative
agreement was established.
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Appendix A

By considering our realistic trailer parameters given in
Table 1 with the height h = 1 m of the center of gravity
and applying the same approximation formulas for the
mass moments of inertia like in Sect. 3, the coefficient
matrix A of Eq. (21) reads

A =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

− 19.112 0. 0.730 − 16.242 −2.501 0 0.232 − 0.298
0 − 58.114 0 0 0 − 1.860 0 0

256.153 0 − 48.087 − 10.764 33.517 0 − 4.650 − 9.527
429.268 0 − 54.702 − 81.817 56.169 0 − 6.753 − 19.740

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

. (43)
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Thus, the characteristic roots of the system are

λ1,2 = ±8.732 i ,

λ3 = − 18.944 ,

λ4 = − 7.328 ,

λ5,6 = − 0.309 ± 3.872 i ,

λ7,8 = − 0.930 ± 7.566 i ,

(44)

while the eigenvectors are

s1,2 =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

25.479 ± 8.443 i
0

8.715 ∓ 34.930 i

102.318 ∓ 21.410 i

− 73.726 ± 222.493 i

0
305.028 ± 76.107 i

186.966 ± 893.491 i

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

· 10−3 , (45)

s3 =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

− 1.755
0

26.363

45.614

33.252

0
− 499.419

− 864.116

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

· 10−3 , (46)

s4 =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

27.781

0
− 84.489

− 101.830

− 203.593
0

619.173

746.254

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

· 10−3 , (47)

s5,6 =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

22.409 ± 22.567 i

0
170.580 ± 179.038 i

2.519 ± 1.683 i

− − .287 ± 79.790 i
0

− 745.819 ± 605.133 i

− 7.295 ± 9.232 i

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

· 10−3 , (48)

s7,8 =

⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

0
121.110 ∓ 47.422 i

0
0
0

246.237 ± 960.443 i
0
0

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

· 10−3 . (49)

Equating the coefficients of Eq. (39), we obtain the
quadratic surface for the center manifold as h3 = h4 =
h5 = h6 = 0 and

h7 = −18.619 · 10−4 x21 − 27.855 · 10−4 x1x2

+ 2.139 · 10−4 x22 ,
(50)

h8 = 11.691 · 10−4 x21 − 55.094 · 10−4 x1x2

− 7.466 · 10−4 x22 ,
(51)

therefore, the coefficients of the third degree terms of
the reduced system are

a30 = 35.764 · 10−4 , (52)

a12 = −110.033 · 10−4 , (53)

b21 = −84.875 · 10−4 , (54)

b03 = 46.471 · 10−4 . (55)

The value of the Poincaré–Lyapunov parameter isΔ =
6.475 ·10−4 > 0, and the Hopf bifurcation at the linear
stability boundary is subcritical.

Appendix B

If the nonlinear effect of the pitch motion is neglected,
namely, the nonlinear coupling between vertical (pitch)
and lateral motions is omitted, the quadratic surface of
the center manifold simplifies to h3 = h4 = h5 =
h6 = h7 = h8 = 0. In this case, the coefficients of the
third degree terms of the reduced system are

a30 = −29.733 · 10−4 , (56)

a12 = −121.558 · 10−4 , (57)

b21 = 22.911 · 10−4 , (58)

b03 = 41.200 · 10−4 . (59)
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The value of the Poincaré–Lyapunov parameter isΔ =
−8.031 · 10−4 < 0, and the Hopf bifurcation at the
linear stability boundary is supercritical.
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