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Abstract In this paper, we consider a stochastic SIR
epidemic model with general disease incidence rate
and perturbation caused by nonlinear white noise and
Lévy jumps. First of all, we study the existence and
uniqueness of the global positive solution of the model.
Then, we establish a threshold λ by investigating the
one-dimensional model to determine the extinction and
persistence of the disease. To verify the model has an
ergodic stationary distribution, we adopt a newmethod
which can obtain the sufficient and almost necessary
conditions for the extinction and persistence of the dis-
ease. Finally, some numerical simulations are carried
out to illustrate our theoretical results.

Keywords SIR model · Lévy jumps · Incidence rate ·
Extinction · Ergodic stationary distribution

1 Introduction

The study of epidemic dynamics is to establish a math-
ematical model which can reflect the biological mech-
anisms according to the occurrence, development and
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environmental changes of diseases, and then to show
the evolution of diseases through the study of dynam-
ics of themodel. Theories ofKermack andMcKendrick
laid the foundation for subsequent study of infectious
disease dynamics and the generation of themost classic
SIR epidemic model [1]. Since then, a large number of
papers have focused on the dynamics of SIR infectious
disease model [2–6]. And this model is usually used to
denote some diseases with permanent immunity such
as herpes, rabies, syphilis, whooping cough, smallpox,
and measles, etc.We refer the readers to [7–9] for more
details. In this paper, we assume that the mortality due
to disease is not very high and the average daily increase
in people over a period of time is constant. Then, the
classic epidemic model can be given by:
⎧
⎨

⎩

dS(t) = (α − βS(t)I (t) − μS(t)) dt,
d I (t) = (βS(t)I (t) − (μ + ρ + γ )I (t)) dt,
dR(t) = (γ I (t) − μR(t)) dt,

(1)

where S(t), I (t), R(t) represent the density of suscep-
tible individuals, infected individuals and individuals
recovered from the disease at time t , respectively. The
parameter α denotes the recruitment rate of the popula-
tion, β is the transmission coefficient between S(t) and
I (t), μ is the natural mortality rate, ρ is the mortality
due to disease, and γ is the recovery rate. All of the
parameters α, β, μ, ρ, γ are assumed to be positive.

It is well known that the bilinear incidence rate
βS(t)I (t) describes the number of people infected by
all the patients in a unit of time t (i.e., the number of
new cases). However, studies have shown there exist
many biological factors that may contribute to non-
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linearity of transmission rate (refer [10] and the refer-
ences therein ). The nonnegligible interactions between
organisms caused by the nonlinear incidence of disease
have attracted many scholars to consider more com-
plex incidence functions. For example, a study on the
transmission of cholera epidemic in Bari, Italy, 1973
attractedCapasso and Serio’s attention to SIR epidemic
model with saturated incidence [11], they put forward

the nonlinear incidence rate βSI
1+aI , which can avoid

the unboundedness of the contact rate on the cholera
epidemic. This incidence rate measures the behavioral
change of the disease and saturation effect as the num-

ber of infected individuals increases. That is, βSI
1+aI will

converge to a saturation point when I is large. In addi-
tion, Chong et al. [12] considered a model of avian
influenza with half-saturated incidence βSI

H+I , where
β > 0 denotes the transmission rate and H denotes

the half-saturation constant which means the density
of infected individuals in the population that yields
50%possibility of contracting avian influenza.Huo and
coworkers [13] proposed a rumor transmission model
with Holling-type II incidence rate given by λSI

m+S .

Kashkynbayev and Rihan [14] studied the dynamics of

a fractional-order epidemic model with general non-
linear incidence rate functionals and time-delay, they
proposed that the model applied to the incidence rate
βSn I
1+ηSn , n ≥ 2. Furthermore, they adopted the Holling-

type III functional response βS2 I
1+ηS2

for numerical sim-
ulation to implement the theoretical results. In [15],
authors assumed that the infection rate of HIV-1 was
given by the Beddington–DeAngelis incidence func-
tion βSI

1+aS+bI , obviously, with the different values of a

and b, this nonlinear incidence rate can be transformed
into Holling-type II or saturation incidence function.
Similarly, when Alqahtani performed the stability and
numerical analysis of a SIR epidemic system (COVID-
19), they also adopted the Beddington–DeAngelis inci-
dence function f (S, I ) = β1SI

a1+a2S+a3 I
[16]. Besides,

Ruan et al. proposed an epidemic model with nonlin-

ear incidence rate k I l S
1+α I h

in [17], where k I l measures

the infection force of the disease and 1
1+α I h

measures
the inhibition effect from the behavioral change of the
susceptible individuals when their number increases
or from the crowding effect of the infective individu-
als. In [18], Rohith and Devika modeled the COVID-
19 transmission dynamics using a susceptible-exposed-
infectious-removed model with a nonlinear incidence
rate β0SI

1+α I 2
. Khan et al. [19] presented the dynamics of

a fractional SIR model with a general incidence rate

f (I )S which contained several most famous general-
ized forms. In addition, there are a lot of other studies
on the subject (see [20–27]). In this paper, we take a
more general incidence rate F with two variables S(t)
and I (t) which will contain a number of common inci-
dence rate mentioned in studies before. To be specific,
model (1) turns into the following form:
⎧
⎨

⎩

dS(t) = (α − F(S(t), I (t))I (t) − μS(t)) dt,
d I (t) = (F(S(t), I (t))I (t) − (μ + ρ + γ )I (t)) dt,
dR(t) = (γ I (t) − μR(t)) dt.

(2)

Throughout this paper, we assume the general inci-
dence rate F(S, I ) has the following properties.

Assumption 1 Suppose that F(S(t), I (t)) is locally
Lipschitz continuous for both variables with F(0, I ) =
0 , ∀I ≥ 0. Furthermore, F is continuous at I = 0
uniformly, that is

lim
I→0

sup
S≥0

{|F(S, I ) − F(S, 0)|} = 0.

Suppose further that F(S, I ) is a function non-
decreasing in S, non-increasing in I and satisfies the
following condition:

∂F(S, I )

∂S
≤ c,

where c is a positive constant.

Remark 1 Note that the incidence rate F(S, I ) con-
tains all the disease incidence functions listed in this
paper. In summary, it includes the bilinear incidence
rate (F(S, I ) = βS) [28], saturated incidence rate
(F(S, I ) = βS

1+mI ) [11,29,30], half-saturated inci-

dence rate (F(S, I ) = βS
m+I ) [12,31], Holling-type

II incidence rate (F(S, I ) = βS
m+S ) [13], Holling-

type III incidence rate (F(S, I ) = βS2

(m1+S)(m2+S)
) [14],

the Beddington–DeAngelis incidence rate (F(S, I ) =
βS

1+m1S+m2 I
) [15,32,33] and some other nonlinear inci-

dence rates that are not listed here.

However, from the perspective of ecology and biol-
ogy, the transmission process of infectious diseases,
the contact between people, the movement of people
and so on are inevitably affected by various environ-
mental disturbances [34], such as temperature, water
supply or climate change, whereas the above determin-
istic model does not consider the effects of any random
factors. May [35] has revealed that some main param-
eters in epidemic model, such as the birth rates, death
rates and spread rates of disease, are affected by envi-
ronmental noise to a certain extent. In addition, as we
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know, Brownian motion is the main choice for sim-
ulating random motion and noise in continuous-time
system modeling. This choice is soundly based on the
good statistical characteristics ofBrownianmotion. For
example, Brownian motion has finite moments of all
orders, continuous sample-path trajectories, and there
are powerful analytical tools that can solve the Brow-
nian motion problem. Thus, we aim at stochastic epi-
demic model which contains white noise on the basis
of the deterministic model (see [36,37]).

In order to better simulate the impact of environ-
mental noise during disease transmission, follow the
methods of Liu and Jiang [38], nonlinear perturbation
is considered in this paper, because the random pertur-
bationmaybedependent on square of the state variables
S, I and R. Specifically, we assume the perturbations
of S, I , R have the following form, respectively.

S : −μ → −μ + (σ11 + σ12S)Ḃ1(t),

I : −μ → −μ + (σ21 + σ22 I )Ḃ2(t),

R : −μ → −μ + (σ31 + σ32R)Ḃ3(t),

where B1(t), B2(t) and B3(t) aremutually independent
standard Brownian motions. σ 2

i j > 0, i = 1, 2, 3, j =
1, 2 are the intensities of white noise. Thus, after taking
into account the nonlinear perturbation of white noise,
model (2) turns into the form of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = (α − F(S(t), I (t))I (t) − μS(t)) dt

+
(
σ11S(t) + σ12S

2(t)
)
dB1(t),

d I (t) = (F(S(t), I (t))I (t) − (μ + ρ + γ )I (t)) dt

+
(
σ21 I (t) + σ22 I

2(t)
)
dB2(t),

dR(t) = (γ I (t) − μR(t)) dt

+
(
σ31R(t) + σ32R

2(t)
)
dB3(t).

(3)

Brownianmotion has many excellent properties, but
in some cases advantages can also be disadvantages.
In the population ecosystem, it is inevitable to suf-
fer some abrupt massive disturbances. These distur-
bances could bemajor catastrophes, like tsunamis, hur-
ricanes, tornadoes, earthquakes and floods, etc.; and
they also could be serious, large-scale diseases, such
as avian influenza, COVID-19, SARS, dengue fever
and Hemorrhagic fever caused by the Ebola virus, etc.
Once these disasters occur, they usually lead to dras-
tic fluctuations in the population of the region, and
even a jump in the number of people. In other words,
these disturbances will lead to discontinuous sample-
path trajectories in the corresponding mathematical

model. Therefore, Brownian motion cannot be simply
used to describe these kinds of environmental distur-
bances. In order to explain the above phenomenonmore
accurately, a stochastic differential equation with jump
should be considered to continue the study of epidemic
dynamics system.

According to Liu et al. [39], the jump times are
always random, and the waiting time of jumps is simi-
lar to Lévy jumps. In addition, according to the theory
of Eliazar and Klafter [40], Lévy motions—performed
by stochastic processes with stationary and indepen-
dent increments—constitute one of the most important
and fundamental family of random motions. Conse-
quently, some scholars incorporated jump process into
the system and there have been a number of specific
studies of epidemiological models with Lévy jumps
up to now. Bao et al. took the lead in considering the
competitive LotKa-Volterra population dynamics with
jumps in [41] and gave some results to reveal the effect
of jump process on the system. In [42], authors used
the stochastic differential equation with jumps to study
the asymptotic behavior of stochastic SIRmodel. Some
other studies can be found in [43,44] and the references
therein. To the best of the authors’ knowledge, there is
little literature on stochastic SIR epidemic model with
general disease incidence and second-order perturba-
tion of white noise and Lévy jumps. Inspired by the
above, we develop model (3) with Lévy jumps:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = (
α − F

(
S(t−), I (t−)

)
I (t−) − μS(t−)

)
dt

+
(
σ11S(t−) + σ12S

2(t−)
)
dB1(t)

+ ∫

Y

(
f11(u)S(t−) + f12(u)S2(t−)

)
Ñ (dt, du) ,

d I (t) = (
F
(
S(t−), I (t−)

)
I (t−) − (μ + ρ + γ ) I (t−)

)
dt

+
(
σ21 I (t

−) + σ22 I
2(t−)

)
dB2(t)

+ ∫

Y

(
f21(u)I (t−) + f22(u)I 2(t−)

)
Ñ (dt, du) ,

dR(t) = (
γ I (t−) − μR(t−)

)
dt + (

σ31R(t−)

+σ32R
2(t−)

)
dB3(t)

+ ∫

Y

(
f31(u)R(t−) + f32(u)R2(t−)

)
Ñ (dt, du) ,

(4)

where S(t−), I (t−), R(t−) are the left limit of S(t),
I (t) and R(t), respectively. N (·, ·) is a Poisson count-
ing measure with characteristic measure λ on a mea-
surable subset Y of [0,∞) with λ(Y) < ∞, and the
compensated Poisson random measure is defined by
Ñ (dt, du) = N (dt, du) − λ(du)dt . Throughout this
paper, we assume that Bi (t), i = 1, 2, 3 and N (·, ·) are
independent and all the coefficients of the system are
positive. Since the dynamics of recovered population
has no impact on the disease transmission dynamics
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of model (4), hence, we can omit the third equation in
system (4) for convenience.

Assumption 2
∫

Y

f 2i j (u)λ(du) < ∞.

According to this assumption, we can derive that
∫

Y

(
ln(1 + fi j (u))

)2
λ(du)

< ∞, which implies that the intensities of Lévy
jumps are not very big.

As far as we know, few papers have studied the
effects of a SIR epidemic model with general inci-
dence rate and perturbed by both nonlinear white noise
and Lévy jumps. Therefore, this paper presents a great
challenge to the theoretical analysis of the model. The
main innovation and contribution in this paper is that
we provide a sufficient and almost necessary condition
under which the disease disappears and persists. In a
deterministic model, the persistence and extinction of
the disease are usually reflected by the stability of the
equilibrium point, while in a stochastic model, we usu-
ally discuss the existence of the stationary distribution.
The common way to prove the existence of ergodic sta-
tionary distribution is the theory of Has’minskii [45],
and the key to the theory is to establish befitting Lya-
punov functions. However, only sufficient conditions
for the existence and uniqueness of ergodic station-
ary distribution can be obtained by these conventional
methods [46–48]. To perfect the results, in this paper,
we adopt a novel method which is a combination of
classical Lyapunov functions and methods introduced
in [49]. Finally, we obtain the desired sufficient and
almost necessary condition for persistence of the dis-
ease and get a threshold λ. To be more specific, in case
of λ < 0, the number of the infected population will
tend to zero exponentially which means the disease
will become extinct. In case λ > 0, system (4) exists
an ergodic stationary distribution on R

2+ which means
the disease will persist in the population.

The structure of this paper is arranged as follows. In
Sect. 2, we first give some preliminary knowledge that
may be used in this paper, including the exponential
martingale inequality with Lévy jumps and the local
martingale’s strong law of large numbers. Section 3
proves the existence and uniqueness of the global pos-
itive solution in system (4). In order to obtain a thresh-
old to determine the extinction and persistence of the
disease, we discuss the existence of ergodic stationary

distribution of the equation on the boundary where the
infected individuals are absent in Sect. 4, and then we
define a λ which is a key in this paper. The extinc-
tion and the ergodic stationary distribution of the dis-
ease in model (4) are given in Sects. 5 and 6, respec-
tively. Finally, several numerical simulation examples
are conducted to illustrate our main research results.

2 Preliminaries

Unless otherwise stated, throughout this paper, let (Ω ,
F , {Ft }t≥0, P) be a complete probability space with
a filtration {Ft }t≥0 satisfying the usual conditions. We
denote R+ = [0,∞), Rn+ = {xi ∈ R

n : xi > 0, i =
1, 2, · · · , n}.

Nowwe shall give some primary basic knowledge in
stochastic population systems with Lévy jumps, more
details on Lévy process can be found in [50].

Definition 1 X is a Lévy process if:

(1) X(0) = 0 a.s.;
(2) X has independent and stationary increments;
(3) X is stochastically continuous, i.e., for all a > 0

and s > 0,

lim
t→s

P(|X (t) − X (s)| > a) = 0.

In general, let x(t) be a d-dimensional Lévy process on
t ≥ 0 presented as the following stochastic differential
equation with Lévy jumps

dx(t) = f (t−)dt + g(t−)dB(t)

+
∫

Y

γ (t−, u)Ñ (dt, du), (5)

where f ∈ L1(R+,Rd), g ∈ L2(R+,Rd×m) and γ ∈
L1(R+ × Y,Rd).

B(t)={(B1
t , B

2
t , · · · , Bm

t

)T }t≥0 is anm-dimensional
Brownian motion defined on the complete probability
space (Ω,F , P). Integrating both sides of (5) from 0
to t, we can get

x(t) = x(0) +
∫ t

0
f (s−)ds +

∫ t

0
g(s−)dB(s)

+
∫ t

0

∫

Y

γ (s−, u)Ñ (ds, du).

Let C2,1(Rd × R+;R) denote the family of all real-
valued functions V (x, t) defined onRd ×R+ such that
they are continuously twice differentiable in x and once
in t . For any function U ∈ C2,1(Rd × R+;R), define
the differential operator LU (x(t), t) as follows:

123



Asymptotic behavior of a stochastic SIR model 2979

LU (x(t), t) = Ut (x(t), t) +Ux (x(t), t) f (t)

+ 1

2
trace(gT (t)Uxx (x(t), t)g(t))

+
∫

Y

(U (x(t) + γ (t, u), t)

−U (x(t), t)−Ux (x(t), t)γ (t, u)) λ(du),

where

Ut = ∂U

∂t
, Ux =

(
∂U

∂x1
, · · · ,

∂U

∂xd

)

, Uxx

=

⎛

⎜
⎜
⎝

∂2U
∂x1∂x1

· · · ∂2U
∂x1∂xd

...
...

...
∂2U

∂xd∂x1
· · · ∂2U

∂xd∂xd

⎞

⎟
⎟
⎠ .

According to the Itô’s formula,

dU (x(t), t) = LU (x(t), t)dt +Uxg(t)dB(t)

+
∫

Y

(U (x(t) + γ (t, u), t)

−U (x(t), t)) Ñ (dt, du).

Next, we shall introduce the exponential martingale
inequality with jumps as follows [41].

Definition 2 Assume that g ∈ L2(R+,Rd×m), γ ∈
L1(R+ × Y,Rd). For any constants T, α, β > 0,

P

{

sup
0≤t≤T

[∫ t

0
g(s)dB(s) − α

2

∫ t

0
|g(s)|2 ds

+
∫ t

0

∫

Y

γ (s, u)Ñ (ds, du)

− 1

α

∫ t

0

∫

Y

(
eαγ (s,u) − 1 − αγ (s, u)

)
λ(du)ds

]

> β

}

≤ e−αβ .

To make the theory more complete, the following
lemma cited by [50] is concerning the local martin-
gale’s strong law of large numbers.

Lemma 1 Assume that M(t) is a local martingale van-
ishing at t = 0, define

ρM (t) :=
∫ t

0

d 〈M〉 (s)

(1 + s)2
, t ≥ 0,

where 〈M〉 (t) := 〈M, M〉 (t) is Meyer’s angle bracket
process.

If limt→∞ ρM (t) < ∞ a.s. holds, then

lim
t→∞

M(t)

t
= 0 a.s..

From the relevant introduction in [51], we cite the
proposition as follows.

Remark 2 Assume that

Γ 2
loc :=

{

γ (t, u) predictable

∣
∣
∣
∣

∫ t

0

∫

Y

|γ (t, u)|2 λ(du)dt < ∞
}

.

For any γ ∈ Γ 2
loc,

M(t) :=
∫ t

0

∫

Y

γ (s, u)Ñ (ds, du),

then one can see that

〈M〉 (t) =
∫ t

0

∫

Y

|γ (s, u)|2 λ(du)ds,

[M] (t) =
∫ t

0

∫

Y

|γ (s, u)|2 Ñ (ds, du),

where [M] (t) = [M, M] (t) denotes the quadratic
variation process of M(t).

3 Existence and uniqueness of the global positive
solution

In order to study the dynamics of an epidemic system,
the first thing we concerned is whether the solution
of model (4) is global and positive. Here, we give the
following conclusion which is a fundamental condition
for the long time behavior of model (4).

Theorem 1 For any initial value (S(0), I (0)) ∈ R
2+,

stochastic system (4) has a unique positive solution
(S(t), I (t)) ∈ R

2+ on t ≥ 0, and the solution will
remain in R2+ with probability one.

Proof Our proof is motivated by the methods of [34].
Since the drift and diffusion (i.e., the coefficients of
model (4)) are locallyLipschitz continuous, hence there
is a unique local solution (S(t), I (t)) on t ∈ [0, ρe) for
any given initial value (S(0), I (0)) ∈ R

2+, where ρe is
an explosion time. To testify this solution is global, we
only need to show that ρe = ∞ a.s.. Let k0 > 0 be
sufficiently large such that both S(0) and I (0) can lie
within the interval [ 1

k0
, k0]. For each integer k ≥ k0,

define the following stopping time

τk = inf

{

t ∈ (0, ρe) : S(t) /∈
(
1

k
, k

)

or I (t) /∈
(
1

k
, k

)}

.

Apparently, τk is increasing as k → ∞. Set τ∞ =
limk→∞ τk , hence τ∞ ≤ ρe a.s.. Once we prove
that τ∞ = ∞ a.s., then we can get ρe = ∞ and
(S(t), I (t)) ∈ R

2+ a.s..
If τ∞ < ∞ a.s., then there exists a pair of constants

T > 0 and 0 < ε < 1 such that P(τ∞ ≤ T ) > ε.
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Hence, there is an integer k1 ≥ k0 such that P(τk ≤
T ) ≥ ε for all k ≥ k1.

Define a C2-function V : R2+ → R+ as follows:

V (S, I )=(1 + S)p − 1 − p log S + I p − 1 − p log I,

where 0 < p < 1. The nonnegativity of V (S, I ) is due
to k−1− log k ≥ 0 for k ≥ 0. It is easy to see V (S, I )
is continuously twice differentiable with respect to S
and I .

Applying Itô’s formula to function V (S, I ), we have

dV (S, I ) = LV (S, I )dt +
(
p(1 + S)p−1 − p

S

)

(
σ11S + σ12S

2
)
dB1(t)

+
(
pI p−1 − p

I

) (
σ21 I + σ22 I

2
)
dB2(t)

+
∫

Y

(
(1 + S + f11(u)S + f12(u)S2)p

−(1 + S)p
)
Ñ (dt, du)

− p
∫

Y

(
log(S + f11(u)S + f12(u)S2) − log S

)

Ñ (dt, du)

+
∫

Y

(
(I + f21(u)I + f22(u)I 2)p − I p

)
Ñ (dt, du)

− p
∫

Y

(
log

(
I + f21(u)I + f22(u)I 2

)
− log I

)

Ñ (dt, du),

(6)

where

LV (S, I ) = p(1 + S)p−1 (α − F(S, I )I − μS)

+ p(p − 1)

2
(1 + S)p−2(σ11S + σ12S

2)2

+
∫

Y

((
1 + S + f11(u)S + f12(u)S2

)p − (1 + S)p

−p(1 + S)p−1( f11(u)S + f12(u)S2)
)

λ(du)

− pα

S
+ pF(S, I )I

S
+ pμ + pσ 2

11
2

+ pσ 2
12
2

S2

+ pσ11σ12S

− p
∫

Y

(
log

(
S + f11(u)S + f12(u)S2

)
− log S

− 1

S

(
f11(u)S + f12(u)S2

))

λ(du) + pF(S, I )I p

− p (μ + ρ + γ ) I p + p(p − 1)

2
I p−2

(
σ21 I + σ22 I

2
)2

+
∫

Y

((
I + f21(u)I + f22(u)I 2

)p − I p

−pI p−1
(
f21(u)I + f22(u)I 2

))
λ(du)

− pF(S, I ) + p(μ + ρ + γ ) + pσ 2
21
2

+ pσ 2
22
2

I 2

+ pσ21σ22 I

− p
∫

Y

(
log

(
I + f21(u)I + f22(u)I 2

)
− log I

− 1

I

(
f21(u)I + f22(u)I 2

))

λ(du).

For any 0 < p < 1, by the inequation xr ≤ 1+r(x−1)
for x ≥ 0, 0 ≤ r ≤ 1, we have
∫

Y

((
1 + S + f11(u)S + f12(u)S2

)p − (1 + S)p

−p(1 + S)p−1
(
f11(u)S + f12(u)S2

))
λ(du) < 0,

∫

Y

(
I + f21(u)I + f22(u)I 2

)p − I p

− pI p−1
(
f21(u)I + f22(u)I 2

)
λ(du) < 0.

On the basis of Assumption 1 and the above results,
then

LV (S, I ) ≤ pα − pF(S, I )I (1 + S)p−1 − pμS(1 + S)p−1

+ p(p − 1)

2
(1 + S)p

(
σ11S + σ12S2

1 + S

)2

− pα

S
+ pcI + pμ + pσ 2

11

2

+ pσ 2
12

2
S2 + pσ11σ12S + p

∫

Y

( f11(u) + f12(u)S) λ(du)

+ pF(S, I )I p − p(μ + ρ + γ )I p

+ p(p − 1)

2
I p+2

(
σ21 + σ22 I

I

)2

− pF(S, I ) + p(μ + ρ + γ ) + pσ 2
21

2
+ pσ 2

22

2
I 2

+ pσ21σ22 I + p
∫

Y

( f21(u) + f22(u)I ) λ(du)

≤ pα + pμ + pσ 2
11

2
+ p(μ + ρ + γ ) + pσ 2

21

2

+ p
∫

Y

( f11(u) + f21(u)) λ(du) − p(1 − p)

2
(1 + S)p

(
σ11S + σ12S2

1 + S

)2

− p(1 − p)

2
I p+2

(
σ22 + σ21

I

)2 + pF(S, I )I p + pσ 2
12

2
S2

+ pσ 2
22

2
I 2 + pcI + pσ11σ12S + pσ21σ22 I

+ p
∫

Y

f12(u)λ(du)S + p
∫

Y

f22(u)λ(du)I
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≤ p

(

α + 2μ + ρ + γ + σ 2
11 + σ 2

21

2

+
∫

Y

( f11(u) + f21(u)) λ(du)

)

− p(1 − p)

2
min{σ11, σ12}2(1 + S)p S2

− p(1 − p)

2
σ 2
22 I

p+2 + pcSI p

+ p

2

(
σ 2
12S

2 + σ 2
22 I

2)

+
(

pc + pσ21σ22 + p
∫

Y

f22(u)λ(du)

)

I

+
(

pσ11σ12 + p
∫

Y

f12(u)λ(du)

)

S

≤ k2 + p

(

α + 2μ + ρ + γ + σ 2
11 + σ 2

21

2
+ p

∫

Y

( f11(u) + f21(u)) λ(du))

=: k3,

where

k2 = sup
S≥0,I≥0

{

− p(1 − p)

2
min{σ11, σ12}2(1 + S)pS2

− p(1 − p)

2
σ22 I

p+2

+ pcSI p + p

2

(
σ 2
12S

2 + σ 2
22 I

2
)

+
(

pc + pσ21σ22 + p
∫

Y

f22(u)λ(du)

)

I

+
(

pσ11σ12 + p
∫

Y

f12(u)λ(du)

)

S

}

.

Integrating both sides of (6) from 0 to τk ∧ T and then
taking expectations

EV (S(τk ∧ T ), I (τk ∧ T ))

≤ V (S(0), I (0)) + k3E (τk ∧ T )

≤ V (S(0), I (0)) + k3T .

Let Ωk = {τk ≤ T } for k ≥ k1, then we have p(Ωk) ≥
ε. Note that for every ω ∈ Ωk , S(τk, ω) or I (τk, ω)

equals either k or 1
k . Consequently,

V (S(0), I (0)) + k3T ≥ E[IΩk V (S(τk, ω), I (τk, ω))]
≥ ε

[
(
(1 + k)p − 1 − p log k

)

∧
(

(1 + 1

k
)p − 1 − p log

1

k

)

∧ (
k p − 1 − p log k

) ∧
(

1

k p
− 1 − p log

1

k

)]

,

where IΩk is the indicator function of Ωk . Taking k →
∞, we obtain that ∞ > V (S(0), I (0)) + k3T = ∞
which is a contradiction, therefor we have τ∞ = ∞
a.s. (i.e., S(t) and I (t) will not explode in a finite time
with probability one). The conclusion is confirmed. ��

4 Exponential ergodicity for the system without
disease

In this section, a threshold λ will be defined by explor-
ing the exponential ergodicity of a one-dimensional
disease-free system. To proceed, we first consider the
following equation if there is no infective at time t = 0:

d Ŝ(t) =
(
α − μŜ(t)

)
dt +

(
σ11 Ŝ(t) + σ12 Ŝ

2(t)
)
dB1(t)

+
∫

Y

(
f11(u)Ŝ(t) + f12(u)Ŝ2(t)

)
Ñ (dt, du) .

(7)

In terms of the comparison theorem, it is easy to check
out that S(t) ≤ Ŝ(t), ∀t ≥ 0 a.s. provided S(0) =
Ŝ(0) > 0. In order to obtain the exponential ergodicity
of model (7), we first give the following lemma which
has been discussed in [38].

Lemma 2 The following equation

d S̄(t) = (
α − μS̄(t)

)
dt

+
(
σ11 S̄(t) + σ12 S̄

2(t)
)
dB1(t), S̄(0) > 0 (8)

admits an ergodic stationary distribution with the den-
sity:

π∗(x) = Qx
−2− 2(2ασ12+μσ11)

σ311

(σ11 + σ12x)
−2+ 2(2ασ12+μσ11)

σ311

e
− 2

σ11(σ11+σ12x)

(
α
x + 2ασ12+μσ11

σ11

)

,

(9)

where Q is a constant such that
∫ ∞
0 π∗(x)dx =

1, x ∈ (0,∞) and it follows limt→∞ 1
t

∫ t
0 S̄(τ )dτ =∫ ∞

0 xπ∗(dx) a.s..

Theorem 2 Markov process Ŝ(t) is exponentially
ergodic and it has a unique stationary distribution
denoted by π̄ on R+.

Proof In order to prove the existence of the ergodic sta-
tionarity of Ŝ(t), according to [49], it is equivalent to
proving the following two conditions: (a) The auxiliary
process S̄(t) determined by (8) has a positive transition
probability density with respect to Lebesgue measure.
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(b) There exists a nonnegative C2-function V (Ŝ(t))
such that LV (Ŝ(t)) ≤ −H2V (Ŝ(t)) + H1, in which
H1, H2 are positive constants. In view of Lemma 2,
condition (a) has been given; therefore, we just need to
verify condition (b) in the following.

Consider the Lyapunov function

V (Ŝ(t)) =
(
1 + Ŝ(t)

)p

p
− ln Ŝ(t),

where 0 < p < 1.
Applying Itô’s formula , one sees that

L

⎛

⎜
⎝

(
1 + Ŝ(t)

)p

p
− ln Ŝ(t)

⎞

⎟
⎠

=
(
1 + Ŝ

)p−1 (
α − μŜ

)
+ p − 1

2

(
1 + Ŝ

)p−2

(
σ11 Ŝ + σ12 Ŝ

2
)2

+
∫

Y

⎛

⎜
⎝

(
1 + Ŝ + f11(u)Ŝ + f12(u)Ŝ2

)p

p
−

(
1 + Ŝ

)p

p

−
(
1 + Ŝ

)p−1 (
f11(u)Ŝ + f12(u)Ŝ2

))

λ(du)

− α

Ŝ
+ μ +

(
σ11 Ŝ + σ12 Ŝ

2
)2

2Ŝ2

−
∫

Y

(
ln

(
Ŝ + f11(u)Ŝ + f12(u)Ŝ2

)
− ln Ŝ

−
(
f11(u) + f12(u)Ŝ

))
λ(du)

≤ −μ
(
1 + Ŝ

)p − α

Ŝ
+ μ(1 + Ŝ)p−1 + α(1 + Ŝ)p−1

+ p − 1

2

(
1 + Ŝ

)p
(

σ11 Ŝ + σ12 Ŝ
2

1 + Ŝ

)2

+ μ

+
(
σ11 + σ12 Ŝ

)2

2

+
(
1 + Ŝ

)p

p

∫

Y
((

1 + Ŝ

1 + Ŝ
f11(u) + Ŝ2

1 + Ŝ
f12(u)

)p

− 1

−p

(
Ŝ

1 + Ŝ
f11(u) + Ŝ2

1 + Ŝ
f12(u)

))

λ(du)

+
∫

Y

(
f11(u) + f12(u)Ŝ − ln(1 + f11(u)

+ f12(u)Ŝ)
)

λ(du).

By reason of the inequations 1
x −1+ln x ≥ 0 for x ≥ 0

and xr ≤ 1+ r(x −1) for x ≥ 0, 0 ≤ r ≤ 1, we derive
that

LV (Ŝ(t)) ≤ −μp

(
1 + Ŝ

)p

p
+ α ln Ŝ + μ(1 + Ŝ)p−1

+ α(1 + Ŝ)p−1

− 1 − p

2
min{σ11, σ12}2

(
1 + Ŝ

)p
Ŝ2+μ

+
(
σ11 + σ12 Ŝ

)2

2

+
∫

Y

(
f11(u) + f12(u)Ŝ

− ln(1 + f11(u) + f12(u)Ŝ)
)

λ(du)

≤ −μp

(
1+ Ŝ

)p

p
−α(− ln Ŝ) + max{h, 1}

≤ −min{μp, α}
⎛

⎜
⎝

(
1 + Ŝ(t)

)p

p
− ln Ŝ(t)

⎞

⎟
⎠

+ max{h, 1}
= −H2V (Ŝ(t)) + H1,

where

H1 = max{h, 1}, H2 = min{μp, α},
h = sup

Ŝ∈[0,∞)

{

μ(1 + Ŝ)p−1 + α(1 + Ŝ)p−1

− 1 − p

2
min{σ11, σ12}2

(
1 + Ŝ

)p
Ŝ2

+ μ +
(
σ11 + σ12 Ŝ

)2

2

+
∫

Y

(
f11(u) + f12(u)Ŝ − ln(1 + f11(u)

+ f12(u)Ŝ)
)

λ(du)

}

.

This completes the proof of the theorem. ��
Remark 3 For any π̄ -integrable f (x): R

2+ → R,
according to the ergodicity of Ŝ(t),

lim
t→∞

1

t

∫ t

0
f
(
Ŝ(τ )

)
dτ =

∫ ∞

0
f (x) π̄(dx).

Furthermore, integrating both sides of (7) from 0 to t
and then taking expectation, then it yields
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lim
t→∞

EŜ(t)

t
= α − μ lim

t→∞
1

t

∫ t

0
EŜ(τ )dτ

= α − μE

∫ ∞

0
xπ̄ (dx),

combining the above result and limt→∞ EŜ(t)
t = 0, we

can obtain

lim
t→∞

1

t

∫ t

0
Ŝ(τ )dτ =

∫ ∞

0
xπ̄ (dx) = α

μ
.

Remark 4 Now, we define a critical value which will
play an important role in determining the extinction
and persistence of the disease.

λ =
∫ ∞

0
F (x, 0) π̄(dx)

−
(

μ + ρ + γ + σ 2
21

2
+

∫

Y

( f21 (u)

− ln (1 + f21 (u))) λ (du)) .

(10)

According to Assumption (1), one can see that F(S, I )
≤ cS, hence,
∫ ∞

0
F (x, 0) π̄(dx) ≤ c

∫ ∞

0
xπ̄ (dx)

= lim
t→∞

c

t

∫ t

0
Ŝ(τ )dτ = cα

μ
< ∞.

Therefore, λ is well defined.

5 Extinction of the disease

In this section, we will present sufficient conditions
for the demise of the disease, which will provide the-
oretical guidance for the prevention and control of the
spread of disease. The following theorem is vital in this
paper.

Theorem 3 Let (S(t), I (t)) be the solution of system
(4) with any given positive initial value (S(0), I (0)) ∈
R
2+, then it has the property

lim
t→∞

ln I (t)

t
≤ λ a.s..

If λ < 0 holds, I (t) will go to zero exponentially with
probability one.

Proof Applying Itô’s formula to ln I (t), we have

d ln I (t)

=
⎛

⎜
⎝F(S, I ) − (μ + ρ + γ ) −

(
σ21 I + σ22 I

2
)2

2I 2

+
∫

Y

(
ln

(
I + f21(u)I + f22(u)I 2

)

− ln I − ( f21(u) + f22(u)I )) λ (du)) dt

+ (σ21 + σ22 I ) dB2(t)

+
∫

Y

(
ln

(
I + f21(u)I + f22(u)I 2

)
− ln I

)
Ñ (dt, du)

≤
(

F(Ŝ, 0) −
(

μ + ρ + γ + σ 2
21
2

+
∫

Y

( f21(u) − ln (1 + f21(u))) λ(du))

−σ21σ22 I − σ 2
22
2

I 2

+
∫

Y

(

ln

(

1 + f22(u)I

1 + f21(u)

)

− f22(u)I

)

λ(du)

)

dt

+ σ21dB2(t) + σ22 I dB2(t)

+
∫

Y

ln (1 + f21(u)) Ñ (dt, du)

+
∫

Y

ln

(

1 + f22(u)I

1 + f21(u)

)

Ñ (dt, du). (11)

Integrating both sides of (11), we obtain

ln I (t) ≤ ln I (0) − σ 2
22
2

∫ t

0
I 2(τ )dτ −

∫ t

0
σ21σ22 I (τ )dτ

+
∫ t

0

(

F(Ŝ(τ ), 0) −
(

μ + ρ + γ + σ 2
21
2

))

dτ

+
∫ t

0

∫

Y

( f21(u) − ln (1 + f21(u))) λ(du)dτ

−
∫ t

0

∫

Y

(

ln

(

1 + f22(u)I (τ )

1 + f21(u)

)

− f22(u)I (τ )

)

λ(du)dτ

+
∫ t

0
σ21dB2(τ ) +

∫ t

0
σ22 I (τ )dB2(τ )

+
∫ t

0

∫

Y

ln (1 + f21(u)) Ñ (dτ, du)

+
∫ t

0

∫

Y

ln

(

1 + f22(u)I (τ )

1 + f21(u)

)

Ñ (dτ, du)

= ln I (0) −
∫ t

0
σ21σ22 I (τ )dτ − σ 2

22
2

∫ t

0
I 2(τ )dτ

+
∫ t

0

(

F(Ŝ(τ ), 0) −
(

μ + ρ + γ + σ 2
21
2

))

dτ

−
∫ t

0

∫

Y

( f21(u) − ln (1 + f21(u))) λ(du)dτ
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+
∫ t

0

∫

Y

(

ln

(

1 + f22(u)I (τ )

1 + f21(u)

)

− f22(u)I (τ )

)

λ(du)dτ

+
∫ t

0
σ22 I (τ )dB2(τ ) + w1(t) + w2(t)

+
∫ t

0

∫

Y

ln

(

1 + f22(u)I (τ )

1 + f21(u)

)

Ñ (dτ, du), (12)

where

w1(t) =
∫ t

0
σ21dB2(τ ), w2(t) =

∫ t

0

∫

Y

ln

(1 + f21(u)) Ñ (dτ, du).

It is obvious that 〈w1, w1〉 (t) = σ 2
21t . In view

of Remark 2, one can obtain that 〈w2, w2〉 (t) =
t
∫

Y
(ln (1 + f21(u)))2 λ(du). Consequently, accord-

ing to the strong law of large numbers presented in
Lemma 1 we have

lim
t→∞

w1(t)

t
= 0, lim

t→∞
w2(t)

t
= 0 a.s..

Furthermore, on the basis of exponential martingale
inequality introduced inDefinition 2,we chooseα = 1,
β = 2 ln n, then it follows

P

{

sup
0≤t≤n

(∫ t

0
σ22 I (τ )dB2(τ ) − 1

2

∫ t

0
σ 2
22 I

2(τ )dτ

+
∫ t

0

∫

Y

ln

(

1 + f22(u)I (τ )

1 + f21(u)

)

Ñ (dτ, du)

−
∫ t

0

∫

Y

(

1 + f22(u)I (τ )

1 + f21(u)
− 1

− ln

(

1 + f22(u)I (τ )

1 + f21(u)

))

λ(du)dτ

)

≥ 2 ln n

}

≤ 1

n2
,

since
∑ 1

n2
< ∞, the Borel–Cantelli lemma implies

that there exist a set Ω0 ∈ F with P(Ω0) = 1 and an
integer-valued random variable n0 such that for every
ω ∈ Ω0,

sup
0≤t≤n

(∫ t

0
σ22 I (τ )dB2(τ ) − 1

2

∫ t

0
σ 2
22 I

2(τ )dτ

+
∫ t

0

∫

Y

ln

(

1 + f22(u)I (τ )

1 + f21(u)

)

Ñ (dτ, du)

−
∫ t

0

∫

Y

(

1 + f22(u)I (τ )

1 + f21(u)
− 1

− ln

(

1 + f22(u)I (τ )

1 + f21(u)

))

λ(du)dτ

)

≤ 2 ln n, if n ≥ n0.

That is, for all 0 ≤ t ≤ n and n ≥ n0 a.s., it follows
∫ t

0
σ22 I (τ )dB2(τ )

+
∫ t

0

∫

Y

ln

(

1 + f22(u)I (τ )

1 + f21(u)

)

Ñ (dτ, du) ≤ 2 ln n

+ σ 2
22

2

∫ t

0
I 2(τ )dτ +

∫ t

0

∫

Y

(
f22(u)I (τ )

1 + f21(u)

− ln

(

1 + f22(u)I (τ )

1 + f21(u)

))

λ(du)dτ.

Then, substituting the above results into (12) deduces
that
ln I (t) − ln I (0)

t

≤ 1

t

∫ t

0

(

F(Ŝ(τ ), 0) −
(

μ + ρ + γ + σ 2
21

2

))

dτ

− 1

t

∫ t

0

∫

Y

( f21(u) − ln (1 + f21(u))) λ(du)dτ

+ 2 ln n

t
− 1

t

∫ t

0

∫

Y(

f22(u)I (τ ) − f22(u)I (τ )

1 + f21(u)

)

λ(du)dτ

− 1

t

∫ t

0
σ21σ22 I (τ )dτ + w1(t)

t
+ w2(t)

t

≤ 1

t

∫ t

0

(

F(Ŝ(τ ), 0) −
(

μ + ρ + γ + σ 2
21

2

))

dτ

− 1

t

∫ t

0

∫

Y

( f21(u) − ln (1 + f21(u))) λ(du)dτ

+ 2 ln n

t
+ w1(t)

t
+ w2(t)

t
,

for all 0 ≤ t ≤ n and n ≥ n0 a.s..
Therefore, for almost all ω ∈ Ω0, if n ≥ n0, 0 <

n − 1 ≤ t ≤ n, by taking the limit of both sides we
obtain

lim sup
t→∞

ln I (t)

t
≤ lim

t→∞
1

t
∫ t

0

(

F(Ŝ(τ ), 0)dτ −
(

μ + ρ + γ + σ 2
21
2

))

dτ

− lim
t→∞

1

t

∫ t

0

∫

Y

( f21(u) − ln (1 + f21(u))) λ(du)dτ

+ lim
n→∞ 2

ln n

n − 1

≤
∫ ∞
0

F (x, 0) π̄(dx) −
(

μ + ρ + γ + σ 2
21
2

+
∫

Y

( f21(u) − ln (1 + f21(u))) λ(du)

)

= λ a.s..
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Ifλ < 0, then lim supt→∞
ln I (t)

t < 0, i.e., limt→∞ I (t)
= 0 a.s., which means the disease will die out in a long
term. ��

6 Ergodic stationary distribution

In biology, the persistence of disease is closely related
to the balance and stability of the entire ecosystem.
In theoretical research, different from the deterministic
model, the stochastic model has no endemic equilib-
rium point, so there is no way to get the desired result
by analyzing the stability of the equilibrium point. In
this part, wewill investigate the existence of the ergodic
stationary distribution of model (4) in a newway on the
basis of the method mentioned in [53–55].

Theorem 4 Assume that λ > 0, for any initial value
(S(0), I (0)) ∈ R

2+, system (4) has a unique stationary
distribution π and it has ergodic property.

Furthermore, the following assertions are valid.

(a) For any π -integrable f(x,y) : R2+ → R, it follows
that

lim
t→∞

1

t

∫ t

0
f (S(τ ), I (τ ))dτ

=
∫

R
2+
f (x, y)π(dx, dy) a.s..

(b) limt→∞ ||P(t, (S(0), I (0)), ·) − π || = 0,∀(S(0),
I (0)) ∈ R

2+, where
P(t, (S(0), I (0)), ·) is the transition probability of
(S(t),I(t)).

Proof At first, we define a C2-function

V̂ (S(t), I (t)) =M

(

− ln I (t) + c

μ

(
Ŝ(t) − S(t)

))

− ln S(t) + (1 + S(t))p

p
+ I p(t)

p
,

where p ∈ (0, 1), M is a positive constant which satis-
fies−Mλ+L ≤ −2 and constant L will be determined
later. In view of ˆS(t)− S(t) > 0,∀t ≥ 0 and the partial
derivative equations, it is easy to know that the follow-
ing function has a minimum point, i.e.,

V̂ (S(t), I (t)) ≥ −M ln I (t) − ln S(t) + (1 + S(t))p

p

+ I p(t)

p
≥ l1.

Then, we consider the following nonnegative function

V (S(t), I (t)) = V̂ (S(t), I (t)) − l1.

Denote

V1 = − ln I (t), V2 = Ŝ(t) − S(t), V3 = − ln I (t)

+ c

μ

(
Ŝ(t) − S(t)

)
,

V4 = − ln S(t), V5 = (1 + S(t))p

p
, V6 = I p(t)

p
.

An application of Itô’s formula , one can see that

L(V1) = −F(S, I ) + (μ + ρ + γ ) + (σ21 + σ22 I )2

2

+
∫

Y

( f21(u) + f22(u)I

− ln (1 + f21(u) + f22(u)I )) λ (du)

= −F(S, I ) + μ + ρ + γ + σ 2
21

2

+
∫

Y

( f21(u) − ln (1 + f21(u))) λ(du)

+ σ21σ22 I + σ 2
22

2
I 2

+
∫

Y

(

f22(u)I − ln

(

1 + f22(u)I

1 + f21(u)

))

λ(du)

≤ −F(Ŝ, 0) + μ + ρ + γ + σ 2
21

2

+
∫

Y

( f21(u) − ln (1 + f21(u))) λ(du)

+ F(Ŝ, 0) − F(S, 0) + F(S, 0) − F(S, I )

+
(

σ21σ22 +
∫

Y

f22(u)λ(du)

)

I + σ 2
22

2
I 2

≤ −F(Ŝ, 0) + μ + ρ + γ + σ 2
21

2
+ c(Ŝ − S)

+
∫

Y

( f21(u) − ln (1 + f21(u))) λ(du)

+ F(S, 0) − F(S, I )

+
(

σ21σ22 +
∫

Y
f22(u)λ(du)

)

I + σ 2
22

2
I 2.

(13)

L(V2) = −μ(Ŝ − S) + F(S, I )I

≤ −μ(Ŝ − S) + cSI, (14)

where Assumption 1 has been used.
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Combining Eqs. (13) and (14), we obtain

L(V3) ≤ −
∫ ∞

0
F(x, 0)π̄(dx) + μ + ρ + γ + σ 2

21

2

+
∫

Y

( f21(u) − ln (1 + f21(u))) λ(du)

+
∫ ∞

0
F(x, 0)π̄(dx)

− F(Ŝ, 0) + F(S, 0) − F(S, I )

+
(

σ21σ22 +
∫

Y

f22(u)λ(du)

)

I

+ σ 2
22

2
I 2 + c2

μ
SI.

Moreover,

L(V4) = −α

S
+ μ + F(S, I )I

S
+ 1

2
(σ11 + σ12S)2

+
∫

Y

( f11(u) + f12(u)S

− ln (1 + f11(u) + f12(u)S)) λ(du)

≤ −α

S
+ μ + σ 2

11

2
+ cI + σ11σ12S

+σ 2
12

2
S2 +

∫

Y

( f11(u) + f12(u)S) λ(du)

= −α

S
+ μ + σ 2

11

2
+

∫

Y

f11(u)λ(du) + cI

+
(

σ11σ12 +
∫

Y

f12(u)λ(du)

)

S + σ 2
12

2
S2.

L(V5) ≤ (1 + S)p−1 (α − F(S, I )I − μS)

−1 − p

2
(1 + S)p−2 (σ11S + σ12S

2)2

+ (1 + S)p

p

∫

Y

((

1 + S

1 + S
f11(u) + S2

1 + S
f12(u)

)p

− 1

−p

(
S

1 + S
f11(u) + S2

1 + S
f12(u)

))

λ(du)

≤ α − 1 − p

2
min{σ11, σ12}2(1 + S)p S2.

L(V6) = (F(S, I )I − (μ + ρ + γ )I ) I p−1

−1 − p

2
I p−2 (σ21 I + σ22 I

2)2

+ I p

p

∫

Y

((
(1 + f21 + f22 I )

p

−1 − p ( f21 + f22 I ))) λ(du)

≤ cSI p − 1 − p

2
σ 2
22 I

p+2.

Now, combining the inequalities what we have got
above, it follows

LV (S, I ) ≤ −Mλ + M (F(S, 0) − F(S, I ))

+ M

(

σ21σ22 +
∫

Y

f22(u)λ(du)

)

I

+ σ 2
22
2

MI 2 + c2

μ
MSI − α

S
+ μ + σ 2

11
2

+
∫

Y

f11(u)λ(du)

+ cI +
(

σ11σ12 +
∫

Y

f12(u)λ(du)

)

S + σ 2
12
2

S2 + α

− 1 − p

2
min{σ11, σ12}2(1 + S)pS2

+ cSI p − 1 − p

2
σ 2
22 I

p+2

+ M

(∫ ∞
0

F(x, 0)π̄(dx) − F(Ŝ, 0)

)

≤ −Mλ + L − α

S
− 1 − p

4
min{σ11, σ12}2(1 + S)pS2

− 1 − p

4
σ 2
22 I

p+2 + σ 2
22
2

MI 2 + c2

μ
MSI

+ M (F(S, 0) − F(S, I ))

+ M

(

σ21σ22 +
∫

Y

f22(u)λ(du)

)

I

+ M

(∫ ∞
0

F(x, 0)π̄(dx) − F(Ŝ, 0)

)

= G(S, I ) + M

(∫ ∞
0

F(x, 0)π̄(dx) − F(Ŝ, 0)

)

,

where

L = sup
t→∞

{

μ + σ 2
11

2
+

∫

Y

f11(u)λ(du) + cI

+
(

σ11σ12 +
∫

Y

f12(u)λ(du)

)

S

+σ 2
12

2
S2 + α

−1 − p

4
min{σ11, σ12}2(1 + S)pS2

+cSI p − 1 − p

4
σ 2
22 I

p+2
}

,

G(S, I ) = −Mλ + L − α

S

−1 − p

4
min{σ11, σ12}2(1 + S)pS2

−1 − p

4
σ 2
22 I

p+2 + σ 2
22

2
MI 2 + c2

μ
MSI

+M (F(S, 0) − F(S, I ))

+M

(

σ21σ22 +
∫

Y

f22(u)λ(du)

)

I.
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From the expression of G(S, I ), we can deduce that
Case 1. If S → 0+, then it is obvious thatG(S, I ) →

−∞;
Case 2. If S → +∞, obviously we haveG(S, I ) →

−∞;
Case 3. If I → +∞, then G(S, I ) → −∞;
Case 4. If I → 0+, it is easy to see that

G(S, I ) ≤ −Mλ + L + σ 2
22

2
MI 2 + c2

μ
MSI

+ M (F(S, 0) − F(S, I ))

+ M

(

σ21σ22 +
∫

Y

f22(u)λ(du)

)

I,

according to Assumption 1, F(S, I ) is continuous at
I = 0 uniformly, hence it is obvious that F(S, 0) −
F(S, I ) tends to 0 as I tends to 0+. Consequently, we
obtain that

G(S, I ) ≤ −Mλ + L ≤ −2.

Now we proceed to define the bounded closed set
Uε = {

(S, I ) ∈ R
2+, ε ≤ S ≤ 1

ε
, ε ≤ I ≤ 1

ε

}
, tak-

ing ε > 0 sufficiently small. From what we have dis-
cussed it follows that

G(S, I ) ≤ −1, ∀(S, I ) ∈ R
2+ \Uε.

On the other hand, for any (S, I ) ∈ R
2+, there exists

a positive constant H such that G(S, I ) ≤ H . Conse-
quently, we have

− E (V (S(0), I (0))) ≤ E (V (S(t), I (t)))

− E (V (S(0), I (0)))

=
∫ t

0
E (LV (S(τ ), I (τ ))) dτ

≤
∫ t

0
E (G (S(τ ), I (τ ))) dτ

+ ME

(∫ t

0

∫ ∞

0
F(x, 0)π̄(dx)dτ

−
∫ t

0
F(Ŝ(τ ), 0)dτ

)

.

According to the ergodicity of Ŝ(t), we get

0 ≤ lim inf
t→∞

1

t

∫ t

0
E (G(S(τ ), I (τ ))) dτ

= lim inf
t→∞

1

t

∫ t

0

(
E(G(S(τ ), I (τ )))I{(S(τ ),I (τ ))∈Uc

ε }

+E(G(x(s), y(s)))I{(S(τ ),I (τ ))∈Uε}
)
dτ

≤ lim inf
t→∞

1

t

∫ t

0

(−P((S(τ ), I (τ )) ∈ Uc
ε )

+HP((S(τ ), I (τ )) ∈ Uε)) dτ

≤ −1 + (1 + H) lim inf
t→∞

1

t
P((S(τ ), I (τ )) ∈ Uε)dτ,

which follows that

lim inf
t→∞

1

t

∫ t

0
P(τ, (S(0), I (0)),Uε)dτ

≥ 1

1 + H
, ∀(S(0), I (0)) ∈ R

2+, (15)

where P(t, (S(0), I (0)), ·) is the transition probabil-
ity of (S(t), I (t)). Inequality (15) and the invariance
of R2+ imply that there exist an invariant probability
measure of system (x(t), y(t)) on R

2+. Furthermore,
the independence between standard Brownian motions
Bi (t), i = 1, 2, 3 indicates that the diffusion matrix is
non-degenerate. In addition, it is easy to see the exis-
tence of an invariant probability measure is equivalent
to a positive recurrence. Therefore, system (4) has a
unique stationary distribution π and it has the ergodic
property. On the other hand, assertions (a) and (b) can
refer to [13], [56]. The proof is complete. ��

Lemma 3 Assume that (S(t), I (t)) is the positive solu-
tion of system (4) with initial value (S(0), I (0)) ∈ R

2+,
then for any 0 ≤ θ ≤ 1, there exists a positive constant
K (θ) such that

lim
t→∞ supESθ ≤ K (θ), lim

t→∞ supEI θ ≤ K (θ).

Proof Consider the Lyapunov function

V (S(t), I (t)) = (1 + S + I )θ .
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By simple calculation on the basis of Itô’s formula, we
obtain

dV (S(t), I (t))

=
[
θ(1 + S + I )θ−1 (α − μS − (μ + ρ + γ ) I )

+ θ(θ − 1)

2
(1 + S + I )θ−2

((
σ11S + σ12S

2
)2

+
(
σ21 I + σ22 I

2
)2

)

+
∫

Y

((
1 + S + I + f11S + f12S

2 + f21 I + f22 I
2
)θ

− (1 + S + I )θ

−θ (1 + S + I )θ−1
(
f11S + f12S

2 + f21 I + f22 I
2
))

λ(du)] dt

+ θ (1 + S + I )θ−1
[(

σ11S + σ12S
2
)
dB1(t)

+
(
σ21 I + σ22 I

2
)
dB2(t)

]

+
∫

Y

((
1 + S + I + f11S + f12S

2 + f21 I + f22 I
2
)θ

− (1 + S + I )θ
)
Ñ (dt, du).

Applying Itô’s formula to eηt V (S(t), I (t)), we have

d(eηt V (S(t), I (t)))

= ηeηt V (S(t), I (t)) + eηt dV (S(t), I (t))

= eηtη(1 + S + I )θ + eηt (θ(α + μ)(1 + S + I )θ−1

−θμ(1 + S + I )θ − θ(ρ + γ )I (1 + S + I )θ−1) dt

+ θ(θ − 1)

2
eηt (1 + S + I )θ−2

((
σ11S + σ12S

2)2

+ (
σ21 I + σ22 I

2)2
)
dt

+eηt
∫

Y

((
1 + S + I + f11S + f12S

2 + f21 I + f22 I
2)θ

− (1 + S + I )θ

−θ (1 + S + I )θ−1 ( f11S + f12S
2 + f21 I + f22 I

2)

λ(du)) dt

+eηtθ(1 + S + I )θ−1 [(σ11S + σ12S
2) dB1(t)

+ (
σ21 I + σ22 I

2) dB2(t)
]

+eηt
∫

Y

((
1 + S + I + f11S + f12S

2 + f21 I + f22 I
2)θ

− (1 + S + I )θ
)
Ñ (dt, du), (16)

where η is a positive constant which satisfies η > μθ .

Denote

G = θ(α + μ)(1 + S + I )θ−1 − (η − μθ)(1 + S + I )θ

− θ(ρ + γ )I (1 + S + I )θ−1

+ θ(θ − 1)

2
(1 + S + I )θ−2

((
σ11S + σ12S

2
)2

+
(
σ21 I + σ22 I

2
)2

)

+
∫

Y

((
1 + S + I + f11S + f12S

2 + f21 I + f22 I
2
)θ

− (1 + S + I )θ

−θ (1 + S + I )θ−1

(
f11S + f12S

2 + f21 I + f22 I
2
))

λ(du).

According to the inequation

xr ≤ 1 + r(x − 1), x ≥ 0, 0 ≤ r ≤ 1,
∣
∣
∣
∣
∣

k∑

i=1

ai

∣
∣
∣
∣
∣

p

≤ k p−1
k∑

i=1

|ai |p , p ≥ 1,

it follows
G ≤θ(α + μ)(1 + S + I )θ−1 − (η − μθ)(1 + S + I )θ

− θ(1 − θ)

54
min{σ 2

12, σ
2
22, 1}(1 + S + I )θ+2

≤ K (θ), θ ∈ [0, 1].
Integrating both sides of (16) from0 to t and then taking
expectations

E
(
eηt V (S(t), I (t))

) ≤ V (S(0), I (0)) + K (θ)(eηt − 1)

η

This completes the proof. ��
Remark 5 If θ = 1, by virtue of Lemma 3 and Theo-
rem 4, one can see that

lim
t→∞

1

t

∫ t

0
S(τ )dτ =

∫

R
2+
xπ(dx, dy),

lim
t→∞

1

t

∫ t

0
I (τ )dτ =

∫

R
2+
yπ(dx, dy) a.s..

Although information about the stationary distribution
π is not known yet, the above result implies that S(t)
and I (t) are persistent in the mean.

7 Examples and numerical simulations

7.1 Numerical simulation only with white noise

In this section, we give some numerical simulation
examples to illustrate the effect of disturbances on the
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Asymptotic behavior of a stochastic SIR model 2989

Table 1 Parameters of the epidemic system (4)

Description and Parameters Value References

Recruitment rate (α) 2 person day−1 [57,58]

Natural death rate of each sub-population (μ) 0.05 day−1 [57,58]

Mortality rate induced by the disease (ρ) 0.001 day−1 [57,58]

Recovery rate of infected individuals (γ ) 0.002 day−1 [57,58]

Transmission rate (β) 0.004 person−1 day−1 [57,58]

Saturation factor that measures the inhibitory effect (m) 0.002 person−1 day−1 [57,58]

Initially susceptibles (S0) 20 [57,58]

Initially infected (I0) 15 [57,58]

Initial recovered (R0) 10 [57,58]

SIR epidemic model. Since it is difficult to get the
explicit value ofλ, we first consider the following equa-
tion with saturated incidence rate but without the per-
turbation of Lévy jumps, i.e., fi j = 0, i = 1, 2, 3,
j = 1, 2.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) =
(
α − μS(t) − βS(t)I (t)

1+mI (t)

)
dt + (σ11S(t)

+σ12S2(t)
)
dB1(t),

d I (t) =
(

βS(t)I (t)
1+mI (t) − (μ + ρ + γ )I (t)

)
dt

+ (
σ21 I (t) + σ22 I 2(t)

)
dB2(t),

dR(t) = (γ I (t) − μR(t)) dt + (σ31R(t)
+σ32R2(t)

)
dB3(t),

(17)

The values of parameters in model (17) and initial
values of S, I, R are shown in the following table.

Example 1 Consider model (17) with parameters in
Table 1, we take the white noise intensities as σi j =
0.01, i = 1, 2, 3, j = 1, 2. By using MATLAB soft-
ware, we compute that

λ =
∫ ∞
0

F(x, 0)π∗(dx) − (μ + ρ + γ + σ 2
21
2

)

= β

∫ ∞
0

xπ∗(dx) − (μ + ρ + γ + σ 2
21
2

) ≈ 0.046 > 0,

According to Theorem 4, this means that the disease
will persist and system (17) has an unique ergodic sta-
tionary distribution. Through the trajectory images of
S(t), I (t) and R(t) shown in Fig. 1, one can easily find
that the number of all the three sub-populations fluctu-
ated around a nonzero number, which means that the
disease persists in a long term.

Next, we choose other parameter values such that
λ < 0, which can indicate the disease will be extinct in
a long time. The only difference between the two exam-
ples is the intensities of white noise. Consider model

(17) with σ11 = 0.01, σ12 = 0.01, σ21 = 0.8, σ22 =
0.01, σ31 = 0.01, σ32 = 0.01, then by software we
obtain λ ≈ −0.274 < 0. According to Theorem 3, we
can know that I (t) will go to zero exponentially with
probability onewhile S(t) converges to the ergodic pro-
cess S̄(t). Through the curve trajectories in Fig. 2, one
can see that the number of infected and recovered pop-
ulations tends to zero eventually, and this implies that
the disease can be brought under control and stopped
spreading among people.

7.2 Numerical simulation with white noise and Lévy
jumps

Althoughwe cannot get the exactmathematical expres-
sion of λ at present, some corresponding visualized
results can be obtained by numerical simulation. Now,
we take into account the interference of Lévy jumps to
study the effects of this noise. At first, we present the
equation.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) =
(
α − μS(t−) − βS(t−)I (t−)

1+mI (t−)

)
dt

+ (
σ11S(t−) + σ12S2(t−)

)
dB1(t)

+ ∫

Y

(
f11(u)S(t−) + f12(u)S2(t−)

)

×Ñ (dt, du) ,

d I (t) =
(

βS(t−)I (t−)

1+mI (t−)
− (μ + ρ + γ )I (t−)

)
dt

+ (
σ21 I (t−) + σ22 I 2(t−)

)
dB2(t)

+ ∫

Y

(
f21(u)I (t−) + f22(u)I 2(t−)

)

×Ñ (dt, du) ,

dR(t) = (
γ I (t−) − μR(t−)

)
dt + (

σ31R(t−)

+σ32R2(t−)
)
dB3(t)

+ ∫

Y

(
f31(u)R(t−) + f32(u)R2(t−)

)

×Ñ (dt, du) ,

(18)
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Fig. 1 Simulations of the solution in stochastic system (17) with white noise σ11 = σ12 = σ21 = σ22 = σ31 = σ32 = 0.01. The graph
shows that the three sub-populations are persistent, which means that the disease will spread among people

Fig. 2 Simulations of the
solution in stochastic
system (17) with white
noise σ11 = 0.01, σ12 =
0.01, σ21 = 0.8, σ22 =
0.01, σ31 = 0.01, σ32 =
0.01. The curves in the
graph show that both the
infected and the recovered
population will eventually
decrease to zero, which
means that the disease will
eventually disappear
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Example 2 Based on the parameter values in Table 1,
we set the intensities of white noise and Lévy noise as
σi j = fi j = 0.01, i = 1, 2, 3, j = 1, 2.When the noise
intensities are relatively small, the effect of external dis-
turbance on epidemic system (18) is weak, in addition,
the dynamic properties of the stochastic model are sim-
ilar to those of the deterministic model. From Fig. 3, it
is easy to see that the numbers of S(t), I (t), R(t) are

stable in the mean which also indicates that the disease
will be persistent in a long term under the relatively
weak noise.

On the other hand, we increase the intensity of Lévy
noise and set it to f21 = f22 = 0.8. It is obvious that
the only difference between the two examples is the
value of f21 and f22. Now, the external noise plays
an important role in the dynamics of disease transmis-
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Fig. 3 Simulations of the
solution in stochastic
system (18) with white
noise σi j = 0.01,
i = 1, 2, 3, j = 1, 2 and
jump noise fi j = 0.01,
i = 1, 2, 3, j = 1, 2. The
curves in the figure indicate
a persistent presence of
susceptible, infected and
recovered individuals
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Fig. 4 Simulations of the
solution in stochastic system
(18) with white noise
σi j = 0.01, i = 1, 2, 3,
j = 1, 2 and jump noise
f11 = f12 = f31 = f32 =
0.01 while 21 = f22 = 0.8.
As time goes on, the
number of infected and
recovered people tends to
zero, which means that the
disease will stop spreading
and eventually disappear
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sion, and its influence on the stochastic system cannot
be ignored. Through the curve trajectories in Fig. 4,
it is obvious that the susceptible still remain stable on
average, while both the infected and the recovered dis-
appeared eventually. This also reflects that when there
is a strong external disturbance, the disease can be con-
trolled and does not spread in the population.

Based on the numerical simulations above, it is easy
to find that both white noise and Lévy jumps can sup-
press the spread of the disease. As the intensities of
the white noise and Lévy jumps increase, the disease
disappeared eventually.

8 Conclusion

Based on the pervasiveness of randomness in nature,
which includes mild noises and some massive, abrupt
fluctuations, a stochastic SIR epidemicmodelwith gen-
eral disease incidence rate and Lévy jumps is studied
in this paper. Through rigorous theoretical analysis, we
first present that the solution of model (4) is global and
unique. Then, we investigate the existence of exponen-
tial ergodicity for the corresponding one-dimensional
disease-free system (7) and a threshold λ is established,
which is represented by the stationary distribution π̄

of (7) and the parameters in model (4). Through the
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symbol of the threshold, we can classify the extinction
and persistence of the disease. To be specific, when
λ < 0, the number of the infected population will
tend to zero exponentiallywhichmeans the diseasewill
extinct finally. Meanwhile, in case of λ > 0, system (4)
exists an ergodic stationary distribution on R

2+ which
also means the disease is permanent.

However, since the explicit analytic formula of
invariant measure π̄ cannot be obtained so far, the exact
expression of λ cannot be known accordingly, whereas
from the threshold we can still get a series of dynamic
behaviors and characteristics of model (4). According
to the mathematical expression of the threshold λ, a
surprising finding is that neither f11(u) nor f12(u) has
an effect on the value of λ. In addition, both the linear
perturbation parameters σ21 of white noise and f21(u)

of Lévy jumps have a negative effect on the value of
λ, while the second-order perturbation parameters have
little effect.

In our numerical simulation, one can easily find that
when the intensities of noises are relatively small, the
diseasewill persist. However, with the increase in noise
intensity, the curves of the solution (S, I, R) to model
(4) fluctuate more obvious. Finally, when noise inten-
sity is relatively high, the number of infected and recov-
ered people tends to zero, which indicates that the dis-
ease tends to disappear. In other words, it implies that
both the white noise and Lévy jumps can suppress the
outbreak of the disease.
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