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Abstract Smooth approaches are able to model

reasonably well contact/impact events between two

bodies, showing some peculiarities when dealing with

certain geometries and arising certain issues with the

detection of the initial instant of contact. The charac-

terization of multiple-simultaneous interaction sys-

tems, considering (or not) energy dissipation

phenomena (mainly friction), is always an interesting

research topic, addressed from different perspectives.

In the present work, the process of design, optimiza-

tion and verification of a multiple-impact, day-to-day

multibody novel model is shown. Specifically, we

have decided to focus on a pool/billiard game due to its

geometry simplicity. The model involves several balls

moving freely and rolling, suffering different kinds of

contacts/impacts among them and against the cushions

and the cloth. In this system, the proper modelling of

both contact and friction forces in the multiple,

simultaneous contacts and impacts events is critical

to obtain consistent results. In addition, these forces

are complicated to model because of its nonlinear

behaviour. The different existing approaches when

dealing with multiple-contact events are briefly

described, along with their most distinctive features.

Then, the interactions identified on the model are

implemented using several nonlinear contact-force

models, following a smooth-based approach and

considering friction phenomena, aiming at determin-

ing the most suitable set of both contact and friction

force models for each of these implemented interac-

tions, which take place simultaneously, thus resulting

in a complex system with multiple impacts. Subse-

quently, the solving method that provides the most

accurate results at the minimum computational cost is

determined by testing a simple shot. Finally, the

different interactions on the model are verified using

experimental results and previous works. One of the

main goals of this work is to show the some of the

issues that arise when dealing with multiple-simulta-

neous impact multibody systems from a smooth-

contact approach, and how researchers can deal with

them.
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1 Introduction

The field of multibody system dynamics, often

denoted as MSD, has experienced a significant growth

in the last decades thanks to the technological

development of computers. Figures such as Shabana,

Lankarani or Nikravesh, have taken the MSD to a new

level [1–6]. Nowadays, the applications of this

methodology are countless [7–16].

Contact forces and impact events, which are present

in almost all branches of engineering [17–19], are

responsible for the appearance of harmful phenomena

in mechanical systems such as vibrations [20], wave

propagation [21], fatigue [22], wear [23] and crack

[24]. In impact events, sudden changes occur, in which

the conditions of the mechanical system vary in very

short times. This implies the appearance of great

magnitude forces, energy dissipation processes and

discontinuities of velocities and accelerations, among

other issues. Contact events are difficult to model and

pose a challenge for the engineers due to the large

number of variables that must be considered: geom-

etry of the contacting surfaces, material properties,

inclusion of friction phenomena, multiple-simultane-

ous impacts, … Two main approaches are identified

when modelling contact events: the non-smooth

approach and the models based on contact forces

[25, 26].

One of the main purposes of this work is to develop

a realistic multibody model of a pool/billiard game

that takes into account all contact interactions of the

system, thus properly predicting the behaviour of the

different bodies (namely the balls, the cloth, the

cushions and the pockets), given a certain shot. Unlike

most of the researches developed so far [27–29], a

smooth approach has been considered to define

interactions between bodies [30]. In this approach,

normal contact forces are expressed as continuous

functions of the relative indentation between the

contacting bodies, as well as their geometric and

material characteristics [31]. Parameters from previ-

ous experiments have been used to calculate the values

of the contact forces, for the different interactions

identified.

The equations of motion have been implemented in

a Matlab code designed to perform and solve forward

dynamic analysis, which allows multiple customiza-

tion choices as well as a good control of the integration

process and provides accurate results at a reasonable

computational cost.

Several simulation scenarios corresponding to

different shots have been considered. In the following

sections, the chosen contact force models for the

different interactions defined in the model (namely

ball–cloth, ball–ball and ball–cushion) are discussed,

considering some features such as the computational

efficiency and the contact detection. The values of the

force model parameters are remarked too [32]. Fric-

tion forces are also implemented using different

models with the purpose to appraise the most relevant

and suitable options [33–35].

2 Formulation used to perform dynamic analysis

on multibody systems

The formulation of the equations of motion for

constrained multibody adopted in this work follows

the nomenclature defined by Flores and Machado in

[30, 36, 37], respectively. It follows closely the work

developed by Nikravesh, who used generalized Carte-

sian coordinates to describe the configuration of the

system [2].

2.1 Position and orientation characterization

The position of the mass centre of a body i is located

by vector r, which consists of three independent

variables associated to Cartesian coordinates xyz

ri ¼
xi
yi
zi

8
<

:

9
=

;
ð2:1Þ

Any point of body i can be described from the origin of

the local reference frame (usually located in its mass

centre) by its vector sPi , so its location with respect to

the global system can be expressed as

rPi ¼ ri þ sPi ð2:2Þ

Vector sPi , defined in global-system coordinates, can
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also be described with respect to the local reference

system, being then denoted as s0Pi

sPi ¼ Ai � s0Pi ð2:3Þ

Being Ai the rotation matrix that describes the

orientation of the local coordinate frame with respect

to the global system. For a 3D system, A is defined as

[36]

A ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

2

4

3

5

¼
cwcr� swchsr �cwsr� swchcr swsh
swcrþ cwchsr �swsrþ cwchcr �cwsh

shsr shcr ch

2

4

3

5

ð2:4Þ

wherew, h and r are the so-called Euler angles. Letters
s and c refer to sine and cosine trigonometric

functions, respectively. Euler angles represent three

independent, consecutive rotations that define the

orientation of a given body-fixed coordinate system

with respect to a global one. As matrix multiplication

is not commutative, a convention when rotating the

successive intermediate reference systems must be

considered, being this usually zxz [36]. However, this

formulation presents some singularities that make it

impossible to implement it in an engineering software.

For example, when sin h ¼ 0, intermediate systems

defined by angles w and r are indistinguishable. For

this reason, and based on Euler’s theorem on finite

rotation, the fourth coordinate is added, so a rotation in

the three-dimensional space can always be described

by a rotation along a certain axis over a certain angle

/. These fourth magnitudes, denoted by e0, e1, e2 and

e3 are known as Euler’s parameters, and must meet the

following conditions:

e0 ¼ cos
/
2

� �

ð2:5Þ

e~¼ e1 e2 e3f gT¼ u~ � sen /
2

� �

ð2:6Þ

e20 þ e21 þ e22 þ e23 ¼ 1 ð2:7Þ

So, these four parameters, along with the three

Cartesian coordinates that locate the position of the

mass centre, describe uniquely the position and

orientation of a certain body in a multibody system:

qi ¼
ri
pi

� �

¼

xi
yi
zi
e0
e1
e2
e3

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

ð2:8Þ

2.2 Kinematic joints and Newton–Euler equations

of motion

The kinematic joints of a constrained multibody

system, usually considered as holonomic, are defined

through a set of algebraic equations which are

functions of the generalized coordinates:

U � U q; tð Þ ¼ 0 ð2:9Þ

being t the time variable. The first derivative of

Eq. (2.9) with respect to time yields the velocity

constraint equations, whereas the second one leads to

the acceleration constraint equations:

€U � D _vþ _Dv ¼ 0 ð2:10Þ

where D is the Jacobian matrix of dimension k � n,
being k the total number of constraints of the system

and n the number of coordinates. Term� _Dv is usually
placed on the right-hand side of the acceleration

equations, thus being denoted as c and agglutinating

those functions explicitly dependent on positions,

velocities and time:

D _v ¼ c ð2:11Þ

constraints represented in Eq. (2.9) are nonlinear in

terms of q and are, usually, solved iteratively by

employing the Newton–Raphson method.

On the other hand, Newton–Euler equations of

motion of an unconstrained system are defined as [36]:

M � €q ¼ g ð2:12Þ

where €q is the acceleration vector andM is the system

mass matrix, written as
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M ¼

M1

M2

. .
.

Mnb

2

6
6
6
4

3

7
7
7
5

ð2:13Þ

being nb the number of bodies of the system. Each

element Mi accounts for each of the bodies

Mi ¼
mi � I 0

0 Ji

� �

ð2:14Þ

where mi is the mass of body i and Ji represents its

global inertia tensor. g is the generalized force vector

that contains all external forces and moments applied

on the system, such as those associated with gravita-

tional field and contact–impact events [38]

g ¼

g1
g2

..

.

gnb

8
>>><

>>>:

9
>>>=

>>>;

ð2:15Þ

being each element gi defined as

gi ¼
fi

ni � ~xi � Ji � xi

� �

ð2:16Þ

where ni is the sum of all moments acting on body i

and xi represent its angular velocity components. ~x is

a 3 9 3 skew-symmetric matrix in the form

~x ¼
0 �x3 x2

x3 0 �x1

�x2 x1 0

2

4

3

5 ð2:17Þ

If a multibody system of constrained bodies is

considered, Newton–Euler equations are written as [2]

M � €q ¼ gþ g cð Þ ð2:18Þ

g cð Þ being the vector that denotes the reaction forces,

which can be expressed as a function of the Jacobian

matrix and the Lagrange multipliers:

g cð Þ ¼ DT � k ð2:19Þ

Equations (2.11) and (2.18) give place to a system of

differential algebraic equations (DAE) whose matrix

form is

M DT

D 0

� �
€q
k

� �

¼ g
c

� �

ð2:20Þ

This system is solved for €q and k to obtain the dynamic

evolution of the system. In each integration time step,

the accelerations vector €q together with the velocities

vector _q are integrated to obtain the positions and

velocities for the next time step. This algorithm is

repeated until the final analysis time reached.

2.3 Kinematic joints and Newton–Euler equations

of motion: constraint violation

However, the system described in Eq. (2.20), known

as the standard Lagrange multipliers method, does not

consider explicitly the position and velocity equations

related to the kinematic constraints. This leads to a

violation of the constraint equations when dealing

with moderately long simulations, due to the error

accumulated over the integration process and/or to

inaccurate initial conditions. In order to avoid this

error propagation and eliminate any possible slip in the

position and velocity equations throughout the anal-

ysis, or at least keep such errors within a defined

margin, different methods have been defined. In this

work, three different error control algorithms have

been considered: the Augmented Lagrangian formu-

lation [39], the stabilization method defined by

Baumgarte [40] and the direct correction method

proposed by Marqués et al. [41]. As will be seen in the

following sections, the proper choice of a solving

method has a huge impact on the results obtained.

The augmented Lagrangian formulation consists of

solving the system equations of motion by an iterative

process with the goal of penalizing constraint viola-

tions. Being i the i th iteration of the integration

process [39], the iterative scheme evaluate the system

accelerations using the expression [36]

M þ a � DT � D
� 	

� €qiþ1 ¼ M � €qi � a � DT

� �cþ 2 � l � x � _Uþ x2 � U
� 	

ð2:21Þ

where a is a large real value (penalty number) and l
and x are parameters related to the natural frequency

and the damping ratio of the penalty system, respec-

tively (mass, dashpot and spring). _U represents the

velocity constraint equations. The iterative process

continues until the following condition is met

€qiþ1 � €qi








 ¼ e ð2:22Þ
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being e a specified tolerance defined by the user. Even
when the system is close to a singular position or when

dealing with redundant constraints the system of

equations can still be solved.

Baumgarte proposed, in a similar way as the

augmented Lagrangian, an alternative expression for

Eq. (2.10) [40]

€Uþ 2 � a � _Uþ b2 � U ¼ 0 ð2:23Þ

Equation (2.23) is a differential equation that leads to

a closed-loop system in terms of kinematic constraint

equations. The two added terms, 2 � a � _U and b2 � U,
operate as control terms to damp the violation of

acceleration constraint by inserting the data of both

position and velocity constraint violations. If both

parameters a and b are chosen as positive constants,

the stability of the system is assured. Baumgarte

proved that values of these parameters smaller than 10

are advantageous. Nonetheless, he stated that the

suitable choice of the constant should be obtained by

numerical experiments. A study carried out in [42] and

based on the stability analysis procedure used in

control theory shows that, for a fixed time step, the

values a = b = 5 lead to a convergence of the

integration process without oscillation, being this

process even faster if a = b = 20. However, this

implied a stiffer system. For certain problems, small

parameters are preferred, whereas for others, large

values provide better results [43], these being always

in the interval 1–20 [39]. A bigger increase in b
compared to one of a produces oscillations of the

results and, ultimately, the divergence of the integra-

tion process. If both values are equal, the critical

damping is reached. For the model developed in the

following sections the values a = b = 5 were chosen.

Unlike Lagrangian formulation, Baumgarte’s method

uses to fail when dealing with kinematic singular

configurations or with redundant constraints [39].

Marqués et al. proposed a direct correction

approach to get rid of constraints violation by consid-

ering the positions vector at a ith iteration as

qc ¼ qu þ dq ð2:24Þ

where qc represents the corrected positions of the

bodies of the system at that time step, qu denotes the

uncorrected positions and dq represents the set of

corrections that eliminates the constraints violation.

Thus, Eq. (2.9) became

U qcð Þ ¼ U quð Þ þ dU ¼ 0 ð2:25Þ

where the last term, dU, denotes the variation of the

constraint equations

dU ¼ oU
oq1

� dq1 þ
oU
oq2

� dq2 þ � � � þ oU
oqn

� dqn
¼ D � dq ð2:26Þ

Combining Eqs. (2.25) and (2.26) and considering the

concept of Moore–Penrose inverse matrix, dq can be

rewritten and a new definition of qc is obtained

dq ¼ �DT � D � DT
� 	

� U quð Þ ð2:27Þ

qc ¼ qu � DT � D � DT
� 	

� U quð Þ ð2:28Þ

In a similar way, the vector of generalized velocities

can be corrected as

_qc ¼ _qu � DT � D � DT
� 	�1� _U qc; _quð Þ ð2:29Þ

With these two expressions, positions are corrected at

each time step until deviation is contained. Then, by

using Eq. (2.29) with the new values of qc, the velocity

constraints violation is corrected.

3 Definition of the application model: pool/billiard

table

In this section, a practical application of the equations

developed above will be described. The authors

decided to choose a pool/billiard multibody due to

the different, multiple-contact interactions that take

place simultaneously (see Fig. 1). In addition, it was

not excessively difficult to model it, as geometries are

relatively simple, and there are experimental and

theoretical data available to verify the model and draw

some worthwhile conclusions about the issues arisen

during the characterization and verification stages. As

will be seen, the proper definition of both, contact and

friction forces, will have a critical impact on the

results.

3.1 Contact modelling approaches and contact

interactions considered in the proposed model

In general, two different approaches are identified

when modelling contact/impact phenomena in multi-

body systems: the non-smooth or impulse-momentum
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Fig. 1 Example of a

multiple impact: a cue ball

contacting with the blue one

and the latter penetrating in

the cushion; b top view with

the values of ball–ball and

ball–cushion penetration;

c lateral view of the impact,

with the values of ball–cloth

and ball–cushion

penetration
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based approach and the models based on contact

forces or force based models [30, 32, 44, 45].

The former assumes that the deformations experi-

enced by the bodies involved in the process are small,

compared to their geometry (so they can be considered

as rigid solids), and that the contact process is almost

instantaneous (so the forces involved are modelled

through the concept of impulse) [5, 46]. Some authors

subdivide this first group into two classes [47, 48]:

algebraic methods that relate post and pre-impact

velocities through a certain function [49, 50], which

can be explicitly or implicitly defined; and first-order

dynamics models that follows the Darboux–Keller

approach [51, 52]. The first group consider the contact/

impact event as instantaneous, whereas the second one

establishes a small-time interval. Emphasis must be

given in this second group to the LZB model [48], an

extension of the aforementioned DK approach applied

to single impacts, which considers plastic deformation

through a bi-stiffness contact model and energetic

coefficients of restitution [53, 54]. A comparative

analysis between these two groups can be found in

[55]. Non-smooth models allow a simple, computa-

tionally efficient modelling of the contact event.

However, some drawbacks are the requirement of

different numerical strategies for certain contact

scenarios, such as a permanent contact or an intermit-

tent one [5, 30] or the complexity of some of the

algorithmic procedures used tomodel the impact event

[37, 56, 57]. Some studies regarding the specific

contact scenarios issues can be found in [58, 59].

On the other hand, models based on contact forces,

also known as penalty models or compliant models

[32], are characterized by their simplicity, computa-

tional efficiency and implementation easiness [37, 60].

These approaches define contact forces as continuous

functions of the relative penetration (and its temporal

derivative) of the contacting bodies [61, 62], which are

supposed to be deformable [30]. The contact regions

of each body are modelled as a set of spring-damper

elements scattered over their surfaces. Nevertheless,

these approached present some drawbacks, being the

main one the proper choice of the parameters associ-

ated with the definitions of the forces (for example, the

equivalent stiffness or the degree of nonlinearity of the

indentation) [32, 63]. In these models, the right

detection of the initial instant of contact is critical to

obtain accurate results [64].

A quick search on the subject shows that most of the

works made so far about pool ball–ball interaction are

based on non-smooth approaches [27–29, 65, 66]. The

main aim of this research is to develop a complete

model penalty-based that considers not only ball–ball

interactions, but also the ball–cloth and the ball–

cushion ones, so multiple, different contact events take

place simultaneously. Within the spirit of this method-

ology, special attention is paid to the contact detection

itself, in terms of both the consistency of the results

and computational efficiency [64].

There are multiple commercial software in the

market focused on multibody system modelling, both

commercial [67, 68] and non-commercial [69, 70]

However, in this project equations will be imple-

mented and solved in a Matlab-based code designed to

perform forward dynamic simulations for spatial

multibody systems [36]. Bodies will be defined by

their relative coordinates, using the Euler parameters

to describe the rotation of their respective local

reference systems with respect to the global one. The

translational motion will be described in terms of the

Cartesian coordinates.

3.2 Material characteristics of the model

and geometric modelling of the contact

interactions

An Eight-ball table, the most popular pool billiard

game, was considered to develop the model. It consists

of 15 coloured balls (seven solid-coloured balls

following the sequence yellow–blue–-red–purple–or-

ange–green–brown, seven striped balls with the same

sequence and the black 8 ball) and a white ball, which

is hit by a cue. According to the regulations estab-

lished by theWPA (World Pool Association), a 9-Foot

table was chosen, with dimensions of 2.54 9 1.27 m.

Although the cushions should be triangular-shaped

bodies, the ball–cushion interaction was modelled as a

sphere-plane contact, so they would be considered as

plane bodies. The balls were also defined according to

the regulations (57.15 mm diameter, 170 gmass, solid

bodies made of Phenol–formaldehyde resin). Table 1

shows the values of the elastic properties of the

respective materials.

Three contact interactions are identified in the

proposed model: ball–ball, ball–cloth, and ball–cush-

ion. Some geometric data of the bodies must be

provided to model the impact events and to calculate
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the contact detection condition, the contact direction

and the value of the indentation [77]. For the ball–ball

interaction, the radii of the balls must be defined, the

contact condition being:

d ¼ Ri þ Rj � d~














\0 No contact

¼ 0 Contact starts/ends

[ 0 Contact

8
<

:

ð3:1Þ

where d~ is a vector set between the centres of the balls i

and j (see Fig. 2a). The contact between the balls and

the cloth is defined as a ball–plane interaction, for

which the radius of the ball and a normal vector of the

plane must be provided. The contact condition is

calculated as:

d ¼ R� distij

\0 No contact

¼ 0 Contact starts/ends

[ 0 Contact

8
<

:
ð3:2Þ

Table 1 Material properties of the bodies [71–76]

Body Material Young modulus (MPa) Poisson ratio

Cloth Wool 3100 [71] 0.38 [72]

Cushion Rubber 7 [73] 0.50 [74]

Ball Phenol–formaldehyde resin 3800 [75] 0.375 [76]

Fig. 2 Contact detection

algorithms: a ball–ball

interaction and; b ball–plane

interaction
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being distij the minimum distance from the centre of

the ball to the plane (Fig. 2b). The interactions

between the balls and the cushions are defined as

sphere-parallelepiped interactions, which are specific

cases derived from the sphere-plane general contact

case. Each cushion is divided into three half-bodies, as

shown in Fig. 3, thus being a total of 18 planes, as well

as the cloth. Therefore, each cushion consists of a

central, rectangular prism to which two triangular

prisms are attached at its bases. The corners of the

cushions are critical contact points, where three

different situations can take place (see Fig. 4).

Depending on the specific contact point, the ball will

rebound on the direction normal to the longest side of

the cushion (Fig. 4a), the original direction (Fig. 4b) or

the normal to the shortest side of the cushion (Fig. 4c).

To define accurately the boundaries of each plane, the

dimensions of the prisms are implemented through

their inertia matrixes, their terms being functions of

these, as well as their mass [78]. If any of the

coordinates of the projection of the sphere is out of the

boundaries of the plane (sC
!

j�sph;x � R and sC
!

j�sph;y �
R in Fig. 5), contact will not happen.

3.3 Contact and friction forces

An appropriate set of contact and friction force models

had to be chosen for each of the contact cases

described above, considering the properties of the

contacting bodies and the contact event itself, as well

as looking for a balance between consistency of results

and computational efficiency. For this reason, a

research on the modelling of the different pool/billiard

interactions was carried out [34, 79].

The model defined by Lankarani and Nikravesh

was selected to calculate the normal force between the

balls [80]. This approach stands out by its reasonably

good results when dealing with general mechanical

contacts, especially when dealing with cases in which

the energy dissipated during the contact is relatively

small compared to the maximum absorbed elastic

Fig. 3 Cushion design process: a split of the cushions into different bodies; b detail view of the upper, central pocket; c detail view of

the bottom, central pocket
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energy, namely, for values of the coefficient of

restitution close to one [32]

FN ¼ K � d3=2 þ v � d3=2 � _d ð3:3Þ

where K denotes the contact stiffness parameter,

which, for a contact between two spheres, i and j, with

radii Ri and Rj, respectively [32], is

K ¼ 4

3 ri þ rj
� 	 �

ffiffiffiffiffiffiffiffi
Reff

p
Reff ¼

Ri � Rj

Ri þ Rj
ð3:4Þ

where Reff is the equivalent radius. ri and rj are

material parameters given by

rl ¼
1� v2l
El

l ¼ i; jð Þ ð3:5Þ

being vl and El the Poisson’s ratio and the Young’s

modulus of each sphere, showing the influence of the

material properties in the contact event. For the

contact between a sphere i and a planar surface j [32]

K ¼ 4

3 ri þ rj
� 	 �

ffiffiffiffiffi
Ri

p
ð3:6Þ

v denotes the hysteresis factor that quantifies energy

dissipation, which for LN model is defined as [32]:

v ¼
3 � 1� c2r
� 	

4
� K

_d �ð Þ ð3:7Þ

being cr the restitution coefficient and _d �ð Þ the initial
impact velocity. Regarding the friction force, two

models were compared: Threlfall’s model, chosen due

to its simplicity and the data availability, (see Fig. 6a)

and an experimental expression defined by Alciatore

(see Fig. 6c) [34], based on Marlow’s data [35], which

is dependent on the relative tangential contact veloc-

ity. The latter is defined by Eq. (3.8)

l vð Þ ¼ 9:951� 10�3 þ 0:108 � e�1:088�v ð3:8Þ

On the other hand, Hertzian contact model provided

the best results to characterize the ball–cloth interac-

tion, due to its simplicity and computational efficiency

[31, 32]

FN ¼ K � d3=2 ð3:9Þ

As there is an almost-permanent contact between

the balls and the cloth, for the shots tested in this work,

energy dissipation due to elongation can be omitted,

thus making this approach a perfect choice. However,

some considerations regarding this interaction will be

commented in the following section. The model

proposed by Ambrósio was used to define the friction

phenomena associated to this contact event (see

Fig. 6b) [33]. This model, as well as Threlfall’s, set

up a null friction force for very low tangential

velocities. As it will be commented later, balls will

move at much higher speeds than the limits defined, so

they will tend to slip rather than roll. Therefore, stick–

slip motion can be neglected in this model: when the

cue ball is hit, the friction between the balls and the

cloth is so low that they start to slip immediately.

Although the models described in Fig. 6 are 1D

approximations, the friction forces will be 3D vecto-

rial quantities, as they are obtained from the normal

forces whose direction is defined by the normal vector

calculated through the algorithms described above.

Fig. 4 Three different contact cases at the same point: a ball

comes from a direction normal to the longest side of the cushion;

b ball impacts from a direction between the normals of the two

sides and c ball comes from a direction normal to the shortest

side of the cushion
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Lastly, the model defined by Lankarani and

Nikravesh model was chosen again to characterize

the interaction between the balls and the cushions, as

cushions dissipated most of the impact energy through

elastic deformation, being the impact almost fully

elastic. Friction was considered as minimal in this

contact event at first, so it was neglected. However,

Mathavan et al. calculated, based on experimental

results, some specific values of restitution and friction

that were later considered to validate the ball–cushion

contact interaction, being these 0.98 and 0.14,

respectively [79]. The friction force was implemented

then using again the model defined by Ambrósio [33].

The rest of values of both friction and restitution

coefficients tested, for the three interactions described

above, were extracted from the researches carried out

by Alciatore [34] and are shown in Table 2. For the

contact force expressions, a value of the nonlinear

power exponent n = 1.5 was adopted when computing

the contact forces values.

For both the Ambrósio and the Threfall models,

some values of tolerance velocity (v0 and v1, see

Fig. 5 Sphere-

parallelepiped contact

detection algorithm [77]: a
projection of the centre of

the sphere on the plane

coinciding with the upper

surface of the prism; b
normal view to the plane,

where face boundaries are

defined by the dimensions of

the prism (distancex and
distancey)

123

Modelling multiple-simultaneous impact problems with a nonlinear smooth approach 1869



(a) Threlfall friction model (b) Ambrósio friction model

(c) Friction model defined by Alciatore [34]

Fig. 6 Friction force models used when defining the model

Table 2 Restitution and friction coefficients used to model the different interactions of the system [34, 79]

Interaction Contact force model Friction force model Friction coefficient Restitution coefficient

Ball–ball Lankarani and Nikravesh Threlfall 0.06 0.93

Alciatore 9.951 9 10-3 ? 0.108�e-1.088�v 0.93

Ball–cloth Hertz Ambrósio 0.2 –

Ball–cushion Lankarani and Nikravesh – – 0.85

Ambrósio 0.14 0.98
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Fig. 6) had to be defined [33]. In this work, a value of

v0 = 0.01 m/s was taken for the Threlfall model, while

for the Ambrósio model values of v0 = 0.0001 m/s

and v1 = 0.001 m/s were adopted. Both models show

similar behaviours to Coulomb’s law and provide

computationally efficient results. In addition, for

tangential velocity values close to zero, the friction

force will always be low, independently of the

displacement.

3.4 Initial conditions for the verification

experiments

Three experiments were carried out with the proposed

model: firstly, a fine-tune process was made, along

with the comparison of four solving methods of the

Newton–Euler equations [36]; secondly, ball–ball and

ball–cloth interactions were verified simultaneously

using Alciatore’s experimental results and theoretical

work [34]; finally, the interaction between the balls

and the cushions was checked through a straight shot

compared with both experimental results and a slow-

motion video of a real shot.

For all cases, the inertia of the balls was

J = 0.000055 kg m2. All bodies had their local coor-

dinate system aligned with the global frame, so their

Euler parameters were (1, 0, 0, 0). The centre of the

cloth was set at the position (0, 0, 0) m of the global

reference system.

Four balls were placed on the cloth for the first

experiment: the cue ball and the first three balls of the

rack (see Fig. 7a). The shot was implemented as an

initial velocity of the white ball of value 10.729 m/s

(24 mph) in the positive direction of x-axis. This value

corresponded to a professional break shot [81]. All

balls were able to move freely. The initial position of

the centre of the white ball was (-0.635, 0, 0.028576)

m, while the centre of the first ball of the rack was

located on (0.635, 0, 0.028575) m. Some comments

will be made on the effects of the separation of the

static balls on the results, and how the different contact

events that happen simultaneously affected each other.

For the second experiment, the verification of ball–

cloth and ball–ball interactions, two balls were

arranged on the cloth: the cue ball and a blue solid-

coloured one. Two cases were considered: a medium

speed shot and a fast speed shot, with values of the

initial velocity of the cue ball of 3 and 7 mph,

respectively [34] (see Fig. 7b, c). For the first shot, the

centre of the cue ball was located on the global

position (0, 0, 0.028576) m, while the local system of

the blue ball was on x = 0.635 m. On the other hand,

for the second case the cue ball was located on

(- 0.635, 0, 0.028576) m and the blue ball on

x = 0 m, preventing it from colliding with the cushion

on x = 1.27 in excessively early stages of the

simulation.

Regarding the third experiment, the two sets of

contact and friction force described above for the ball–

cushion interaction were tested and verified. First, a

simple, straight shot in the positive direction of the y-

axis was compared with the experimental results from

real slow-motion footage. The cue ball had an initial

velocity value of 2.724 m/s, and its initial position in

global-system coordinates was on (1, 0.55,

0.028576) m. Then, the values proposed by Mathavan

et al. were implemented and verified, testing different

impact velocities on x-axis direction (see Fig. 6d, e).

It must be highlighted that no complex plays were

considered in the early design and verification stages.

Professional pool/billiard players consider additional

effects such as Coriolis effect in order to make

unbelievable moves that allow getting multiple balls

into the pockets with a single shot [82]. More

information regarding the so-called English effect in

pool/billiard can be found in [34] (see Fig. 8).

4 Numerical results

The dynamic analysis was carried out using four

different solving methods: the standard Lagrange

multipliers [2], the Augmented Lagrangian formula-

tion [39], the stabilization method defined by Baum-

garte [40] and the direct correction method proposed

by Marqués et al. [41], all of them run by the ordinary

differential equations (ODE) integrator of Matlab. For

the first experiment, analysis times of 3 s and 4 s were

set, with different values of default time step.

Conversely, for the second test an analysis time of

2 s was defined, with a 0.0001 s time differential by

default. Finally, for the third experiment, an analysis

of 0.2 s was carried out to recreate the real shot, with a

default time step value of 0.0001 s, whereas for the

experimental values verification, the analysis time was

set at 1 s, with a time step of 0.001 s. These values of

time steps would be reduced automatically by ODE

integrator at the critical moments, mainly when
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contact starts, in order to perform a proper and

accurate detection of the initial instant of contact and

the value of indentation then [64].

4.1 First experiment: model optimization

and solving methods comparison

In the early stages of the development of the model,

balls static at the outset (coloured spheres in Fig. 7a)

were arranged with a certain distance between their

surfaces, avoiding the system to stall in excessively

early times of the simulation. The coloured balls were

always arranged so their mass centres formed an

equilateral triangle. The distance between the mass

centres of the coloured balls were defined by the

expression d ¼ 2 � Radius þ a, being a a value set by

the user, as shown in Fig. 9. The positions tested are

resumed in Table 3. The last value corresponds to a

random arrangement of the balls, whereas the first four

values were set to determine the minimum precision of

the model.

These values proved to have a decisive impact on

the results obtained. For instance, with lower values of

a, some of the balls (mainly the cue and the yellow

(a) First experiment

(b) Second experiment: medium speed shot (3 mph) (c) Second experiment: fast speed shot (7 mph)

(d) Third experiment: real shot comparison (e) Third experiment: experimental data verification

Fig. 7 Location of the bodies for t = 0 s, on the three experiments
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ones) tended to increase their position in global z-axis

as the analysis progresses and they rolled on the cloth

(see Fig. 10). As awas increased, the maximum values

reached by these balls reduced, providing a more

reasonable behaviour of the model, i.e. balls do not

tend to gain energy and increase their z-axis position.

For the random value set, cue and yellow balls hardly

move in z-axis.

This is also an example of how a certain configu-

ration of one of the contact interactions affects to the

rest of contact events that happen simultaneously. For

this reason, in the first simulations performed with this

model, when it was being tuned, both normal force in

the ball–cloth contact and gravity force were

neglected, therefore keeping constant z-axis compo-

nent. This resulted in a substantial reduction of the

Fig. 8 English effect in

pool/billiards

Fig. 9 Arrangement of the balls as a function of a

123

Modelling multiple-simultaneous impact problems with a nonlinear smooth approach 1873



computing time, from an average of 15,500 s for the

lower values of a and 7700 s for the random value, to

clearly lower values of 1730s and 440 s, respectively.

This modification of the model had some conse-

quences: friction forces normal to the cloth had to be

neglected to avoid the balls to either fly over the cloth

or to sink into it. The value of the normal force was

calculated as the product of the ball weight by the

value of acceleration of gravity, 9.81 m/s2. In Fig. 11 a

comparison of the evolution of the position of the

yellow ball along x-axis is shown, for both the ‘‘first’’

version of the model and this second, ‘‘fine-tuned’’

one. The first model was simulated using Baumgarte’s

stabilization method, whereas the second one was

tested with three of the methods introduced above:

Baumgarte’s, standard Lagrange multipliers and Aug-

mented Lagrangian formulation. As can be observed,

for the lower values of a, the model provided

consistent results, as the ball reached the boundaries

faster since there was no energy dissipated in z-axis

movement. However, for the greatest values of a, 10-6

and 2.1325735 9 10-4 m, different results from the

previous ones were obtained. In the case of

a = 10-6 m, the reason is that the yellow ball

impacted with both the red and the blue ones at

t * 0.7 s. On the other hand, for the random value of

a, the yellow ball did not move in positive x axis

direction after the first impact with the cue ball, but in

the negative one. This was later checked in a non-

smooth model and proved to be wrong. In conse-

quence, the value of a that should be used to obtain

proper results should be in the interval 10-9–10-7.

Once the model was tuned, the different solving

methods were compared in order to define which one

of them provided the most accurate results at the

minimum computational cost. For this experiment, the

random value of awas chosen, so the computing times

were not too much long. Furthermore, gravity and

forces normal to the cloth were considered. The first

simulation was carried out with a default time step of

0.01 s. As can be seen in Fig. 12, both standard and

Baumgarte methods provided logical results, as the

cue ball remained along the global x-axis throughout

the simulation (i.e. the y-position component kept

null) for an initial shot with only not-null x-compo-

nent, while the Augmented Lagrangian and the direct

correction methods showed that the cue ball moved on

the global y-axis. This was confirmed by the values of

y-axis linear acceleration in Fig. 13.

One of the reasons of these incongruous results

could be the large size of the default time step, which is

reduced by the ODE integrator at critical instants (for

example, when a contact starts), but that it is kept

constant as long as the error is within the allowed

margin for the rest of the analysis. For this reason, the

test was repeated, this time defining a default time

differential value of 0.00001 s. The new graphs of

both y-axis position and y-axis linear acceleration of

the cue ball are shown in Figs. 14 and 15, respectively.

On this occasion, the deviations were way lower, and,

for the augmented Lagrangian method, the symmetry

of the problem was kept. Nevertheless, the direct

correctionmethod still showed a slight deviation of the

cue ball on y-axis, although it could be considered

negligible. Going over the computing times shown in

Fig. 16, it can be said that the Augmented Lagrangian

formulation and the direct correction method are not

computationally efficient for the proposed model. This

a perfect example of how the choice of the solving

Table 3 Positions of red

and blue balls as a function

of a

a(m) Ball X (m) Y (m) Z (m)

10-9 Red 0.684493352692305 - 0.028575000499999 0.028575

Blue 0.684493352692305 0.028575000499999 0.028575

10-8 Red 0.684493360486534 - 0.028575004999999 0.028575

Blue 0.684493360486534 0.028575004999999 0.028575

10-7 Red 0.68449343842882 - 0.028575049999999 0.028575

Blue 0.68449343842882 0.028575049999999 0.028575

10-6 Red 0.684494217851683 - 0.028575499999999 0.028575

Blue 0.684494217851683 0.028575499999999 0.028575

2.1325735 9 10-4 Red 0.6846780381 - 0.0286816287 0.028575

Blue 0.6846780381 0.0286816287 0.028575
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(a) 10-9 m

(b) 10-7 m

(c) 10-6 m

(d) 2.1325735·10-4 m

Fig. 10 Evolution of the z-

axis position components of

the balls, depending on the

value of a chosen
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method have a critical impact on the consistency of the

results, for a constrained multibody system.

4.2 Ball–cloth and ball–ball interactions

verification

In order to verify completely the proposed model, the

results obtained by Alciatore, mentioned above, were

used [34]. Alciatore defined the ‘‘308 Rule’’, which

stated that for a rolling-CB shot, over a wide range of

cut angles, between a 1/4-ball and 3/4-ball hit, the cue

ball will deflect by very close to 30� from its original

direction after hitting the objective ball (see Figs. 17

and 18 for further clarification). He proposed the

following expression to calculate the deflection angle

h as a function of the fraction hit f :

u fð Þ ¼ arcsin 1� fð Þ

h uð Þ ¼ arctan
sin uð Þ � cos uð Þ
sin2 uð Þ þ 2

5

 !
ð4:1Þ

(a) 10-9 m

(b) 10-7 m

Fig. 11 Evolution of the x-

axis position component of

the yellow ball, depending

on the value of F chosen
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The blue curve shown in Fig. 19 represents the

function defined in Eq. (4.1). Seven ball hit fraction

values were simulated (f = 0.05, 0.125, 0.25, 0.5,

0.75, 0.875 and 0.95), for the four solving methods

mentioned previously. The analysis time was 3 s, with

a default time step value of 0.0001 s. Two different

friction force models were tested for the ball–ball

contact event: a constant friction coefficient of value

0.06, implemented through a Threlfall model, and the

velocity-dependent friction coefficient defined in

Eq. (3.8) [33, 34]. In addition, two different shots

were tested: a medium speed shot (3 mph) and a fast

speed shot (7 mph), both of them with only not-null

x-axis direction component [34].

The results obtained for both cases are shown in

Fig. 19. It is observed that, for a medium speed shot,

with the same cue ball speed as that used by Alciatore

in his experimental tests (3 mph), the deflection angle

values provided by the model were quite similar, for

both friction force models. However, with the

(c) 10-6 m

(d) 2.1325735·10-4 m

Fig. 11 continued
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velocity-dependent model a slight deviation was

noted, for low ball hit fraction values, with respect to

the experimental results, except for the augmented

Lagrangian method, which had been discarded before

due to its lack of computational efficiency. On the

other hand, it is observed that, as the cue ball speed

increased, the deflection angle also did, for the same

ball hit fraction value, which is consistent from a

physical point of view, as kinetic energy of the balls

was greater. For both cases, the maximum values of

deflection angle were obtained for values of f between

0.7 and 0.9.

4.3 Ball–cushion interaction verification

With the aim of completing the verification process of

the proposed model, two experiments were carried out

to verify the remaining interaction: the ball–cushion

contact. Both tests provided quite promising results

and allowed the model consistency verification pro-

cess to be completed.

Firstly, some footage of a billiard ball impacting

against the cushion were analysed in order to replicate

the shot shown in the video in the designed model.

According to the author of the video, the shot was

recorded with a high-speed camera, with a frequency

of 2000 frames/s. Calculating the initial speed of the

ball using two alternate frames gave a value of

Fig. 12 Evolution of the

global y-axis position
component of the centre of

the cue ball throughout the

simulation, for the four

solving methods, with a

0.01 s default time step

Fig. 13 Evolution of the

global y-axis linear
acceleration component of

the centre of the cue ball

throughout the simulation,

for the four solvingmethods,

with a 0.01 s default time

step
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2.724 m/s. The shot was replicated in Matlab arrang-

ing the ball in the initial position (1; 0.55;

0.028576) m, which was calculated checking on the

video a specific frame in which the ball was at,

approximately, 92.914 mm from the cushion. The

time of the dynamic analysis was set at 0.2 s, with a

default time step value of 0.0001 s again. With these

initial conditions, the results shown in Fig. 20 were

obtained. The proposed model provided results almost

identical to the real shot from the video, thus verifying

this third interaction.

After this test, the authors found the work devel-

oped by Mathavan et al. [79], in which they obtained

the values of coefficient of restitution and ball–

cushion sliding friction coefficient that provided the

minimum error for the ball–cushion interaction. These

values were cr = 0.98 and l = 0.14, for a shot in

which the cue ball moved normal to the cushion, for

different initial speeds. These shots were replicated in

the proposed model, implementing the values of

restitution and friction mentioned. The friction force

was simulated using again the model defined by

Ambrósio [33], obtaining the results shown in Fig. 21.

As can be observed, for low incident velocities, both

models complied reasonably well with the experi-

mental results, whereas for greater values, specially

from 2.5 onwards, there was a slight deviation with

respect to the experimental results. Nevertheless, it

Fig. 14 Evolution of the

global y-axis position
component of the centre of

the cue ball throughout the

simulation, for the four

solving methods, with a

0.00001 s default time step

Fig. 15 Evolution of the

global y-axis linear
acceleration component of

the centre of the cue ball

throughout the simulation,

for the four solvingmethods,

with a 0.00001 s default

time step
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can be said that the proposed model provides once

again consistent, realistic results.

5 Concluding remarks

In the present paper a multibody model of a pool

billiard game with multiple impacts has been

designed, developed and verified. Taking an innova-

tive contact force approach with respect to previous

works, the different contact and friction interactions

identified (namely the contact events between the

balls, between the balls and the cloth and ball–cushion

contact) have been implemented. The suitable set of

contact and friction models, for each one of these

interactions, has been defined, looking for a balance

23613

24948

24876

11609

80413

104252

0 20000 40000 60000 80000 100000 120000

Standard Lagrange Multipliers

Augmented Lagrangian (0.01 s)

Baumgarte

Direct correction (0.01 s)

Augmented Lagrangian (0.00001 s)

Direct correction (0.00001 s)

Computing time (s)
(post-processing included) 

Fig. 16 Computing times for the different methods and default time differentials tested on the first experiment

Fig. 17 Further description of the concept of deflection angle

(a) f = 0.25 (b)  f = 0.5 (c) f = 0.75

Fig. 18 Some examples of values of ball hit fraction (f) tested on the model verification
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between results accuracy and computational

efficiency.

Several experiments have been carried out with the

proposed model. In the first test, a process of

optimization has been made to reduce the computing

time and to fine-tune the results provided by the

model. Then, different solving methods of the equa-

tions of motion have been tested, identifying those that

provide consistent results at a minimal computational

cost. Then, the ball–ball and ball–cloth interactions

have been verified simultaneously using both theoret-

ical and experimental results from previous works.

Finally, the interaction between the balls and the

cushions has been validated using both footage of a

real pool billiard shot and experimental results. Both

verification processes have delivered consistent,

promising results.

As can be seen, the study of the phenomenon of

contact is a research field that covers a wide range of

applications. Considering the most characteristic

(a) Constant friction coefficient (0.06), implemented through a Threlfall model [33]

(b) Velocity dependent friction coefficient defined on Equation (3.6) [34]

Fig. 19 Verification results for the ball–ball interaction
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features of each interaction (elasticity, energy dissi-

pation mechanisms and friction phenomena), the most

suitable set of contact force and friction force models

has been defined for each interaction. For the interac-

tion between balls and between the balls and the

cushions, a contact force model conceived to charac-

terize almost elastic impacts as that defined by

Lankarani and Nikravesh has been chosen. Con-

versely, in order to get as much computational

efficiency as possible, a simple Hertzian model has

proved to be the best choice to define the permanent

contact between the balls and the cushion, for the

tested shots. It should be noted that, in complex

multibody models with different and simultaneous

contact interactions as the one developed in this work,

multiple factors must be taken in order to obtain

consistent results. The arrangement of the bodies,

distances between them and contact and friction

(a) Initial instant of the dynamical analysis

(b) Maximum indentation step

(c) Final instant of contact

Fig. 20 Comparison of the simulation progress for the ball–cushion interaction experiment
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models, as well as time step differential have a critical

impact in the results. Besides that, penalty-based

approaches have proved to work reasonably well with

simultaneous-multiple-impact multibody systems.
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