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Abstract Current explosive outbreak of COVID-19
around the world is a complex spatiotemporal process
with hidden interactions between viruses and humans.
This study aims at clarifying the transmission pat-
terns and the driving mechanism that contributed to the
COVID-19 prevalence across the provinces of China.
Thus, a new dynamical transmission model is estab-
lished by an ordinary differential system. The model
takes into account the hidden circulation of COVID-
19 virus among/within humans, which incorporates the
spatial diffusion of infection by parameterizing human
mobility. Theoretical analysis indicates that the basic
reproduction number is a unique epidemic threshold,
which can unite infectivity in each region by human
mobility and can totally determine whether COVID-
19 proceeds among multiple regions. By validating the
model with real epidemic data in China, it is found that
(1) if without any intervention, COVID-19 would over-
run China within three months, resulting in more than
1.1 billion clinical infections and 0.2 billion subclinical
infections; (2) high frequency of human mobility can
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trigger COVID-19 diffusion across each province in
China, no matter where the initial infection locates; (3)
travel restrictions and other non-pharmaceutical inter-
ventions must be implemented simultaneously for dis-
ease control; and (4) infection sites in central and east
(rather than west and northeast) of China would easily
stimulate quick diffusion of COVID-19 in the whole
country.

Keywords COVID-19 · Spatiotemporal transmis-
sion · Human mobility · Prevention and control ·
Reproduction number

1 Introduction

The pandemic coronavirus disease (COVID-19) is
caused by a newly discovered coronavirus called
SARS-CoV-2, which can spread from an infected per-
son’s mouth or nose in small liquid particles when
they cough, sneeze, speak, sing or breathe [1]. Such
easy transmission routes coupled with frequent human
mobility quickly result in explosive outbreak around
the world. As of September 22, 2021, this disease has
attacked about 214 countries, with a total of over 230
million confirmed cases and over 4.7million deaths [1].
COVID-19 is disrupting global health, economic, polit-
ical, and social systems and is posing comprehensive
threats to people around the world.

The ongoing COVID-19 pandemic exhibits a clear
time-space evolution. As the first case was reported
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in Wuhan, China, on December 29, 2019, the dis-
ease has spread to all the provinces in China within
a month [2]. By February 21, 2020, it has occurred
in 27 countries, and the number of infected countries
quickly increases to over 170 in late March. The infec-
tion size rose sharply from 282 to over 5 million during
the 5-month period. Such fast diffusion and hierarchi-
cal structures in time and place were possibly shaped
by human behaviors (e.g., communication, work, and
movement). For example, after initial emergence in
China, travel-related cases started appearing in other
parts of the world with strong travel links to Wuhan
[3]. This pattern along with the special characteristics
of COVID-19: (1) high pathogenicity and hidden trans-
mission among humans [4], (2) large asymptomatic
patients with infectivity [5], (3) short serial interval
[6], and (4) massive susceptibility [7], makes it very
difficult to assess the risk and control the infection.
Surveillance data indicate that the erupting infection
of COVID-19 in China was quickly restrained due to
the strict all-around interventions. Simulating its fur-
ther potential progress in different circumstances and
recognizing the spatiotemporal transmission dynam-
ics can help to clarify the roles of the involved fac-
tors (e.g., human behavior, virus evolution, and inter-
vention), identify the high-risk region, and guide the
designing of targeted interventions in resource-limited
settings. Yet little work is found in this regard.

Technically speaking, pure statistical model and
mapping analysis can quantitatively tell the trans-
mission pattern of epidemics. Mathematical frame-
works incorporated epidemiological survey data can
further capture its intrinsic variability in time and
space, which are used increasingly in interdisciplinary
studies [8]. Focusing on the COVID-19 pandemic,
many epidemiology-inspired models, including SIR,
SIS, and SEIR models, had been built to study the
spreading patterns [9–14]. By simulating the under-
lying infection process, these studies found that (1)
real-time mobility data from Wuhan can well eluci-
date the incidence rates in the cities across China
[15]; (2) various non-pharmaceutical interventions
are effective in controlling the spread of the dis-
ease [13,16–19]; and (3) mobility networks of air
travel can predict the global diffusion pattern at the
early stages of the outbreak, and an unconstrained
mobility would have significantly accelerated COVID-
19 spread [20]. Due to the complexity and hetero-
geneity of COVID-19 diffusion, more efforts are

needed to reveal its spatiotemporal dynamics [14,
21].

This paper goes a further step to provide a newmod-
eling framework with consideration of human mobil-
ity and surveillance data to clarify the hidden dynam-
ics accounting for COVID-19 spatiotemporal transmis-
sion in China. Based on the deterministic compart-
ment model, a multi-population transmission model
of COVID-19 is established by ordinary differential
equations (ODE). Qualitative theory is used to ana-
lyze the propagation dynamics of the model, includ-
ing the expression of the basic reproduction number
and the equilibria, the global stability of the disease-
free and endemic equilibria. Finally, this model is
applied to investigate the detailed transmission patterns
of COVID-19 across the provinces in China.

2 Modeling framework

Tosimulate the spatiotemporal transmissionofCOVID-
19 across different regions, a new meta-population
dynamic model is proposed in this section. Based on
the epidemiology features of COVID-19 and compart-
mental theory, the following basic assumptions are pro-
posed.

• During the outbreak of COVID-19 infection,
humans are divided into susceptible (Si ), exposed
(Ei ), preclinical infectious (I

p
i ), subclinical infec-

tious (I si ), clinical infectious (I ci ) and recovered
(Ri ) classes. Here I pi and I si are inapparent infec-
tions, and I ci are apparent infections. The sum of
these classes constitute the total population size,
that is, Ni = Si + Ei + I pi + I si + I ci + Ri . It is
assumed that Ni is a constant, in which birth rate
equals to death rate d. Here, the subscript i denotes
the location of these parameters.

• The infection routes follow susceptible-latent
-infected-recovered process. Individuals can be
infected through contact with infectious individu-
als and then experience an incubation period 1/η.
Exposed individuals progress to preclinical infec-
tious (with probabilityφ) and subclinical infectious
(with probability 1−φ). Subclinical infectionswith
mild or no symptoms could not be easily found and
treated, but they can self-recover after time 1/γ .
Preclinical infections become clinical and develop
symptoms after time 1/δ. They receive treatment
and are cured successfully through time 1/ω.
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• Whennovel coronavirus carriedby infectedhumans
invades into a virgin area, people there (local res-
idents and visitors from other regions) could be
infected with certain probability. The model takes
into account such spatial diffusion by incorporating
amigrationmatrix P , in which element Pi j denotes
the average duration per unit time that the residents
in region i stay in region j . It satisfies Pi j ≥ 0
and

∑
j Pi j = 1. Here residents can move around

anyother region,whichmaybe infected outside and
bring virus home. Specifically, due to humanmobil-
ity, the real number of human population in region
j is Ñ j = ∑

k Pk j Nk , and the average propor-
tions of preclinical, subclinical, clinical infections
stay in region j are

∑
k Pk j I

p
k /Ñ j ,

∑
k Pk j I

s
k /Ñ j ,

and
∑

k Pk j I
c
k /Ñ j , respectively. Parts of suscep-

tible residents of region i (i.e., Pi j Si ) could be
infected in region j at rate λ j .

Based on the above assumption, the essential features
of the model framework are depicted in Fig. 1. Accord-
ingly, the governing equations for simulating the spa-
tiotemporal transmission dynamics of COVID-19 are
illustrated as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi
dt

= dNi −
n∑

j=1

λ j Pi j Si

×
∑n

k=1 Pkj
(
I pk + α I sk + β I ck

)

∑n
k=1 Pkj Nk

− dSi ,

dEi

dt
=

n∑

j=1

λ j Pi j Si

∑n
k=1 Pkj

(
I pk + α I sk + β I ck

)

∑n
k=1 Pkj Nk

−(η + d)Ei ,

dI pi
dt

= φηEi − (δ + d)I pi ,

dI si
dt

= (1 − φ)ηEi − (γ + d)I si ,

dI ci
dt

= δ I pi − (ω + d)I ci ,

dRi

dt
= γ I si + ωI ci − dRi ,

(1)

where λ j is the specific transmission rate in region j .
The interpretation of other model parameters is pre-
sented in Table 1.

Since model (1) is a high-dimensional nonlinear
ODE system, it is impossible to obtain its analyti-

cal solution. To illustrate the long-term evolutions of
model solutions and the robustness of these solutions
to different initial conditions, the following two sec-
tions will explore the model behaviors mathematically,
in which the basic reproduction number and the sta-
bility are discussed. By doing so, one can formulate
the coupling pattern between disease transmission and
human mobility and obtain the conditions under which
the disease will die out or persist.

3 Basic reproduction number

The basic reproduction number R0, as one of the most
important theoretical concepts in epidemiology, acts as
the critical measure of the transmissibility [23]. R0 is
interpreted as the average number of secondary cases
that are produced by a single primary case in a fully sus-
ceptible population [23]. In what follows, it is written
S = (S1, S2, . . . , Sn)T and similarly forE, Ip, Is, Ic,R
and N. Let Ap be a n × n matrix, defined as

Ap =
⎛

⎜
⎝

P11 · · · P1n
...

. . .
...

Pn1 · · · Pnn

⎞

⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ1
PT
1

PT
1 N

λ2
PT
2

PT
2 N

...

λn
PT
n

PT
n N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the column vector Pi is the i-th column ofmatrix(
Pi j

)
n×n . Then, system (1) can then be rewritten as the

following vectorial notation:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= dN − diag(S)
(
ApIp + αApIs + βApIc

)

−dS,

dE
dt

= diag(S)
(
ApIp + αApIs + βApIc

)

− (η + d)E,

dIp

dt
= φηE − (δ + d) Ip,

dIs

dt
= (1 − φ) ηE − (γ + d) Is,

dIc

dt
= δIp − (ω + d) Ic

dR
dt

= γ Is + ωIc − dR.

(2)
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Fig. 1 Flow diagram on
COVID-19 transmission
with human mobility among
different regions

Table 1 Description of parameters in the proposed model

Parameters Definitions Value Source

d Birth/death rates 0.0011 [a]

α Relative infectivity of subclinical infection Variable [b]

β Relative infectivity of clinical infection Variable [b]

1/η Duration of incubation period 4 days [17]

1/δ Time span of humans from preclinical onset to clinical patients 1.5 days [17]

1/ω Duration of treatment and recovery for clinical patients 14 days [1]

1/γ Duration of recovery for subclinical infections 5 days [17]

φ Proportion of exposed individuals progress to preclinical infections 0.82 [22]

[a] It is estimated from the data in China’s National Bureau of Statistics in 2019
[b] These parameters are estimated by MCMC method in this study

Here for u ∈ Rn , diag(u) denotes the n × n diago-
nal matrix whose main diagonal is u. According to the
biological significance, the initial values of model vari-
ables are set to be nonnegative, and then, the expres-
sions of (2) can ensure that the solutions will always
stay in


=
{

(
S,E, Ip, Is, Ic,R

) ∈ R6n+ |0 ≤ S,E, Ip, Is, Ic,R

≤ N
}

.

Hence,
 is a compact absorbing and positively invari-
ant set for (2). Direct calculation yields that system
(2) has a disease-free equilibrium, denoted by Q0 =(
S0,E0, Ip0, Is0, Ic0,R0

) = (N, 0, 0, 0, 0, 0) .

The basic reproduction number R0 is calculated by
using the theory of next-generation matrix [23]. It is
written as R0 = ρ(FV−1), where F is the rate of occur-

ring new infections, and V is the rate of transferring
individuals outside the original group [23]. Here ρ rep-
resents the spectral radius of matrix. Based on model
(1), direct calculation yields that:

F =

⎛

⎜
⎜
⎝

O diag(N)Ap αdiag(N)Ap βdiag(N)Ap

O O O O
O O O O
O O O O

⎞

⎟
⎟
⎠ ,

and

V =

⎛

⎜
⎜
⎝

(η + d) I O O O
−φηI (δ + d) I O O

− (1 − φ) ηI O (γ + d) I O
O −δI O (ω + d) I

⎞

⎟
⎟
⎠ .

where I denotes a identity matrix, and O is the zero
matrix. It follows from the characteristic equation of
FV−1 that the basic reproduction number is given by:
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R0 = ρ

((
φη

(η + d) (δ + d)
+ (1 − φ) ηα

(η + d) (γ + d)

+ φηδβ

(η + d) (δ + d) (ω + d)

)

diag(N)Ap

)

. (3)

The three components of the R0 are separately con-
tributed by the infections in preclinical, subclinical, and
clinical states. Since the characteristic equation in (3) is
a polynomial of degree n for eigenvalue, it is impossible
to calculate its analytic expression.

4 Global stability

The results concerning the global dynamics of system
(2) are analyzed in this section.

Theorem 4.1 System (2) has a unique endemic equi-
librium Q∗.

Proof It is denoted as the expression of endemic equi-
librium by S∗,E∗, Ip∗, Is∗ and Ic∗. Based on the equi-
librium definition, letting the right-hand side of system
(2) to be zeros and substituting S∗,E∗, Is∗, and Ic∗ by
Ip∗, an equation is obtained about Ip∗ as

f (Ip∗) = m1Ip∗(diag
(
m2ApIp∗)

)−1 (
dI + m2ApIp∗)

−dN,

where

m1 = (η + d) (δ + d)

φη
,

m2 = 1 + α (1 − φ) (δ + d)

φ (γ + d)
+ βδ

ω + d
.

Substituting Ip∗ by 0 andN yields that f (0) = −dN <

0, and

f (N) = m1N(diag
(
m2ApN)

)−1 (
d1 + m2ApN

) − dN

≥ (δ + d)

φ
N(diag

(
ApN)

)−1 (
ApN

)

−dN = (δ + d)

φ
N − dN > 0.

It follows from the zero-point theorem that system (2)
has at least one positive equilibrium. Furthermore, due
to f ′ (Ip) = m1I > 0, f is an increasing function.
Hence, there exists a unique positive endemic equilib-
rium in the compact set 
. ��
Theorem 4.2 If R0 < 1, the disease-free equilibrium
Q0 of system (2) is globally asymptotically stable.

Proof Since the total number of human population is a
constant, the first equation of system (2) can be ignored.
SubstitutingSby (N−E−Ip−Is−Ic−R), it is obtained

dE
dt

= diag
(
N − E − Ip − Is − Ic − R

)

(
ApIp + αApIs + βApIc

) − (η + d)E

≤ diag(N)
(
ApIp + αApIs + βApIc

) − (η + d)E.

The corresponding comparison system is:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dĒ
dt

= diag(N)
(
Ap Īp + αAp Īs + βAp Īc

)

− (η + d) Ē,

dĪp

dt
= φηĒ − (δ + d) Īp,

dĪs

dt
= (1 − φ) ηĒ − (γ + d) Īs,

dĪc

dt
= δĪp − (ω + d) Īc.

(4)

It is clear that model (4) is a linear system, and
the coefficient matrix of its variables in the right-
hand side is exactly the matrix (F − V ). Hence,
when R0 = ρ

(
FV−1

)
< 1, the unique equilibrium

(E, Ip, Is, Ic) = (0, 0, 0, 0) of this linear system (4) is
globally asymptotically stable. Since

dE
dt

≤ dĒ
dt

,
dIp

dt
≤ dĪp

dt
,
dIs

dt
≤ dĪs

dt
,
dIc

dt
≤ dĪc

dt
.

According to the comparison theorem, with the same
initial conditions, it has E(t) ≤ Ē(t), Ip(t) ≤ Īp(t),
Is(t) ≤ Īs(t), and Ic(t) ≤ Īc(t) for any t > 0, yielding
that Q0 is globally asymptotically stable when R0 < 1.
��

The graph-theoretic method presented in [24,25] is
used to analyze the global stability of the endemic equi-
librium.

Theorem 4.3 If R0 > 1, then the unique endemic equi-
librium Q∗ of system (2) is globally asymptotically sta-
ble in 
.

Proof Denote

Di = Si − S∗
i − S∗

i ln
Si
S∗
i

+ Ei − E∗
i − E∗

i ln
Ei

E∗
i
,

Dn+i = I pi − I p∗i − I p∗i ln
I pi
I p∗i

,
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D2n+i = I si − I s∗i − I s∗i ln
I si
I s∗i

,

D3n+i = I ci − I c∗i − I c∗i ln
I ci
I c∗i

, Ñ j =
n∑

k=1

Pkj Nk,

where the variables with superscript as star are the
expressions of endemic equilibrium in model. Using
the inequality 1 − x + ln x ≤ 0, for x > 0, direct
differentiation yields:

Di
′ =

n∑

j=1

λ j Pi j S
∗
i � j

∗ + dS∗
i −

n∑

j=1

λ j Pi j Si� j

− dSi −
n∑

j=1

λ j Pi j S
∗
i
S∗
i
Si

� j

∗
− d

S∗
i S

∗
i

Si

+
n∑

j=1

λ j Pi j S
∗
i � j + dS∗

i +
n∑

j=1

λ j Pi j Si� j

−
n∑

j=1

λ j Pi j S
∗
i
Ei
E∗
i

� j

∗
−

n∑

j=1

λ j Pi j Si
E∗
i

Ei
� j

+
n∑

j=1

λ j Pi j S
∗
i � j

∗

≤
n∑

j=1

λ j Pi j S
∗
i � j

∗ −
n∑

j=1

λ j Pi j Si� j

−
n∑

j=1

λ j Pi j S
∗
i
S∗
i
Si

� j
∗ +

n∑

j=1

λ j Pi j S
∗
i � j

+
n∑

j=1

λ j Pi j Si −
n∑

j=1

λ j Pi j S
∗
i
Ei
E∗
i

� j
∗

−
n∑

j=1

λ j Pi j Si
E∗
i

Ei
� j +

n∑

j=1

λ j Pi j S
∗
i � j

∗

=
n∑

j=1

λ j Pi j S
∗
i 


p
j

(

1 − Si I
p
k

S∗
i I

p∗
k

− S∗
i
Si

+ I pk
I p∗k

)

+
n∑

j=1

λ j Pi j S
∗
i α
 s

j

(

1 − Si I
s
k

S∗
i I

s∗
k

− S∗
i
Si

+ I sk
I s∗k

)

+
n∑

j=1

λ j Pi j S
∗
i β
 c

j

(

1 − Si I
c
k

S∗
i I

c∗
k

− S∗
i
Si

+ I ck
I c∗k

)

+
n∑

j=1

λ j Pi j S
∗
i 


p
j

(

1 + Si I
p
k

S∗
i I

p∗
k

− Ei
E∗
i

− E∗
i Si I

p
k

Ei S
∗
i I

p∗
k

)

+
n∑

j=1

λ j Pi j S
∗
i α
 s

j

(

1 + Si I
s
k

S∗
i I

s∗
k

− Ei
E∗
i

− E∗
i Si I

s
k

Ei S
∗
i I

s∗
k

)

+
n∑

j=1

λ j Pi j S
∗
i β
 c

j

(

1 + Si I
c
k

S∗
i I

c∗
k

− Ei
E∗
i

− E∗
i Si I

c
k

Ei S
∗
i I

c∗
k

)

≤
n∑

j=1

λ j Pi j S
∗
i 


p
j

(
I pk
I p∗k

− ln
I pk
I p∗k

+ ln
Ei
E∗
i

− Ei
E∗
i

)

+
n∑

j=1

λ j Pi j S
∗
i α
 s

j

(
I sk
I s∗k

− ln
I sk
I s∗k

+ ln
Ei
E∗
i

− Ei
E∗
i

)

+
n∑

j=1

λ j Pi j S
∗
i β
 c

j

(
I ck
I c∗k

− ln
I ck
I c∗k

+ ln
Ei
E∗
i

− Ei
E∗
i

)

=: ai,n+i Gi,n+i + ai,2n+i Gi,2n+i + ai,3n+i Gi,3n+i .

Here,

� j
∗ = 1

Ñ j

n∑

k=1

Pkj
(
I p∗k + α I s∗k + β I c∗k

)
,

� j = 1

Ñ j

n∑

k=1

Pkj
(
I pk + α I sk + β I ck

)
,



p
j = 1

Ñ j

n∑

k=1

Pkj I
p∗
k ,


 s
j = 1

Ñ j

n∑

k=1

Pkj I
s∗
k , 
 c

j = 1

Ñ j

n∑

k=1

Pkj I
c∗
k .

Similarly,

D′
n+i = φηEi − φηE∗

i
I pi
I p∗i

− φηEi
I p∗i

I pi
+ φηE∗

i

= φηE∗
i

(

1 − Ei I
p∗
i

E∗
i I

p
i

− I pi
I p∗i

+ Ei

E∗
i

)

≤ φηE∗
i

(
Ei

E∗
i

− ln
Ei

E∗
i

+ ln
I pi
I p∗i

− I pi
I p∗i

)

=: an+i,i Gn+i,i .

D′
2n+i = (1 − φ) ηEi − (1 − φ) ηE∗

i
I si
I s∗i

− (1 − φ) ηEi
I s∗i
I si

+ (1 − φ) ηE∗
i

= (1 − φ) ηE∗
i

(

1 − Ei I s∗i
E∗
i I

s
i

− I si
I s∗i

+ Ei

E∗
i

)

≤ (1 − φ) ηE∗
i

(
Ei

E∗
i

− ln
Ei

E∗
i

+ ln
I si
I s∗i

− I si
I s∗i

)

= : a2n+i,i G2n+i,i .

D′
3n+i = δ I pi − δ I p∗i

I ci
I c∗i

− δ I pi
I s∗i
I si

+ δ I p∗i
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= δ I p∗i

(

1 − I pi I c∗i
I p∗i I ci

− I ci
I c∗i

+ I pi
I p∗i

)

≤ δ I p∗i

(
I pi
I p∗i

− ln
I pi
I p∗i

+ ln
I ci
I c∗i

− I ci
I c∗i

)

=: a3n+i,n+i G3n+i,n+i .

and

ai,n+i = λ j Pi j S∗
i

Ñ j

n∑

k=1

Pkj I
p∗
k ,

ai,2n+i = λ j Pi j S∗
i α

Ñ j

n∑

k=1

Pkj I
s∗
k ,

ai,3n+i = λ j Pi j S∗
i β

Ñ j

n∑

k=1

Pkj I
c∗
k ,

as well as an+i,i = φηE∗
i , a2n+i,i= (1 − φ) ηE∗

i ,

a3n+i,i=δ I p∗i . Let A = (
ai j

)
n×n with ai j > 0 as

defined above and otherwise zero. The corresponding
weighted digraph is shown in Fig. 2. Along each of
the cycles on the graph, it is verified that

∑
Gi j = 0;

for instance, Gi,n+i +Gn+i,i = 0,G j,n+i +Gn+ j, j +
Gi,n+ j + Gn+i,i = 0, and so on. It follows from The-
orem 3.5 in [24] that there exist constants ci such that
D = ∑

i ci Di is a Lyapunov function for system (2).
Let c1 = · · · = cn = 1, and

cn+i =
n∑

j=1

(
c ja j,n+i + c ja j,3n+i

)

an+i,i
,

c2n+i =
n∑

j=1

c ja j,2n+i

a2n+i,i
, c3n+i =

n∑

j=1

c ja j,3n+i

a3n+i,n+i
.

Further computation leads to

cn+i =
n∑

j=1

[
λ j Pi j S∗

i

Ñ jφηE∗
i

( n∑

k=1

Pkj I
p∗
k

+β

n∑

k=1

Pkj I
c∗
k

)]

,

c2n+i =
n∑

j=1

(
λ j Pi j S∗

i α

(1 − φ)ηE∗
i Ñ j

n∑

k=1

Pkj I
s∗
k

)

,

c3n+i =
n∑

j=1

(
λ j Pi j S∗

i β

δ I p∗i Ñ j

n∑

k=1

Pkj I
c∗
k

)

.

Hence, with the functions Di and constants ci given
above, the expression

D =
n∑

i=1

ci Di +
n∑

i=1

cn+i Dn+i

Fig. 2 Digraph representation of the matrix A of transmission
used to determine the coefficients in the Lyapunov function D

+
n∑

i=1

c2n+i D2n+i +
n∑

i=1

c3n+i D3n+i

is a Lyapunov function for system (2). Its derivative is:

D′ =
n∑

i=1

ci

(
Si − S∗

i

Si
Si

′ + Ei − E∗
i

Ei
Ei

′
)

+
n∑

i=1

cn+i

(
I pi − I p∗i

I pi
I pi

′
)

+
n∑

i=1

c2n+i

(
I si − I s∗i

I si
I si

′
)

+
n∑

i=1

c3n+i

(
I ci − I c∗i

I ci
I ci

′
)

.

When D′ = 0 in the set
{
R5n+

}
, one can readily verify

that Si = S∗
i , Ei = E∗

i , I
p
i = I p∗i , I si = I s∗i , I ci =

I c∗i . For the left system,

dRi

dt
= γ I s∗i + ωI c∗i − dRi . (5)

it is clear that system (2) has a unique equilibrium
Ri = R∗

i , which is global asymptotically stable. Using
LaSalle’s invariance principle, it is concluded that the
endemic equilibrium Q∗ is global asymptotically sta-
ble in 
. ��

5 Application to the outbreak in China

In this section, the proposedmodel is applied to analyze
the spatiotemporal transmission dynamics of COVID-
19 in Chinese provinces (see Table 2). Daily records
of human infections were collected from authoritative
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Table 2 Province and its abbreviation in China

Province Hubei Beijing tianjin Hebei Shanxi Liaoning Jilin Heilongjiang

Abbreviation HuB BJ TJ HeB SX LN JL HLJ

Province Shanghai Jiangsu Zhejiang Anhui Fujian Jiangxi Shandong Henan

Abbreviation SH JS ZJ AH FJ JX SD HeN

Province Hunan Guangdong Guangxi Hainan Chongqing Sichuan Guizhou Yunnan

Abbreviation HuN GD GX HaiN CQ SC GZ YN

Province Shaanxi Gansu Qinghai Ningxia Xinjiang Neimenggu Xizang

Abbreviation SaX GS QH NX XJ NMG XZ

data report. The permanent population size in each
province was released by the 2019 National Bureau
of Statistics. The dailymigration data among provinces
are collected fromBaidumigration data (https://qianxi.
baidu.com/). Specifically, the element in migration
matrix P is defined as Pi j = κQici j , where Qi is
the migration scale in region i and ci j is the proportion
of migration scale from region i to region j (both of
which were extracted from Baidu migration data), and
κ is a adjustive constant for modulating the data into
the model.

The model is validated by using Markov chain
Monte Carlo (MCMC) method to fit the daily reported
cases in 26 provinces (with cases more than 101 from
January 5, 2020, toMarch 15, 2020). Here 6 parameters
(β, α, κ , and the initial values of E , I c and I p in HuB)
were estimated byMCMC. Since HuB province is con-
sidered to be the infection source, it is assumed that
there is no infections in other provinces at initial time.
The transmission rate λi is derived from the effective
reproduction number Rt in province i . Rt represents the
number of new morbidity cases caused by an average
morbidity case at time t . Here the Rt in each province is
estimated from the time series of its indigenous cases.
Based on the Bayesian framework, Rt is calculated by
the EpiEstim package in R language software [26], in
which the intergenerational time follows gamma dis-
tribution, with the mean value and standard deviation
as 7.5 and 3.4, respectively [27].

The fitting results are shown in Figs. 3 and S1 (in
Supplementary Information). It is found that the model
performed well in fitting the daily reported incidences,
except the data in some provinces such as HeB, ZJ,
HeN, HuN, CQ, and GZ. The fitting deviations are pos-
sibly due to the spatiotemporal heterogeneity of trans-
mission parameters and detection efficiency. PRCC

coefficients are used as global sensitivity to quantify the
response of model outputs to the variation of the esti-
mated parameters. By averaging the daily PRCC coef-
ficients in the operation of fitting daily incidences, it is
found that the output is strongly sensitive to the effec-
tive transmission rate of clinical infection (β) and the
relative coefficient of migration matrix (κ), followed
by the effective transmission rate of subclinical infec-
tion (α). Yet it seems that in the entire infection process
the output is scarcely sensitive to the initial condition
of the model. The reason for the negative correlation of
β and κ with model output is that for given Rt , small
values of β and κ mean large transmission rate λ.

In the following simulations of the model, it is set
that (1) the initial conditions are E(0) = 50, I p(0) =
I s(0) = I c(0) = 35 in Figs. 4, 5 and S6, and
E(0) = I p(0) = I s(0) = I c(0) = 20 in Figs. 6, 7
and 8; (2) the impact of human mobility is reflected
by the migration matrix P , and its values are selected
from Baidu migration data during 2020 and 2021; and
(3) multiple interventions (including social distancing,
quarantine and wearing masks) are measured by differ-
ent values of the effective reproduction number Rt , in
which the largest and minimum values are separately
Rt = 3.56 and Rt = 0.59, corresponding to the situa-
tions of no intervention (in early infection stage [Jan-
uary 5 to January 22, 2020] in HuB) and rigorous inter-
vention (in the mid and late stage of infection [January
23 to February 12, 2020] in HuB).

Figure 4 shows the impacts of intervention on the
evolution of COVID-19 in China, with different ini-
tial infection sites (i.e., HuB, BJ, SH, GD and XZ).
The migration data during January 23, and March 20,
2021, are integrated into the model for simulating the
transmission process under two modes: few interven-
tion and rigorous intervention. These two modes are
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(a) (b) (c)

Fig. 3 The fitting results of the COVID-19 cases in China. a
Fitting daily new cases in HuB, where the light shaded area is
the 95% confidence interval (CI) for all 1000 simulations, and
the blue curve is the median of the model output; b relationship

between predicted and observed cases in HuB. a sensitivity of
daily cases to the model parameters as indicated by PRCC values

(a) (b) (c)

(d) (e) (f)

Fig. 4 The accumulative number of cases in each province
before and after the intervention, in case of different locations
(HuB, BJ, SH, GD, XZ) of initial infection. The human mobility
information is adopted from the data during January 23 toMarch

20, 2021. The transmission rate λ in Figures (a), (b), (c) and (d),
(e), (f) is separately determined by the mean values of effective
reproduction number before and after the intervention

reflected by the choices of the reproduction number,
whose values in each province are taken as the means
of the effective reproduction number at the beginning
of the outbreak (January 1–22, 2020) and after the inter-
vention (January 23–February 12, 2020), respectively.

For simulating the transmission for 57 days, the fol-
lowing patterns are observed in Fig. 4. First, in case
of substituting the early Rt into the model, the infec-
tion burden could increase hundreds of times, in which
the numbers of total clinical infections in China could
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(a) (b)

Fig. 5 The cumulative number of cases in China with the human
mobility data: a from January 23 to March 20, 2021, and b from
January 23 to May 20, 2021, in case of no intervention. The

abscissa is the location that has unique infection source at the
initial time. The yellow part is the contribution by the location
with initial infections

reach 111.08, 64.61, 66.71, 57.62 and 13.59 million
with separate source of initial infection inHuB, BJ, SH,
GD and XZ. Second, in case of substituting the latter
Rt into the model, the above numbers reduce sharply
to 228, 288, 215, 232 and 154. Moreover, the regions
around the source of initial infectionwould likely suffer
more serious attack, in which the highest attack rates
are 0.28 in HuB and 0.14 in GZ with source in HuB,
0.20 in TJ and 0.12 in HuB with source in BJ, 0.10 in
JS and 0.09 in AN with source in SH, 0.15 in GZ and
0.09 in HuB with source in GD, 0.19 in XZ and 0.1 in
QH with source in XZ.

Figure 5 shows the ranking of total infections in
China with a unique infection source at initial time and
humanmobility at the entire process. Here it is assumed
that there is no implementation of intervention, which
is realized by setting the reproduction number in each
province to be the value in early infection stage in HuB
(equal 3.56). By simulating the transmission process
through 57 days, it is found that (1) the initial infec-
tion located in HeN, ZJ, SH, JS and AH would cause
the top five numbers of human clinical cases (over 300
million); (2) when the initial infection is located in XZ,
QH, JL, HLJ, XJ, it would lead to smallest clinical
infection sizes (around 142–183 million). Moreover,
by simulating the transmission process through 120
days, it is observed that the infection would reach a
saturated state: more than 1.1 billion people could be
infected clinically, no matter where the infection ini-

tially occurs. In this case, all provinces reach the high-
est levels of new infections after about twomonths (see
Fig. S3), but the attack rate exhibits spatial heterogene-
ity, in which the area near the initial infection source
usually suffers worse.

Figure 6 shows the impacts of different initial condi-
tions and human mobility on the evolution of COVID-
19 transmission across Chinese provinces, in case of
no intervention. It is observed that more sites with
initial infection and more frequency of human mobil-
ity would yield a little faster diffusion of the disease
(that is more obvious in early infection period) and
a little earlier arriving of the peak. When the disease
starts to spread from January 23, 2021, the numbers
of human cases would reach peak around early April
or late March, in case of one initial infection site(XZ),
or two initial infection sites (HeN and GD). However,
in case of all sizes with the initial infection, the peak
is arriving around the middle of March, regardless of
population mobility. In these four settings, the serious
infection would last for over three months and cause
similar number of total infections (that is, 1.3 billion
clinical/subclinical cases). After that the disease will
still prevail in human population in very low incidence
rate.

Figure 7 shows the evolution dynamics of COVID-
19 in China with different patterns of intervention, in
case of only GD as the initial infection site. Here the
impacts of intervention and human mobility are quan-
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Fig. 6 Time series of daily
new cases in each province
with different outbreak sites
at initial time and human
mobility data from January
23, 2021, to May 20, 2021,
in case of no intervention

(a) (b)

(c) (d)

(a) (b)

Fig. 7 Time series of daily new cases in China with different timing of travel ban and different basic reproduction number. Here human
mobility data are from January 23 to July 4, 2021

tified by the basic reproduction number R0 and travel
ban, respectively. It is found that (1) slight increase of
R0 would cause rapid transmission and high morbid-
ity around China, (2) travel ban among the provinces in
China as early as possible can postpone the propagation
a little bit and possibly reduce total morbidity, and (3)
the control effect of travel ban is not significant (espe-
cially for large R0), only when the travel is restricted
at first. Specifically, by simulating the spatiotemporal
transmission process for 162 days, it is observed that
(1) if R0 = 3.56, 2.5, 2, 1.5, and 1.1, human infections
would increase rapidly after 14, 29, 56, 72, and 81 days

since the introduction of the infection, respectively; (2)
when R0 = 3.56, 2.5, and 2, the number of infections
would reach the peak around March 27, May 2, and
Jun 7, resulting in total clinical infections to be 1.1,
1.0, and 0.8 billion (regardless when to start travel ban
after outbreak), but the numbers would reduce vastly
to 92.8, 75.9 and 85.7 million if travel ban starts before
outbreak; (3) when R0 = 2, if travel ban is imple-
mented after 1 day, 10 days and 20 days of the break,
the transmission could be postponed 2 day, 5 day, and
18 days (compared with the case without travel ban),
resulting in 735.5, 865.6 and 876.21 million of human
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(a) (b) (c)

Fig. 8 Dependence of COVID-19 infection on the basic repro-
duction number R0 in China (a and b), and the sensitivity of R0
to the model parameters as indicated by PRCC values. The accu-
mulative number in a is the total infections during the first 400
days. Human mobility data in a and b starts on January 23, 2021,

and future data are obtained by averaging those in previous time.
PRCC coefficients in c with ∗ indicate that the corresponding
parameters are significantly different from zero (with p-values
< 0.05)

clinical infections; and (4) in case of rigorous inter-
vention (R0 < 1), it is impossible for travel to trigger
disease outbreak.

Figure 8 shows the relationship between the basic
reproduction number R0 and human infections inChina
as well as the transmission parameters. It is found that
the increase of R0 easily stimulates disease prevalence
and causes quick arrive and high level of the inci-
dence peak, with a positive linear (sublinear) corre-
lation between R0 and the incidence peak (total infec-
tions). If R0 increase from 2.4 to 3.2, the accumula-
tive number of human infections (including subclini-
cal and clinical cases) increases from 1.26 to 1.38 bil-
lion during 400 days. Sensitivity analysis indicates that
the most sensitive parameter governing R0 is the trans-
mission rate λ, followed by the percentage of clinical
infections (φ), time span from preclinical to clinical
infection (1/δ) and the relative infectivity of clinical
infection (β).

6 Discussion

The COVID-19 pandemic is posing increasing threats
to public health around the world. Clear information
about its epidemiologic features and transmission pat-
terns can help to control and prevent COVID-19 trans-
mission. The present study is an attempt to provide
a modeling framework allowed for inferring its spa-
tiotemporal transmission patterns by focusing on its
outbreak in the provinces of China.

Since the outbreak of COVID-19, many epidemi-
ological models have been proposed and applied to
study its propagation. Focusing on the spatiotemporal
transmission,modeling framework includesmathemat-
ical model (e.g., ordinary/partial differential equation
[9–12,16,17,20], difference equations [13]), computa-
tional model (e.g., agent-based model [18] and next-
generation algorithm [19]), and statistical model (e.g.,
stochastic model [14] and ArcGIS [21]). Inspired by
existing studies, this paper presented a new mathemat-
ical model via ODEs, which couples the intrinsic trans-
mission dynamics, including the disease evolution in
humans among different states (susceptible, exposed,
infectious and recovered), infection action by human–
human contact, and human mobility among different
regions. Moreover, the effects of human behavior and
control strategy were characterized by model param-
eters, which can regulate the spatiotemporal infectiv-
ity and transmissibility. Finally, MCMC algorithm was
employed to estimate the uncertain parameters and
then to evaluate the model. Here the compartmental
deterministic principle used in this model is similar
to those in literature [9–14,20], and the spatial trans-
mission route connecting by human mobility is con-
sistent with epidemiological survey and related models
[15,20,28,29].Moreover, themodel coversmore trans-
mission details, including preclinical, subclinical, and
clinical infection [17,30], and can be validated by fit-
ting multiple spatiotemporal data with fewer uncertain
parameters. It captures the time-varying infectivity by
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incorporating the estimated values of the time series of
the effective reproduction number, instead of formulat-
ing it by a time function. The approach technique has
reference significance in the development of disease
modeling.

By validating the proposed model with surveillance
data inChinese provinces, the spatiotemporal transmis-
sion dynamics and the effects of human mobility and
interventions were clarified, which offers the following
clues for guiding COVID-19 control.

First, there is a unique epidemic threshold, denoted
by basic reproduction number R0, which can totally
determine whether COVID-19 proceeds among mul-
tiple regions. If R0 < 1, no matter how many infec-
tion sources there are, COVID-19 will always die out.
Otherwise, the disease will persist in each region. R0

can unite infectivity in each region by human mobility.
Such mobility contributes to transmission in two ways:
susceptible persons in other regions could be infected
when traveling to outbreak area, and infected persons
may bring COVID-19 virus from outbreak area to other
regions. Particularly, when R0 > 1, no region can
escape from infection if there exists human mobility
among them. This R0 is most sensitive to transmission
rateλ, followed by the percentage of clinical infections.
Hence reducing λ is most effective to lessen R0.

Second, the effects of the implemented intervention
in China are further evaluated. By using the proposed
model to simulate the long-term transmission process,
it is found that if the interventions (e.g., social dis-
tancing and city lockdown) had not been implemented
in China, COVID-19 would prevail all around China
and the serious infection would last over three months,
resulting in over 1.1 billion clinical patients and 0.2
billion subclinical patients. In this case, more than
92.3% population in China would be infected clini-
cally/subclinically by COVID-19 virus. The estimated
effects of interventions are much more significant than
previous results, which claimed that (1) if without non-
pharmaceutical interventions in China, the number of
cases was predicted to be 7.6 million by February 29,
2020 [16], or 37 million by March 5, 2020 [31], or
increase the total infections by 93.7% [32]. The rea-
son for the severity of our estimation could be that this
study highlights the intrinsic spatiotemporal transmis-
sion dynamics and the total infection process.

Third, the role of human mobility in COVID-19
transmission is further clarified. Similarly to previous
studies [13,21,32], it is verified that human mobility

(by travel) can spark new infections in virgin areas and
high frequency of human mobility in reality has driven
COVID-19 diffusion across the 31 provinces of China.
The present paper further indicates that the effects of
human mobility in the spatiotemporal transmission of
COVID-19 are more prominent in two cases: early
stage of infection and when R0 is a little bigger than
one. If without intervention inside region, then human
mobility would accelerate disease propagation across
different regions, but it could not modify the number
of total infections, unless travel is banned at the very
beginning of infection. Hence, regional human migra-
tion plays as a trigger in the preliminary stage of infec-
tion, and then, locally contracted infection dominates
the following transmission process. The results demon-
strate that non-pharmaceutical intervention is the core
strategy, and travel ban at the same time can slow down
the process and suppress incidence rate.

Fourth, the transmission patterns of COVID-19 in
thewhole country are further inferred. The initial infec-
tion located in central and east of China (HeN, ZJ, SH,
JS and AH) would easily stimulate quick outbreak and
large infection, but adverse consequence is observed
if initial infection is located in west and northeast of
China (XJ, HLJ, QH, XZ, GS, NMG, and YN), in
that there exists less population flow. Yet if without
any intervention, the transmissionwould continue three
months, and then, no matter where the outbreak occurs
and how many sits do initial infection locate, the infec-
tions of COVID-19 would reach a saturation level, and
more than 92.3% people in China would be infected.
After that the incidence would keep at very low rate
due to herd immunity. Yet as the increase of suscep-
tible people, another modest wave of infection could
occur after about 400 days.

In view of current situation of COVID-19 pandemic,
China is facing high risk of sporadic outbreaks due
to imported infections and is making great efforts for
prevention. To control this disease, beside promoting
vaccination (that is precisely what China is doing), the
present study suggests that (1) identifying and isolat-
ing imported case is the primary mission, which can be
accomplished by monitoring the travelers from foreign
countries by tight and thorough surveillance system,
and (2) in case of autochthonous infection, strict non-
pharmaceutical interventions must be taken as soon as
possible, including tracking close contacts and quaran-
tine, travel restriction, lockdown of high risky commu-
nity. Indeed, such intervention strategies are exactly as
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China is implementing. By doing so,more than 99.99%
human infections would have been avoided according
to this study.

Here several limitations need to be clarified. (1)
The COVID-19 incidence data were based on pub-
lic report information, which may yield data devia-
tion from reality. (2) The biological parameters applied
in the proposed model were extracted from the liter-
ature, which may show geographical disparities. (3)
The model did not take into account the potential fac-
tors such as the difference of immunity and infec-
tivity. Nevertheless, the model captured the dynamic
evolution of disease in time and place and incor-
porated the biologically intuitive parameterizations.
It matches well with spatiotemporal data by fitting
several parameters, lending confidence to the anal-
ysis and justifying the model’s further generaliza-
tion.

In summary, this paper develops an inference tech-
nique for identifying the transmission patterns of
COVID-19, and it is applied to explore its diffusion
process in the provinces of China. The proposed model
takes into account the essential effects of humanmobil-
ity and disease evolution, which allow to capture the
hidden spatiotemporal dynamics and internal mecha-
nism of COVID-19 transmission. The obtained results
support the interventions that are being implemented
in China.
Designated parameters The bold capital letters denote
n × 1-dimensional column vectors. The letters with
superscript as star are the expressions of the unique
endemic equilibrium in the model. Number 0 and letter
O separately represent a n×1 column vector and a n×n
matrix, each element of which is zero. The Chinese
provinces and their abbreviations are shown in Table 2.
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