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Abstract This paper investigates the steady-state
response of a harmonically excited multi-degree-of-
freedom (MDOF) system with a Coulomb contact
between: (1) a mass and a fixed wall; (2) two different
masses; (3) a mass and an oscillating base. Although
discrete MDOF models are commonly used at early
design stages to analyse the dynamic performances of
engineering structures, the current understanding of the
friction damping effects on MDOF behaviour is still
limited due to the absence of analytical solutions. In
this contribution, closed-form expressions of the con-
tinuous time response, the displacement transmissibil-
ity and the phase angle of each mass of the system
are derived and validated numerically for 2DOF and
5DOF systems. Moreover, the features of the analyti-
cal response are investigated, obtaining the following
results: (i) the determination of the minimum amounts
of friction for which the resonant peaks become finite
and (ii) for which stick-slip motion can be observed at
high frequencies; (iii) an equation for the evaluation of

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/
s11071-021-06966-3.

L. Marino (B) · A. Cicirello
Department of Engineering Science, University of Oxford,
Parks Road, Oxford OX1 3PJ, UK
e-mail: luca.marino@eng.ox.ac.uk

A. Cicirello
Department of Engineering Structures, Delft University of
Technology, Stevinweg 1, Delft, NL 2628, The Netherlands
e-mail: a.cicirello@tudelft.nl

invariant points for the displacement transmissibilities;
(iv) a better understanding of phenomena such as the
inversions of the transmissibility curves and the onset
of additional resonant peaks due to the permanent stick-
ing of the mass in contact. All these results show that
MDOF systems exhibit significantly different dynamic
behaviours depending on whether the friction contact
and the harmonic excitation are applied to the same or
different masses.

Keywords Coulomb damping · Finite resonance ·
Displacement transmissibility · Response features ·
Invariant points · Stick-slip

1 Introduction

Many engineering structures are characterised by the
presence of frictional interfaces. When subject to
dynamic loadings, the dry friction generated by the rel-
ativemotion between the structural components in con-
tact can have detrimental effects, such as noise, wear,
loss of efficiency and failures. However, friction can
also enhance the performance of vibrating structures,
if used for purposes such as energy dissipation and
vibration control [1–3]. Friction dampers present many
advantageous properties, such as the ability to perform
in harsh or inaccessible environments, to operate simul-
taneously along different directions and to adapt to a
wide excitation bandwidth [4]. Therefore, their use is
common in many engineering systems, such as bladed
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disks and civil buildings [4–6]. Nevertheless, the cur-
rent understanding of the dynamic behaviour of friction
damped structures is still limited.

One of the main challenges for the research in this
field is the development ofmodels and constitutive laws
for describing the friction-related phenomena. Several
models have been proposed throughout the years, in the
attempt of describing the dependence of the friction
force on the sliding velocity between the surfaces in
contact [7–10] or introducing state variables account-
ing for the elastic deformation of the surface asperi-
ties [11–15]. Further details can be found in reviews
[16,17]. Another important challenge is understanding
how friction can affect the performances of vibrating
systems. In fact, even when Coulomb friction and sim-
plified mass–spring models are considered, the deter-
mination of closed-form solutions for the dynamic
response of these systems is a difficult task, due to the
nonlinearity of the problem. The limited availability
of analytical solutions also poses an important limi-
tation to the conceptual design of engineering struc-
tures. In fact, single-degree-of-freedom (SDOF) and
multi-degree-of-freedom (MDOF) mechanical models
are commonly used during the early design stages to
explore the vibration performance of frictional damp-
ing solutions. Analytical solutions could speed up
the exploration of suitable designs, avoiding the use
of more complicated and computationally expensive
models while carrying out parameter investigations,
optimisations and statistical model updating.

This paper proposes analytical expressions for the
steady-state response of MDOF systems with a single
Coulomb friction contact subjected to harmonic exci-
tation and an exploration of their dynamic behaviour
basedon these derived solutions. In particular,Coulomb
damping effects on the resonances and,more in general,
on the response amplitude and phase of each mass of
the system will be assessed. The investigation will also
include the motion regimes determined by the periodic
or permanent sticking of the mass in contact, focusing
on their effects on these response features.

The research on the forced vibration of Coulomb
damped systems has its roots in Den Hartog’s work
[18]. Den Hartog determined an exact solution for the
steady-state time response of SDOF systems in con-
tinuous non-sticking regimes, also providing analyti-
cal expressions for the response amplitude and phase;
furthermore, he also provided a formulation for the
boundary between continuous and stick-slip motion

regimes. SDOF systems with a ground-fixed wall con-
tact have lately been explored by several authors [19–
27]. Hong and Liu [19] proposed a different closed-
form expression for the response to harmonic excita-
tion, enabling the evaluation of the velocity transmis-
sibility and providing a different formulation for the
boundary between continuous and stick-slip regimes.
Hundal [21] determined an analytical solution for base-
excited systems with combined viscous and Coulomb
damping. Other authors [22–24] investigated the sta-
bility of these SDOF systems. Shaw [22] also extended
Den Hartog’s solution taking into account different
static and kinetic friction coefficients. Yeh [28] inves-
tigated a 2DOF system with viscous and Coulomb
damping. Finally, SDOF systems with a friction con-
tact between themass and an oscillating wall have been
investigated by Levitan [29] and, more recently, by
Marino et al. [27,30].

The response of more complex systems, involving
moreDOFs,multiple contacts or different frictionmod-
els is usually investigated with approaches such as
harmonic and multi-harmonic balances (see, e.g. [31–
37]). However, these methods operate in the frequency
domain and cannot be used to investigate directly non-
linear behaviours such as stick-slip motion [6]. There-
fore, numerical integration in the time domain is still
used to investigate these phenomena, despite its signif-
icant computational cost. For instance, Popp and Stel-
ter [38] used a numerical approach to investigate the
stick-slip vibration of a 2DOF systemwith bothmasses
in contact with a moving rigid belt. Further details
on the semi-analytical and numerical approaches used
in the last decades for the investigation of friction
damped systems can be found in reviews [4,6,16].
More recently, fundamental research has focused on the
numerical and experimental investigation of the stabil-
ity of SDOF andMDOF frictional oscillators, showing
that multiple stable vibration states may exist in both
self-excited and externally excited systems [39–42].

In reference [6], Rizvi et al. affirm that DenHartog’s
approach cannot handle systems with multiple nonlin-
earities due to its piecewise linear nature. Nonetheless,
this approach can also be used for dealing with MDOF
systems if a single friction contact is considered. In
fact, Yeh [28] used Den Hartog’s approach to derive a
closed-form solution for the response of a harmonically
base-excited 2DOF system where the masses are inter-
connected by two springs and two viscous dampers in
parallel and a Coulomb contact is applied on the lower
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mass. However, to the best of the authors’ knowledge,
analytical expressions have not yet been derived for the
response of systems with a larger number of DOFs and
with the harmonic excitation and/or the friction force
acting on different masses. These are the focus of the
present contribution.

In this paper, the continuous steady-state response
of a MDOF system with a Coulomb contact under har-
monic loading is investigated. In particular, exact solu-
tions are derived for the time response of all the masses
of the system and for the response amplitude and phase
of the mass in contact, while approximated analytical
expressions are proposed for the response amplitudes
and phases of the other masses. The domain of validity
of these solutions, i.e. the boundary between contin-
uous and stick-slip regimes, is also obtained and its
expression coincides with the one proposed in refer-
ence [43] if a simplifying assumption is considered.
In addition, the formulation presented in this paper
also holds if different static and kinetic friction forces
are considered. All these solutions hold for any num-
ber of DOFs and take into account harmonic and fric-
tion forces applied to different masses of the system.
Therefore, they can be applied to the analysis of early
design stages of engineering systems where MDOF
models with a single contact are of interest, including
the implementation of a friction damper in buildings
[44], car suspensions [45], taxing of airplanes models
[46] and energy harvesters [47]. MDOF systems with
multiple friction contacts cannot be addressed with the
proposed approach. Nonetheless, the general under-
standing developed in this work can be beneficial to
a wide range of applications and support the explo-
ration of engineering solutions exploiting the presence
of a frictional damper.

Finally, it can be observed that while mechanical
models with a contact between a mass and a fixed
wall are usually considered in theoretical works (see,
e.g. [18–20,22,24,25,28]), it is more often the case in
real applications that a friction contact occurs between
two oscillating components of the system, as shown
in references [44–47]. To address this aspect, the solu-
tions derived in this paper are also extended to MDOF
systems with a Coulomb contact (i) between two of
the masses of the system or (ii) between a mass and a
harmonically oscillating base.

The paper is structured as follows. The analytical
expressions are derived in Sect. 2. In Sect. 3, these ana-
lytical expressions are used to investigate the features

of the dynamic response, focusing on: (1) resonant,
low- and high-frequency behaviour; (2) the presence of
invariant points in the transmissibility curves; (3) the
effects of the permanent sticking of the mass in con-
tact. Section 4 presents a numerical validation of the
solutions presented in Sect. 2 in the cases of a 2DOF
and a 5DOF system with harmonic excitation and fric-
tion contact occurring either on the same or on differ-
entmasses. The displacement transmissibilities are also
evaluated numerically when stick-slip motion occurs,
in order to achieve a complete overview of the dynamic
response of these systems across the different motion
regimes. Finally, Sect. 5 focuses on the extension of the
solutions derived in Sect. 2 to MDOF systems with a
contact between oscillating components.

2 Analytical evaluation of the steady-state response

2.1 Formulation of the problem

Let us consider a MDOF system where N masses mi

are connected between each other and to the base by
N springs of stiffness ki , as shown in Fig. 1. The sys-
tem is subjected to a harmonic load of amplitude P and
frequency ω, applied to the lth mass; the case of a har-
monic base motion of amplitude Y can be accounted
for by assuming that a harmonic load of amplitude
P = k1Y is applied to the mass m1. A Coulomb con-
tact characterised by a friction force of amplitude F
occurs on the j th mass of the system. The generic i th
governing equation of this system can be written as:

mi ẍi − ki xi−1 + (ki + ki+1)xi − ki+1xi+1

+δ j i Fsgn(ẋ j ) = δli P cos(ωt) (1)

where xi−1 = 0 for i = 1, xi+1 = ki+1 = 0 for i = N
and:

δqs =
{
1 if q = s

0 otherwise
(2)

The sgn() function is defined as follows:

sgn(ẋ j ) =

⎧⎪⎪⎨
⎪⎪⎩
1 if ẋ j > 0

[−μ,μ] if ẋ j = 0

− 1 if ẋ j < 0

(3)
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Fig. 1 MDOF system with a friction contact on the j th mass
subjected to a harmonic excitation on the lth mass

where μ ≥ 1 is the ratio between the static and the
kinetic values of the friction force. The so-defined func-
tion is mathematically undetermined when ẋ j = 0.
The value assumed in this static condition, included
between -μ and μ, will be such that the system is in
equilibrium when the mass m j is stuck on the wall.

The dynamic behaviour of this system can be
described by referring to 2N + 1 non-dimensional
groups only:

– the frequency ratio r1 = ω
√
m1/k1;

– the friction ratio β = F/P;
– the ratio between static and kinetic friction forces

μ;
– the N − 1 mass ratios γi = mi/m1;
– the N − 1 stiffness ratios κi = ki/k1.

It is worth noting that γ1 and κ1 are equal to 1, by defi-
nition, and therefore will not be considered as parame-
ters of the system. By introducing the non-dimensional
time:

τ = ωt (4)
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Fig. 2 Harmonic excitation and continuous responses of the
mass in contact m j and of the generic mass not in contact mk
in the steady-state period included between two maxima of the
response x̄ j of the mass in contact

and the non-dimensional mass displacements:

x̄i = xi
P/k1

(5)

it is possible to rewrite Eq. (1) in a non-dimensional
form where these parameters appear explicitly:

γi r
2
1 x̄

′′
i − κi x̄i−1 + (κi + κi+1)x̄i − κi+1 x̄i+1

+δ j iβsgn(x̄
′
j ) = δli cos τ (6)

The symbol ′ will be used to indicate derivatives with
respect to the non-dimensional time τ .

2.2 General assumptions and limitations

The assumptions required for the analytical approach
proposed in this paper for MDOF systems are the same
used by Den Hartog for the SDOF case [18]:

– periodic and continuous steady-state response
– presence of a single nonlinearity in the system

The existence of a periodic steady-state response and
its independence of the assigned initial conditions have
been investigated by several authors (see, e.g., [22–
24]) for SDOF systems; however, to the best of the
authors’ knowledge, stability properties have not been
explored for MDOF systems with a friction contact.
Nevertheless, the numerical investigations carried out
in this study have shown a convergence of the response
to a unique steady-state solution formost sets of param-
eters. Specific exceptions, including the case of infinite
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resonant peaks, are reported and discussed in the fol-
lowing sections.

The second assumption is satisfied if only a sin-
gle contact is considered. Therefore, the proposed
approach cannot deal with MDOF systems with mul-
tiple Coulomb contacts occurring simultaneously on
different masses.

The harmonic excitation and themotions of themass
in contact m j and of a generic mass mk are shown in
Fig. 2 in the steady-state period included between two
maxima of x̄ j . If the above assumptions are verified, the
governing equations of the MDOF system will be lin-
ear in each interval included between two subsequent
stationary points of x̄ j , independently of the number of
DOFs of the system. If the non-dimensional time inter-
val [0, π ] is considered, where τ = 0 coincides with
a maximum of the periodic displacement of the mass
in contact and τ = π with the subsequent minimum,
the velocity of m j will be equal to zero at both ends
of the interval and negative in all the internal points.
Therefore, the non-dimensional friction force will be
constant within the interval and equal to −β. Thus, it
will be possible to rewrite Eq. (6) as:

γi r
2
1 x̄

′′
i − κi x̄i−1 + (κi + κi+1)x̄i − κi+1 x̄i+1

= δ j iβ + δli cos(τ + φ j ) (7)

where it is assumed that an unknown phase angle φ j

is present between the maxima of the excitation and
of the response of m j when a steady-state condition
is reached, due to friction damping effect. It is worth
underlining that this phase angle only refers to themax-
ima of the harmonic excitation and of the j th response.
Since the response is not a monoharmonic function,
the phase angle between their zeros will be, in general,
different from φ j .

2.3 Modal analysis procedure

The linearity of the non-dimensional governing equa-
tions in Eq. (7) enables the use of standard modal anal-
ysis for its resolution. These equations can be written
in a matrix form as:

Mx̄′′ + Kx̄ = f̄ + p̄ (8)

where:

– M is the mass matrix:

M =

⎡
⎢⎢⎢⎣
r21 0 . . . 0
0 γ2r21 . . . 0
...

...
...

...

0 0 . . . γNr21

⎤
⎥⎥⎥⎦ (9)

– K is the stiffness matrix:

K =

⎡
⎢⎢⎢⎣
1 + κ2 −κ2 0 . . . 0
−κ2 κ2 + κ3 −κ3 . . . 0

...
...

...
...

...

0 0 . . . −κN κN

⎤
⎥⎥⎥⎦ (10)

– f̄ is the friction force vector, whose only nonzero
component is β in the j th position;

– p̄ is the harmonic force vector, whose only nonzero
component is cos(τ + φ j ) in the lth position.

The N non-dimensional natural frequencies
i and the
corresponding N mode shapes

ψ i = [
ψ1i ψ2i . . . ψNi

]T
of the system described

by Eq. (7) can be found as solutions of the generalised
eigenvalue problem [48]:

(K − 
2
i M)ψ i = 0 (11)

The obtained mode shapes ψ i are defined up to a con-
stant [48] and, therefore, they need to be normalised
according to some criteria in order to have a unique
definition. In this paper, a mass normalisation is con-
sidered, i.e. it is imposed that the modal mass:

m̂i = ψT
i Mψ i (12)

is unitary.
Standard modal analysis allows the rewriting of

the governing equations of a linear system with N
DOFs as a set of N uncoupled equations, which can be
considered as the governing equations of N separate
SDOF systems [48]. This transformation is performed
by using the modal matrix � = [

ψ1 ψ2 . . . ψN

]
,

which is defined as the matrix whose columns are the
mode shapes of the system. Thus, it is possible to intro-
duce themodal coordinates ηi as the components of the
vector η obtained from the linear transformation:

x̄ = �η (13)
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By introducingEq. (13) intoEq. (8) andpre-multiplying
both sides by �T , it is possible to write:

�TM�η′′ + �TK�η = �T f̄ + �T p̄ (14)

As the mode-shapes are mass-normalised, �TM� is
equal to an identity matrix and �TK� is a diagonal
matrix whose nonzero elements are equal to
2

i . There-
fore, the i th equation of the system in Eq. (14) can be
written as:

η′′
i + 
2

i ηi = ψ j iβ + ψli cos(τ + φ j ) (15)

Equation (15) can be seen as the governing equation
of a SDOF system of unitary mass and stiffness equal
to 
2

i , subjected to a constant force of amplitude ψ j iβ

and to a harmonic load ψli cos(τ + φ j ).

2.4 Solution of the modal problem

The forced vibration problem formulated in Eq. (15)
is similar to that solved by Den Hartog [18], and its
general solution can be written as:

ηi = Ai cos

(
τ

Ri

)
+ Bi sin

(
τ

Ri

)
+ψ j i R

2
i β + ψli R

2
i vi cos(τ + φ j ) (16)

In this expression, the i th modal frequency ratio has
been introduced as:

Ri = 1


i
(17)

while the function:

vi = 1

1 − R2
i

(18)

is the response function associated to the i th mode.
Finally, Ai and Bi are two unknown constants whose
expression can be determined by considering the initial
conditions of this problem.

The initial and the final conditions to be imposed
on ηi are, in general, different from those considered
by Den Hartog for the response of a SDOF system.

In fact, in the SDOF case, the non-dimensional time
instants τ = 0 and τ = π coincide with a maximum
and aminimumof the response. However, this is not the
case, in general, for the i th modal coordinate a MDOF
system. Therefore, the initial conditions will be:

{
ηi (0) = ηi0

η′
i (0) = η′

i0

(19a)

(19b)

where the terms ηi0 and η′
i0 are both unknown at this

stage.
Substituting Eq. (16) into Eq. (19) and rearranging

the terms, the expressions of Ai and Bi are obtained:

{
Ai = ηi0 − ψ j i R

2
i β − ψli R

2
i vi cosφ j

Bi = Riη
′
i0 + ψli R

3
i vi sin φ j

(20a)

(20b)

Substituting these expressions into Eq. (16), it is pos-
sible to express the i th modal displacement as:

ηi = ηi0 cos

(
τ

Ri

)
+ η′

i0Ri sin

(
τ

Ri

)

+ψ j i R
2
i

[
1 − cos

(
τ

Ri

)]
β

+ψli R
2
i vi

[
cos τ − cos

(
τ

Ri

)]
cosφ j

+ψli R
2
i vi

[
Ri sin

(
τ

Ri

)
− sin τ

]
sin φ j (21)

Due to the symmetry of the steady-state response,
the final values of ηi and η′

i in the interval considered
will be equal to:

{
ηi (π) = −ηi0

η′
i (π) = −η′

i0

(22a)

(22b)

Therefore, substituting Eq. (21) into Eq. (22), a system
of algebraic equations is obtained in the form:

{
A cosφ j + B sin φ j + C = 0

P cosφ j + Q sin φ j + R = 0

(23a)

(23b)
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where:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = −ψli R
2
i vi

[
1 + cos

(
π

Ri

)]

B = ψli R
3
i vi sin

(
π

Ri

)

C =
[
1 + cos

(
π

Ri

)]
ηi0

+ Ri sin

(
π

Ri

)
η′
i0 + ψ j i R

2
i

[
1 − cos

(
π

Ri

)]
β

P = ψli Rivi sin

(
π

Ri

)

Q = ψli R
2
i vi

[
1 + cos

(
π

Ri

)]

R = − 1

Ri
sin

(
π

Ri

)
ηi0

+
[
1 + cos

(
π

Ri

)]
η′
i0 + ψ j i Ri sin

(
π

Ri

)
β

(24a)

(24b)

(24c)

(24d)

(24e)

(24f)

The unknown values of cosφ j and sin φ j can be
obtained from Eq. (23) as:

cosφ j = BR − CQ

AQ − BP
sin φ j = CP − AR

AQ − BP

(25)

Substituting Eq. (24) into Eq. (25), it is obtained that:

cosφ j = ηi0

ψli R2
i vi

(26)

and:

sin φ j = − η′
i0

ψli R2
i vi

− ψ j i sin(π/Ri )

ψli Rivi [1 + cos(π/Ri )]
β

(27)

Let us introduce the damping function of the i th mode
of the system as:

ui = sin(π/Ri )

Ri [1 + cos(π/Ri )]
(28)

in the same form as the damping function introduced by
DenHartog [18] for SDOF systems. Thus, it is possible

to rewrite Eq. (27) as:

sin φ j = −η′
i0 + ψ j i R2

i uiβ

ψli R2
i vi

(29)

By substituting Eqs. (26) and (29) into Eq. (21), it
is possible to express the i th modal coordinate as:

ηi = ηi0 cos τ + (η′
i0 + ψ j i R

2
i ui ) sin τ

+ψ j i R
2
i

[
1 − cos

(
τ

Ri

)
− ui Ri sin

(
τ

Ri

)]
β

(30)

In this expression, the initial values of the modal coor-
dinate and of its derivative are still to be determined.

2.5 Response of the mass in contact

As specified in Sect. 2.2, the extremes of the non-
dimensional time interval [0, π ] coincide, respectively,
with a maximum and a minimum of the response of the
mass in contactm j . Therefore, the initial conditions for
this motion can be expressed as:

{
x̄ j (0) = X j

x̄ ′
j (0) = 0

(31a)

(31b)

where X j indicates the amplitude of the non-
dimensional displacement of the mass m j . As the
amplitude of the non-dimensional excitation is uni-
tary, this value also represents the j th magnification
factor or displacement transmissibility of the system.
These initial conditions can be imposed to determine
the unknown amplitude and phase angle of the response
x̄ j . By introducing the j th coordinate transformation
from Eq. (13) into Eq. (31), it is obtained that ηi0 and
η′
i0 must verify the conditions:

N∑
i=1

ψ j iηi0 = X j (32)

and

N∑
i=1

ψ j iη
′
i0 = 0 (33)
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respectively. These relations can be used to eliminate
ηi0 and η′

i0 from the expression of the phase angle φ j .
Let us multiply both numerator and denominator of the
RHS of Eq. (26) by ψ j i , obtaining:

cosφ j = ψ j iηi0

ψ j iψli R2
i vi

(34)

For each modal contribution, the quantity on the RHS
of Eq. (34) is constant. As a result, by taking the sum of
the N modal contributions of the numerator anddenom-
inator, the ratio will remain unchanged:

cosφ j =
∑N

i=1 ψ j iηi0∑N
i=1 ψ j iψli R2

i vi
(35)

Similarly, the generic kth response function of an
undamped MDOF system of N masses subjected to a
harmonic load acting on the lth mass can be expressed
as [43]:

Vk =
∑N

i=1
ψkiψli R

2
i vi (36)

Substituting Eqs. (32) and (36) for j = k, it is possible
to rewrite Eq. (35) as:

cosφ j = X j

Vj
(37)

In a similar fashion, starting fromEq. (29), it is possible
to obtain the relation:

sin φ j = −
∑N

i=1 ψ j iη
′
i0 + β

∑N
i=1 ψ2

j i R
2
i ui∑N

i=1 ψ j iψli R2
i vi

(38)

Let us introduce the generic kth damping function of a
MDOF system of N masses with a contact on the j th
mass as:

Uk =
N∑
i=1

ψkiψ j i R
2
i ui (39)

consistently with the formulation used in Eq. (36) for
the response function. Substituting Eq. (33), Eq. (36)
and Eq. (39) into Eq. (38) for j = k, it can be obtained
that:

sin φ j = −βUj

Vj
(40)

Substituting Eqs. (37) and (40) in the relation cos2 φ j +
sin2 φ j = 1 and rearranging, it is possible to obtain the
j th displacement transmissibility as:

X j =
√
V 2
j − (βUj )2 (41)

It is worth observing that these expressions of the dis-
placement transmissibility and of the phase angle are
formally identical to those obtained by Den Hartog for
SDOF systems [18] and reduce to the same expressions
if N = 1.

Finally, the following expression is obtained for the
non-dimensional time response of the mass m j in the
interval [0, π ] by applying the j th equation of the trans-
formation from modal to physical coordinates from
Eq. (13) to Eq. (30):

x̄ j =
N∑
i=1

ψ j iηi0 cos τ

+
(

N∑
i=1

ψ j iη
′
i0 + β

N∑
i=1

ψ2
j i R

2
i ui

)
sin τ

+β

N∑
i=1

ψ2
j i R

2
i

[
1 − cos

(
τ

Ri

)
− ui Ri sin

(
τ

Ri

)]

(42)

Considering Eqs. (32), (33) and (39), it is possible to
rewrite the above expression as:

x̄ j = X j cos τ + βUj sin τ

+β

N∑
i=1

ψ2
j i R

2
i

[
1 − cos

(
τ

Ri

)
− ui Ri sin

(
τ

Ri

)]

(43)

Also in this case, Den Hartog’s expression for the time
response of a SDOF system [18] is retrieved for N = 1.

2.6 Response of a generic mass of the system

The time response of the genericmassmk of theMDOF
system can be foundwith a similar approach. In fact, by
introducing the kth equation fromEq. (13) intoEq. (30),
it is obtained that:
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x̄k = x̄k0 cos τ + (x̄ ′
k0 + βUk) sin τ

+β

N∑
i=1

ψ j iψki R
2
i

[
1 − cos

(
τ

Ri

)
− ui Ri sin

(
τ

Ri

)]

(44)

where x̄k0 and x̄ ′
k0 are, respectively, the initial values

of the displacement and of the velocity of mk in the
interval considered; these values are unknown at this
stage.

In order to determine x̄k0 and x̄ ′
k0, let us multiply

numerator and denominator of the RHS of Eq. (26) and
Eq. (29) by ψki and consider their summations from
i = 1 to N , proceeding as in Sect. 2.5. The expressions
obtained are:

cosφ j =
∑N

i=1 ψkiηi0∑N
i=1 ψkiψli R2

i vi
= x̄k0

Vk
(45)

from Eq. (26) and

sin φ j = − x̄ ′
k0 + βUk

Vk
(46)

from Eq. (29). The initial displacement of mk can be
determined by substituting Eq. (37) into Eq. (45):

x̄k0 = Vk
Vj

X j = Vk
Vj

√
V 2
j − (βUj )2 (47)

Similarly, considering Eqs. (40) and (46), the initial
velocity can be formulated as:

x̄ ′
k0 = β

(
Vk
Vj

U j −Uk

)
(48)

The time response of the generic mass mk can now
be evaluated by substituting Eqs. (47) and (48) into
Eq. (44), obtaining:

x̄k = Vk
Vj

(
X j cos τ + βUj sin τ

)+ β

N∑
i=1

ψ j iψki R
2
i

×
[
1 − cos

(
τ

Ri

)
− ui Ri sin

(
τ

Ri

)]
(49)

It can be observed that this expression reduces to
Eq. (43) if j = k.

The amplitude and the phase angle of x̄k cannot
be easily determined from the expression of the time
response x̄k . In general, the evaluation of the maximum
absolute value of x̄k within the non-dimensional time
interval [0, π ] can be performed numerically and its
value will coincide with the kth displacement trans-
missibility. Moreover, if the maximum value of |x̄k | is
verified at τ = τk,max, the phase angle between the
excitation and the displacement of the mass mk can be
calculated as:

{
φk = φ j + τk,max if x̄k(τk,max) ≥ 0

φk = φ j + τk,max + π if x̄k(τk,max) < 0.

(50a)

(50b)

This approach for the determination of Xk and φk

does not yield information on their dependency on
the parameters of the problem. Therefore, an approx-
imated approach for determining explicit analytical
expressions for the displacement transmissibility and
the phase angle of a generic mass of the system is pro-
posed in what follows.

A monoharmonic approximation of the motion of
the mass m j in the interval [0, π ] could simply be
obtained as x̄ j ∼= X j cos τ . Such a formulation would
neglect the non-harmonic behaviour of the response
due to nonlinearity but would agree with the exact solu-
tion from Eq. (43) at both ends of the interval, thus
providing the exact amplitude and phase angle of the
response. Nevertheless, the same approximation can-
not be directly introduced for the motion of the generic
mass mk . In fact, a certain phase shift φk j is generally
present between the displacements of m j and mk ; as
a consequence, the initial and the final points of x̄k in
[0, π ] are not stationary points. Comparing Eq. (43)
and Eq. (44), it is possible to observe that this effect is
expressed by the term x̄ ′

k0 sin τ , which is equal to zero
in the case j = k. This term cannot be disregarded in a
monoharmonic approximation. Thus, the formulation
hereby proposed is:

x̄k ∼= x̄k0 cos τ + x̄ ′
k0 sin τ = Xk cos(τ − φk j ) (51)
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where

Xk =
√
x̄2k0 + x̄ ′2

k0 =
√
V 2
k +

(
1 − 2

Vk
Vj

U j

Uk

)
(βUk)2

(52)

is the approximated kth displacement transmissibility
of the MDOF system, while the phase angle φk j can be
determined as:

cosφk j = x̄k0
Xk

sin φk j = x̄ ′
k0

Xk
(53)

The phase angle between the excitation and the dis-
placement of the kth mass will be finally obtained as
φk = φ j + φk j . Equations (52) and (53) offer a very
good approximation of the exact transmissibilities and
phase angles of the mass not in contact and will be
used in the remaining of the paper. The absolute errors
introduced with the respect to the exact quantities are
mostly negligible for all the cases investigated.

2.7 Boundaries between continuous and stick-slip
motion regimes

The solutions presented in this section have been deter-
minedunder the assumptionof continuous non-sticking
response. In Sect. 2.2, it has been specified that the pro-
posed mathematical procedure only holds if the veloc-
ity of the mass in contactm j is negative in all the inter-
nal points of the non- dimensional time interval [0, π ].
In addition, in order to observe a continuous response,
it is also required that the sum of all the non-inertial
forces acting on the mass m j is larger than the static
friction force at both ends of this time interval, where
x̄ ′
j = 0. Differently, a sticking phase would take place.

These non-sticking conditions can be expressed as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̄ ′
j < 0 if 0 < τ < π

∣∣∣∣∣
N∑

k=1

K jk x̄k − δl j cos(τ + φ j )

∣∣∣∣∣ > μβ

if τ = 0 or τ = π

(54a)

(54b)

These two conditions can be used to obtain the max-
imum value of the friction ratio for which the steady-
state response is non-sticking.

Let us consider the derivative of the j thmassmotion
from Eq. (43), so that Eq. (54a) can be rewritten as:

−X j sin τ + βUj cos τ

+β

N∑
i=1

ψ2
j i R

2
i

[
1

Ri
sin

(
τ

Ri

)
− ui cos

(
τ

Ri

)]
< 0

(55)

from which

X j > β

N∑
i=1

ψ2
j i

Ri sin(τ/Ri ) + ui R2
i [cos τ − cos(τ/Ri )]

sin τ
(56)

This relation is verified if X j is larger than the maxi-
mum value assumed by the RHS in the interval ]0, π [.
Thus, introducing the function:

S j =
N∑
i=1

ψ2
j i si (57)

where:

si = max
0<τ<π

Ri sin(τ/Ri ) + ui R2
i [cos τ − cos(τ/Ri )]

sin τ

(58)

it is possible to rewrite Eq. (56) as:

X j > βS j (59)

Substituting Eq. (41) into Eq. (59) and rearranging, it is
possible to express this relation in terms of the friction
ratio as:

β <

√√√√ V 2
j

U 2
j + S2j

(60)

Let us now consider the second non-sticking condi-
tion, expressed in Eq. (54b). Due to the symmetry of
the steady-state response, only the case τ = 0 needs to
be considered. By introducing the transformation from
Eq. (13), it is possible to rewrite this condition in terms
of the i th modal coordinate as:

|
2
i ηi0 − ψli cosφ j | > ψ j iμβ (61)
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By substituting Eq. (26) into Eq. (61), it is obtained
that:

|ηi0| > ψ j iμβ (62)

from which, multiplying both sides by ψ j i and con-
sidering the sums from 1 to N , it can be written that:

X j > μβ

N∑
i=1

ψ2
j i (63)

Considering that, from the j th equation of the system
in Eq. (12):

N∑
i=1

ψ2
j i = 1

γ j r21
(64)

and substituting Eq. (41), it is possible to express this
condition in terms of the friction ratio as:

β <

√√√√√√
V 2
j

U 2
j +

(
μ

γ j r21

)2 (65)

Finally, Eqs. (60) and (65) can bemerged in the follow-
ing overall condition for obtaining a continuous non-
sticking response:

β <

√√√√√√√
V 2
j

U 2
j +

[
max

(
S j ,

μ

γ j r21
.

)]2 (66)

The RHS of the above inequality represents the value
of the friction ratio at the boundary between continu-
ous and stick-slip motion regimes and will be referred
to as βlim in the remaining of this paper. Furthermore,
it is possible to express the boundary between con-
tinuous and stick-slip motion in terms of any of the
displacement transmissibilities or phase angles of the
MDOFsystemby simply substitutingEq. (66) into their
expression.

It is worth observing that in the limit case of μ = 1,
when static and kinetic friction forces are assumed to be
equal, the boundary can simply be expressed referring
to Eq. (60). In fact, as stated by Den Hartog [18], the

function si is always equal or larger than unity and
therefore from Eq. (57) and Eq. (64):

S j ≥ 1

γ j r21
(67)

This implies that the condition in Eq. (54b) is always
verified if Eq. (54a) is verified. Moreover, Den Hartog
affirms that si is unitary for most values frequency ratio
[18]. If the assumption of si = 1 is considered, the
expression of the upper bound for continuous motion
reduces to:

β <

√√√√√√
V 2
j

U 2
j +

(
1

γ j r21

)2 (68)

which is the expression of the boundary proposed in
[43]. This approximated expression can be advanta-
geous since it does not require to compute si from the
time response for each value of r1. Although it has
been observed that Eq. (60) and Eq. (68) give slightly
different results only when low frequency ratios are
considered, the exact formulation will be used in this
paper.

3 Features of the dynamic response

This section focuses on investigating features of the
dynamic response of a MDOF system with a contact
on the j th mass and subjected to a harmonic excitation
acting on the lth mass. This investigation is based on
the analytical solutions derived in Sect. 2 for its contin-
uous steady-state response and the boundaries between
continuous and stick-slip motion regimes and focuses
on: (i) resonant, low- and high-frequency behaviours,
(ii) the presence of invariant points in the transmissibil-
ity curves and (iii) the effect of stuck friction contacts
on the dynamic response of the system. A 3DOF sys-
tem with unitary stiffness and mass ratios, a friction
contact occurring on the m2, characterised by equal
static and kinetic friction forces, and a harmonic load
applied on m1, shown in Fig. 3a, will be used to show
these response features.
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Fig. 3 3DOF system with unitary mass and stiffness ratios, a
Coulomb friction contact on m2 and a harmonic excitation on
m1: (a) schematic representation of the system, (b) analytical
displacement transmissibility onm1 for varying r1 and β in con-
tinuous motion regime and (c) stuck configuration of the system.

The black dashed line represents the boundary between contin-
uous and stick-slip regimes, while the black dotted line portrays
the transmissibility in stuck configuration. The invariant points
P1 and P2 are highlighted in magenta

3.1 Resonant behaviour

The effect of frictiondampingon the resonant behaviour
of a system is very different from that provided, for
instance, by viscous or hysteretic damping (see, e.g.
[49]). In the case of SDOF systems, it is well-known
that friction does not affect the damped natural fre-
quency of the system and does not provide a finite
resonance if β < π/4 (see, e.g. [18,24]). This value
represents the minimum friction ratio for which stick-
slip occurs in the response of a SDOF system when the
ratio between driving and natural frequency is unitary
[30]. Thus, it can be deduced that friction can avoid
infinite resonant peaks only by introducing stick-slip
in the response.

Let us denote with βn,i the threshold value of the
friction ratio forwhich the i th resonant peakof aMDOF
systemwith aCoulomb contact becomes finite.βn,i can
be determined by evaluating the value of the boundary
between continuous and stick-slipmotion fromEq. (60)
for Ri → 1. Observing that in the expressions of the
response and of the damping functions, in Eqs. (36) and
(39), respectively, only the i th terms of the summations
tend to infinity, it is possible to write:

βn,i = lim
Ri→1

βlim =
∣∣∣∣ψli

ψ j i

∣∣∣∣ lim
Ri→1

1

1 − R2
i

sin(π/Ri )

Ri [1 + cos(π/Ri )]
(69)

The limit in Eq. (69) has already been evaluated in [30],
and it is equal to π/4. Therefore, the minimum friction
ratio required for observing a finite i th resonant peak
will be:

βn,i = π

4

∣∣∣∣ψli

ψ j i

∣∣∣∣ (70)

It must be observed that, in the above equation, the
ratio between ψli and ψ j i is always independent of the
frequency ratio.

In the 3DOF system shown in Fig. 3a, the thresh-
old values of the friction ratio calculated from Eq. (70)
are equal to βn,1 = 0.436, βn,2 = 1.765 and βn,3 =
0.630. These results are in agreement with the reso-
nant behaviour exhibited by the transmissibility curves
shown in Fig. 3b for the mass m1 of this system.
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Equation (70) shows that, in general, the different
resonant peaks of a MDOF system will become finite
for different values ofβ. However, if the harmonic exci-
tation and the friction force act on the same mass, i.e.
if j = l, βn,i will be equal to:

βn,i = π

4
∼= 0.785 (71)

for any i , meaning that all the resonant peaks of the
system will become finite for the same threshold value
of the friction ratio.

3.2 Quasi-static conditions

The dynamic response of SDOF systemswithCoulomb
friction in quasi-static conditions is usually charac-
terised by the occurrence of stick-slip motion. More-
over, when the frequency ratio approaches to zero, the
number of stops per cycle can increase significantly, as
shown by many authors (see, e.g. [20,50]).

It can be shown that stick-slip motion usually occurs
at very low frequency ratios also in the MDOF case. In
fact, the evaluation of the boundary friction ratio from
Eq. (60) for ω → 0 and, therefore, for Ri → 0 yields:

β0 = lim
Ri→0

βlim = 0 (72)

This equation reveals that any nonzero value of the fric-
tion ratio would lead to stick-slip in quasi-static condi-
tions.

Thenumerical investigations carried out in this study
showed that the dynamic response of MDOF systems
is characterised, as in the SDOF case, by an increas-
ing number of stops for r1 → 0. However, the start-
ing point of the transmissibility curves at r1 = 0 can
be evaluated analytically, avoiding the complications
which may arise in numerical approaches due to the
large number of stops per cycle.

Let us rewrite the governing equations of the prob-
lem from Eq. (8) in static conditions. If ω = 0, then
both r1 and τ will also be equal to zero. Thus, the har-
monic excitation will reduce to a constant force, which
will be opposed by a constant friction force. Therefore,
the governing equations will reduce to:

Kx̄0 = p̄0 − f̄0 (73)

where

– x̄0 = [
X10, . . . , XN0

]T
is the vector of the dis-

placement transmissibilities for r1 = 0;
– p̄0 is a vector whose only nonzero component is
equal to 1 in the lth position;

– f̄0 is a vector whose only nonzero component is
equal to β in the j th position.

The starting points of the transmissibilities curves
can be evaluated as solutions of the linear algebraic
system expressed in Eq. (73). In the case of a SDOF
system, the solution is given by X0 = 1− β, in agree-
ment with the starting value observed by Csernak et al.
in reference [24], while for the 3DOF system in Fig. 3a
the values obtained are X10 = 1 − β, X20 = 1 − 2β
and X30 = 1 − 2β.

The validity of these results is limited to the cases
where either continuous and stick-slip motion regimes
occur in quasi-static conditions, while a different
approach is required if the mass in contact is perma-
nently stuck. This case will be discussed in Sect. 3.5.

3.3 High-frequency behaviour

In reference [30], the behaviour at high frequency ratios
of a SDOF system with Coulomb friction subjected
to harmonic excitation is analysed. This investigation
revealed that, although the amplitude of the response
always converges to zero when the driving frequency
tends to infinity, the boundary between continuous and
stick-slip motion converges to a specific value, which
is:

β∞ = 2√
4 + π2

∼= 0.537 (74)

assuming equal values for the static and the kinetic
friction forces. The meaning of this result is that stick-
slip can occur at high frequencies in SDOF systems
only if the friction ratio is larger than the above value.

The occurrence of stick-slip motion at high fre-
quency ratios in the response of a MDOF system can
be investigated by evaluating the limit of the boundary
friction ratio from Eq. (60) for ω → ∞. Considering
that Ri will also tend to infinity in this case, it is possible
to write:
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β∞ = lim
Ri→∞ βlim =

√√√√√√√√√

(
N∑
i=1

ψliψ j i

)2

(
μ + π2

4

)(
N∑
i=1

ψ2
j i

)2 (75)

Given the orthogonality conditions of themode shapes,
the boundary friction ratio will be equal to:

β∞ =

⎧⎪⎨
⎪⎩

2√
4μ + π2

if j = l

0 if j �= l

(76)

Therefore,

– when the harmonic and the friction forces act on
the same mass of the MDOF system, stick-slip will
occur at high frequencies only if the friction ratio is
larger than the above value, which coincides with
the result of Eq. (74) if μ = 1;

– otherwise, stick-slip will occur for r1 → ∞ for any
nonzero value of β.

In the case of the 3DOF system shown in Fig. 3a, the
harmonic load and the friction contact are applied on
differentmasses and, therefore, stick-slip occurs at high
frequencies for anyvalue of the friction ratio; this is also
observed in Fig. 3b.

3.4 Invariant points

In Fig. 3b, it can be observed that the transmissibility
curves, illustrated for the bottom mass of the 3DOF
system in continuous motion regime, pass through two
points denoted as P1 and P2, which are commonly
defined as invariant points. In these points, the response
amplitude is independent of the damping, which is rep-
resented in this case by the friction ratio.

The presence of invariant points in the transmissi-
bility curves is regarded as an important aspect in the
design of mechanical systems such as dynamic vibra-
tion absorbers [51–53] and car suspensions [54,55].
In particular, according to the Den Hartog’s the-
ory illustrated in reference [56], these points can be
used to determine the optimal configuration of a vis-
cous damper acting as vibration absorber for a main
undamped SDOF system. An approach for determin-
ing the presence of invariant points in the transmissibil-

ities of the MDOF system investigated in this section
is proposed in what follows.

Let us consider the expression of the displacement
transmissibility provided by Eq. (41) for mass in con-
tact of theMDOF system. It appears clear that the trans-
missibility will not depend on the friction ratio if:

Uj = 0 (77)

Thus, this equation can be used to find the invariant
points for the response of themassm j . FromEq. (41), it
can also be deduced that, at any other frequency ratios,
X j will always decrease for increasing β; therefore, no
inversion of the transmissibility curveswill be observed
across the invariant points in this case. Moreover, from
Eq. (37) and Eq. (40), it is possible to observe that the
points determined from Eq. (77) will also be invariant
for the phase angleφ j . Particularly, fromEq. (40), it can
be deduced that the corresponding value of φ j will be
equal to 0 or 180 degrees, i.e. the excitation and the j th
mass motion will be in phase or in phase-opposition.
The phase angle curves will also exhibit an inversion
across these points.

Let us now consider the generic kth displacement
transmissibility of the system. From Eq. (52), it is pos-
sible to deduce that the invariant points can be obtained
not only from the equation Uk = 0, but also from:

1 − 2
Vk
Vj

U j

Uk
= 0 (78)

The points determined as solutions of the latter equa-
tion are associated to an inversion of the transmissibil-
ity curves. This behaviour can only be observed in the
transmissibilities of the masses not in contact. Further-
more, these points are not invariant for the phase angle
φk .

It is important to note that Eqs. (77) and (78) hold
only for a continuous response of the MDOF system.
In general, transmissibility curveswill not pass through
an invariant point if stick-slip or permanent sticking of
the mass in contact occurs at the corresponding fre-
quency ratio. Finally, it is worth observing Eqs. (77)
and (78) are transcendental equations and have infinite
solutions. Nevertheless, as shown in Sect. 5, the vast
majority of these solutions are characterised by very
small values of frequency ratio, where usually stick-
slip motion occurs, and can therefore be disregarded.
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3.5 Stuck configurations

In friction damped systems, sliding can occur between
two components in contact either continuously or in
alternation with sticking phases. However, it is well
known that friction contacts can also become perma-
nently stuck under certain conditions (see, e.g., [43]).

In the case of a SDOF system with a fixed wall
contact under harmonic excitation, massmotion occurs
only when the amplitude of the harmonic load exceeds
the value of the static friction force, i.e. if μβ < 1
[43]. The same principle holds, more in general, for
the mass in contact of a MDOF system. In this case,
the static friction force must be compared to the sum
of all the spring and harmonic forces acting directly on
this mass [43]. However, evenwhen themass in contact
is stuck, some masses of the system can still exhibit a
dynamic response, depending on where the harmonic
and the friction forces are applied. The reduced sys-
tem which remains active when m j is stuck will be
referred to as stuck configuration of the MDOF sys-
tem and its response can be evaluated as proposed in
reference [43]:

– if j > l, only the masses m1, . . . ,m j−1 will be
excited. Thus, the stuck configuration of the system
will be represented by an undamped system with
j − 1 DOFs, where the stuck j th mass is replaced
by a fixed wall. The response of this system can be
evaluated from standard modal analysis and will be
characterised by the presence of j −1 infinite reso-
nant peaks located, in general, at different frequen-
cies with respect to those of the original system;

– if j < l, only the masses m j+1, . . . ,mN will be
excited and, therefore, the stuck configuration of
the system will include N − j DOFs. All the above
considerations apply, except that, in this case, the
stuck system will exhibit N − j infinite resonant
peaks;

– finally, if j = l, the harmonic excitation is applied
to the stuck mass and, therefore, is not transmitted
to any of the other masses, leaving the MDOF sys-
tem fully stuck. Obviously, this is also the case for
a SDOF system.

Denoting with X∗
i the i th displacement transmissi-

bility of the system in stuck configuration, it is therefore
possible to write the conditions for observing sliding

motion between the mass m j and the wall as:

⎧⎪⎪⎨
⎪⎪⎩

β < (κ j X
∗
j−1)/μ if j > l

β < (κ j+1X
∗
j+1)/μ if j < l

β < 1/μ if j = l

(79a)

(79b)

(79c)

In the example of the 3DOF system in Fig. 3a, the
stuck configuration consists in the SDOF system shown
in Fig. 3c, where the bottommass is the only remaining
active DOF, while the intermediate mass is replaced by
a fixed wall. The displacement transmissibility for m1

in stuck conditions can be obtained as:

X∗
1 = 1

|2 − r21 | (80)

and is represented by a dotted line in Fig. 3b. According
to Eq. (79), sliding occurs between themassm2 and the
wall if X∗

1 > β. This implies that, for each value of β,
the system will operate in a non-stuck configuration
only in the frequency ratio range:

√
2β − 1

β
< r1 <

√
1 + 2β

β
(81)

The lower bound of Eq. (81) reduces to r1 = 0 if
β ≤ 0.5, while the upper bound is defined for any
nonzero value of β. Therefore, in the presence of fric-
tion damping, the massm2 will always become stuck at
high frequency ratios beyond the threshold expressed in
the above inequality. Moreover, these bounds will con-
verge to a single point at r1 = √

2 only for β → ∞.
Therefore, even when the friction ratio is very large,
sliding motion will always occur in the contact in a
small range of frequencies around the resonance of the
stuck configuration and the transmissibilitywill assume
a finite value in this range.

The last two properties, regarding high-frequency
and resonant behaviours, can easily be generalised to
anyMDOF systems with j �= l. In fact, since the trans-
missibility curves of any undamped system tend to zero
for r1 → ∞ and tend to infinity at resonance, Eqs. (79a)
and (79b) are not verified for any value of β in the first
case and always met in the latter.
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Fig. 4 2DOF systemwith a friction contact and a harmonic load
on the lower mass (a) and comparison between analytical (con-
tinuous lines) and numerical (round markers) steady-state time

responses for two different sets of mass, stiffness, friction and
frequency ratios (b, c)

4 Numerical validation and stick-slip response

In this section, the analytical solutions introduced in
Sect. 2 for the continuous response of MDOF systems
are compared to the results yielded by the numeri-
cal approach introduced in reference [43]. Moreover,
the response is also evaluated numerically in stick-slip
regimes, providing a validation of the analytical bound-
aries between continuous and stick-slipmotion regimes
and a complete overview of the dynamic behaviour for
varying frequency and friction ratios. The stick-slip
responses have been evaluated, for simplicity, in the
case of μ = 1; different results would be obtained, in
general, if a different value of the static friction force
is considered.

In Sect. 3, it has been shown that the continuous
response features can be significantly different depend-
ing on whether the friction and the harmonic forces
are applied on the same or on different masses. There-
fore, these two different classes of MDOF systems will
be dealt with separately. In each case, analytical and
numerical results will be first compared and discussed
in detail for the 2DOF case and then generalised to
systems with a larger number of DOFs, referring to the
case of a 5DOF system. Moreover, for each of these
systems, the analytical boundaries among continuous,
stick-slip and permanent sticking regimeswill be repre-
sented in a 2-D parameter space for varying frequency
and friction ratios in the assumption of μ = 1, while
their variation with the static friction force is shown in
Appendix A.

4.1 Systems with excitation and contact on the same
mass

4.1.1 2DOF system with excitation and contact on m1

The analytical and numerical results for the dynamic
response of the 2DOF system with j = l = 1 shown
in Fig. 4a are discussed in what follows.

Figures 4b, c present a comparison between the ana-
lytical and numerical time responses of the masses m1

and m2. These results have been plotted in the non-
dimensional time interval [0, π ] for two different sets
of the parameters r1, β, κ and γ , exhibiting in both
cases an excellent agreement. The harmonic excitation
cos(τ + φ1) is also represented and appears perfectly
aligned to the numerical forcing function, showing that
a very good agreement is also achieved for the phase
angle φ1.

The analytical and the numerical displacement
transmissibilities and phase angles are shown inFig. 5a,
b for varying frequency and friction ratios and uni-
tary stiffness and mass ratios. Specifically, the fre-
quency ratio varies in the range 0 : 2.5 and the fric-
tion ratios 0 : 0.2 : 0.8 are considered. In these fig-
ures, it is possible to observe an excellent agreement
between the analytical (continuous lines) and numer-
ical results (rounded markers) when the motion of
m1 is continuous. The analytical boundaries between
continuous and stick-slip regimes are represented by
a black dashed line. Numerical transmissibilities for
stick-slip responses are also included (diamond mark-
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Fig. 5 Displacement transmissibilities and phase angles of a
2DOF system with a Coulomb contact and a harmonic load on
m1 for varying friction ratio and unitarymass and stiffness ratios,
displayed on m1 (a) and on m2 (b). Analytical results are rep-

resented by the continuous lines, while numerical results are
represented with round (continuous motion) and with diamond
markers (stick-slip motion). The black dashed line represents the
boundary between continuous and stick-slip regimes

ers). It can be observed that stick-slip motion occurs in
the numerical responses only when the transmissibility
is smaller than the boundary value, showing that the
motion regimes occurring in the numerical results are
in agreement with the analytical prediction. Numerical
phase angles have only been evaluated for continuous
responses. In fact, in this paper, the phase angle between
the excitation and the response of each mass is referred
to their maxima (see Sect. 2.2), but this definition can-
not be used for stick-slip motion, where the maximum
response of the mass in contact usually coincides with
a sticking phase rather than a single point.

The following features of the dynamic response of
this 2DOF system are observed in Fig. 5.

– Both resonant peaks are finite only in the case β =
0.8, in agreement with Eq. (71).

– From Eq. (73), it can be calculated the starting val-
ues of the transmissibility curves at r1 = 0 are
X10 = X20 = 1 − β. These values are in agree-
ment with those displayed in both transmissibility
plots.

– At low frequency ratios, the response of the sys-
tem is characterised by the occurrence of stick-slip
motion. For most values of the friction ratio, the
response is continuous starting from r1 = 0.559.
Among those displayed, only in the case β = 0.2
continuous motion occurs at lower frequencies,
specifically in the range 0.372 < r1 < 0.524. The
patterns exhibited by the transmissibility curves in
the low frequency ratio range are very similar to
those observed for SDOF systems (see, e.g. Fig. 11
in reference [27]).

– It can be observed that stick-slip motion occurs at
high frequencies for β = 0.8 and it has been ver-
ified that this is also the case for β = 0.6, even
though the transition from continuous to stick-slip
regime does not occur within the range of frequen-
cies displayed in Fig. 5. This behaviour is in agree-
ment with Eq. (76).

– The invariant points of X1 can be evaluated from
Eq. (77). These points are observed in Fig. 5a as the
intersections between the undampedand thebound-
ary curves,which are particularlywell-visible in the

123



1692 L. Marino, A. Cicirello

0 0.5 1 1.5 2 2.5
Frequency ratio [r1]

0

0.2

0.4

0.6

0.8

1

1.2
Fr

ic
tio

n 
ra

tio
 [

]
Stuck
Stick-slip
Continuous

Fig. 6 Motion regimes of a 2DOF system with a Coulomb con-
tact and a harmonic load onm1 for varying frequency and friction
ratios. The black continuous lines represent the exact boundaries,
while the red dashed curve represents the approximated bound-
ary proposed in [43]

phase angle plot. As anticipated in Sect. 3.2, most
of these points are located in the low-frequency
region, where the response is discontinuous for
most values of β. Since Eq. (77) only holds for con-
tinuous regime, the transmissibility and the phase
angle curves will not pass through these points,
which can therefore be disregarded. The only rel-
evant solutions are r1 = 0.559 and r1 = 1.123,
which represent the main points of transition from
continuous to stick-slip regime for most curves.

– The invariant points of X2, which can be obtained
from Eq. (78), are associated with local inversions
of the transmissibility curves, occurring at 0.527 <

r1 < 0.576 and 1 < r1 < 1.201. However, as
shown in Fig. 5b, none of these is associated with
a significant increase of X2 with β.

– It can be observed that φ2 ∼= φ1 for r1 <
√

κ/γ

and φ2 ∼= φ1 + π for r1 ≥ √
κ/γ . This result can

be explained by observing that mass m2 is only
excited, through the upper spring, by the motion of
the lower mass, which is nearly monoharmonic in
most cases.

Finally, Fig. 6 shows the analytical boundaries
among continuous, stick-slip and permanent sticking
motion regimes, obtained by using Eqs. (66) and (79),
respectively. The boundary between continuous and
stick-slip regimes obtained using the approximated for-
mulation from Eq. (68), which had already been pro-

posed and numerically validated in reference [43], is
represented by the red curve. The exact and approxi-
mated boundary curves are very similar but somediffer-
ences can be observed at low frequency ratios, where
the exact boundary presents a smoother pattern and
does not intersect the boundary between sliding and
permanent sticking regimes.

4.1.2 5DOF system with excitation and contact on m1

Most of the response features discussed for the 2DOF
case can also be observed in systemswith a larger num-
ber of DOFs if excitation and contact are applied to the
same mass.

Let us consider, for instance, the case of a 5DOF
system with unitary stiffness and mass ratios where
j = l = 1, as shown in Fig. 7a. The analytical trans-
missibilities and phase angles are plotted in Fig. 7b, c,
for the same frequency ratio range and values of friction
ratio considered in Sect. 4.1.1; in Fig. 7b, the numer-
ical transmissibilities in stick-slip regime have also
been included. The analytical and the numerical time
responses of this system are shown, for a specific set of
parameters, in Fig. 8a, exhibiting an excellent agree-
ment. Analytical and numerical phase angles curves,
associated with the different masses of the system, are
shown in Fig. 8b for varying r1 and β = 0.4; also
in this case, a very good agreement can be observed.
Finally, the boundaries among continuous, stick-slip
and permanent stickingmotion regimes are represented
in Fig. 9.

From these figures, the following behaviours can be
observed:

– the transmissibility curves present finite resonant
peaks only in the case β = 0.8, among those con-
sidered;

– the displacement transmissibilities are generally
decreasing for increasing values of β. Local inver-
sions can be observed for the masses not in contact,
but they always occur in small intervals of r1 and
only present a slight increase in the transmissibility;

– the motion of each mass of the system is approx-
imatively in phase or in phase-opposition with the
motion of the othermasses. This is clearly observed
in Fig. 8a, b.

– the boundary between continuous and stick-slip
regimes exhibits a similar pattern to that observed
for the 2DOF case in Fig. 6. In particular, the
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Fig. 7 5DOF system with a Coulomb contact and a harmonic
load on m1 and unitary mass and stiffness ratios (a), displace-
ment transmissibilities (b) and phase angles (c) for varying fric-
tion ratios. Analytical results for continuous motions are repre-

sented with continuous lines, while numerical results for stick-
slip motions with dashed lines. The black dashed line represents
the boundary between continuous and stick-slip regimes
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Fig. 8 Analytical (continuous lines) andnumerical (roundmark-
ers) steady-state time response (a) and phase angle curves (b) of
a 5DOF system with a Coulomb contact and a harmonic load

on m1 and unitary mass and stiffness ratios. The grey regions
indicate stick-slip and stuck regimes
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Fig. 9 Motion regimes of a 5DOF system with equal masses
and springs, with a Coulomb contact and a harmonic load on m1
for varying frequency and friction ratios

boundary has an irregular behaviour at low fre-
quency ratios and presents five maxima which are
all characterised by the friction ratio β ∼= 0.83. All
these maxima are reached smoothly, except the one
occurring at the lowest frequency ratio.

Figure 8b shows that the phase angle curves, particu-
larly those of the mass in contact m1, present slightly
different patterns only in proximity of the transition to
stick-slip regimes and at high frequency ratios. This
behaviour can be explained observing that in these two
cases the response of the mass in contact, which is usu-

ally nearlymonoharmonic in continuous regime, is sig-
nificantly affected by the higher harmonics.

4.2 Systems with harmonic excitation applied to a
mass not in contact

4.2.1 2DOF system excited on m1 with m2 in contact

Let us consider a 2DOF system with a friction contact
on the massm2 and excited by a harmonic load applied
on m1, as shown in Fig. 10a. A comparison between
the analytical and the numerical time responses of this
system in the non-dimensional time interval [0, π ] is
portrayed in Fig. 10b, c for two different sets of param-
eters, showing an excellent agreement. Analytical and
numerical results for the displacement transmissibili-
ties and the phase angles are compared inFig. 11a, b, for
varying frequency ratioswithin the range 0 : 2.5 and for
the friction ratios [0, 0.2, 0.4, 0.5, 1, 1.5, 2, 5]. Also in
this case, the agreement between analytical and numer-
ical results in continuous motion regime is very good.
Furthermore, stick-slip motion occurs in the numerical
responses only when the transmissibility of the mass in
contact is smaller than the boundary value, as expected.

The main features of the dynamic response of this
2DOF system, which can be observed in Fig. 11, are
summarised in what follows.

– It can be observed that the first and the second res-
onant peaks become finite starting from the cases
β = 0.5 and β = 1.5, respectively. This result
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Fig. 10 2DOF system with a friction contact on m1 and a har-
monic load on m2 (a) and comparison between analytical (con-
tinuous lines) and numerical (round markers) steady-state time

responses for two different sets of mass, stiffness, friction and
frequency ratios (b, c)
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Fig. 11 Displacement transmissibilities and phase angles of a
2DOF system with a contact on m2 and a harmonic load on m1
for varying friction ratios and unitary mass and stiffness ratios,
displayed on m1 (a) and on m2 (b). Analytical results are rep-
resented by the continuous lines, while numerical results are

represented with round (continuous motion) and with diamond
markers (stick-slip motion). The black dashed line represents the
boundary between continuous and stick-slip regimes, while the
dotted black line represents the response in stuck configuration

agrees with the values obtained from Eq. (71),
which are βn,1 = 0.485 and βn,2 = 1.271.

– The stuck configuration of this 2DOF system is rep-
resented by an undamped SDOF system where the
mass m1 is connected to a fixed wall on both sides
through the springs k1 and k2, respectively. The
transmissibility and the phase angle associatedwith
this stuck configuration are represented in Fig. 11a
with a black dotted line. Particularly, the displace-
ment transmissibility can be expressed as [43]:

X∗
1 = 1

|1 + κ − r21 | (82)

and the phase angle is equal to 0 degrees before
the natural frequency ratio r1 = √

1 + κ and 180
degrees afterwards. It can be observed as the tran-
sitions between stuck and sliding configurations
always occur at X∗

1 = β/κ , as predicted from
Eq. (79a).
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Fig. 12 Motion regimes of a 2DOF system with a Coulomb
contact on m2 and a harmonic load on m1 for varying frequency
and friction ratios. The black continuous lines represent the exact
boundaries, while the red dashed curve represents the approxi-
mated boundary proposed in [43]
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Fig. 13 5DOF system with a Coulomb contact on m3, a har-
monic load on m1 and unitary mass and stiffness ratios (a), dis-
placement transmissibilities (b) and phase angles (c) for varying
friction ratios. Analytical results for continuous motions are rep-

resentedwith continuous lines andnumerical results for stick-slip
motions with dashed lines. The black dashed line represents the
boundary between continuous and stick-slip regimes, while the
dotted black line represents the response in stuck configuration
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Fig. 14 Analytical (continuous lines) and numerical (round
markers) steady-state continuous time response (a) and phase
angle curves (b) of a 5DOF system with a Coulomb contact on

m3, a harmonic load onm1 and unitary mass and stiffness ratios.
The grey regions indicate stick-slip and stuck regimes
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According to Eq. (73), the starting values of the
transmissibility curves are X10 = 1−β and X20 =
1− (1+κ)β/κ . These values agree well with those
shown from the transmissibilities curves up to β =
0.4. Starting from β = 0.5, the mass m2 will be
stuck for r1 → 0.
As discussed in Sect. 3.2 and Sect. 3.5, respectively,
both boundaries between continuous and stick-slip
regimes and between sliding and stuck regimes tend
to zero for r1 → ∞ when j �= l. In Figs. 11 and
12, it is possible to observe that stick-slip motion
always occurs at high frequencies before the tran-
sition to the stuck configuration.
All the transmissibility and the phase angle curves
associated with the mass in contact m2, shown in
Fig. 11b, intersect at r1 = 1.450. This value corre-
sponds to the larger solution of Eq. (77), while the
other solutions of this equation represent the other
intersections occurring between the undamped and
the boundary curves, as already observed in the
2DOF case discussed in Sect. 4.2.1.
Two main invariant points for X1 are observed in
Fig. 11a at r1 = 0.828 and r1 = 1.549. These val-
ues of r1 correspond to the two largest solutions
of Eq. (78) and are associated with a significant
inversion of the transmissibility curves. In fact, in
the frequency ratio interval included between these
points, the transmissibility increases with β, lead-
ing the gradual onset of the resonant peak associ-
ated with the stuck configuration.
The evolution of the phase angle φ1 is quite irreg-
ular for varying friction ratios. However, it can
be observed that its value is always smaller than
φ2, showing that m1 oscillate with an intermediate
phase angle between those of the excitation and of
the response of m2.

Finally, Fig. 12 shows the boundaries among con-
tinuous and stick-slip regimes and between sliding and
permanent sticking regimes. It can be observed that also
in this case the exact and the approximated boundary
between continuous and stick-slip regimes are nearly
identical. The boundary between sliding andpermanent
sticking regimes exhibits the same infinite peak shown
in the transmissibility curves of the stuck configuration,
as expected from Eq. (79a).

4.2.2 5DOF system excited on m1 with m3 in contact

The 5DOF system with a contact on m3 and a har-
monically load on m1 shown in Fig. 13a represents
a more general example of system with j �= l. The
displacement transmissibility curves, obtained analyt-
ically for continuous motion and numerically in stick-
slip regime, are plotted in Fig. 13b, while the ana-
lytical phase angles are depicted in Fig. 13c for con-
tinuous response only. Analytical and numerical time
responses are compared in Fig. 14a for a specified set of
parameters, showing an excellent agreement. Analyti-
cal and numerical phase angles on the different masses
of the system are represented in Fig. 14b. Finally, the
boundaries among continuous, stick-slip and perma-
nent sticking regimes are shown in Fig. 15. In these
figures, many of the patterns and features described in
the 2DOF case can be observed. In particular:

– the transmissibility of the mass in contact m3

always decreases with β, except that in the invari-
ant points. In Fig. 11, it can be observed that all the
curves pass through two invariant points, located
in proximity of the natural frequencies of the stuck
configuration. In general, it has been verified that
the number of these invariant points is always equal
to the number of peaks of the stuck configuration.
Despite this, invariant points and stuck resonant
peaks occur at close but not coincident frequency
ratios;

– themassesm4 andm5 oscillate in phase or in-phase
opposition with m3 for most values of frequency
and friction ratios and their transmissibility curves
have similar patterns to those of X3. This behaviour
is typical of the masses located on the opposite side
of the harmonic excitation with respect to the mass
in contact and has already been described for the
5DOF system investigated in Sect. 4.2.2.

– the masses m1 and m2 do not oscillate in phase
with m3 or between each other. Their transmissi-
bility curves exhibit significant inversions which
lead to the onset of the two resonant peaks of the
stuck configuration. In general, this behaviour is
observed in the masses located on the same side
of the excitation with respect to the mass in con-
tact. The inversions of the transmissibility curves
leading to the stuck resonant peaks always occur
through two invariant points.
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Fig. 15 Motion regimes of a 5DOF system with equal masses
and springs, with a Coulomb contact on m3 and a harmonic load
on m1 for varying frequency and friction ratios

(a) (b)

Fig. 16 2DOF systems under harmonic base excitation with a
Coulomb contact: a between the m1 and the mass m2 and b
between the m1 and the base

5 Extension to MDOF systems with a contact
between oscillating parts

In this section, the analytical solution derived for the
response of a MDOF system with a Coulomb contact
between one of the masses and a fixed wall in Sect. 2 is
extended to address the cases where the contact occurs:
(i) between two different masses of the system and
(ii) between a mass and a harmonically excited base.
The features of the dynamic response of these systems
will be discussed referring as example to 2DOF mod-
els where the contact is achieved between m1 and m2

(Fig. 16a) and between the base and m1 (Fig. 16b),
respectively. These mechanical models are similar to
those used in references [44–47] if viscous damping is
neglected. In fact, the schematic representation of the
system shown in Fig. 16a is used in the energy har-
vester case in [47], while the model in Fig. 16b is used
in the remaining cases: in [44], the upper mass, spring
and friction contact represent a friction damper which
is applied to the main building (represented by m1 and
k1); in [45], the 2DOF system represents a quarter-car
model where a friction contact is included in the con-
nection between the tyre and the car; in [46], the contact
betweenm1 andm2 refers to the presence of friction in
the taxi system of an aircraft between the outer cylinder
and the piston rod.

5.1 Contact between two masses

5.1.1 Evaluation of the continuous steady-state
response

Let us consider a MDOF system with N masses and N
springs excited by the harmonic load P cos(ωt) applied
to the lth mass, where a friction contact occurs between
the masses mA and mB , with A < B. The generic i th
governing equation can be written as:

mi ẍi − ki xi−1 + (ki + ki+1)xi − ki+1xi+1

+(δBi − δAi )Fsgn(ẋB − ẋ A) = δli P cos(ωt) (83)

or, in non-dimensional terms, as:

γi r
2
1 x̄

′′
i +

N∑
k=1

Kik x̄k

+(δBi − δAi )βsgn(x̄
′
B − x̄ ′

A) = δli cos τ (84)

In order to apply to this system the analytical procedure
introduced in Sect. 2, let us indicate the relative motion
in the friction contact as:

z̄ = x̄B − x̄ A (85)

and consider the non-dimensional time interval [0, π ]
included between a maximum and the subsequent min-
imum of z̄, under the assumption of continuous steady-
state motion. Equation (84) will then reduce to the lin-
ear equation:

γi r
2
1 x̄

′′
i +

N∑
k=1

Kik x̄k = (δBi − δAi )β + δli cos(τ + φz)
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(86)

where φz is the phase angle between the excitation and
the relative motion z̄. Introducing the coordinate trans-
formation from Eq. (13), it is possible to write the gov-
erning equation for the generic i th modal coordinate
as:

η′′
i + 
2

i ηi = (ψBi − ψAi )β + ψli cos(τ + φz) (87)

Comparing Eq. (87) with Eq. (15), it can be noted that
the term ψ j i is here replaced by ψBi − ψAi . This can
also be observed in the initial conditions for the relative
motion:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z̄(0) =
N∑
i=1

(ψBi − ψAi )ηi0 = Z

z̄′(0) =
N∑
i=1

(ψBi − ψAi )η
′
i0 = 0

(88a)

(88b)

if compared to the initial conditions for the mass in
contact written in Eq. (31). In the above conditions, Z
indicates the amplitude of the non-dimensional relative
motion. Therefore, it can easily be shown that the phase
angle φz and the amplitude Z of the relative motion, as
well as the steady-state time response, can be obtained
from Eqs. (37), (40), (41) and (43) by replacing ψ j i

with ψBi − ψAi . The expression of time response of
the generic kth mass of the system will be:

x̄k = Vk
Vz

(
Z cos τ + βUz sin τ

)+ β

N∑
i=1

(ψBi − ψAi )

·ψki R
2
i

[
1 − cos

(
τ

Ri

)
− ui Ri sin

(
τ

Ri

)]
(89)

where

Z =
√
V 2
z − (βUz)2 (90)

The response and the damping functions Vz andUz are
obtained from Eqs. (36) and (39) by applying the sub-
stitution specified above. Similarly, the displacement
transmissibility of the generic mass mk of the system
could be written in a closed form, from Eq. (52), as:

Xk ∼=
√
V 2
k +

(
1 − 2

Vk
Vz

Uz

Uk

)
(βUk)2 (91)

following the monoharmonic approximation intro-
duced in Sect. 2.6. However, it has been observed that
Eq. (91) does not describe accurately the transmissibil-
ity curves of the masses in contact. In fact, the response
of these masses is more markedly non-monoharmonic
compared to that of the other masses. Therefore, it is
not advised to refer to Eq. (91) if an accurate evaluation
of the displacement transmissibility is required; in this
case, the numerical evaluation of the maximum abso-
lute value of Eq. (89) within the time interval [0, π ]
is preferred and has been considered when plotting
Fig. 17. Nonetheless, Eq. (91) can be considered for
other purposes, such as determining whether invariant
points and inversions occur across the transmissibility
curves and their approximative location. More details
are given in Sect. 5.1.4.

5.1.2 Boundary between continuous and stick-slip
regimes

In order to observe the continuousnon-sticking response
described in the previous paragraph, two conditions
need to be met:

– the relative velocity in the contact must be differ-
ent from zero in all the internal points of the time
interval [0, π ]. In particular, it has been assumed
that z̄′ < 0 in this interval;

– the amplitude of the resultant dynamic load act-
ing in the contact must overcome the static friction
forcewhen the relative velocity is zero, i.e. at τ = 0
and τ = π .

While the first condition will simply lead to the bound-
ary expressed by Eq. (60) if ψ j i is replaced by ψBi −
ψAi , more attention needs to be paid to the second con-
dition. As shown in reference [43], this non-sticking
condition can be obtained by subtracting from the Bth
governing equation of the system the Ath governing
equationmultiplied by the ratio between the twomasses
in contact:

γAB = mB

mA
= γB

γA
(92)

From Eq. (84), it can be obtained that:

γBr
2
1 z̄

′′ +
N∑

k=1

(
K Bk − γABK Ak

)
x̄k

+β(1 + γAB)sgn(z̄′) = (δl B − γABδl A) cos τ (93)
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When the relative velocity is zero, sticking will not
occur if:∣∣∣∣∣

N∑
k=1

(
K Bk − γABK Ak

)
x̄k

−(δl B − γABδl A) cos τ | > μβ(1 + γAB) (94)

Introducing Eq. (13) and after some algebraic manip-
ulations, it is possible to write this condition in modal
terms as:

|
2
i ηi0 − ψli cosφz | > (ψBi − ψAi )μβ (95)

which can be eventually expressed in terms of the fric-
tion ratio as:

β <

√√√√√√
V 2
z

U 2
z +

[(
1

γA
+ 1

γB

)
μ

r21

]2 (96)

Theboundarybetween continuous and stick-slip regimes
can finally be obtained by merging Eq. (23), rewritten
posing ψ j i = ψBi − ψAi , and Eq. (96):

β <

√√√√√√√
V 2
z

U 2
z +

[
max

(
Sz,

(
1

γA
+ 1

γB

)
μ

r21

)]2 (97)

All the considerations reported at the end of Sect. 2.7
also apply to this contact configuration.

5.1.3 Stuck configuration

In order to have a complete overview of the dynamic
response of MDOF systems with a contact between
two masses, it is also necessary to determine which are
the conditions leading to permanent sticking between
these masses and how the response of the system can
be characterised when this happens.

In reference [43], it has been shown that the masses
mA and mB are permanently stuck, they oscillate
together as a single mass mA + mB and their motion
can be evaluated referring to the coordinate of their
centroid:

x̄c = mAx̄A + mB x̄B
mA + mB

(98)

The governing equation for x̄c can be obtained by sum-
ming the equations governing the motion of the masses
mA and mB and substituting Eq. (98):

(mA+mB)x̄ ′′
c +

N∑
k=1

(
K Ak + K Bk

)
x̄i = (δAi+δBi ) cos τ

(99)

Equation (99) can be coupled with the governing equa-
tions of the masses not involved in the contact, obtain-
ing a system of N − 1 linear equations in the form:

M∗x̄∗′′ + K∗x̄∗ = p̄∗ (100)

where the matrices M∗ and K∗ can be obtained from
M andK (in Eqs. (9) and (10), respectively) by remov-
ing the original Ath and Bth rows and columns and
including a new row and a new column with the terms
provided in Eq. (99). Similarly, the vector p̄∗ can be
obtained removing the Ath and the Bth components
and adding the new component (δAi + δBi ) cos τ given
by Eq. (99).

Modal analysis canbeused todetermine the response
of the system. In particular, the response amplitudes
X∗
1, ..., X

∗
N , where X∗

A = X∗
B ≡ X∗

c allow the deter-
mination of boundary between sliding and permanent
sticking regimes. In fact, bearing in mind that a con-
tact becomes permanently stuck if the maximum load
acting on it does not overcome the static friction force
and considering Eq. (94), it is possible to express such
a boundary as:

β <
1

μ(1 + γAB)

∣∣∣∣
N∑

k=1

(
K Bk − γABK Ak

)
X∗
k

−(δl B − γABδl A)

∣∣∣∣ (101)

5.1.4 Numerical validation and discussion

The analytical solutions derived in this section have
been compared, for varying parameters, with the
results obtained via numerical integration following
the approach introduced in [43]. The agreement was
excellent in all the cases investigated. In particular, the
comparison between analytical and numerical trans-
missibilities is shown in Fig. 17 for the 2DOF sys-
tem shown in Fig. 16a, in the frequency ratio range
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0 : 2.5 and for varying friction ratio, assuming both
stiffness andmass ratios equal to 0.5 and a unitary ratio
between static and kinetic friction forces. The agree-
ment between the transmissibilities is very good when
the response is continuous. The motion regimes occur-
ring in the numerical response are always in accordance
with the analytical predictions. The analytical bound-
aries of these motion regimes are also shown in the
parameter space r1 − β in Fig. 18.

The general features of the dynamic response of
MDOF systems with a Coulomb contact between two
masses are discussed in what follows.

– The value βn,i of the friction ratio for which the
i th resonant peak becomes finite can be evaluated
by calculating the limit of Eq. (97) for Ri → 1, as
proposed in Sect. 3.5, and is given by:

βn,i = π

4

∣∣∣∣ ψli

ψBi − ψAi

∣∣∣∣ (102)

In the 2DOF case considered in this section, the
values obtained from Eq. (102) are βn,1 = 0.785
and βn,2 = 0.393, in agreement with the curves
shown in Fig. 17.

– Evaluating the limit value of the boundary between
continuous and stick-slip motion for r1 → 0, it can
be shown that, as in the fixedwall case, any nonzero
value of the friction ratio will prevent the relative
motion in the contact from being continuous in
quasi-static conditions. The starting value of the
boundary between sliding and permanent sticking
regimes can instead be evaluated from Eqs. (100)
and (101), imposing that r1 = 0. While this is
not true in general, it has been observed that the
system is always stuck in quasi-static conditions if
l = 1. This behaviour also occurs in the example
presented in this section, as shown in Fig. 18.

– The high-frequency behaviour of these MDOF
systems can significantly change depending on
where the friction contact and the harmonic load
are applied. In fact, when r1 → ∞, the bound-
ary between continuous and stick-slip regimes
expressed in Eq. (97) tends to:

β∞ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2γAB

(1 + γAB)
√
4μ2 + π2

if l = A

2

(1 + γAB)
√
4μ2 + π2

if l = B

0 if l �= {A, B}

(103a)

(103b)

(103c)
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Fig. 17 Displacement transmissibilities of a harmonically
excited 2DOF system with a contact between m1 and m2 for
varying friction ratio and γ = κ = 0.5: (a) absolute motions
of m1 and m2 and (b) relative motion in the contact. Analytical
results are represented by the continuous lines, while numerical
results are represented with round (continuous motion) and with
diamond markers (stick-slip motion). The black dashed line rep-
resents the boundary between continuous and stick-slip regimes,
while the dotted black line represents the response in stuck con-
figuration
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Fig. 18 Motion regimes of a 2DOF system with a Coulomb
contact and a harmonic load onm1 for varying frequency, friction
ratios and static friction forces

Furthermore, evaluating Eq. (101) for r1 → ∞, it can
be determined that the boundary between sliding and
permanent sticking regimes tends to:

β∗∞ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γAB

μ(1 + γAB)
if l = A

1

μ(1 + γAB)
if l = B

0 if l �= {A, B}

(104a)

(104b)

(104c)

In the 2DOF case dealt with in this section, since
l = A = 1 and γAB = γ = 0.5, it is obtained
that β∞ = 0.179 and β∗∞ = 0.333, in agreement
with Fig. 18. It can be concluded that if the harmonic
excitation is applied to one of the masses in contact,
both boundaries will tend to nonzero asymptotic val-
ues, belowwhich continuous and stick-slipmotions can
be observed, respectively. Conversely, if the excitation
is applied to any other masses, both boundaries will
tend to zero, meaning that the contact will always get
stuck at high frequencies.

In Fig. 17a, it can be observed that for both masses
an inversion of the transmissibility curves occurs
across two invariant points and leads to the onset
of the resonant peak associated to the stuck config-
uration. It is possible to obtain an estimate of the
position of these points from Eq. (91), as explained
in Sect. 5.1.1. For instance, the points estimated for

X1 are r1 = 0.778and r1 = 1.213,while it has been
observed that the actual inversion occurs between
two small regions (rather than single points) located
at r1 ∼= 0.770 and r1 ∼= 1.226. Finally, the ampli-
tude of the relative motion in the contact (from
Fig. 17b) always decreases with β, similarly to the
motion of the mass in contact in systems with a
fixed wall. In this case, the invariant points can be
evaluated exactly from the condition Uz = 0.

5.2 Joined base-wall excitation

5.2.1 Evaluation of the continuous steady-state
response

Let us consider a MDOF mass–spring system excited
by the harmonic base motion y = Y cos(ωt). A
Coulomb contact characterised by the friction force F
occurs between the oscillating base and the mass m j .
The i th governing equation of the system is given by:

mi ẍi − ki xi−1 + (ki + ki+1)xi − ki+1xi+1

+δ j i Fsgn(ẋ j − ẏ) = δ1i k1Y cos(ωt) (105)

Considering P = k1Y in Eq. (5), Eq. (105) can also be
expressed in a non-dimensional form as:

γi r
2
1 x̄

′′
i +

N∑
k=1

Kik x̄k + δ j iβsgn(x̄
′
j − ȳ′) = δ1i cos τ

(106)

A possible approach for extending the theory presented
in Sect. 2 to a system with this contact configuration
has been proposed in reference [43] and consists in
introducing a coordinate transformation such that the
given system can be studied as an equivalent system
with a fixed wall. Alternatively, it is possible to use the
approach introduced in Sect. 5.1.1, by indicating the
relative motion between the mass in contact and the
base as:

z̄ = x̄ j − ȳ (107)

and rewriting Eq. (106) in the non-dimensional time
interval [0, π ] included between a maximum and a
minimum of z̄, under the assumption of continuous

123



Dynamic response of multi-degree-of-freedom systems... 1703

response, as:

γi r
2
1 x̄

′′
i +

N∑
k=1

Kik x̄k = δ j iβ + δ1i cos(τ + φz) (108)

Applying the modal transformation from Eq. (13), the
same set of modal equations as that expressed by
Eq. (15) is obtained from Eq. (106). The initial con-
ditions for the relative motion will instead be given by:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z̄(0) =
N∑
i=1

ψ j iηi0 − cosφz = Z

z̄′(0) =
N∑
i=1

ψ j iη
′
i0 + sin φz = 0

(109a)

(109b)

Substituting Eqs. (109a) and (109b) into Eqs. (37) and
(40), respectively, it is possible to obtain the following
expressions for the phase angle between excitation and
relative motion z̄:

cosφz = Z

Vj − 1
(110)

sin φz = −βU

Vj − 1
(111)

while the non-dimensional amplitude of the relative
motion will be:

Z =
√

(Vj − 1)2 − (βU )2 (112)

It can be observed that these expressions are equivalent
to those obtained in Sect. 2.5 for the fixed wall case
if Vj is substituted with Vj − 1. The response of the
generic mass mk can also be obtained from Eq. (43),
introducing such a substitution, as:

x̄k = Vk
Vj − 1

(
Z cos τ + βUj sin τ

)+ β

N∑
i=1

ψ j iψki R
2
i

×
[
1 − cos

(
τ

Ri

)
− ui Ri sin

(
τ

Ri

)]
(113)

It can be observed that Eqs. (112) and (113) reduce to
the expressions provided in reference [30] for a SDOF
system under joined base-wall excitation if N = 1.

Also for this contact configuration, a closed-form
expression can be obtained for the generic kth dis-
placement transmissibility, byusing themonoharmonic

approximation introduced in Sect. 2.6, as:

Xk ∼=
√
V 2
k +

(
1 − 2

Vk
Vj − 1

Uj

Uk

)
(βUk)2 (114)

However, as in the case of the friction contact occur-
ring between two masses, this approximation does not
provide an accurate result for the mass in contact m j

and, therefore, its use is not advised for obtaining an
accurate evaluation of the response amplitudes, while
it can similarly be used for investigating the presence
of invariant points across the transmissibility curves.

5.2.2 Boundary between continuous and stick-slip
regimes

The assumption of continuous steady-state response is
verified, as in the other contact configurations explored
in this paper, when the relative velocity in the contact
is negative in all the internal points of the time inter-
val [0, π ] and, simultaneously, the sum of all the non-
inertial forces acting in the contact is larger than the
static friction force at both ends of this interval. Follow-
ing the procedure described in Sect. 2.7, it can be shown
that the first condition can be expressed in terms of the
friction ratio by substituting Vj − 1 to Vj in Eq. (60).
In order to write the second condition, it is necessary to
derive the governing equation for the relative motion z̄.
This equation can be obtained by substituting Eq. (107)
into Eq. (106), written for i = j :

γ j r
2
1 z̄

′′ +
N∑

k=1

K jk x̄k + βsgn(z̄′) = (δ1 j + γ j r
2
1 ) cos τ

(115)

The second non-sticking condition can therefore be
expressed as:

∣∣∣∣∣
N∑

k=1

K jk x̄k − (δ1 j + γ j r
2
1 ) cos τ

∣∣∣∣∣ > μβ (116)

Introducing Eq. (13), this inequality can be rewritten
in modal terms as:

|
2
i ηi0 − (ψli + γ j r

2
1 ) cosφz | > ψ j iμβ (117)
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With a similar procedure to that introduced in Sect. 2.7,
this equation can be formulated in terms of the fric-
tion ratio in the same form as in Eq. (65), where Vj is
replaced with Vj − 1. Finally, the boundary between
continuous and stick-slip motion can be expressed,
merging the two conditions derived, as:

β <

√√√√√√√
(Vj − 1)2

U 2
j +

[
max

(
S j ,

μ

γ j r21

)]2 (118)

5.2.3 Stuck configuration

As shown in Sects. 3.3 and 5.1.3, two main steps are
required for deriving the boundary between sliding and
permanent sticking motion regimes: (i) deriving the
steady-state response of the system in the stuck config-
uration and (ii) using the derived response amplitudes
for determining the maximum dynamic load acting in
the contact and comparing it to the static friction force.

In this contact configuration, when sticking occurs,
the mass in contact will oscillate jointly to the wall.
Therefore, its motion can simply be written as x̄ j =
cos τ . Themotion of the remainingmasses can be deter-
mined from a linear system of N − 1 equations written
in the form expressed in Eq. (100), where the stuck
mass and stiffness matrices are obtained by removing
the j th rows and columns from M and K, while the
generic i th component of the stuck force vector will
be:

p̄∗
i = (δ1i + δ j−1,iκ j + δ j iκ j+1) cos τ (119)

In other words, since its motion is already known, the
mass m j will act as a further source of harmonic exci-
tation in the stuck system. Therefore, a harmonic load
κ j cos τ will be applied onto the mass m j−1 and a load
κ j+1 cos τ will act on the mass m j+1.

The formulation of the upper bound for the slid-
ing motion regime can be obtained, at this stage, from
Eq. (116), considering the maximum amplitude of the
resultant force acting in the friction contact:

β <
1

μ

∣∣∣∣∣
N∑

k=1

K jk X
∗
k − δ1 j − γ j r

2
1

∣∣∣∣∣ (120)

5.2.4 Numerical validation and discussion

The analytical results obtained for MDOF systems
under joined base-wall harmonic excitation have been
compared to numerical results for varying frequency,
friction, mass and stiffness ratios, showing a very good
agreement in all the cases investigated. The comparison
between the analytical and numerical response ampli-
tudes for the 2DOF system represented in Fig.16b is
reported in Fig.19; the results shown in these plots
have been obtained for unitary mass, stiffness and
static/kinetic friction force ratios. An excellent agree-
ment is observed for both absolute mass motions (in
Fig. 19a) and for the relative motion in the contact
(in Fig. 19b). Numerical results obtained in stick-slip
regime are also reported in Fig. 19a, b to provide a com-
plete overview of the dynamic behaviour of the system,
while the boundaries among continuous, stick-slip and
stuck motion regimes are depicted in Fig. 20.

The main dynamic response features are presented
forMDOF systems under joined base-wall excitation in
what follows, referring as example to the results shown
in Figs.19 and 20.

– The evaluation of limit value assumed by the
boundarybetween continuous and stick-slip regimes
when Ri → 1 provides the same result obtained
in Sect. 3.5 for the fixed wall configuration and
reported in Eq. (70). Therefore, all the resonant
peaks exhibited by systems undergoing joined
base-wall excitation also become finite at β = π/4
if the friction contact occurs on the mass m1. This
is also observed in Fig. 19a, b, where both peaks
are finite starting from the curves associated to the
case β = 0.8.

– The behaviour of these systems at low frequency
ratios can easily be explained by evaluating the
values assumed by both boundaries for r1 → 0.
As in all the contact configurations explored in this
paper, also in this case the boundary between con-
tinuous and stick-slip regimes tends to zero. It can
be demonstrated that also the boundary between
sliding and permanent sticking regimes is equal to
zero at r1 = 0. In fact, when permanent stick-
ing occurs, the static response of the system can
simply be obtained by the equation K∗ x̄∗ = p̄∗.
However, it can be observed that substituting the
response amplitudes obtained from this equation
into Eq. (120) and imposing r1 = 0, the resulting
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Fig. 19 Displacement transmissibilities of a 2DOF system with
a contact onm1 under harmonic joinedbase-wallmotion for vary-
ing friction ratio and unitary mass and stiffness ratios: (a) abso-
lute motions ofm1 andm2 and (b) relative motion in the contact.
Analytical results are represented by the continuous lines, while
numerical results are representedwith round (continuousmotion)
and with diamond markers (stick-slip motion). The black dashed
line represents the boundary between continuous and stick-slip
regimes, while the dotted black line represents the response in
stuck configuration
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Fig. 20 Motion regimes of a 2DOF system with a Coulomb
contact and a harmonic load onm1 for varying frequency, friction
ratios and static friction forces

value of the boundary will be equal to zero. There-
fore, it can be concluded that systems under joined
base-wall motion are always stuck in quasi-static
conditions, as already observed for the SDOF case
in reference [30].

– The behaviour of these MDOF systems is also sim-
ilar to that described for the SDOF case in [30]
at high frequency ratios. In fact, both boundaries
grows to infinity when r1 → 0. This means that,
increasing the driving frequency, it will always be
possible to observe a sliding motion in the friction
contact at some point.

– Inversions of the transmissibility curves can be
seen for both masses in Fig. 19a. In particular,
two different kinds of inversions can be observed.
In the case of the mass not in contact, inversions
are mostly similar to those described in the other
contact configurations, i.e. they occur across two
invariant points and show the gradual onset of a new
resonant peak associated with the stuck configura-
tion of the system. However, it can also be noted
that another inversion occurs for all the masses of
the system after the last resonant peak, so that the
transmissibility always increases with the friction
ratio at high frequency ratios. This inversion occurs
across a small region rather than a single invariant
point. This behaviour had already been observed in
[30] for SDOF systems, where such an inversion
occurs at r1 ∼= 1.5.
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6 Concluding remarks

Analytical solutions have been derived for the contin-
uous steady-state response of a harmonically excited
MDOFsystemwith aCoulomb friction contact between:
(1) a mass and a fixed wall; (2) two different masses;
(3) a mass and an oscillating base. In particular, the
expressions of the displacement transmissibility, the
phase angle and the time response have been obtained
for all the masses of the system. Moreover, the domain
of validity of these solutions has also been determined,
providing an analytical formulation for the boundary
between continuous and stick-slip regimes which also
takes into account the case where different static and
kinetic friction forces are considered.

The closed-form expressions of the continuous
response and of the boundaries have been used to inves-
tigate the features of the dynamic response of these
MDOF systems. Specifically, the resonant, low- and
high-frequency behaviours have been analysed and an
analytical approach for the determination of the invari-
ant points for the transmissibility and the phase angle
curves have been proposed. Moreover, the response to
harmonic excitation has also been determined in the
case where the mass in contact is permanently stuck.

Finally, the analytical solutions for the continuous
response have been validated numerically in the cases
of: (i) a 2DOF systemwith a harmonic load on the lower
mass and a friction contact on either on the lower or the
upper mass: (ii) a 5DOF system with a harmonic load
on the bottom mass and a friction contact either on the
same or on the third mass. Numerical transmissibili-
ties have also been evaluated in stick-slip regime for
all these systems, providing a complete overview of
their dynamic behaviour for varying non-dimensional
exciting frequencies and friction forces. The compar-
ison between analytical and numerical results showed
an excellent agreement in all the cases investigated.

The main results obtained from investigation of the
response features were: (i) the determination of the
minimum friction ratio for which the generic i th res-
onant peak of the response becomes finite; (ii) the
determination of starting values of the transmissibil-
ity curves in quasi-static regime; and (iii) the evalua-
tion of the asymptotic values assumed from the bound-
ary between continuous and stick-slip regimes when
the exciting frequency tends to infinity. In addition, the
presence of invariant points, inversions across the trans-
missibility curves for varying non-dimensional friction

force and the onset of additional resonant peaks due to
the transition from the sliding to the stuck configura-
tions have been observed in both analytical and numer-
ical curves. All these results have shown that MDOF
systems can exhibit a significantly different dynamic
behaviour depending on whether the contact and the
harmonic excitation occur on the same or on different
masses.

In conclusion, the results presented in this paper
contribute to the development of a fundamental under-
standing of the Coulomb damping effects on mechani-
cal systems. These solutions have been obtained under
the assumptions that dry friction is the only source of
damping in the system and that Coulomb’s law can
be used to model friction. Experimental investigations
carried out on a single-storey shear frame with a brass-
to-steel contact [27] have shown that these assump-
tions can be considered when describing the dynamic
behaviour of simple structures where damping effects
aremainly due to the presence of a friction contact. The
shear frame set up has been extended to include two
storeys to investigate the behaviour of a 2DOF system
and preliminary results have shown a good agreement
with the analytical results presented in this paper. These
experimental resultswill be presented in a separate pub-
lication.

Overall, the presented results can be used for explor-
ing design solutions of structures that can be modelled
as MDOF mass–spring systems with a friction damper
required to operate in a non-sticking continuous vibra-
tion regime. For example, they can be implemented to
investigate the performance of a car suspension sys-
tem with a friction damper. Moreover, the proposed
analytical solutions for such systems can be exploited
for carryingout parameter investigations, optimisations
and statistical model updating with a reduced compu-
tational cost compared to numerical approaches.

Further work on this topic is currently focusing on:
(i) the extension of the results presented in this contri-
bution toMDOF systems with combined Coulomb and
viscous damping: (ii) the comparison of the dynamic
response features observed by considering different
friction models. Moreover, future work will focus on
MDOF systems with multiple friction contacts.
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Appendix A

The boundaries among continuous, stick-slip and per-
manent sticking motion regimes of a 2DOF system
with unitary stiffness and mass ratios are represented
in Figs. 21 and 22 for varying ratios between static and
friction forces. In particular, Fig.21 refers to case of the
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Fig. 21 Motion regimes of a 2DOF system with a Coulomb contact and a harmonic load on m1 for varying frequency, friction ratios
and static friction forces
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Fig. 22 Motion regimes of a 2DOF system with a Coulomb contact on m2 and a harmonic load on m1 for varying frequency, friction
ratios and static friction forces
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lower mass in contact shown in Fig.4a, while in Fig. 22
the case of the upper mass in contact shown in Fig.
10a is considered. In these figures, it can be observed
that intersections between the boundaries may occur
when μ �= 1. In this case, the portion of the boundary
between continuous and stick-slip regimes falling into
the permanent sticking region will be disregarded and
there will be a direct transition from continuous motion
to permanent sticking.
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