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Abstract Weconsider a certain two-parameter gener-
alisation of the planarHill lunar problem.Weprove that
for nonzero values of these parameters the system is not
integrable in the Liouville sense. For special choices of
parameters the system coincides with the classical Hill
system, the integrable synodical Kepler problem or the
integrable parametric Hénon system.We prove that the
synodical Kepler problem is not super-integrable, and
that the parametric Hénon problem is super-integrable
for infinitely many values of the parameter.

Keywords The Hill problem · Integrability obstruc-
tions · Super-integrability · Regularisation

1 Introduction

In this paper, we consider a certain version of the planar
circular Hill problem. In the classical formulation the
Hill problem is a limiting case of the restricted three
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body problem convenient for studying dynamics of a
massless body in the vicinity of smaller primary [1].

The Hill problem was developed by George Hill,
see [2] in order to construct the theory of motion of
the Moon in the Sun–Earth–Moon system. Later sev-
eral versions of this problemwere considered. Applica-
tion of the Hill problemwith appropriate modifications
in the stellar dynamics is discussed in [3]. A pseudo-
Newtonian Hill problem was investigated in [4–6]. In
this model the Newtonian potential is replaced by the
Paczyński-Wiita potential [7]. It can be considered as
the zeroth order of the general relativistic Hill problem.

A quite general method of Hill’s type approxima-
tion of the equations of motion is described in [8]. Yet
another generalisation of the Hill problem was consid-
ered in [9]. It is called the photo-gravitationalHill prob-
lem, which incorporates an influence of the radiation
pressure forces on the motion of the massless body.

Intensive numerical investigations of the classical
Hill problem were performed in [10]. Among other
things the author gives a classification of orbits in the
considered problem.

In this paper, we consider a generalisedHill problem
proposed by [11,12] and described by the following
Hamiltonian function

H = 1

2
(p2x + p2y) + ypx − xpy + σ

|r|
+ε

(
−x2 + 1

2
y2

)
, (1)
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where r = (x, y), pr = (px , py), |r| = √
x2 + y2,

and σ and ε are real parameters. This generalisation
allows to study in a uniform manner a variety of sys-
tems, among which the following are included

• For (σ, ε) = (−1, 1) – the classical Hill problem,
see e.g. [1,3];

• For (σ, ε) = (1, 1) – the anti-Hill problem, see
[11–13];

• For (σ, ε) = (−1, 0) – the synodical Kepler prob-
lem, see e.g. Chapter III in [14];

• For (σ, ε) = (σ, 0), where σ ∈ R \ {0} – the para-
metric synodical Kepler problem;

• For (σ, ε) = (0, 1) – the Hénon problem, see [15–
17];

• For (σ, ε) = (0, ε), where ε ∈ R – the parametric
Hénon problem, see [11,17];

• For ε �= 0 and σ �= 0 – a special case of the photo-
gravitational Hill problem [9].

The other versions of the Hill problem mentioned ear-
lier are not covered by the model defined by Hamilto-
nian (1).

The aim of this paper is to study integrability in the
Liouville sense of the two-parameter family of Hamil-
tonian systems (1). Also general properties of this sys-
tem such as equilibria and qualitative behaviour of
phase curves illustrated by the Poincaré cross sections
for various values of parameters are analysed.

Integrability of two among of these systems: the
synodical Kepler problem and the Hénon problem is
well known. In the synodical Kepler problem the addi-
tional first integral is the angular momentum compo-
nent F = xpy − ypx and this function remains the first
integral also for the parametric synodical Kepler prob-
lem. For the Hénon problem the additional first integral
takes the form

F = p2x + 2(px y − 2pyx) − 3x2 + y2.

One can easily check that this first integral generalises
to

F = 3p2xε + 2(2 + ε)px y − 4(1 + 2ε)pyx

+ 3ε(y2 − x2(1 + 2ε))
(2)

for the parametric Hénon system. On the other hand
the non-integrability of the classical Hill problem was
proved in [18].

We complement these results by proving that Hamil-
tonian equations generated by the Hamilton function
(1) for σε �= 0 are non-integrable. In particular, we

give a simpler non-integrability proof for the classical
Hill problem. As result we can formulate necessary and
sufficient integrability conditions for this two parame-
ter family of Hamiltonian systems

Theorem 1 The Hamiltonian system (1) is integrable
in the Liouville sense in the class of rational functions
of variables x, y, px , py, r = |r| if and only if σε = 0.

Moreover, we analyse super-integrability of the para-
metric Hénon system and the synodical Kepler prob-
lem. We show that the parametric Hénon system for
infinitely many rational values of parameter ε appears
to be super-integrable and this problem is discussed in
Sect. 5.1. In Sect. 5.2, we explain that the synodical
Kepler problem is not super-integrable.

In this paper, we study integrability of the system
in the framework of the differential Galois theory. For
Hamiltonian systems the necessary integrability con-
dition is given by the following theorem.

Theorem 2 Assume that a complex Hamiltonian sys-
tem is meromorphically integrable in the Liouville
sense in a neighbourhood of a phase curve Γ . Then,
the identity component of the differential Galois group
of the variational equations along Γ is Abelian.

For details see [19]. Practical introduction and numer-
ous applications can be found in [20]. To apply the
above theorem in Sects. 3 and 4, we consider the com-
plexification of the system defined by Hamiltonian (1).

The plan of the paper is following. In Sect. 2, gen-
eral properties of the Hamiltonian system (1) are anal-
ysed. Equilibria are calculated and their stability in lin-
ear approximation is determined. Generic behaviour
of phase curves is illustrated by means of Poincaré
cross sections presented in two- and three- dimensional
spaces. The difficulty of making flat two-dimensional
cross sections in caseswhen cross section surfaces have
non-trivial geometry is discussed. In Sect. 3, we derive
the regularised Hamiltonian with removed singularity
in the origin andwe discuss relations between first inte-
gral of original and regularisedHamiltonians. Section 4
contains the non-integrability proof of the generalised
Hill’s problem for the case σε �= 0. In the last Sect.
5, the problem of existence of one more functionally
independent first integral for the integrable paramet-
ric Hénon system and the synodical Kepler problem is
analysed.
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2 General properties of the dynamics of the system

Hamilton equations determined by the Hamilton func-
tion (1) have the form

ẋ = px + y, ṗx = py + 2εx + σ x

(x2 + y2)3/2
,

ẏ = py − x, ṗy = −px − εy + σ y

(x2 + y2)3/2
.

(3)

We determine real equilibria and their types for this
system. Clearly, if (x, y, px , py) ∈ R

4 is an equilib-
rium, then px = −y and py = x . Using this fact we
deduce that either x = 0 whence px = −y, py = 0
and y is a real solution of the equation

σ

(
y2

) 3
2

= ε − 1, (4)

or y = 0 whence px = 0, py = x and x is a real
solution of the equation

σ

(
x2

) 3
2

= −1 − 2ε. (5)

The type of an equilibrium is determined by the eigen-
values of the Jacobian matrix

L =

⎡
⎢⎢⎢⎢⎢⎣

0 1 1 0
−1 0 0 1

2ε +
(
y2−2x2

)
σ

(x2+y2)
5/2 − 3xyσ

(x2+y2)
5/2 0 1

− 3xyσ

(x2+y2)
5/2

(
x2−2y2

)
σ

(x2+y2)
5/2 − ε −1 0

⎤
⎥⎥⎥⎥⎥⎦

(6)

of the right-hand sides of Hamilton’s Eq. (3) evaluated
at this equilibrium.

In our further analysis we assume that σ �= 0. An
analysis of the conditions given above leads to twopairs
of isolated equilibria. The first pair of equilibria S±
lying on y-axis is given by

x = 0, y = ± 3
√

σ
ε−1 , px = ∓ 3

√
σ

ε−1 , py = 0.

It exists iff σ(ε − 1) > 0. Eigenvalues of matrix L are

λ1,2 = ±i

√
1 + √

36ε(ε − 1) + 1√
2

,

λ3,4 =
√

−1 + √
36ε(ε − 1) + 1√

2
.

(7)

For ε > 1 andσ > 0 these equilibria are always saddle-
centre. If ε < 1 and σ < 0, then character of equilibria
depends on ε. Namely, if 1

6 (3 − 2
√
2) < ε < 1

6 (3 +
2
√
2), then 36ε(ε − 1) + 1 < 0 and all eigenvalues

have real and imaginary parts different from zero

λ1,2 = ± 1
2

[
−

√
−1 + √

36ε(1 − ε)

+i
√
1 + √

36ε(1 − ε)

]
,

λ3,4 = ± 1
2

[√
−1 + √

36ε(1 − ε)

+i
√
1 + √

36ε(1 − ε)

]
,

thus S± are focus-focus. If ε ∈
(
0, 1

6 (3 − 2
√
2
]
∪[

1
6 (3 + 2

√
2), 1

)
, then 1 >

√
36ε(ε − 1) + 1 > 0,

thus eigenvalues λ3,4 in (7) become also purely imag-
inary numbers and S± become centre-centre. If ε =
1
6 (3−2

√
2) or ε = 1

6 (3+2
√
2), the matrix L has mul-

tiple eigenvalues ±i
√
2
2 with two-dimensional Jordan

blocks. Finally, for arbitrary ε < 0 equilibria S± are
saddle-centre.

The second pair of equilibria L± lying on the x-axis
is given by

x = ± 3

√
− σ

2ε + 1
, y = 0, px = 0,

py = ± 3

√
− σ

2ε + 1
.

It exists iff σ(2ε + 1) < 0. Eigenvalues of matrix L at
these equilibria are

λ1,2 = ±i

√
1 − 3ε + √

81ε2 + 30ε + 1√
2

,

λ3,4 = ±
√
3ε − 1 + √

81ε2 + 30ε + 1√
2

.

If ε < −1/2 and σ > 0, then these points are saddle-
centre. If ε > −1/2 and σ < 0, then character of the
equilibria depends on ε. In the interval− 1

3 < ε < − 1
27

we have 81ε2 + 30ε + 1 < 0, and so, all eigenvalues

λ1,2 = ± 1
2

[
−

√
3ε − 1 + √−36ε(1 + 2ε)

+ i
√
1 − 3ε + √−36ε(1 + 2ε)

]
,

λ3,4 = ± 1
2

[√
3ε − 1 + √−36ε(1 + 2ε)

+ i
√
1 − 3ε + √−36ε(1 + 2ε)

]
,

have real and imaginary parts different from zero, thus
L± are focus-focus equilibria. For ε ∈ (− 1

2 ,− 1
3

] ∪
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Fig. 1 Character of isolated
equilibria S± and L±.
Notation:
C-C—centre-centre,
S-C—saddle-centre,
F-F—focus-focus

(a) (b)

[− 1
27 , 0

)
although 81ε2 + 30ε + 1 > 0, we have

3ε − 1 + √
81ε2 + 30ε + 1 < 0, thus eigenvalues

λ3,4 become purely imaginary numbers and equilibria
L± become centre-centre. For ε = − 1

27 matrix L has

multiple eigenvalues ±i
√
5
3 and for ε = − 1

3 multiple
eigenvalues ±i with 2-dimensional Jordan blocks. For
arbitrary ε > 0 equilibria L± become saddle-centres.
Character of equilibria on the plane of parameters (σ, ε)

is shown in Fig.1.
Let us notice that for σ < 0 and − 1

2 < ε < 1
the generalised Hill system has four isolated equilibria
S±, L±. For σ > 0 and − 1

2 < ε < 1 the generalised
Hill problem has no equilibrium.

For ε = 0we obtain the parametric synodicalKepler
problem with infinitely many equilibria for σ < 0:

px = −y, py = x, and (x, y) �= (0, 0)

satisfies
(
x2 + y2

)3/2 + σ = 0, with eigenvalues of
L equal to λ1 = λ2 = 0, λ3,4 = ±i . For ε = 0 and
σ > 0 the parametric synodical Kepler problem has no
real equilibria solutions.

The necessary conditions for linear stability are as
follows. If σ < 0, then

ε ∈ (− 1
2 ,− 1

3

) ∪
(

− 1
27 ,

1

6
(3 − 2

√
2)

)

∪
(
1

6
(3 + 2

√
2), 1

)
.

For σ > 0 the equilibria are linearly stable if ε = 0.
To visualise behaviour of trajectories the Poincaré

cross section technique is frequently used. We select
an energy level

ME := {
(x, y, px , py) ∈ R

4 | H(x, y, px , py) = E
}
.

Fig. 2 A trajectory in the energy level ME with E = 2, σ = 1
and ε = − 1

4 . Two components of the cross section surface x = 0
on this energy level are shown. Intersections of the trajectorywith
the cross section surface are marked by red dots

It is a three-dimensional manifold. Next, we have to
choose a cross section surface C in ME . We require
that in a certain domain on this surface phase trajec-
tories intersect it transversally, and, moreover, through
each point in the chosen domain passes exactly one
trajectory. In order to get a clear graphical representa-
tion, we would like also to represent the domain with
marked intersection points as a domain in a plane. Cus-
tomary as a cross section plane x = 0 (or y = 0) is
taken.Moreover, as coordinates on this surface inME a
pair of conjugated canonical variables: a coordinate and
the corresponding momentum is chosen. This choice is
good provided that the projection of the chosen part of
the cross section surface on the canonical plane is one
to one.
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Fig. 3 Energy level ME for E = − 3 3√3
2 ≈ −2.16337, σ = −1

and ε = 1 with the part of the cross section surface with px > 0.
The cross section points for more than 200 orbits are shown

For our first numerical experiments we took (y, px ,
py) as coordinates on ME and cross section surface C
is defined by intersection of ME with plane x = 0. An
example is shown in Fig. 2. Clearly, the cross section
surface C has two components. With our choices of
coordinates on ME these components are given by

C+ = {(y, px , py) ∈ R
3 | y(p2x + p2y + 2px y

+ y2ε − 2E) + 2σ = 0, y > 0},
C− = {(y, px , py) ∈ R

3 | y(p2x + p2y + 2px y

+ y2ε − 2E) − 2σ = 0, y < 0}.

(8)

The considered system has symplectic symmetry
(x, y, px , py) �→ −(x, y, px , py). Thus, if (y, px , py)
∈ C, then also (−y,−px ,−py) ∈ C. This is why, with-
out loss of the generality, we can consider only one
part of the cross section specified by the sign of one
coordinate. In all cases with σ < 0 we take part of
the cross section surface with px > 0. An example
shown in Fig. 3 has the cross section with two com-

ponents and both of them have one to one projection
onto (y, py)-plane. The points of the cross section sur-
face are generated formore than 200 orbits. Hereinafter
cross sections are presented in this plane. Figs. 4, 5 and
6 illustrate dynamics for σ = −1, for positive or neg-
ative values of ε �= 1 and for two values of energy. It
is visible that the dynamics of the system with lower
energy is quite regular while in the cross sections that
correspond to higher energy values chaotic zones are
clearly visible.

Themain difficulty in generation of cross sections in
the considered system is the fact that energy levels are
not compact and there are orbits which escape or which
have only a few intersections with the cross section
surface. For cases with σ < 0 the origin is an attracting
centre, so we can consider system as a perturbation
of the Kepler problem and we investigated negative
energy levels for arbitrary values of ε. However, if σ >

0, then the centre in origin is repulsive and it is really
difficult to obtain a cross section. For these cases we
select ε in such a way that linear part of the vector field
generated by Hamiltonian (1) is stable. It appears this
is the case if and only if ε ∈ (−1/2, 0)∪(8/9, 1). If we
select ε from the prescribed intervals, then it is possible
to find orbits which havemultiple intersectionswith the
cross section surface.

However, the other problem appears. As it is shown
in Fig. 7, cross section points near origin and on the
folded part at the front do not project one to one onto
the (y, py) plane.

This problem can be solved in many ways. The
best results we obtained by just passing to variables
(x, y, vx , vy), where vx = ẋ and vy = ẏ. Again as a
cross section plane we take x = 0 and (y, vx , vy) as
coordinates on the energy level ME . Now the energy
integral reads

E = 1

2

[
v2x + v2y − (1 + 2ε)x2 − (1 − ε)y2

]

+ σ√
x2 + y2

.

Hence, components C± of the cross section surface
C ⊂ ME are
C± =

{
(y, vx , vy) ∈ R

3 | v2x + v2y = 2E + (1 − ε)y2∓2σ

y

}
.

Because of the above symmetry of the system, if
(y, vx , vy) ∈ C+, then (−y,−vx ,−vy) ∈ C−. Thus,
one can restrict to C+ only which is a cone and y is its
symmetry axis. Hence points ofC+ have unique projec-
tions onto (vx , vy) plane. Examples of Poincaré cross
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Fig. 4 Poincaré cross sections for σ = −1 and ε = 10

Fig. 5 Poincaré cross sections for σ = −1 and ε = −1

Fig. 6 Poincaré cross sections for σ = −1 and ε = −10

123
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Fig. 7 Energy level ME for E = 5, parameters σ = 1 and
ε = − 1

20 with part of the cross section surface with px > 0. The
cross section points for more than 300 orbits are shown

sections in space (y, vx , vy) with the corresponding
projections onto the plane (vx , vy) are shown in Figs. 8
and 9. In the central part of the cross section presented
in Fig. 8 one can see an island of regular motion around
a stable periodic solution surrounded by a large chaotic
zone. Around this zone there are regular regions which
correspond to quasi-periodic solutions near a stable res-
onant orbit. The structure of the phase space shown in
the cross-section presented in Fig. 9 is different. In the
central part there are five very small regular islands cor-
responding to a periodic solution. Around each of these
islands one can see smaller ones which correspond to
higher resonant orbits. All this is surrounded by a star-
like chaotic zone. Outside this zone there is a large
region of regular motions consisting of quasi-periodic
orbits near a resonant period solution.

3 Regularised equations of motion

The Hamiltonian of the generalised Hill problem with
σ �= 0 is ramified because of

√
x2 + y2 appearing in

it. Introducing r such that r2 = x2 + y2, Hamiltonian
(1) is now given by

H = 1

2
(p2x + p2y) + ypx − xpy + σ

r

+ε

(
−x2 + 1

2
y2

)
, (9)

(a)

(b)

Fig. 8 Poincaré cross section for σ = 1 and ε = 9
10 on energy

level E = 1

and it is rational on the symplectic manifold {(x, y, px ,
py, r), r2 = x2 + y2} which is a double cover
of C4. The system is singular at the origin; however
it is possible to remove the singularity by means of
the Levi–Civita regularisation. The following proce-
dure is a modification of that presented in [12]. More
details about regularisation procedure one can find in
review articles [21,22]. We now consider the coordi-
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(a) (b)

Fig. 9 Poincaré cross section for σ = 1 and ε = 99
100 on energy level E = 1

nates change (depending on a parameter α)

x = u21 − u22
α

, y = 2u1u2
α

, r = u21 + u22
α

,

px = u1v1 − u2v2
2α(u21 + u22)

, py = u1v2 + u2v1
2α(u21 + u22)

.

(10)

This coordinates change is projectively symplectic, i.e.
it multiplies the symplectic form by α−2, and thus it
transforms our Hamiltonian (1) to the following one

H̃ = v21 + v22

8(u21 + u22)
+ 1

2
(u2v1 − u1v2)

− ε(u41 − 4u21u
2
2 + u42) + α3σ

u21 + u22
.

(11)

The corresponding Hamiltonian vector field is given by

u̇1 = v1

4(u21 + u22)
+ 1

2
u2,

u̇2 = v2

4(u21 + u22)
− 1

2
u1,

v̇1 = (v21 + v22)u1
4(u21 + u22)

2
+ 1

2
v2 − ε(8u1u

2
2 − 4u31)

+ 2α3σu1
(u21 + u22)

2
,

v̇2 = (v21 + v22)u2
4(u21 + u22)

2
− 1

2
v1 − ε(8u21u2 − 4u32)

+ 2α3σu2
(u21 + u22)

2
.

We now perform the time change t → τ such that
dt
dτ = 4(u21 + u22), which corresponds to multiplying
this vector field by 4(u21 + u22), and then restrict it to
the 3-dimensional manifold given by H̃ = −1/8

(
v1 + 2u2(u

2
1 + u22)

)
∂

∂u1
+ (

v2 − 2u1(u
2
1 + u22)

)
∂

∂u2

+
(

u1v21+u1v22
u21+u22

+ 2(u21 + u22)v2

+ 16ε(u21 − 2u22)(u
2
1 + u22)u1

+ 8α3σu1
u21+u22

)
∂

∂v1
+

(
u2v21+u2v22
u21+u22

− 2(u21 + 2u22)v1

−16ε(2u21 − u22)(u
2
1 + u22)u2 + 8α3σu2

u21+u22

)
∂

∂v2

= (
v1 + 2u2(u

2
1 + u22)

)
∂

∂u1
+ (

v2 − 2u1(u
2
1 + u22)

)
∂

∂u2

+
(

− 4u1u2v1 + (6u21 + 2u22)v2

+ 24εu1(u
4
1 − 2u21u

2
2 − u42)

− u1
)

∂
∂v1

+
(
(−2u21 − 6u22)v1 + 4u1u2v2

− 24εu2(u
4
1 + 2u21u

2
2 − u42) − u2

)
∂

∂v2

+ 8
(
H̃ + 1

8

) (
u1

∂
∂v1

+ u2
∂

∂v2

)
. (12)

It now appears that on H̃ = −1/8, this last representation
does not contain the parameter α nor any singularity. More-
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over, this vector field is Hamiltonian onC4 withHamiltonian

Ĥ = 1

2
(v21 + v22) + 2(u2v1 − u1v2)(u

2
1 + u22)

− 4ε(u21 + u22)(u
4
1 − 4u21u

2
2 + u42)

+ 1

2
(u21 + u22).

(13)

The relation between first integrals of original (9) and
regularised (13) Hamiltonian is described by the following
proposition.

Proposition 1 For σ �= 0, if Hamiltonian (9) admits an
additional first integral rational in x, y, px , py, r , then
Hamiltonian (13) admits an additional rational first integral
in u1, u2, v1, v2.

Proof Assume there exists a rational first integral I in
x, y, px , py, r of (9) that is functionally independent of H .
Then, performing the coordinates change (10) on I gives Ĩ
which is a rational expression in u1, u2, v1, v2, α, still inde-
pendent with H̃ . The function Ĩ is still a first integral of the
vector field after multiplying it by 4(u21 + u22). Thus, vector
field (12) in dimension 5 (with additional variable α) admits
3 first integrals H̃ , Ĩ , −4α3σ , functionally independent as
σ �= 0.

We consider the invariant surface Σ = {H̃ = −1/8},
which is the zero level of the polynomial Ĥ + 4α3σ ∈
C[u, v, α], where u = (u1, u2) and v = (v1, v2). Let us
check that this polynomial is irreducible. This polynomial
is of degree 2 in v. If it factors with a factor of degree 0
in v, then Ĥ + 4α3σ should have a factor in u only, which
is impossible because the term 1

2 (v21 + v22) always appears.
Thus, it should factorise in two terms of degree 1 in v

Ĥ + 4α3σ = 1
2 (a1v1 + a2v2 + a3)(b1v1 + b2v2 + b3)

with ai , bi polynomials in u. Expanding the right-hand side,
we find that up to a constant factor a1 = 1, b1 = 1, a2 =
i , b2 = −i and then

a3 + b3 = 4u2(u
2
1 + u22), −i a3 + i b3

= −4u1(u
2
1 + u22)

and thus the only possible factorisation would be

1
2 (v1 + i v2 + 2(u2 − i u1)(u

2
1 + u22))

(v1 − i v2 + 2(u2 + i u1)(u
2
1 + u22))

= 1
2 (v21 + v22) + 2(u2v1 − u1v2)(u

2
1 + u22)

+2(u21 + u22)
3,

which is never equal to Ĥ + 4α3σ . Thus, this polynomial is
irreducible.

We can now restrict the vector field (12) to Σ which
gives a Hamiltonian vector field with Hamiltonian Ĥ . We
notice that −4α3σ restricted on Σ equals Ĥ . Thanks to
Ziglin Lemma [23,24], up to replacing Ĩ by an algebraic
expression in Ĩ ,−4α3σ , we can ensure that the restriction

of Ĩ to Σ is a well-defined function Î which is functionally
independent with Ĥ . Thus, Î is a functionally independent
first integral of the Hamiltonian vector field of Ĥ . ��

Remark that when σ = 0, the hypersurface Σ is defined
by Ĥ = 0. Restricting the vector field on Σ , we obtain
equations corresponding to the Hamiltonian vector field of
Ĥ and equation dα

dτ = 0. So the restriction of Ĩ to Σ still
gives a first integral Î which, after fixing α to an arbitrary
constant, will give a first integral of Ĥ on its zero level. As the
initial Hamiltonian H is integrable for σ = 0, this implies
that Hamiltonian Ĥ is integrable on its zero level.

This property explains the further observation why the
variational equations for a particular solution lying on the
zero level of Ĥ have Liouvillian solutions, that is their dif-
ferential Galois group is solvable. Indeed, first-order varia-
tional equations restricted to the zero energy level will have
a virtually Abelian Galois group, and in the supplementary
space, normal to the surface Ĥ = 0, the variational equations
can then be solved by variation of constants method.

Following [18] to simplify search of invariant manifolds
and particular solutions lying on them we make the next
canonical change of variables[
u
v

]
=

[
A 0
0 (A−1)T

] [
x
y

]
, A = 1√

2

[
1 i
i 1

]
, (14)

where x = [x1, x2]T and y = [y1, y2]T . After this transfor-
mation Hamiltonian (13) takes the form

H = i (x1x2 − y1y2) − 4x1x2(x1y1 − x2y2)

− 4i εx1x2(3x
4
1 − 2x21 x

2
2 + 3x42 )

(15)

and Hamilton equations are

x ′
1 = − i y2 − 4x21 x2,

x ′
2 = − i y1 + 4x1x

2
2 ,

y′
1 = x2[8x1y1 − 4x2y2

+ 12i ε(5x41 − 2x21 x
2
2 + x42 ) − i ],

y′
2 =x1[4x1y1 − 8x2y2

+ 12i ε(x41 − 2x21 x
2
2 + 5x42 ) − i ],

(16)

where ′ denotes differentiation with respect to τ . In these
variables one can easily notice that two planes

M1 = {(x1, x2, y1, y2) ∈ C
4 | x2 = y1 = 0},

M2 = {(x1, x2, y1, y2) ∈ C
4 | x1 = y2 = 0}

are invariant.

4 Integrability analysis

The system restricted to invariant planeM1 reads

x ′
1 = −i y2, y′

2 = i x1(12εx
4
1 − 1). (17)
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It has first integral

h = −1

2
y22 + 1

2
x21 − 2εx61 . (18)

Thus, we have to our disposal a family of particular solutions
parametrised by value of h. Let [X1, X2, Y1, Y2]T denote
variations of variables [x1,
x1, y1, y2]T . Then, variational equations along a chosen par-
ticular solution take the form

⎡
⎢⎢⎣
X ′
1

Y ′
2

X ′
2

Y ′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 −i −4x21 0
i (60εx41 − 1) 0 −8x1y2 4x21

0 0 0 −i
0 0 i (60εx41 − 1) 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
X1

Y2
X2

Y1

⎤
⎥⎥⎦ .

For further analysis we need a proper choice of a particular
solution. Let us fix h = e. Then, from (18) we get a hyper-
elliptic curve

y22 = P6(x1), P6(x1) = −2e + x21 − 4εx61 . (19)

For a generic value of e the particular solution correspond-
ing to this curve is given by elliptic functions and their inte-
grals. We simplify considerably our further analysis by tak-
ing e such that 108e2ε = 1. For this choice the discrim-
inant of polynomial P6(x1) vanishes, so the hyper-elliptic
curve (19) degenerates and, in effect, particular solutions
can be expressed by elementary functions. Then, we change
independent variable τ → z = 1

3e x
2
1 (τ ). Variational equa-

tions transform into

d

dz

⎡
⎢⎢⎣
X1
Y2
X2
Y1

⎤
⎥⎥⎦ = 1

r(z)

⎡
⎢⎢⎣

0 −i −12ez 0
i (5z2 − 1) 0 −12i er(z) 12ez

0 0 0 i
0 0 i (5z2 − 1) 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
X1
Y2
X2
Y1

⎤
⎥⎥⎦ ,

(20)

where

r(z) = 2√
3
(z − 1)

√
z(z + 2). (21)

We make the next change of independent variable z → u

defined as z = (u+1)2

2(u+2) that removes square roots from coef-
ficients of variational equations (20). Moreover, we rescale
dependent variables

[X̃1, Ỹ2, X̃2, Ỹ1]T= diag(−i ,
√
3, −6i

√
3 e, 18e)[X1, Y2, X2, Y1]T .

Transformed variational equations take the form

d
du

⎡
⎢⎢⎣
X̃1

Ỹ2
X̃2

Ỹ1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 1
u2−3

(u+1)2

(u+2)(u2−3)
0

p(u) 0 (u+1)(u+3)
(u+2)2

− (u+1)2

(u+2)(u2−3)
0 0 0 1

u2−3
0 0 p(u) 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
X̃1

Ỹ2
X̃2

Ỹ1,

⎤
⎥⎥⎦ ,

p(u) = 3(−11+4u+26u2+20u3+5u4)
4(u+2)2(u2−3)

.

This system gives the fourth-order equation for variable X̃1

of the form

d4 X̃1

du4
+ a3

d3 X̃1

du3
+ a2

d2 X̃1

du2
+ a1

d X̃1

du
+ a0 X̃1 = 0,

with coefficients

a3 = 4(3+12u+21u2+12u3+2u4)
(u+1)(u+2)(3+u)(−3+u2)

,

a2 = 177+972u+1755u2+1560u3+711u4+156u5+13u6

2(u+1)2(u+2)2(u+3)2(u2−3)
,

a1 = − 108+885u+1980u2+2301u3+1572u4+627u5+132u6+11u7

(u+1)2(u+2)2(u+3)2(u2−3)2
,

a0 = 3
16(u+1)2(u+2)4(u+3)2(u2−3)3[
−129+32640u+131115u2+238992u3+262146u4

+192336u5+98570u6+35312u7+8447u8+1200u9+75u10
]
.

This equation has the following general solution

X̃1(u) = C1v1(u) + C2v2(u) + C3v3(u) + C4v4(u),

with fundamental solutions

v1 = (3+u)(u2−3)
(2+u)3/2

,

v2 = − 5
√
3(3+u)

(
u2−3

)
arctanh

(
u√
3

)
432 (2+u)3/2

+ 5 u4+15 u3−25 u2−111 u−84
(2+u)3/2(144 u2−432)

,

v3 = −
25

√
3(3+u)

(
u2−3

)
arctanh

(
u√
3

)

96 (2+u)3/2

+ (3+u)
(
u2−3

)
ln(2+u)

4(2+u)3/2
+ 9 u4+75 u3−29 u2−555 u−564

(2+u)3/2(32 u2−96)
,

v4 = − 5(3+u)
(
u2−3

)√
3

(2+u)3/2

∫
arctanh

(
u/

√
3
)

2+u du

+
[
5
√
3(3+u)

(
u2−3

)
2(2+u)3/2

ln (2 + u)

− 5
(
u2−3

)(
108+11 u

√
3−39

√
3+36 u

)
72 (2+u)3/2

]
arctanh

(
u√
3

)

+
(−12 u5−51 u4+27 u3+291 u2+225 u−72

)
(2+u)3/2(2 u2−6)

ln(u+2)

− 5(3+u)
(
u2−3

)
2(2+u)3/2

ln
(
u−√

3
) + (51+17 u)

(
u2−3

)
4 (2+u)3/2

ln
(
u2−3

)

+ −17 u4−123 u3+805 u2+3387 u+2964
(2+u)3/2(24 u2−72)

.

Let us consider integral which appears in the first term
of v4. Function arctanh(x) is a multi-valued function so we
have to consider it on the corresponding Riemann surface,
see Fig. 10. Values of arctanh(x) on different sheets of the

123



Integrability of the generalised Hill problem 1999

Fig. 10 Riemann surface of arctanh(x) with the commutator
path

Riemann surface differ by integer multiples of iπ . Thus, we
consider integral

I (α) =
∫

1

2 + u

[
arctanh

(
u√
3

)
+ α

]
du

= r(α) ln(u + 2) +
∑
n≥0

an(u + 2)n,
(22)

where using the principal value of arctanh we have

r(α) = α + arctanh

(−2√
3

)
= α + ln(2 − √

3) + i
π

2
.

The form of the right-hand side of I (α) follows from the fact
that arctanh(u/

√
3) is smooth at u = −2.

We investigate the monodromy group of this integral. To
this end we take two loops σ and γ with one common point
u0. They are ovals encircling counter-clockwise points u =
−2, and u = −√

3, respectively, see Fig. 11.
Let Mσ and Mγ denote the monodromy operators corre-

sponding to the respective loops. Then,

Mσ (I (α)) = I (α) + 2π i r(α), (23)

and

Mγ

(
arctanh

(
u√
3

)
+ α

)
= arctanh

(
u√
3

)
+ α + π i ,

so

Mγ (I (α)) = I (α + π i ).

In effect, for the commutator M = M−1
γ M−1

σ Mγ Mσ we
obtain

M(I (α)) = I (α) + 2iπr(α) − 2iπr(α + iπ)

= I (α) + 2π2,

thus the monodromy group is not commutative. But this
group is a subgroupof thedifferentialGalois groupG(L/C(u))

of the extension

C(u) ⊂ L = C

(
u, arctanh

(
u√
3

)
, I (α)

)
. (24)

(a)

(b)

Fig. 11 Contours for monodromy calculations

In fact, G(L/C(u)) is the Zariski closure of the monodromy
group and it is connected because the extension C(u) ⊂ L
was obtained by two successive quadratures. The field L is a
subfield of the Picard–Vessiot field of the variational equa-
tions and thus its identity component is not Abelian. This
fact shows that the generalised Hill system is not integrable.

The differential Galois methods used in our proof of The-
orem 1 are algebraic and they do not characterise the dynam-
ical origin of the non-integrability. So, in general, there is
no direct connections between chaotic behaviour of the sys-
tem and the non-integrability demonstrated with the help
of differential Galois methods. However, there are certain
exceptions. For example, in article [25] it was shown how
the necessary conditions for splitting of the separatrices can
be obtained with the help of differential Galois techniques.

5 Super-integrability of particular cases

5.1 The parametric Hénon case

We mentioned about the integrability of the parametric
Hénon system

H = 1

2
(p2x + p2y) + ypx − xpy

+ε

(
−x2 + 1

2
y2

)
(25)

ẋ = px + y, ṗx = py + 2εx,

ẏ = py − x, ṗy = −px − εy, (26)

for all values of ε. Additional first integral was given in (2).
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But for certain values of ε this system appears to be super-
integrable. In order to understand origin of these additional
first integrals and values of ε for which this system is super-
integrable, wewill study first integrals of the Hamilton equa-
tions (26) which are in fact linear

dx
dt

= Ax (27)

with matrix

A =

⎡
⎢⎢⎣

0 1 1 0
−1 0 0 1
2ε 0 0 1
0 −ε −1 0

⎤
⎥⎥⎦ (28)

and x = [x, y, px , py]T . The characteristic polynomial of
this matrix is

p(λ) = det[A − λI]
= λ4 + (2 − ε)λ2 + ε − 2ε2 + 1. (29)

Substituting λ = iω, where ω ∈ R, the characteristic
equation takes the form

ω4 + (ε − 2)ω2 + ε − 2ε2 + 1 = 0. (30)

Solving this equation in ω gives up to sign two solutions
±ω1,±ω2 with

ω1 = 1√
2

√
2 − ε − √

ε (9ε − 8),

ω2 = 1√
2

√
2 − ε + √

ε (9ε − 8).

These solutions are distinct when ε(9ε − 8) �= 0 and
ω1ω2 �= 0. When matrix A is diagonalisable, system
(27) after a basis change is diagonal and its solutions are
exp(±iω1t), exp(±iω2t). System (27) admits 3 indepen-
dent first integrals if and only if the transcendence degree
of the field generated by the solutions is 4 − 3 = 1. Thus,
for super-integrability, exp(±iω1t), exp(±iω2t) should be
algebraically dependant, and so ω1/ω2 ∈ Q.

When ε = 0, 8/9, matrix A is not diagonalisable,
and the solution field is, respectively, C(t, exp(i t)) and
C(t, exp(i

√
5t/3)). Thus, the transcendence degree is 2,

and the system is not super-integrable. Stays the case
ω1ω2 = −16(2ε + 1)(ε − 1) = 0 which gives ε =
1,−1/2. These cases give solutions fields C(t, exp(i t))
and C(t, exp(i t

√
10/2)), respectively, and so are not super-

integrable.
Now we can explain the existence of an additional first

integral and super-integrability for selected values of ε. Let
us define function

κ(ε) := ω1

ω2
. (31)

As ω1, ω2 are defined up to sign and permutation, we can
assume κ ∈ [0, 1], and this allows to restrict the study of
κ(ε) to ε ∈ (− 1

2 , 0
)∪ ( 8

9 , 1
)
. It is continuous and monotone

on the two intervals, see Fig. 12.

Inverse of this function in interval ε ∈ (− 1
2 , 0

)
is given

by

ε−(κ) = κ4 + 6κ2 + 1 − (
κ2 + 1

)√
9κ4 − 2κ2 + 9

2
(
2κ4 + 5κ2 + 2

) ,

while in interval ε ∈ ( 8
9 , 1

)
it reads

ε+(κ) = κ4 + 6κ2 + 1 + (
κ2 + 1

)√
9κ4 − 2κ2 + 9

2
(
2κ4 + 5κ2 + 2

) ,

see Fig 13.
System (25) is super-integrable if and only if κ ∈ (0, 1)∩

Q, and thus for ε in

{ε−(κ), κ ∈ (0, 1) ∩ Q} ∪ {ε+(κ), κ ∈ (0, 1) ∩ Q}.
Now the first integrals can be obtained by diagonal-

ising A, and when κ ∈ Q, and the multiplicative rela-
tions between the exponentials give 3 independent first inte-
grals. Two of them come from the relations eiω1t e−iω1t =
1, eiω2t e−iω2t = 1 and the exceptional additional one from(
eiω1t

)m2 (
e−iω2t

)m1 = 1, κ = m1

m2
,

wherem1,m2 ∈ Z. This will give a polynomial first integral
of degree |m1| + |m2| in momenta for κ ∈ (0, 1) ∩ Q.

For example for κ = 1/2, ε = 1
108 (41±5

√
145) this sys-

temhas an additional first integral of degree three inmomenta

G =162(−25 + √
145)p3x + 27(5 − 13

√
145)p2x y

+ 5
(
972p2y + 9(139 + 13

√
145)pyx

+ (752 + 68
√
145)x2

)
y

− 9px
(
15(py − x)(36py + (19 + √

145)x)

+ (155 + 11
√
145)y2

)
− 6(65 + 2

√
145)y3,

and for κ = 1/3, ε = 68
209 ± 60

209

√
5 of degree four in

momenta
G =10658164p4y + 2402455(83∓29

√
5)p3y x

− 43681(6733∓3011
√
5)p3x y

− 209pyx(209(−6733 ± 3011
√
5)p2x

+ 88(−7506 ± 2297
√
5)x2

+ 10032(−131 ± 59
√
5)px y

+ 8(25532∓11047
√
5)y2)

+ 8(4598(−343 ± 283
√
5)x4

+ y3(209(−32444 ± 14513
√
5)px

+ 4(821453∓367275
√
5)y)

+ 209x2y(11(−10250 ± 4561
√
5)px

+ 6(4157∓1889
√
5)y))

+ 209p2y(5016(−201 ± 118
√
5)x2

+ y(209(−3589 ± 1595
√
5)px

+ 1464(−47 ± 20
√
5)y)).
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Fig. 12 Function κ(ε)

(a) (b)
Fig. 13 Inverse function ε(κ)

(a) (b)

5.2 The synodical Kepler case

When ε = 0, σ �= 0 in (1), the Hamiltonian

H = 1

2
(p2x + p2y) + ypx − xpy + σ

|r| (32)

describes a Keplerianmotion in a rotating frame. The system
admits an additional first integral, the angular momentum
px y−pyx , andwewonder if there could exist an independent
third first integral. Denoting δ = sign(σ ), a hyperbolic orbit
will satisfy in polar coordinates

r(t) = p

e cos(θ(t) + t) − δ
, p = a(e2 − 1),

with eccentricity e �= 0 and semi-major axis a > 0. Let us
introduce the eccentric anomaly angle E(t)

tanh

(
E(t)

2

)
=

√
δe + 1

δe − 1
tan

(
θ(t)

2

)
.

The eccentric anomaly satisfies Kepler’s equation

τ t = e sinh E(t) + δE(t), (33)

for some τ depending on the orbit chosen andvalue of param-
eter σ .

Let us now assume that a third rational first integral exists.
Then, the orbit is algebraic, and so there exists an algebraic
relation between r(t) and eiθ(t), and thus

f1
(
ei θ(t)

)
(e cos(θ(t) + t) − δ) = p

for an algebraic function f1. Expanding the cosine and
expressing it in function of ei θ(t), eit , we then have an
algebraic relation eit = f2

(
ei θ(t)

)
. Now using the equa-

tion for the eccentric anomaly E(t), we have that ei θ(t)

can be expressed algebraically in terms of eE(t), and thus
eit = f3

(
eE(t)

)
, for an algebraic function f3. Now taking

the exponential of the Kepler equation (33), we have(
e−i t )α = eδE(t)ee sinh E(t),

where α = −iτ . Denoting z(t) = exp(E(t)), this relation
writes

f3(z) = z
δ
α e

e
2α (z−z−1),

on a certain non-empty open set of z ∈ C. As e �= 0, the
right-hand side is a transcendental function of z, and the
left-hand side should be an algebraic function. Thus, a third
rational first integral cannot exist.
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