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Abstract A unique feature of flexible cantilevered
beams, which is used in a range of applications from
energy harvesting to bio-inspired actuation, is their
capability to undergomotions of extremely large ampli-
tudes. The well-known third-order nonlinear cantilever
model is not capable of capturing such a behaviour,
hence requiring the application of geometrically exact
models. This study, for the first time, presents a thor-
oughexperimental investigationonnonlinear dynamics
of a cantilever under base excitation in order to capture
extremely large oscillations to validate a geometrically
exact model based on the centreline rotation. To this
end, a state-of-the-art in vacuo base excitation experi-
mental set-up is utilised to excite the cantilever in the
primary resonance region anddrive it to extremely large
amplitudes, and a high-speed camera is used to capture
the motion. A robust image processing code is devel-
oped to extract the deformed state of the cantilever at
each frame aswell as the tip displacements and rotation.
For the theoretical part, a geometrically exact model is
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developed based on the Euler–Bernoulli beam theory
and inextensibility condition,while usingKelvin–Voigt
material damping. To ensure accurate predictions, the
equation of motion is derived for the centreline rotation
and all terms are kept geometrically exact throughout
the derivation and discretisation procedures. Thorough
comparisons are conducted between experimental and
theoretical results in the form of frequency response
diagrams, time histories, motion snapshots, andmotion
videos. It is shown that the predictions of the geomet-
rically exact model are in excellent agreement with
the experimental results at both relatively large and
extremely large oscillation amplitudes.

Keywords Experimental validation · Nonlinear
dynamics · Geometrically exact model · Extreme
cantilever motions

1 Introduction

Cantilevered structural elements are present in a wide
range of mechanical systems and civil structures [6,9,
17,19,33,56]. They can be found in numerous engi-
neering applications including, but not limited to,
vibration energy harvesters, micro-gyroscopes, elec-
tromechanical systems, bio-inspired propulsion, and
piezoelectric sensors and actuators [1,7,24,31,40,43,
55,59]. The key feature that differentiates cantilevers
from other structures/elements that are supported from
more than one side is their capability of undergo-
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ing large-amplitude deflections/oscillations. Such a
behaviour makes cantilevers very suitable for appli-
cations where large-amplitude oscillations are desir-
able such as in-flow energy harvesters using inverted
flag configurations [22,28,37]. Analysing the large-
amplitude behaviour of cantilevers, however, is a dif-
ficult task, not only due to the presence of different
sources of nonlinearity, but also the fact that a cantilever
oscillation amplitude could grow extremely large, ren-
dering the commonly used third-order nonlinear model
insufficient and requiring more accurate models capa-
ble of predicting such behaviour.

Many investigators have examined the dynamical
characteristics of cantilevers over the last few decades.
An early investigation on this topic was carried out by
Crespo da Silva and Glynn [45,46], who derived the
analytical equations of motion of a cantilever undergo-
ing in-plane and out-of-plane motions using inexten-
sibility assumption and retaining nonlinearities up to
third order; they examined the dynamics of the can-
tilever via use of the method of multiple scales. Fur-
ther investigations were conducted by Nayfeh and Pai
[34,38], who studied the planar lateral vibration of can-
tilevers under base excitations; they derived the third-
order nonlinear equation of motion of the cantilever
while assuming an inextensible centreline and exam-
ined the dynamical response of the system using the
method of multiple scales. Nayfeh and co-investigators
[3] continued the investigation by examining the non-
linear nonplanar dynamics of cantilevers under para-
metric excitation. Further investigations were con-
ducted by Hsieh et al. [18], who employed an invari-
ant manifold method to obtain the nonlinear vibra-
tion modes for examining relatively large-amplitude
response of a cantilever, Feng and Leal [14], who
examined the symmetries in inextensible cantilevered
beamequations, andOhandNayfeh [36],who analysed
the combination resonances in cantilevered composite
plates.

Dwivedy and Kar [11] continued the investigations
by examining the nonlinear dynamics of a slender can-
tilevered beam carrying a tip mass under base exci-
tation in the presence of internal resonances. Zhang
et al. [58] examined the chaotic dynamics and bifur-
cations for the nonlinear vibrations of a cantilever
under harmonic axial and transverse excitations; they
utilised the method of multiple scales together with the
Galerkin technique to study the response of the sys-
tem. Yoo et al. [57] conducted experiments to exam-

ine the relatively large-amplitude oscillations of a can-
tilever to demonstrate the validity of the absolute nodal
coordinate formulation method in analysing the non-
linear dynamics of cantilevers. Mahmoodi et al. [27]
conducted a theoretical-experimental investigation on
relatively large-amplitude nonlinear vibration of can-
tilever viscoelastic beams; they employed the method
of multiple scales to obtain the frequency response of
the system and verified the theoretical findings with
experimental observations. McHugh and Dowell [29]
developed a computational model to examine the rela-
tively large-amplitude nonlinear motion of an inexten-
sible cantilevered and free-free beam; they utilised the
Rayleigh–Ritz method together with Lagrange’s equa-
tions to derive the discretised equations of motion of
the system and employed a fourth-order Runge–Kutta
time integration solver to analyse the system response.
Thomas et al. [49] studied the nonlinear behaviour of
a rotating cantilever beam using a third-order nonlin-
ear model; they utilised a continuation method to con-
struct the frequency response curves and examined the
softening/hardening nonlinear behaviour of the can-
tilever. Furthermore, Touzé and Thomas [51] examined
the large-amplitude oscillations of a cantilevered beam
utilising a third-order nonlinear model; they utilised
the method of nonlinear normal modes [50,52,53]
to obtain the reduced-order model and examined the
dynamics using a time integration method. The inves-
tigations were continued by Colin et al. [8], who con-
ducted an experimental/numerical study of structures
undergoing very-large-amplitude oscillations and pro-
posed a quadratic air damping model. In a recent study,
Shen et al. [44] presented a thorough comparison of
model-order reduction techniques for geometrically
nonlinear structures using different finite element pro-
cedures.

Truncated cantilever beammodels havebeenutilised
in many other studies for examining the behaviour of
vibration energy harvesters, piezoelectrically actuated
systems, and sensors [15,20,23,25,26,39,54]. Further
investigation was conducted by Meesala and Hajj [30],
who examined the response sensitivity of a parametri-
cally excited cantilevered beam with a proof mass to
small variations in stiffness and mass. Farokhi et al.
[12,13] continued the investigations by developing a
dynamical version of the rotation-based geometrically
exact nonlinear cantilever model, which was originally
used for static buckling of an elastic continuum [4],
capable of examiningvibrations of extremeamplitudes.
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The rotation-based inextensible exact cantilever model
has also been used in the context of fluid–structure
interaction of inverted flags by Tavallaeinejad et al.
[47,48].

It should be noted that there have been many studies
on the so-called geometrically exact beammodel; how-
ever, the proposed model in this study is different in the
way it sets up the equation of motion since it uses the
beam rotation as the main motion variable and utilises
inextensibility to relate beamdisplacements to rotation.
The reader is referred to the book by Géradin and Car-
dona [16] and the studies byMeier et al. [32] and Zupan
et al. [60] for general overviews of geometrically exact
models and details of their finite-element discretisa-
tions. Furthermore, Lang et al. [21] proposed a vis-
coelastic rod model based on Cosserat’s geometrically
exact theory of rods [2], which is capable of analysing
extension, shearing, bending, and torsion. In an inter-
esting study, Bergou et al. [5] proposed the method of
discrete elastic rods, which was initially developed for
use in computer graphics for simulating hair motion;
however, their approach was different for both kine-
matics and dynamics treatment, and they validated their
proposed discrete rod model via comparison to experi-
ments. Romero et al. [41] continued the investigations
and proposed a new framework to assess the physical
validity of computer graphics numerical simulators for
rods, plates, and frictional contact. It should be noted
that all these valuable studies utilise time integrations
to solve the spatially discretised equations of motions.

To the knowledge of the authors, there has been
no attempt to date to experimentally investigate the
extremely large oscillations of a base-excited cantilever
and compare that against theoretical predictions. The
present study, for the first time, reports detailed exper-
imental results on extreme vibrations of a cantilever
and utilises those results to validate a geometrically
exactmodel based on the centreline rotation. It is shown
that the geometrically exact model predictions are very
close to the experimental observations even for the case
when the cantilever undergoes oscillations of extremely
large amplitude. Additionally, a detailed comparison
is conducted between the predictions of the geometri-
cally exact model and those of the third-order nonlinear
model to show the range of amplitudes that the third-
order model can be used reliably.

Fig. 1 A vertically cantilevered beam under transverse base
excitation

2 Geometrically exact model development

The geometrically exact model for a homogeneous
cantilevered beam is developed in this section util-
ising the Euler–Bernoulli beam theory together with
Kelvin–Voigt material damping; furthermore, the can-
tilever centreline is assumed to be inextensible. To this
end, a cantilevered beam is considered, which is of
length L , cross-sectional area A, second moment of
area I , Young’s modulus E , mass per unit length m,
and material damping coefficient η. The (x; y) coor-
dinate system is shown in Fig. 1, which is associated
with the undeformed geometry of the cantilever. s is
the curvilinear coordinate denoting the distance of an
element on the beam from the clamped end. The can-
tilevered beam is in a vertical configuration, with the
clamped end being at the bottom (as shown in Fig. 1),
and the base is under harmonic excitation in the form
of z0 sin(ωz t). The gravity is included in the model,
and the acceleration due to gravity (i.e. g) is acting
downward as shown in Fig. 1.
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In what follows, the Euler–Bernoulli beam theory
is utilised to derive the exact equation governing the
rotational motion of the beam centreline while taking
advantage of the centreline inextensibility assumption.
The key advantage of the centreline rotation equation
of motion over the transverse displacement equation of
motion is that the former allows examining extremely
large oscillations, while the latter loses accuracy at
large oscillation magnitudes (as examined in detail in
Sect. 5). It should be noted that the derivation proce-
dure in this study follows the works of Nayfeh and
co-investigators (e.g. Ref. [35]) in relating the strain
to displacements and rotation; hence, an engineering
strain measure is utilised together with a stress mea-
sure that is a consequence of the constitutive laws (for
more details, refer to Ref. [49]).

The general expressions for the relationship between
the centreline rotation and displacements are given by
[35]:

sinψ(s, t) = ∂sw(s, t)

1 + e
,

cosψ(s, t) = 1 + ∂su(s, t)

1 + e
,

(1)

where e represents the centreline strain and ∂s ≡ ∂/∂s.
It should be noted that even at very-large-motion ampli-
tudes, the centreline strain remains small which allows
the application of the centreline inextensibility assump-
tion, i.e. e = 0, which relates both longitudinal and
transverse displacements (denoted by u and w, respec-
tively) to the centreline slope ψ . Hence, the can-
tilevered beam displacements, with respect to the base,
can be obtained in terms of the centreline rotation as

u(s, t) =
∫ s

0

(
cosψ(ξ, t) − 1

)
dξ,

w(s, t) =
∫ s

0
sinψ(ξ, t) dξ.

(2)

Taking into account the rotational inertia and the
harmonic motion of the base, the kinetic energy can be
formulated as:

K(t) = 1

2
J

∫ L

0

(
∂tψ(s, t)

)2
ds

+1

2
m

∫ L

0

{[
z0ωz cos(ωz t)

+
∫ s

0

(
∂tψ(ξ, t) cosψ(ξ, t)

)
dξ

]2

+
[ ∫ s

0

(
∂tψ(ξ, t) sinψ(ξ, t)

)
dξ

]2}
ds, (3)

in which J = ρ I with ρ being the mass density.
Asmentioned before, in this study, theKelvin–Voigt

model is used to account for the damping in the system.
Noting that the axial strain of the cantilevered beam
centreline can be formulated in terms of the centre-
line rotation as εxx = −z∂sψ(s, t), the stress–strain
relationship based on the Kelvin–Voigt model can be
formulated as:

σxx (s, t) = −Ez∂sψ(s, t) − ηz∂t
(
∂sψ(s, t)

)
. (4)

Denoting the variational operator by δ, the expres-
sions for the variation of the potential strain energy of
the cantilevered beam can be formulated as:

δ�(t) =
∫ L

0
E I

[
∂sψ(s, t)δ

(
∂sψ(s, t)

)]
ds. (5)

The variation of the gravitational potential energy is
given by:

δVG(t) =
∫ L

0
mg

∫ s

0

(
− sinψδψ

)
dξ ds, (6)

which, using an integral identity equation [42], can be
further simplified to

δVG(t) = −
∫ L

0
mg

(
L − s

)
sinψδψ ds. (7)

Finally, the virtual work of the viscous stress com-
ponent can be expressed as:

δWD(t) = −
∫ L

0
ηI

[
∂t

(
∂sψ(s, t)

)
δ
(
∂sψ(s, t)

)]
ds.

(8)

Inserting Eqs. (3), (5), (7), and (8) into the extended
Hamilton’s principle

∫ t2

t1

(
δK(t) − δ�(t) − δVG(t) + δWD(t)

)
dt = 0,

(9)
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one can obtain the geometrically exact equation gov-
erning the rotational motion of the centreline of the
cantilevered beam as

J∂t tψ + m sinψ

∫ L

s

∫ s∗

0

(
∂t tψ(ξ, t) sinψ(ξ, t)

+
(
∂tψ(ξ, t)

)2
cosψ(ξ, t)

)
dξ ds∗

+ m cosψ

∫ L

s

[
− z0ω

2
z sin(ωz t)

+
∫ s∗

0

(
∂t tψ(ξ, t) cosψ(ξ, t)

−
(
∂tψ(ξ, t)

)2
sinψ(ξ, t)

)
dξ

]
ds∗

− E I∂ssψ − ηI∂tssψ − mg(L − s) sinψ = 0.

(10)

Next, the following dimensionless quantities are
defined:

ς = s

L
, τ = t

T
, γ = mgL3

E I
, ηd = η

ET
,

� = ωzT, χ = J

mL2 , az = z0ω2
z T

2

L
,

(11)

where T = L2 (m/(E I ))1/2. Inserting these quanti-
ties into Eq. (10) yields the following dimensionless
geometrically exact equation governing the rotational
motion of the cantilevered beam

χ∂ττψ + sinψ

∫ 1

ς

∫ ς∗

0

(
∂ττψ(ξ, τ ) sinψ(ξ, τ )

+
(
∂τψ(ξ, τ )

)2
cosψ(ξ, τ )

)
dξ dς∗

+ cosψ

∫ 1

ς

[
− az sin(�τ)

+
∫ ς∗

0

(
∂ττψ(ξ, τ ) cosψ(ξ, τ )

−
(
∂τψ(ξ, τ )

)2
sinψ(ξ, τ )

)
dξ

]
dς∗

− ∂ςςψ − ηd∂τςςψ − γ (1 − ς) sinψ = 0.

(12)

Tonumerically solve the geometrically exact nonlin-
ear integro-partial differential equation governing the

cantilever centreline rotational motion (i.e. Eq. (12)),
it needs to be first discretised into a set of nonlinear
ordinary differential equations (ODEs). To this end, a
suitable basis function is utilised to define the slope ψ

as the following series expansion:

ψ(ς, τ) =
N∑

k=1

�k(ς)qk(τ ), (13)

inwhich qk(τ ) represents the unknown time-dependent
generalised coordinate for the centreline slope and
�k(ς) denotes its corresponding basis function defined
as ∂ς�k(ς)/βk , with �k(ς) being the kth eigenfunc-
tion for the transverse oscillation of a linear can-
tilevered beam and βk being the kth root of its tran-
scendental equation.

Substituting Eq. (13) into Eq. (12) and applying the
Galerkin technique lead to the following set of N non-
linear second-order ODEs:

N∑
k=1

χ∂ττqk(τ )

(∫ 1

0
� j (ς)�k(ς) dς

)

N∑
k=1

−
(
qk(τ ) + ηd∂τqk(τ )

)

×
(∫ 1

0
� j (ς)∂ςς�k(ς) dς

)

− γ

∫ 1

0
� j (ς)

(
1 − ς

)
sin

(
N∑

k=1

�k(ς)qk(τ )

)
dς

+
∫ 1

0
� j (ς)

{
sin

(
N∑

k=1

�k(ς)qk(τ )

) ∫ 1

ς

∫ ς∗

0[(
N∑

k=1

�k(ξ)∂ττqk(τ )

)
sin

(
N∑

k=1

�k(ξ)qk(τ )

)

+
(

N∑
k=1

�k(ξ)∂τqk(τ )

)2

cos

(
N∑

k=1

�k(ξ)qk(τ )

)]
dξ dς∗

}
dς

+
∫ 1

0
� j (ς)

{
cos

(
N∑

k=1

�k(ς)qk(τ )

)

∫ 1

ς

(
−az sin(�τ) +

∫ ς∗

0
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[(
N∑

k=1

�k(ξ)∂ττqk(τ )

)
cos

(
N∑

k=1

�k(ξ)qk(τ )

)

−
(

N∑
k=1

�k(ξ)∂τqk(τ )

)2

sin

(
N∑

k=1

�k(ξ)qk(τ )

)]
dξ

)
dς∗

}
dς = 0,

j = 1, 2, ..., N . (14)

In this study, N is set to 6, resulting in a 6-degree-
of-freedom (dof) discretisedmodel,which ensures con-
verged results (refer to Sect. 7 for a convergence analy-
sis). The 6-dof second-order discretised model is trans-
formed into a set of first-order ODEs via a change of
variables; a pseudo-arclength continuation technique
[10] is then utilised to examine the nonlinear primary
resonance response of the system.

One of the main challenges associated with dis-
cretising Eq. (12) is that, being a geometrically exact
model, the spatial integrations, unlike the case of a
truncated nonlinear model, cannot be carried out in
a closed form and need to be conducted numerically
while ensuring that sufficient terms are retained for
convergence. This process results in a very large set of
discretised equations, but ensures accurate predictions
even at extremely large amplitudes of oscillation. Fur-
thermore, the key advantage of obtaining the equation
ofmotion for the centreline rotation is that it allows cap-
turing extremely large oscillations that are not possible
to predict using truncated nonlinear models, as shown
in Sect. 5. It should be noted that once the discretised
set is solved numerically and the rotational generalised
coordinates are obtained, the centreline displacements
are calculated using Eq. (1).

3 In vacuo base excitation experimental set-up

Figure 2 shows the experimental set-up used in this
study to excite the cantilever in the primary resonance
region and to capture oscillations of extremely large
amplitude. To achieve very-large-oscillation ampli-
tudes without causing plastic deformation, a thin 1095
blue-tempered spring steel cantilever, with material
properties and geometric parameters listed in Table 1,
was selected. Additionally, the cantilever was placed
in a vacuum chamber to minimise the air damping and

enable very-large-oscillation amplitudes. More specif-
ically, the spring steel cantilever was clamped upright
inside a vacuum chamber mounted on the armature of
an APS-113 long stroke shaker as shown in Fig. 2.
The shaker was driven by an APS-125 amplifier and
controlled by a SPEKTRA VCS-201 for the purpose
of achieving harmonic base excitation at specified fre-
quencies and acceleration amplitudes with feedback
control (for constant base acceleration sweep). The
base acceleration was measured by an accelerometer
mounted on the clamp, and the signal was fed back to a
VCS-201 controller. The vacuumchamberwas realised
by using a JB vacuum pump. The pressure was contin-
uously measured by a pressure sensor at the base of
the chamber and kept around 9% atmospheric pressure
during the experiments.

APolytecOFV-505 laserDoppler vibrometer (LDV)
measured the velocity close to the middle point along
the beam (39 mm from the clamped end). The LDV
measurement was mainly used for obtaining the natu-
ral frequency of the cantilever. It should be noted that
due to large oscillations of the cantilever, LDV cannot
be used for high-fidelity measurements for model com-
parison. Instead, a high-speed camera system (Phan-
tom FASTCAM Mini AX200 900K) was used to cap-
ture the side view of vibration response of the entire
cantilever at various frequencies and different accel-
eration levels. Then, a robust image processing code
was developed to analyse each frame and to extract the
deformed beam shape, from which the tip longitudinal
and transverse displacements as well as the tip rotation
were obtained (see Fig. 3). Using this method, oscil-
lations of extremely large amplitude can be analysed
accurately, as explained in more detail in the following
section.

4 Comparison between theoretical and
experimental results

In this section, extensive comparisons are made
between the experimental results and the theoretical
predictions based on the geometrically exact model. It
should be noted that both theoretical and experimental
results are presented in the nondimensional form.

Two sets of experiments are conducted at base exci-
tation magnitudes of 0.2g and 0.5g RMS (root mean
square), with g denoting the gravitational accelera-
tion. For each base acceleration level, the oscillation of
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Fig. 2 In vacuo base
excitation experimental
set-up used in this study to
capture large-amplitude
cantilever oscillations

Table 1 Material properties and geometric parameters of the
1095 blue-tempered spring steel cantilever

Young’s modulus E 200 GPa

Density ρ 7800 kg/m3

Thickness h 0.0762 mm

Width b 9 mm

Length L 81.5 mm

the cantilever is recorded at 34 frequencies in the pri-
mary resonance region, in the range of 8–11 Hz. The
videos are captured at 1600 frames per second; each
video is then analysed frame by frame to extract the
deformed shape and the tip displacements and rotation
(as shown in Fig. 3), allowing for construction of the
frequency response of the cantilever. A robust image
processing code is developed in MATLAB to extract
the deformed shape of the cantilever and then its tip dis-
placements. More specifically, for the image process-
ing, an edge detection algorithm is used in MATLAB.1

After extracting the edges of the beam in a deformed
configuration, different post-processings are applied to
remove the clamped base, remove the motion of the
base, and convert the edge into a line, representing the
deformed configuration. The accuracy of the method is
examined in more detail in Fig. 9.

Figure 4 shows the comparison between the exper-
imental and theoretical frequency responses of the
cantilever for transverse and longitudinal motions at
0.2g RMS acceleration level, which is equivalent to
az = 0.1211. wd and ud represent the dimensionless
transverse and longitudinal displacements, which are

1 https://uk.mathworks.com/help/images/ref/edge.html

related to their dimensional counterparts (i.e. w and
u, respectively) via wd = w/L and ud = u/L . The
rest of the system parameters are set to γ = 0.4280
and χ = 7.28e−8, based on the material properties
and geometric parameters given in Table 1. Finally, the
nondimensional material damping ηd is set to 0.0037,
which results in a theoretical peak amplitude almost
the same as the experimental one. It should be noted
that the damping parameter is calibrated once based on
the experimental frequency response at 0.2g RMS and
then is kept intact for the case of 0.5g RMS to examine
how well the Kelvin–Voigt damping model works for
the case with increased oscillation amplitudes.

The comparison in Fig. 4 shows that the geometri-
cally exactmodel does a very good job of predicting the
primary resonance response of the cantilever at 0.2g
RMS base acceleration level. In particular, the exact
model predicts almost the same transverse and lon-
gitudinal displacement amplitudes at oscillations near
the peak, but deviates slightly from the experiment at
other frequencies. It is seen that the cantilever displays
a weak nonlinear hardening behaviour at this excitation
level.

Figures 5 and 6 are constructed to provide a more
detailed comparison between the theoretical and exper-
imental predictions at the peak oscillation amplitude.
Figure 5 shows the motion of the cantilever in one
period of oscillation obtained via the exactmodel (solid
lines) and experiment (circles). The figure shows excel-
lent agreement between the experimental observations
and the geometrically exact model predictions. Figure
6 shows the time histories of the tip displacements and
tip rotation in one period of oscillation, for the system
of Fig. 5. To extract the tip rotation from the experimen-
tal data, the coordinates of the last 5% of the length of
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Fig. 3 Snapshot of the
cantilever oscillation
showing the cantilever
deformed state as well as
the extracted deformed
shape via image processing
(red circles). (Color figure
online)

(a) (b)

Fig. 4 Frequency–response diagrams of the cantilevered beam
at 0.2g RMS base acceleration level (i.e. az = 0.1211). Peak a
transverse and b longitudinal motion amplitudes. Circles: exper-

imental results. Lines: geometrically exact model predictions
([ ] Stable periodic solution, [ ] unstable periodic solution)

the cantilever (near the tip) were extracted, a straight
line was fitted to those points, and the slope of that
line was calculated, resulting in the tip rotation curve.
In all sub-figures, tn denotes the time normalised with
respect to the period of oscillation. The figure shows
an excellent agreement between experimental and the-

oretical results for tip transverse and longitudinal dis-
placements as well as tip rotation.

Next, in order to examine oscillations of extremely
large amplitudes, the base acceleration is increased
to 0.5g RMS. Similar to the previous case, the can-
tilevered beam motion is recorded at 34 frequencies
in the range of 8–11 Hz, and the detailed dynamical
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Fig. 5 Motion of the cantilever of Fig. 4 at peak amplitude in
oneperiodof oscillation.Circles: experimental results. Solid line:
geometrically exact model predictions. For a video comparison,
refer to the electronic supplementary materials in the online ver-
sion of the article

response of the cantilever is extracted via comprehen-
sive image processing of each video. The theoretical
and experimental frequency responses of the cantilever
at base acceleration of 0.5g RMS (i.e. az = 0.3027) are
illustrated in Fig. 7, showing the transverse and longitu-
dinal displacements in sub-figures (a) and (b), respec-
tively. The material damping coefficient ηd is kept at
0.0037 (as in the previous excitation level) to exam-
ine whether the Kelvin–Voigt damping works well at
different base acceleration magnitudes without read-
justing and recalibration. As shown in Fig. 7, the geo-
metrically exact model works very well even at this
extreme oscillation amplitude and predicts amplitudes
very close to the experimental results. As shown in the
figure, the hardening behaviour is more pronounced
for this case. Additionally, it is worth noting that at
extremely large oscillations like the case of Fig. 7, the
transverse displacement does not increase much with
increasing base excitation magnitude. This is due to
the fact that the cantilever bends backwards (flapping
motion) at this excitation level, and by increasing the
excitation magnitude, only the tip rotation and longitu-
dinal displacement increase, while themaximum trans-
verse oscillation amplitude does not changemuch. This
is explained further later in Fig. 10. It should be men-
tioned that for the vertical configuration studied here,
taking into account the effect of gravity slightly reduces
the natural frequency and slightly increases the hard-
ening behaviour.

To conduct amore detailed comparison between the-
oretical and experimental results, the oscillation of the

cantilever at its peak resonance amplitude in one period
of oscillation is constructed in Fig. 8. It is observed
that the geometrically exact model does an excellent
job at capturing the extreme vibrations of the can-
tilever, as confirmed by the experimental observation.
The figure shows that the exact model slightly overes-
timates the tip rotation at the two ends, but it should
be mentioned that the damping coefficient was kept
unchanged,which shows the capabilities of theKelvin–
Voigt damping model in adjusting its effect at large
oscillation magnitudes when calibrated once for rela-
tively small base excitation magnitudes. It should be
noted that although the Kelvin–Voigt damping model
appears as a linear term in the centreline rotation equa-
tion of motion, it has a nonlinear relationship with
transverse and longitudinal displacements. Hence, it
increases nonlinearly as the transverse and longitudi-
nal displacements are increased, and it works well with
the same coefficient at various excitation magnitudes.
Of course, the damping coefficient can be adjusted
slightly here so that the theoretical predictions better
match the experimental ones. However, this compari-
son shows that the proposed model is very robust and
once the damping coefficient is calibrated at one exci-
tation level, it does not need to be changed at other
excitation magnitudes (as a result of eliminating other
damping mechanisms, such as fluid damping, in the
carefully conducted in vacuo experiments).

To better show the robustness of the developed
image processing code and the capability of the geo-
metrically exactmodel in capturing the deformed states
of the cantilever, Fig. 9 is constructed, showing the
experimental and theoretical snapshots of the cantilever
oscillation in one period (corresponding to the case of
Fig. 8). More specifically, the left column of Fig. 9
shows snapshots of the experimental results and the
extracted deformed state via image processing (red cir-
cles). As can be seen, the developed image process-
ing code is very robust and capable of extracting the
deformed shape of the cantilever from the experimental
results accurately. The right column of Fig. 9 shows the
comparison between the extracted results from exper-
iments (red circles) and the results obtained via the
geometrically exact model (solid line). It is observed
that the geometrically exact model captures the exper-
imental deformed shapes of the cantilever very well.

The time histories of the tip displacements and rota-
tion at peak resonance amplitude (corresponding to the
case of Fig. 8) are shown in Fig. 10 in one period of
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(a)

(b) (c)

Fig. 6 Time histories of the cantilever tip displacements and
rotation for the system of Fig. 5 in one period of oscillation.
a Tip transverse displacement, b tip longitudinal displacement,

and c tip rotation. Circles: experimental results. Solid line: geo-
metrically exact model predictions

oscillation. One interesting aspect of the extreme oscil-
lation shown in Fig. 8 is that the oscillation grows so
large that the cantilever tip bends backwards.As a result
of this, the occurrence of the maximum transverse dis-
placement does not coincide with that of the maximum
tip rotation. This is shown clearly in Fig. 10; sub-figure
(a) shows that the transverse displacement magnitude
increases until reaching amaximum and then decreases
until reaching a local minimum. This local minimum
corresponds to the maximum tip rotation magnitude,

i.e. the two extreme ends in Fig. 8. This behaviour
appears only when the oscillation amplitude is large
enough so that the cantilever tip bends backwards. A
comparison between the theoretical and experimental
results shows a very good agreement between the pre-
dictions of the exact model and the experimental obser-
vations. It is seen that the exact model slightly over-
estimates the tip rotation, which translates to a slight
overestimation of the longitudinal displacement and a
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(a) (b)

Fig. 7 Frequency–response diagrams of the cantilevered beam
at 0.5g RMS acceleration level (i.e. az = 0.3027). Peak a trans-
verse and b longitudinal motion amplitudes. Circles: experimen-

tal results. Lines: geometrically exact model predictions ([ ]
Stable periodic solution, [ ] unstable periodic solution)

slightly sharper reduction in transverse motion ampli-
tude at peak tip rotation.

Finally, for a visual comparison between theoreti-
cal and experimental results, two videos are provided
as supplementary materials, showing the experimen-
tal and theoretical oscillations of the cantilever in one

Fig. 8 Motion of the cantilever of Fig. 7 at peak amplitude in
oneperiodof oscillation.Circles: experimental results. Solid line:
geometrically exact model predictions. For a video comparison,
refer to the electronic supplementary materials in the online ver-
sion of the article

period of oscillation at peak amplitude for the two base
acceleration cases examined in this study. (The reader
is referred to the online version of the article for access
to the multimedia contents.) The video comparisons
clearly show the high accuracy of the geometrically
exact model in reproducing the experimental results.
In conclusion, the thorough comparisons conducted
in this section fully verifies the accuracy and reliabil-
ity of the centreline-rotation-based geometrically exact
model of the cantilever for analysing oscillations of any
magnitude.

5 Significance of the geometrically exact model

In order to further highlight the significance of the
geometrically exact model, the primary resonance
responses of a cantilever under various base excita-
tion magnitudes are obtained via the exact model and
compared to those obtained via the well-known third-
order nonlinear inextensible cantilever model [35,45].
In particular, the dimensionless equation of motion for
the third-order nonlinear model can be obtained as:
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(a) (b)

Fig. 9 Experimental and theoretical snapshots of the oscillation
of the cantilever of Fig. 7 at peak amplitude. The sub-figures in
left column a show snapshots of the experimental results and
the extracted result via the image processing (red circles). The

sub-figures in the right column b show a comparison between
the extracted experimental results (red circles) and the results
obtained via the geometrically exact model (solid line)
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Fig. 9 continued
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(15)

in which a Kelvin–Voigt damping is utilised (to be con-
sistent with the proposed exact model), and both geo-
metric and inertial nonlinearities are taken into account.

Equation (15) is discretised utilising the Galerkin tech-
nique, following a similar procedure as in Sect. 2, i.e. by
defining wd = ∑N

k=1 �k(ς)pk(τ ) with �k(ς) being
the kth eigenfunction for the transverse motion of a
cantilevered beam and pk being the kth generalised
coordinate. Similar to the case of the geometrically
exact model, sixmodes are retained in theGalerkin dis-
cretisation resulting in a 6-dof system, which ensures
converged results.

The comparison between the primary resonance
response predictions of the two models is shown in
Fig. 11. To better highlight the differences between
the two models, the frequency responses are obtained
for four dimensionless base acceleration amplitudes,
i.e. az = 0.025, 0.10, 0.20, and 0.40; the rest of the
system parameters are set to those of the system of
Fig. 4. Sub-figure (a) shows that at relatively small
base accelerationmagnitude of 0.025, bothmodels pre-
dict the same resonance response and amplitudes. By
increasing the dimensionless base acceleration to 0.10
(as shown in sub-figure (b)), slight differences appear
between the result obtained by the third-order model
and that obtained via the exact model. More specifi-
cally, the third-order model predicts larger oscillation
amplitudes and is unable to capture the nonlinear hard-
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(a)

(b) (c)

Fig. 10 Time histories of the cantilever tip displacements and
rotation for the system of Fig. 8 in one period of oscillation. aTip
transverse displacement, b tip longitudinal displacement, and c

tip rotation. Circles: experimental results. Solid line: geometri-
cally exact model predictions

ening behaviour of the cantilever (which does exist,
as verified via experimental results). The difference
between the two models is exacerbated at larger base
acceleration magnitudes, as shown in Figs. 11(c) and
(d). It is seen in Fig. 11(c) (corresponding to az = 0.20)
that the third-order model predicts transverse oscil-
lation amplitudes larger than 1.0 (i.e. larger than the
length of the cantilever from a dimensional perspec-
tive) which is impossible. The peak amplitude pre-
dicted by the geometrically exact model, on the other

hand, increases only slightly as the base acceleration is
increased, since at relatively large base accelerations,
the cantilever bends backwards and a further increase
in the base acceleration has almost no effect on the peak
transverse motion amplitude. This comparison further
highlights the limitations of the third-order nonlinear
model and the significance of the geometrically exact
model in capturing large-amplitude oscillations.

123



Experimentally validated geometrically exact model for extreme nonlinear 471

(a) (b)

(c) (d)

Fig. 11 Comparison between the geometrically exact cantilever
model and the truncated third-order nonlinear model. Maximum
transverse motion amplitude at a az = 0.025, b az = 0.10, c

az = 0.20, and d az = 0.40. Dotted line: third-order nonlinear
model; solid and dashed lines: geometrically exact model

6 Concluding remarks

In this study, the nonlinear dynamics of a cantilever
undergoing extrememotionswas examined experimen-
tally and theoretically. The cantilever was base excited
in the primary resonance region using an in vacuo
experimental set-up to minimise the air damping and

to drive the cantilever to motions of extremely large
amplitudes. A high-speed camera was used to capture
the motion, from which snapshots of deformed shapes
and displacements were extracted using an image pro-
cessing code. A geometrically exact model based on
the centreline rotation was developed for the theo-
retical part. The exact model was discretised using

123



472 H. Farokhi et al.

the Galerkin method while retaining six modes, and
the resultant equations were solved through use of a
continuation technique. Extensive comparisons were
then conducted between experimental and theoretical
results.

Two sets of experiments were conducted at base
acceleration magnitudes of 0.2g and 0.5g (RMS).
The comparison between theoretical and experimental
results at 0.2g base acceleration level showed that the
geometrically exact model predicts oscillation ampli-
tudes, which are very close to the experimental data.
Comparing the experimental and theoretical motion of
the cantilever in one period of oscillation showed an
excellent agreement between the exact model predic-
tions and the experimental results.

For the second sets of comparisons, the base accel-
eration magnitude was increased to 0.5g to capture
extremely large oscillation amplitudes. For this case,
the material damping coefficient was kept the same as
the previous case to examine how well the Kelvin–
Voigt damping works when the base acceleration is
increased. The comparison in this case also showed
a very good agreement between experimental observa-
tions and theoretical predictions. It was shown that the
geometrically exact model is fully capable of captur-
ing extreme motions even when the oscillation grows
so large that the tip of the cantilever bends backwards. It
was shown that even though the same damping coeffi-
cient was used for both cases, the exact model was able
to capture peak amplitudes very close to those obtained
experimentally for both cases.

Finally, a comparison between the geometrically
exact model and third-order truncated model showed
that the latter works reliably only for relatively small
base acceleration magnitudes. It was shown that the
third-order model cannot capture the hardening non-
linearity and leads to wrong results at relatively large
base accelerations.
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7 Appendix: convergence analysis

A convergence analysis is performed in this section
by analysing the primary resonance of the cantilever
using various discretised models of the geometrically
exact model. More specifically, four discretised mod-
els are considered, i.e. 1-degree-of-freedom (1-dof), 2-
dof, 3-dof, and 6-dof ones. The nonlinear primary res-
onance response of the cantilever is examined via each
of these models to determine the required number of
modes to ensure converged results. Figure 12 shows
the convergence analysis results for the tip rotation and
tip displacements. As shown in the figure, the 1-dof
model overestimates the hardening behaviour of the
cantilever and the peak tip rotation. The 2-dof model
predictions are more reliable than those of the 1-dof
model, but it still does not give converged results. The
results obtained via the 3-dof and 6-dof models are
very close, indicating convergence. Hence, the 6-dof
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(a)

(b) (c)

Fig. 12 Convergence analysis of the primary resonance response
of the cantilever at az = 0.40, showing the frequency responses
for a tip rotation, b tip transverse displacement, and c tip longi-

tudinal displacement, obtained via several discretised models of
the geometrically exact model. [ ] Stable periodic solution,
[ ] unstable periodic solution

model utilised in the present study gives fully con-
verged results.
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