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Abstract In this study, a four-dimensional fractional
hyperchaotic model is analyzed based on general
Riemann–Liouville–Caputo (RLC) fractal–fractional
derivative (FFD). A series of new operators are con-
structed using three different elements, namely, the
general Mittag–Leffler function, exponential decay,
andpower law.Theoperators have twoparameters:One
is considered as fractional order and the other as frac-
tal dimension. The Qi hyperchaotic fractional attractor
is modeled by using these operators, and the models
are solved numerically using a very efficient numerical
scheme. Meanwhile, the existence and uniqueness of
solutions have been investigated to justify the physical
adequacy of the model and the numerical scheme pro-
posed in the resolution. The numerical simulations for
some specific fractional order and fractal dimension are
presented. Furthermore, these results obtained via gen-
eralizedCaputo–Fabrizio and fractal–fractional deriva-
tive show some crossover effects, which is due to non-
index law property. Finally, these obtained from gener-
alized fractal–fractional derivative show very strange
and new attractors with self-similarities.
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1 Introduction

Recently, chaotic phenomena in numerous natural
and social systems have attracted great interest since
E. Lorenz discovered the first physical chaotic attrac-
tor [1]. Chaos synchronization has also attracted a
great deal of attention since Pecora and Carroll estab-
lished a chaos synchronization scheme for two identi-
cal chaotic systems with different initial conditions [2].
In recent years, study on the dynamics of fractional-
order differential systems has greatly attracted inter-
est of many researchers. Doye et al. proposed a robust
fractional-order proportional–integral (FOPI) observer
for the synchronization of nonlinear fractional-order
chaotic systems, and the proposed FOPI observer is
robust against Lipschitz additive nonlinear uncertainty
[3]. In addition, an adaptive observer is proposed for
the joint estimation of states and parameters of a frac-
tional nonlinear systemwith external perturbations [4].
NdolaneSene et al. analyzed two types of diffusion pro-
cesses obtained with the fractional diffusion equations
described by the Atangana–Baleanu–Caputo (ABC)
fractional derivative. Whereas, they also addressed the
mathematical analysis of the fishery model in the con-
text of the fractional derivative operator using the
Caputo–Fabrizio derivative [5,6]. It is demonstrated
that some fractional-order differential systems behave
chaotically or hyperchaotically, such as the fractional-
order Chua’s system [7], the fractional Rössler system
[8], the fractional modified Duffing system, fractional-
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order Lorenz system, Chen system, Lü system, and
fractional-order Qi four-wing chaotic system [9–13].

Moreover, based on fractional transfer function
approximation in frequency domain, the fractional
form of a four-wing autonomous integral-order chaotic
system was firstly discussed, and some chaotic attrac-
tors in the different orders of the fractional-order sys-
tem were found [14]. Meanwhile, chaotic and fractal–
fractional derivative applications in physics, engineer-
ing and medicine have caught much attention [15,16].
A challenging problem is that a new model on novel
coronavirus disease (COVID-19) with four compart-
ments including susceptible, exposed, infected, and
recovered class with fractal–fractional derivative are
proposed by Ali et al. [17]. In [18], Muhammad Altaf
Khan and Abdon Atangana described the mathemat-
ical modeling and dynamics of a novel corona virus
(2019-nCoV).

There are several other application schemes, such
as based on the role of fractal–fractional derivative
on ferromagnetic fluid via fractal Laplace transform,
a first problem via fractal–fractional differential oper-
ator was presented by Abro [19,20]. There have been
many prior studies that addressed fractional-order sys-
tems and fractal–fractional derivativemethods in chaos
and financial [21]. For example, a novel investigation
for banking data through mathematical model with a
novel operator known as fractal–fractional in the sense
of Caputo derivative was presented by Li et al. [22].
In [23], Wanting Wang et al. investigated the dynam-
ics of the competition between rural and commer-
cial bank with in the framework of fractal–fractional
Atangana–Baleanu derivative sense, and the parame-
ters for the competition fractal–fractional model was
estimated effectively.

The advantages of fractal–fractional operators are
the memory impact and the illustrative physical prop-
erties that are conserved. Using these types of oper-
ators, more effective and up-to-date researches have
been revealing over time. For example, new fractal–
fractional operators that have different features can be
defined and have been used extensively to model real-
life problems, such as the COVID-19 coronavirus epi-
demic. Due to the memory effect, nonlinear models
integrate all past information, making it easier to pre-
dict and translate epidemic models more accurately.
Because of effective properties, fractal–fractional oper-
ators have found wide applications to model dynamics
processes in many well-known fields, such as biology,

physics, finance and economics, science and engineer-
ing, mechanics, and mathematical modeling, whereas
some numerical and approximate solutionmethods and
their illustrative applications have been stated in the
literature [15,16,24]. In this context, fractal–fractional
operators and fractional calculus theorywith their illus-
trative applications are attracting attention all over the
world day by day. Moreover, fractional-order models
have been already used for modeling of electrical cir-
cuits (such as domino ladders, tree structures) and ele-
ments (coils, memristor, etc.). Fractional calculus is a
very useful tool in describing the evolution of systems
with memory, which typically are dissipative and to
complex systems.

Based on the above analysis, few researchers pro-
posed and conducted the advantages of fractal–fracti-
onal operators with hyperchaotic model. In this study, a
four-dimensional fractal–fractional hyperchaoticmodel
is analyzed in detail via general Riemann–Liouville–
Caputo (RLC) fractal–fractional derivative (FFD), and
a series of new operators are constructed using gen-
eralized Caputo–Fabrizio and the series of fractal–
fractional derivative firstly. The conclusions are shown
that this new concept is the future to modelling com-
plexitieswith self-similarities in somecomplex dynam-
ical networks and multi-agent systems.

The rest of the paper is organized as follows: In
Sect. 2, the definition of fractional-order derivative and
its approximation are described. In Sect. 3, the prelim-
inaries on fractal–fractional calculus are presented. In
Sect. 4, numerical schemes and examples are given in
detail. Finally, in Sect. 5, conclusions are drawn.

2 Fractional-order derivative and its
approximation

The Mittag–Leffler function is an entire function,
which was defined by the series special function [25,
26],

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)
, α ∈ C,R(α) > 0, z ∈ C

(1)

The more general Mittag–Leffler function was des-
cribed in the following equation [25,26],
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Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
, α, β ∈ C,

R(α) > 0,R(β) > 0, z ∈ C (2)

with C being the set of complex numbers are called
Mittag–Leffler functions.

Fractional calculus has been known since the early
seventeenth century. It has useful applications in many
fields of science like physics, engineering, mathemat-
ical biology, and finance. To discuss fractional-order
chaotic system, the fractional-order differential equa-
tions need to be solved. There are three commonly used
definitions of the fractional-order differential operator:
Riemann–Liouville, Grunwald–Letnikov, and Caputo
definitions. One of them is the Riemann–Liouville def-
inition which is described by [27,28]:

Dα f (t) = dl

dtl
J θ f (t), α > 0, (3)

where θ = l −α, J θ is the θ -order Riemann–Liouville
integral operator which is given as follows:

J θ u(t) = 1

Γ (θ)

∫ t

0
(t − τ)θ−1u(τ )d(τ ), θ > 0. (4)

The best-known Riemann–Liouville definition of
fractional-order, which is described by [29]:

dq f (t)

dtq
= 1

Γ (n − q)

dn

dtn

∫ t

0

f (τ )

(t − τ)q−n+1 dτ, (5)

where n is an integer such that n − 1 ≤ q < n, Γ (·) is
the well-known Eulers gamma function.

However, the most common definition is the Caputo
definition, since it is widely used in real applications
[29]. The fractional derivative of order δ, based on
Caputo definition, is given by:

Dδ f (t)

=

⎧
⎪⎪⎨

⎪⎪⎩

1

Γ (m − δ)

∫ t

0

f m(τ )

(t − τ)δ−m+1 )dτ, m − 1 < δ < m,

dm

dtm
f (t), δ = m,

(6)

where m = [δ], and Γ (·) is the gamma function given
by:

Γ (x) =
∫ ∞

0
e−t t x−1dt, Γ (x + 1) = xΓ (x). (7)

In order to solve fractional-order systems numerically
with a step size h, Grünwald–Letnikov method of
approximation [30] is used, which is given by:

Dδ f (t) ≈ h−δ
k∑

j=0

(−1) j
(

δ

j

)
f (tk− j ) (8)

Dα∗ f (t) = J l−α f l(t), (9)

where f l represents the lth-order derivative of f (t) and
l = [α]; this means that l is the first integer which is
not less than α. The operator Dα∗ is called the Caputo
differential operator of order α. Hence, the Caputo type
is choose throughout this study.

3 Preliminaries on fractal–fractional calculus

Now, some definitions are presented that will be used
in this study.

Definition 1 The fractal–fractional derivative (FFD)
of f (t) with order γ − α in the Riemann–Liouville
sense is defined as follows [31]:

F F−RL Dα,γ
0,t { f (t)}

= 1

Γ (m − α)

d

dtγ

∫ t

0
(t − s)m−α−1 f (s)ds, (10)

where m − 1 < α, γ ≤ m, α, γ, m ∈ N, and d f (s)
dsγ =

lim
t→s

f (t)− f (s)
tγ −sγ .

Definition 2 The fractal–fractional derivative (FFD)
of f (t)with order γ −α in the Liouville–Caputo sense
is defined as follows [32]:

F F−C Dα,γ
0,t { f (t)}

= 1

Γ (m − α)

∫ t

0
(t − s)m−α−1

(
d

dsγ
f (s)

)
ds,

(11)

where m − 1 < α, γ ≤ m, α, γ, m ∈ N, and d f (s)
dsγ =

lim
t→s

f (t)− f (s)
tγ −sγ .

Definition 3 The general fractal–fractional derivative
(FFD) of f (t) with order γ − α in the Riemann–
Liouville–Caputo sense is defined as follows:

F F−RLC Dα,γ
0,t { f (t)}

= 1

Γ (m − α)

{
ξ1

[
d

dtγ

∫ t

0
(t − s)m−α−1 f (s)ds

]

+ξ2

[∫ t

0
(t − s)m−α−1

(
d

dsγ
f (s)

)
ds

]}
,

(12)

where m − 1 < α, γ ≤ m, α, γ, m ∈ N, ξ1 ∈ {0, 1},
ξ2 ∈ {0, 1}, and d f (s)

dsγ = lim
t→s

f (t)− f (s)
tγ −sγ . when ξ1 = 1,

ξ2 = 0, it is called Riemann–Liouville fractional-order
definition. when ξ1 = 0, ξ2 = 1, it is called Liouville–
Caputo fractional-order definition.
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Definition 4 The Caputo–Fabrizio FFD of f (t) with
order γ − α in the Riemann–Liouville sense is defined
as follows [33]:

F F−C F RL Dα,γ
0,t { f (t)}

= M(α)

1 − α

d

dtγ

∫ t

0
exp

(
− α

1 − α
(t − s)

)
f (s)ds,

(13)

where 0 < α, γ ≤ m, α, γ, m ∈ N, and M(0) =
M(1) = 1.

Definition 5 The Caputo–Fabrizio FFD of f (t) with
order γ − α in the Liouville–Caputo sense is defined
as follows [34]:

F F−C F LC Dα,γ
0,t { f (t)}

= M(α)

1 − α

∫ t

0
exp

(
− α

1 − α
(t − s)

)(
d

dsγ
f (s)

)
ds,

(14)

where 0 < α, γ ≤ m, α, γ, m ∈ N, and M(0) =
M(1) = 1.

Definition 6 The general Caputo–Fabrizio FFD of
f (t) with order γ − α in the Riemann–Liouville–
Caputo sense is defined as follows:

F F−C F RL LC Dα,γ
0,t { f (t)}

= M(α)

1 − α

{
ζ1

[
d

dtγ

∫ t

0
exp

(
− α

1 − α
(t − s)

)
f (s)ds

]

+ζ2

[∫ t

0
exp

(
− α

1 − α
(t − s)

)(
d

dsγ
f (s)

)
ds

]}
,

(15)

where 0 < α, γ ≤ m, α, γ, m ∈ N, ζ1 ∈ {0, 1},
ζ2 ∈ {0, 1}, and M(0) = M(1) = 1.when ζ1 = 1, ζ2 =
0, it is called Caputo–Fabrizio FFD in the Riemann–
Liouville sense fractional-order definition. when ζ1 =
0, ζ2 = 1, it is called Caputo–Fabrizio FFD in the
Liouville–Caputo sense fractional-order definition.

Definition 7 TheYuhangFFDof f (t)with order γ −α

in the Riemann–Liouville sense is defined as follows:

F F−RLY Dα,γ
0,t { f (t)}

= Y (α)

1 − α

d

dtγ

∫ t

0
Eα

(
− α

1 − α
(t − s)α

)
f (s)ds, (16)

where 0 < α, γ ≤ 1, α, γ, m ∈ N, and Y (α) = (1 −
α)2 + α

Γ (α)
.

Definition 8 TheYuhangFFDof f (t)with order γ −α

in the Liouville–Caputo sense is defined as follows:

F F−LCY Dα,γ
0,t { f (t)}

= Y (α)

1 − α

∫ t

0
Eα

(
− α

1 − α
(t − s)α

)(
d

dsγ
f (s)

)
ds,

(17)

where 0 < α, γ ≤ 1, α, γ ∈ N, and Y (α) = (1−α)2+
α

Γ (α)
.

Definition 9 The general Yuhang FFD of f (t) with
order γ − α in the Riemann–Liouville–Caputo sense
is defined as follows:

F F−RLCY Dα,γ
0,t { f (t)}

= Y (α)

1 − α

{
η1

[
d

dtγ

∫ t

0
Eα

(
− α

1 − α
(t − s)α

)
f (s)ds

]

+η2

[∫ t

0
Eα

(
− α

1 − α
(t − s)α

)(
d

dsγ
f (s)

)
ds

]}
,

(18)

where 0 < α, γ ≤ 1, α, γ ∈ N, η1 ∈ {0, 1}, η2 ∈
{0, 1}, and Y (α) = (1−α)2+ α

Γ (α)
. when η1 = 1, η2 =

0, it is called Yuhang FFD in the Riemann–Liouville
sense fractional-order definition. when η1 = 0, η2 = 1,
it is called Yuhang FFD in the Liouville–Caputo sense
fractional-order definition.

Definition 10 TheLiouville–Caputo fractal–fractional
integral of f (t)with order α is defined as follows [35]:

F F−LC I α,γ
0,t { f (t)}

= γ

Γ (α)

∫ t

0
(t − s)α−1sγ−1 f (s)ds, (19)

where m − 1 < α, γ ≤ m, α, γ, m ∈ N, and d f (s)
dsγ =

lim
t→s

f (t)− f (s)
tγ −sγ .

Definition 11 The Caputo–Fabrizio fractal–fractional
integral of f (t)with order α is defined as follows [36]:

F F−C F I α,γ
0,t { f (t)} = αγ

M(α)

∫ t

0

(
sα−1 f (s)

)
ds

+γ (1 − α)tγ−1

M(α)
f (t), (20)

where 0 < α, γ ≤ m, α, γ, m ∈ N, and M(0) =
M(1) = 1.

Definition 12 The Yuhang fractal–fractional integral
of f (t) with order α is defined as follows:
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F F−Y I α,γ
0,t { f (t)}

= αγ

Y (α)

∫ t

0

(
sα−1 f (s)(t − s)α−1) ds

+γ (1 − α)tγ−1 f (t)

Y (α)
, (21)

where 0 < α, γ ≤ 1, α, γ ∈ N, and Y (α) = (1−α)2+
α

Γ (α)
.

Definition 13 ThegeneralLiouville–Caputo–Fabrizio–
Yuhang fractal–fractional integral of f (t) with order α

is defined as follows:
F F−CC F AB I α,γ

0,t { f (t)}
= γ

{
λ1

[
1

Γ (α)

∫ t

0
(t − s)α−1sγ−1 f (s)ds

]

+ λ2

[
α

M(α)

∫ t

0

(
sα−1 f (s)

)
ds

+γ (1 − α)tγ−1

M(α)
f (t)

]

+ λ3

[
α

Y (α)

∫ t

0

(
sα−1 f (s)(t − s)α−1

)
ds

+γ (1 − α)tγ−1 f (t)

Y (α)

]}
,

(22)

here, λi ∈ {0, 1}, i = 1, 2, 3.
when λ1 = 1, λ2 = 0 and λ3 = 0, m − 1 < α,

γ ≤ m, α, γ, m ∈ N, and d f (s)
dsγ = lim

t→s

f (t)− f (s)
tγ −sγ , it is

called Liouville–Caputo fractional-order definition.
when λ1 = 0, λ2 = 1 and λ3 = 0, 0 < α, γ ≤ m,

α, γ, m ∈ N, and M(0) = M(1) = 1, it is called
Caputo–Fabrizio fractional-order definition.

when λ1 = 0, λ2 = 0 and λ3 = 1, 0 < α, γ ≤ 1,
α, γ ∈ N, and Y (α) = (1 − α)2 + α

Γ (α)
, it is called

Yuhang fractional-order definition.

4 Numerical schemes and examples

In this section, theorems and detailed proof about
three numerical schemes have been designed, namely,
Caputo fractal–fractional, Caputo–Fabrizio fractal–
fractional, and theYuhang FFD operators, respectively.

Theorem 1 Consider the following differential equa-
tions in the fractal–fractional Liouville–Caputo sense:

F F−LC Dα,γ
0,t {x(t)} = f (t, x(t), y(t), z(t)). (23)

Let the equation (23) be converted to the Volterra case,
and the numerical scheme of this system using a Caputo

fractal–fractional approach at tn+1 is given by:

x(tn+1)

= x(0) + γ

Γ (α)

∫ tn+1

0
(tn+1

−s)α−1sγ−1 f (s, xn+1, yn+1, zn+1)ds. (24)

Then Liouville–Caputo FFD has been obtained, where

x(tn+1) = x(0) − (Δt)αγ

Γ (α + 2)
n∑

j=0

{
tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1)

[
(n − j)α(α + 1 + n − j)

−(n + 1 − j)α+1
]

+ tγ−1
j f (t j , x j , y j , z j )

[
(n + 1 − j)α(n − j − α) − (n − j)α+1

]}
.

(25)

Proof The above integral can be approximated as:

x(tn+1) = x(0) + γ

Γ (α)

n∑

j=0

∫ t j+1

t j

(tn+1

−s)α−1sγ−1 f (s, xn+1, yn+1, zn+1)ds. (26)

Within the finite interval [t j , t j+1], it should be approx-
imated that the function sγ−1 f (s, xn+1, yn+1, zn+1)

using the Lagrangian piecewise interpolation such that:

Ψ j (s) = sγ−1 f (s, xn+1, yn+1, zn+1)

= t j+1 − s

t j+1 − t j
tγ−1

j f (t j , x j , y j , z j )

+ s − t j

t j+1 − t j
tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1).

(27)

Thus, (26) is given by:

x(tn+1) = x(0) + γ

Γ (α)

n∑

j=0

∫ t j+1

t j

(tn+1

−s)α−1Ψ j (s)ds. (28)

Substituting Eqs. (27) into (28), which has:

x(tn+1) = x(0) + γ

Γ (α)

n∑

j=0

∫ t j+1

t j

(tn+1

− s)α−1
[

t j+1 − s

t j+1 − t j
tγ−1

j f (t j , x j , y j , z j )

+ s − t j

t j+1 − t j
tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1)

]
ds.

(29)

Solving the integral of the right-hand side, the follow-
ing numerical scheme is obtained:
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x(tn+1) = x(0) − γ

αΓ (α)

n∑

j=0

∫ t j+1

t j

[
t j+1 − s

t j+1 − t j
tγ−1

j f (t j , x j , y j , z j )

+ s − t j

t j+1 − t j
tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1)

]
d(tn+1 − s)α.

(30)

Integrating over (tn+1 − s)α , (31) is given by:

x(tn+1) = x(0) − γ

αΓ (α)

n∑

j=0

{[
t j+1 − s

t j+1 − t j
tγ−1

j f (t j , x j , y j , z j )

+ s − t j

t j+1 − t j
tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1)

]
(tn+1 − s)α|t j+1

t j

−
∫ t j+1

t j

(tn+1 − s)αd

[
t j+1 − s

t j+1 − t j
tγ−1

j f (t j , x j , y j , z j ) + s − t j

t j+1 − t j
tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1)

]}
.

(31)

Which has

x(tn+1) = x(0) − γ

αΓ (α)

n∑

j=0

{[
tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1)
]
(tn+1 − t j+1)

α

−
[
tγ−1

j f (t j , x j , y j , z j )
]
(tn+1 − t j )

α −
∫ t j+1

t j

(tn+1 − s)αd

[
t j+1 − s

t j+1 − t j
tγ−1

j f (t j , x j , y j , z j ) + s − t j

t j+1 − t j
tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1)

]}
.

(32)

and it follows from (32) that

x(tn+1) = x(0) − γ

αΓ (α)

n∑

j=0

{[
tγ−1

j+1 f (t j+1, x j+1, y j+1z j+1)
]
(tn+1 − t j+1)

α

−
[
tγ−1

j f (t j , x j , y j , z j )
]
(tn+1 − t j )

α −
∫ t j+1

t j

(tn+1 − s)αd

⎡

⎣ tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1) − tγ−1

j f (t j , x j , y j , z j )

t j+1 − t j

⎤

⎦ s

⎫
⎬

⎭ .

(33)

Which has

x(tn+1) = x(0) − γ

αΓ (α)

n∑

j=0

{[
tγ−1

j+1 f (t j+1, x j+1, y j+1z j+1)
]
(tn+1 − t j+1)

α

−
[
tγ−1

j f (t j , x j , y j , z j )
]
(tn+1 − t j )

α

−
⎡

⎣ tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1) − tγ−1

j f (t j , x j , y j , z j )

t j+1 − t j

⎤

⎦
∫ t j+1

t j

(tn+1 − s)αds

⎫
⎬

⎭ .

(34)

and thus,
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x(tn+1) = x(0) − γ

αΓ (α)

n∑

j=0

{[
tγ−1

j+1 f (t j+1, x j+1, y j+1z j+1)
]
(tn+1 − t j+1)

α

−
[
tγ−1

j f (t j , x j , y j , z j )
]
(tn+1 − t j )

α

+
⎡

⎣ tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1) − tγ−1

j f (t j , x j , y j , z j )

t j+1 − t j

⎤

⎦
∫ t j+1

t j

(tn+1 − s)αd(tn+1 − s)

⎫
⎬

⎭ .

(35)

It can be observed by Eq. (35) which obtains

x(tn+1) = x(0) − γ

αΓ (α)

n∑

j=0

{[
tγ−1

j+1 f (t j+1, x j+1, y j+1z j+1)
]
(tn+1 − t j+1)

α

−
[
tγ−1

j f (t j , x j , y j , z j )
]
(tn+1 − t j )

α

+
⎡

⎣ tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1) − tγ−1

j f (t j , x j , y j , z j )

t j+1 − t j

⎤

⎦ (tn+1 − s)α+1

α + 1
|t j+1
t j

⎫
⎬

⎭ .

(36)

and thus,

x(tn+1) = x(0) − γ

αΓ (α)

n∑

j=0

{[
tγ−1

j+1 f (t j+1, x j+1, y j+1z j+1)
]
(tn+1 − t j+1)

α

−
[
tγ−1

j f (t j , x j , y j , z j )
]
(tn+1 − t j )

α +
⎡

⎣ tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1) − tγ−1

j f (t j , x j , y j , z j )

t j+1 − t j

⎤

⎦

× (tn+1 − t j+1)
α+1 − (tn+1 − t j )

α+1

α + 1

}
.

(37)

It follows from (37) that

x(tn+1) = x(0) − γ

Γ (α + 1)

n∑

j=0

{[
tγ−1

j+1 f (t j+1, x j+1, y j+1z j+1)
]
(tn+1 − t j+1)

α

−
[
tγ−1

j f (t j , x j , y j , z j )
]
(tn+1 − t j )

α +
⎡

⎣ tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1) − tγ−1

j f (t j , x j , y j , z j )

t j+1 − t j

⎤

⎦

× (tn+1 − t j+1)
α+1 − (tn+1 − t j )

α+1

α + 1

}
.

(38)

Which has

x(tn+1) = x(0) − γ

Γ (α + 1)

n∑

j=0

{
tγ−1

j+1 f (t j+1, x j+1, y j+1z j+1)(tn+1 − t j+1)
α

− tγ−1
j f (t j , x j , y j , z j )(tn+1 − t j )

α + tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1) − tγ−1

j f (t j , x j , y j , z j )

t j+1 − t j

× (tn+1 − t j+1)
α+1 − (tn+1 − t j )

α+1

α + 1

}
.

(39)
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Assuming that Δt = t j+1 − t j , then equation (39)
can be reduced to

x(tn+1) = x(0) − γ

Γ (α + 1)

n∑

j=0

{
tγ−1

j+1 f (t j+1, x j+1, y j+1z j+1)(n − j)α(Δt)α

−tγ−1
j f (t j , x j , y j , z j )(n + 1 − j)α(Δt)α + tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1) − tγ−1
j f (t j , x j , y j , z j )

Δt

× (n − j)α+1(Δt)α+1 − (n + 1 − j)α+1(Δt)α+1

α + 1

}
. (40)

For simplicity of notation, it can be written as:

x(tn+1) = x(0)

− γ

Γ (α + 1)

n∑

j=0

{
tγ−1

j+1 f (t j+1, x j+1, y j+1,

z j+1)(n − j)α(Δt)α

− tγ−1
j f (t j , x j , y j , z j )(n + 1 − j)α(Δt)α

+
[
tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1)

−tγ−1
j f (t j , x j , y j , z j )

]

× (n − j)α+1(Δt)α − (n + 1 − j)α+1(Δt)α

α + 1

}
.

(41)

and thus,

x(tn+1) = x(0)

− (Δt)αγ

Γ (α + 1)

n∑

j=0

{
tγ−1
j+1 f (t j+1, x j+1, y j+1

, z j+1)(n − j)α

− tγ−1
j f (t j , x j , y j , z j )(n + 1 − j)α

+
[
tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1)

−tγ−1
j f (t j , x j , y j , z j )

] (n − j)α+1 − (n + 1 − j)α+1

α + 1

}
.

(42)

It can be replaced by Eq. (42) which obtains

x(tn+1) = x(0)

− (Δt)αγ

(α + 1)Γ (α + 1)

n∑

j=0

{
tγ−1

j+1 f (t j+1, x j+1, y j+1,

z j+1)(n − j)α(α + 1)

−tγ−1
j f (t j , x j , y j , z j )(n + 1 − j)α(α + 1)

+
[
tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1)

−tγ−1
j f (t j , x j , y j , z j )

] [
(n − j)α+1 − (n + 1

− j)α+1
]}

.

(43)

It follows from (43) that

x(tn+1) = x(0)

− (Δt)αγ

Γ (α + 2)

n∑

j=0

{
tγ−1

j+1 f (t j+1, x j+1, y j+1,

z j+1)(n − j)α(α + 1)

− tγ−1
j f (t j , x j , y j , z j )(n + 1 − j)α(α + 1)

+
[
tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1)

−tγ−1
j f (t j , x j , y j , z j )

] [
(n − j)α+1 − (n + 1

− j)α+1
]}

.

(44)

Which has

x(tn+1) = x(0)

− (Δt)αγ

Γ (α + 2)

n∑

j=0

{
tγ−1

j+1 f (t j+1, x j+1, y j+1,

z j+1)(n − j)α(α + 1)

− tγ−1
j f (t j , x j , y j , z j )(n + 1 − j)α(α + 1)

+ tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1)(n − j)α+1

− tγ−1
j f (t j , x j , y j , z j )(n − j)α+1

− tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1)(n + 1 − j)α+1

+tγ−1
j f (t j , x j , y j , z j )(n + 1 − j)α+1

}
.

(45)

Therefore, it can be observed by Eq. (45) which
obtains

x(tn+1) = x(0)

− (Δt)αγ

Γ (α + 2)

n∑

j=0

{
tγ−1

j+1 f (t j+1, x j+1, y j+1 ,

z j+1)
[
(n − j)α(α + 1 + n − j)
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−(n + 1 − j)α+1
]

+ tγ−1
j f (t j , x j , y j , z j ) [(n

+1 − j)α(n − j − α) − (n − j)α+1
]}

.

(46)

�	
This completes the proof of the Theorem.

Theorem 2 Consider the following differential equa-
tions in the Caputo–Fabrizio FFD in the Liouville–
Caputo sense:

F F−C FC Dα,γ
0,t {x(t)} = f (t, x(t), y(t), z(t)). (47)

Applying the Caputo–Fabrizio integral, which obtains

x(t) = x(0) + αγ

M(α)

∫ t

0

(
sγ−1 f (s, x, y, z)

)
ds

+γ (1 − α)tγ−1

M(α)
f (t, x, y, z). (48)

Here, the detailed derivation of the numerical scheme
is presented. Thus, at tn+1, more precisely,

x(tn+1) = x(0)

+ αγ

M(α)

∫ tn+1

0

(
sγ−1 f (s, xn+1, yn+1, zn+1)

)
ds

+γ (1 − α)tγ−1
n+1

M(α)
f (tn+1, xn+1, yn+1, zn+1).

(49)

Then the Caputo–Fabrizio–Caputo FFD is obtained,
where

x(tn+1) = x(0) + αγ

2M(α)

n∑

j=0

[
tγ−1

j+1 f (t j+1, x j+1,

y j+1, z j+1) − tγ−1
j f (t j , x j , y j , z j )

]
(t j+1 + t j )

+γ (1 − α)tγ−1
n+1

M(α)
f (tn+1, xn+1, yn+1, zn+1).

(50)

Proof The above integral (49) can be approximated to:

x(tn+1) = x(0) + αγ

M(α)

n∑

j=0

∫ t j+1

t j

(
sγ−1 f (s, xn+1,

yn+1, zn+1)) ds

+ γ (1 − α)tγ−1
n+1

M(α)
f (tn+1, xn+1, yn+1, zn+1).

(51)

Approximating sγ−1 f (s, xn+1, yn+1, zn+1) in
[t j , t j+1], that is, within the finite interval [t j , t j+1],

using the Lagrangian piecewise interpolation, the func-
tion sγ−1 f (s, xn+1, yn+1, zn+1) is approximated to
equation (52):

Ψ j (s) = sγ−1 f (s, xn+1, yn+1, zn+1)

= t j+1 − s

t j+1 − t j
tγ−1

j f (t j , x j , y j , z j )

+ s − t j

t j+1 − t j
tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1).

(52)

Thus, which obtains

x(tn+1) = x(0) + αγ

M(α)

n∑

j=0

∫ t j+1

t j

[
t j+1 − s

t j+1 − t j
tγ−1

j

× f (t j , x j , y j , z j )

+ s − t j

t j+1 − t j
tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1)

]
ds

+ γ (1 − α)tγ−1
n+1

M(α)
f (tn+1, xn+1, yn+1, zn+1).

(53)

It can be observed by Eq. (53) which obtains

x(tn+1) = x(0) + αγ

M(α)

n∑

j=0

∫ t j+1

t j

⎡

⎣ tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1) − tγ−1

j f (t j , x j , y j , z j )

t j+1 − t j
s

⎤

⎦ ds

+γ (1 − α)tγ−1
n+1

M(α)
f (tn+1, xn+1, yn+1, zn+1). (54)

It follows from (54) that

x(tn+1) = x(0) + αγ

M(α)

n∑

j=0
⎡

⎣ tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1) − tγ−1

j f (t j , x j , y j , z j )

t j+1 − t j

⎤

⎦

∫ t j+1

t j

sds

+γ (1 − α)tγ−1
n+1

M(α)
f (tn+1, xn+1, yn+1, zn+1). (55)

and thus,

x(tn+1) = x(0) + αγ

M(α)

n∑

j=0
⎡

⎣ tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1) − tγ−1

j f (t j , x j , y j , z j )

t j+1 − t j

⎤

⎦

s2

2

∣∣∣t j+1
t j

+ γ (1 − α)tγ−1
n+1

M(α)
f (tn+1, xn+1, yn+1, zn+1). (56)
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which has

x(tn+1) = x(0) + αγ

M(α)

n∑

j=0
⎡

⎣ tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1) − tγ−1

j f (t j , x j , y j , z j )

t j+1 − t j

⎤

⎦

t2j+1 − t2j
2

+γ (1 − α)tγ−1
n+1

M(α)
f (tn+1, xn+1, yn+1, zn+1). (57)

and hence,

x(tn+1) = x(0) + αγ

2M(α)

n∑

j=0
[
tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1) − tγ−1
j f (t j

, x j , y j , z j )
]
(t j+1 + t j )

+ γ (1 − α)tγ−1
n+1

M(α)
f (tn+1, xn+1, yn+1, zn+1).

(58)

�	

This shows that the identities in (50) are satisfied.

Theorem 3 Consider the following differential equa-
tions in the Yuhang FFD in the Liouville–Caputo sense:

F F−LCY Dα,γ
0,t {x(t)} = f (t, x(t), y(t), z(t)). (59)

Applying the Yuhang integral of Definition 7, which has

x(t) = x(0) + αγ

Y (α)Γ (α)

∫ t

0

(
sγ−1(t

−s)α−1 f (s, x, y, z)
)

ds

+γ (1 − α)tγ−1

Y (α)
f (t, x, y, z). (60)

If x(tn+1) is equal to the following equation at tn+1:

x(tn+1) = x(0) + αγ

Y (α)Γ (α)

∫ tn+1

0(
sγ−1(tn+1 − s)α−1 f (s, xn+1, yn+1, zn+1)

)
ds

+ γ (1 − α)tγ−1
n+1

Y (α)
f (tn+1, xn+1, yn+1, zn+1).

(61)

Then the Caputo–Yuhang FFD is obtained, where

x(tn+1) = x(0) − αγ (Δt)α

Y (α)Γ (α + 2)

n∑

j=0
{

tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1)

[
(α + 2)(n − j)α

−(n + 1 − j)α+1
]

−tγ−1
j f (t j , x j , y j , z j )

[
(α − n + j)(n + 1 − j)α

+(n − j)α+1
]}

+ γ (1 − α)tγ−1
n+1

Y (α)
f (tn+1, xn+1, yn+1, zn+1).

(62)

Proof The above system (61) can be approximate and
expressed as

x(tn+1) = x(0)

+ αγ

Y (α)Γ (α)

n∑

j=0

∫ t j+1

t j

(
sγ−1(tn+1 − s)α−1 f (s, xn+1

, yn+1, zn+1)) ds

+ γ (1 − α)tγ−1
n+1

Y (α)
f (tn+1, xn+1, yn+1, zn+1).

(63)

Approximating sγ−1 f (s, xn+1, yn+1, zn+1) in
[t j , t j+1], that is, within the finite interval [t j , t j+1],
using the Lagrangian piecewise interpolation, the func-
tion sγ−1 f (s, xn+1, yn+1, zn+1) is approximated to:

Ψ j (s) = sγ−1 f (s, xn+1, yn+1, zn+1)

= t j+1 − s

t j+1 − t j
tγ−1

j f (t j , x j , y j , z j )

+ s − t j

t j+1 − t j
tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1).

(64)

Thus, which is given by

x(tn+1) = x(0)

+ αγ

Y (α)Γ (α)

n∑

j=0

∫ t j+1

t j

([
t j+1 − s

t j+1 − t j
tγ−1

j f (t j

, x j , y j , z j )

+ s − t j

t j+1 − t j
tγ−1

j+1 f (t j+1, x j+1

, y j+1, z j+1)
]
(tn+1 − s)α−1

)
ds

+ γ (1 − α)tγ−1
n+1

Y (α)
f (tn+1, xn+1, yn+1, zn+1).

(65)
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The following numerical scheme is obtained:

x(tn+1) = x(0)

− αγ

Y (α)αΓ (α)

n∑

j=0

∫ t j+1

t j

([
t j+1 − s

t j+1 − t j
tγ−1

j f (t j

, x j , y j , z j )

+ s − t j

t j+1 − t j
tγ−1

j+1 f (t j+1, x j+1

, y j+1, z j+1)
])

d(tn+1 − s)α

+ γ (1 − α)tγ−1
n+1

Y (α)
f (tn+1, xn+1, yn+1, zn+1).

(66)

More precisely,

x(tn+1) = x(0)

− αγ

Y (α)Γ (α + 1)

n∑

j=0

{[
t j+1 − s

t j+1 − t j
tγ−1

j f (t j

, x j , y j , z j )

+ s − t j

t j+1 − t j
tγ−1

j+1 f (t j+1, x j+1

, y j+1, z j+1)
]
(tn+1 − s)α|t j+1

t j

−
∫ t j+1

t j

(tn+1 − s)αd

[
t j+1 − s

t j+1 − t j
tγ−1

j f (t j

, x j , y j , z j )

+ s − t j

t j+1 − t j
tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1)

]}

+ γ (1 − α)tγ−1
n+1

Y (α)
f (tn+1, xn+1, yn+1, zn+1).

(67)

That is

x(tn+1) = x(0)

− αγ

Y (α)Γ (α + 1)

n∑

j=0

{[
tγ−1

j+1 f (t j+1, x j+1

, y j+1, z j+1)(tn+1 − t j+1)
α

−tγ−1
j f (t j , x j , y j , z j )(tn+1 − t j )

α
]

−
∫ t j+1

t j

(tn+1 − s)αd

[
t j+1 − s

t j+1 − t j
tγ−1

j f (t j , x j , y j , z j )

+ s − t j

t j+1 − t j
tγ−1

j+1 f (t j+1, x j+1, y j+1, z j+1)

]}

+ γ (1 − α)tγ−1
n+1

Y (α)
f (tn+1, xn+1, yn+1, zn+1).

(68)

and thus,

x(tn+1) = x(0)

− αγ

Y (α)Γ (α + 1)

n∑

j=0

{[
tγ−1
j+1 f (t j+1, x j+1

, y j+1, z j+1)(tn+1 − t j+1)
α

−tγ−1
j f (t j , x j , y j , z j )(tn+1 − t j )

α
]

−
−tγ−1

j f (t j , x j , y j , z j ) + tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1)

t j+1 − t j
∫ t j+1

t j

(tn+1 − s)αds

}

+γ (1 − α)tγ−1
n+1

Y (α)
f (tn+1, xn+1, yn+1, zn+1). (69)

That is

x(tn+1) = x(0)

− αγ

Y (α)Γ (α + 1)

n∑

j=0

{[
tγ−1
j+1 f (t j+1, x j+1

, y j+1, z j+1)(tn+1 − t j+1)
α

−tγ−1
j f (t j , x j , y j , z j )(tn+1 − t j )

α
]

+
−tγ−1

j f (t j , x j , y j , z j ) + tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1)

t j+1 − t j

× (tn+1 − t j+1)
α+1 − (tn+1 − t j )

α+1

α + 1

}

+γ (1 − α)tγ−1
n+1

Y (α)
f (tn+1, xn+1, yn+1, zn+1). (70)

Assuming that Δt = t j+1 − t j , then equation (70)
can be reduced to

x(tn+1) = x(0)

− αγ

Y (α)Γ (α + 1)

n∑

j=0

{[
tγ−1
j+1 f (t j+1, x j+1

, y j+1, z j+1)(n − j)α(Δt)α

−tγ−1
j f (t j , x j , y j , z j )(n + 1 − j)α(Δt)α

]

+
−tγ−1

j f (t j , x j , y j , z j ) + tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1)

Δt

× (n − j)α+1(Δt)α+1 − (n + 1 − j)α+1(Δt)α+1

α + 1

}

+γ (1 − α)tγ−1
n+1

Y (α)
f (tn+1, xn+1, yn+1, zn+1). (71)
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Incidentally, it can be replaced by Eq. (71) which
obtains

x(tn+1) = x(0)

− αγ (Δt)α

Y (α)Γ (α + 1)

n∑

j=0

{[
tγ−1

j+1 f (t j+1

, x j+1, y j+1, z j+1)(n − j)α

−tγ−1
j f (t j , x j , y j , z j )(n + 1 − j)α

]

+
[
−tγ−1

j f (t j , x j , y j , z j ) + tγ−1
j+1 f (t j+1

, x j+1, y j+1, z j+1)
]

× (n − j)α+1 − (n + 1 − j)α+1

α + 1

}

+ γ (1 − α)tγ−1
n+1

Y (α)
f (tn+1, xn+1, yn+1, zn+1).

(72)

which yields

x(tn+1) = x(0)

− αγ (Δt)α

Y (α)(α + 1)Γ (α + 1)

n∑

j=0

{
(α + 1)

[
tγ−1

j+1 f (t j+1

, x j+1, y j+1, z j+1)(n − j)α

−tγ−1
j f (t j , x j , y j , z j )(n + 1 − j)α

]

+
[
−tγ−1

j f (t j , x j , y j , z j ) + tγ−1
j+1 f (t j+1

, x j+1, y j+1, z j+1)
]

×
[
(n − j)α+1 − (n + 1 − j)α+1

]}

+ γ (1 − α)tγ−1
n+1

Y (α)
f (tn+1, xn+1, yn+1, zn+1).

(73)

Which has

x(tn+1) = x(0)

− αγ (Δt)α

Y (α)Γ (α + 2)

n∑

j=0

{
(α + 1)tγ−1

j+1 f (t j+1

, x j+1, y j+1, z j+1)(n − j)α

−(α + 1)tγ−1
j f (t j , x j , y j , z j )(n + 1 − j)α

−tγ−1
j f (t j , x j , y j , z j )(n − j)α+1 + tγ−1

j f (t j

, x j , y j , z j )(n + 1 − j)α+1

+tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1)(n − j)α+1

−tγ−1
j+1 f (t j+1, x j+1, y j+1, z j+1)(n + 1 − j)α+1

}

+γ (1 − α)tγ−1
n+1

Y (α)
f (tn+1, xn+1, yn+1, zn+1). (74)

That is

x(tn+1) = x(0)

− αγ (Δt)α

Y (α)Γ (α + 2)

n∑

j=0

{
tγ−1

j+1 f (t j+1

, x j+1, y j+1, z j+1)
[
(α + 1)(n − j)α

+(n − j)α+1 − (n + 1 − j)α+1
]

− tγ−1
j f (t j , x j , y j , z j )

[
(α + 1)(n + 1 − j)α

+(n − j)α+1 − (n + 1 − j)α+1
]}

+ γ (1 − α)tγ−1
n+1

Y (α)
f (tn+1, xn+1, yn+1, zn+1).

(75)

Therefore,

x(tn+1) = x(0)

− αγ (Δt)α

Y (α)Γ (α + 2)

n∑

j=0

{
tγ−1

j+1 f (t j+1

, x j+1, y j+1, z j+1)
[
(α + 2)(n − j)α

−(n + 1 − j)α+1
]

−tγ−1
j f (t j , x j , y j , z j )

[
(α − n + j)(n + 1 − j)α

+(n − j)α+1
]}

+ γ (1 − α)tγ−1
n+1

Y (α)
f (tn+1, xn+1, yn+1, zn+1).

(76)

�	
This completes the proof of the Theorem.

Example 1 Consider the four-dimensional hyper-Qi
chaotic system involving the FFD in the Liouville–
Caputo sense [37].
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F F−LC Dα,γ
0,t {x(t)} = a(y(t) − x(t)) + y(t)z(t)u(t),

F F−LC Dα,γ
0,t {y(t)} = b(x(t) + y(t)) − x(t)z(t)u(t),

F F−LC Dα,γ
0,t {z(t)} = −cz(t) + x(t)y(t)u(t),

F F−LC Dα,γ
0,t {u(t)} = −du(t) + x(t)y(t)z(t).

(77)

which has the strange chaotic attractor in three-
dimensional space is shown in Fig. 1a–d when a = 25,
b = 2, c = 15, and d = 35, step size h = 1 × 10−5,
simulation time t = 200s, and initial conditions x(0) =
2, y(0) = 0.2, z(0) = 1, and u(0) = 2 for α = 1 and
γ = 1.
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The four-dimensional hyper-Qi chaotic system (77)
in two-dimensional plane is shown in Fig. 2a–f when
a = 25, b = 2, c = 15, and d = 35, step size h = 1×
10−5, simulation time t = 200s, and initial conditions
x(0) = 2, y(0) = 0.2, z(0) = 1, and u(0) = 2 for
α = 1 and γ = 1.

Based on Theorem 1, the numerical scheme of the
four-dimensional hyper-Qi chaotic system (77) is given
by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(tn+1) = x(0) − (Δt)αγ

Γ (α + 2)

n∑

j=0

{
tγ−1

j+1

[
a(y(t j+1) − x(t j+1)) + y(t j+1)z(t j+1)u(t j+1)

]

×
[
(n − j)α(α + 1 + n − j) − (n + 1 − j)α+1

]

+ tγ−1
j

[
a(y(t j ) − x(t j )) + y(t j )z(t j )u(t j )

]

×
[
(n + 1 − j)α(n − j − α) − (n − j)α+1

]}
,

y(tn+1) = y(0) − (Δt)αγ

Γ (α + 2)

n∑

j=0

{
tγ−1

j+1

[
b(x(t j+1) + y(t j+1)) − x(t j+1)z(t j+1)u(t j+1)

]

×
[
(n − j)α(α + 1 + n − j) − (n + 1 − j)α+1

]

+ tγ−1
j

[
b(x(t j ) + y(t j )) − x(t j )z(t j )u(t j )

]

×
[
(n + 1 − j)α(n − j − α) − (n − j)α+1

]}
,

z(tn+1) = z(0) − (Δt)αγ

Γ (α + 2)

n∑

j=0

{
tγ−1

j+1

[−cz(t j+1) + x(t j+1)y(t j+1)u(t j+1)
]

×
[
(n − j)α(α + 1 + n − j) − (n + 1 − j)α+1

]

+ tγ−1
j

[−cz(t j ) + x(t j )y(t j )u(t j )
]

×
[
(n + 1 − j)α(n − j − α) − (n − j)α+1

]}
,

u(tn+1) = u(0) − (Δt)αγ

Γ (α + 2)

n∑

j=0

{
tγ−1

j+1

[−du(t j+1) + x(t j+1)y(t j+1)z(t j+1)
]

×
[
(n − j)α(α + 1 + n − j) − (n + 1 − j)α+1

]

+ tγ−1
j

[−du(t j ) + x(t j )y(t j )z(t j )
]

×
[
(n + 1 − j)α(n − j − α) − (n − j)α+1

]}
.

(78)

Without loss of generality, numerical simulations for
hyper-Qi chaotic system are shown in Liouville–
Caputo sense equation (77), which are considered the
different values of α and γ chosen arbitrarily.

From a 3-D perspective: Considering the FFD in
the Liouville–Caputo sense and the numerical scheme
given by Eq. (77), Numerical results for hyper-Qi
chaotic system (78) in three-dimensional space are
shown in Fig. 3a–d for a = 25, b = 2, c = 15,
and d = 35, step size h = 5 × 10−3, simulation time
t = 200s, and initial conditions x(0) = 2, y(0) = 0.2,
z(0) = 1, and u(0) = 2 for α = 0.95 and γ = 0.95,
respectively. It can be observed, Fig. 3 a is a three-
dimensional image located at three-dimensional coor-

dinate system x(t) − y(t) − z(t); Fig. 3b is a three-
dimensional image located at three-dimensional coor-
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Fig. 1 Phase portraits of
the hyper-Qi chaotic system
in (a) the x(t)-y(t)-z(t)
space; (b) the x(t)-y(t)-u(t)
space, (c) the x(t)-z(t)-u(t)
space, and (d) the
y(t)-z(t)-u(t) space

Fig. 2 Phase portraits of
the hyper-Qi chaotic system
and projected on (a) the
x(t)-y(t) plane; (b) the
x(t)-z(t) plane; (c) the
x(t)-u(t) plane; (d) the
y(t)-z(t) plane; (e) the
y(t)-u(t) plane; and (f) the
z(t)-u(t) plane
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Fig. 3 Phase portraits of
the hyper-Qi chaotic system
FFD in (a) the x(t)-y(t)-z(t)
space; (b) the x(t)-y(t)-u(t)
space, (c) the x(t)-z(t)-u(t)
space, and (d) the
y(t)-z(t)-u(t) space

dinate system x(t) − y(t) − u(t); These two sub-
pictures are alike in appearance. Figure 3c shows a
three-dimensional image located at three-dimensional
coordinate system x(t)− z(t)−u(t); Fig. 3d is a three-
dimensional image located at three-dimensional coor-
dinate system y(t)−z(t)−u(t); These two sub-pictures
are alike in appearance with double scrolls.

From a 2-D perspective: Considering the FFD in
the Liouville–Caputo sense and the numerical scheme
given by Eq. (77), Numerical results for hyper-Qi
chaotic system (78) in two-dimensional space are
shown in Fig. 4a–f for a = 25, b = 2, c = 15, and
d = 35, step size h = 5 × 10−3, simulation time
t = 200s, and initial conditions x(0) = 2, y(0) = 0.2,
z(0) = 1, and u(0) = 2 for α = 0.95 and γ = 0.95,
respectively. As can be seen, Fig. 4a is like a double

scroll; Fig. 4b and c are like double butterflies state
with front or back view, respectively; Fig. 4d and e are
like double butterflies state with top view or bottom
view, respectively; Fig. 4f is like a disc on the side.

Involving the FFD in the Caputo–Fabrizio–Caputo
sense, which has
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F F−C FC Dα,γ
0,t {x(t)} = a(y(t) − x(t)) + y(t)z(t)u(t),

F F−C FC Dα,γ
0,t {y(t)} = b(x(t) + y(t)) − x(t)z(t)u(t),

F F−C FC Dα,γ
0,t {z(t)} = −cz(t) + x(t)y(t)u(t),

F F−C FC Dα,γ
0,t {u(t)} = −du(t) + x(t)y(t)z(t).

(79)

Based on Theorem 2, the numerical scheme of the
four-dimensional hyper-Qi chaotic system (79) is given
by:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(tn+1) = x(0) + αγ

2M(α)

n∑

j=0

[
tγ−1

j+1

[
a(y(t j+1) − x(t j+1)) + y(t j+1)z(t j+1)u(t j+1)

]

−tγ−1
j

[
a(y(t j ) − x(t j )) + y(t j )z(t j )u(t j )

]]
(t j+1 + t j )

+ γ (1 − α)tγ−1
n+1

M(α)

[
a(y(tn+1) − x(tn+1)) + y(tn+1)z(tn+1)u(tn+1)

]
.

y(tn+1) = y(0) + αγ

2M(α)

n∑

j=0

[
tγ−1

j+1

[
b(x(t j+1) + y(t j+1)) − x(t j+1)z(t j+1)u(t j+1)

]

−tγ−1
j

[
b(x(t j ) + y(t j )) − x(t j )z(t j )u(t j )

]]
(t j+1 + t j )

+ γ (1 − α)tγ−1
n+1

M(α)

[
b(x(tn+1) + y(tn+1)) − x(tn+1)z(tn+1)u(tn+1)

]
.

z(tn+1) = z(0) + αγ

2M(α)

n∑

j=0

[
tγ−1

j+1

[−cz(t j+1) + x(t j+1)y(t j+1)u(t j+1)
]

−tγ−1
j

[−cz(t j ) + x(t j )y(t j )u(t j )
]]

(t j+1 + t j )

+ γ (1 − α)tγ−1
n+1

M(α)

[−cz(tn+1) + x(tn+1)y(tn+1)u(tn+1)
]
.

u(tn+1) = u(0) + αγ

2M(α)

n∑

j=0

[
tγ−1

j+1

[−du(t j+1) + x(t j+1)y(t j+1)z(t j+1)
]

−tγ−1
j

[−du(t j ) + x(t j )y(t j )z(t j )
]]

(t j+1 + t j )

+ γ (1 − α)tγ−1
n+1

M(α)

[−du(tn+1) + x(tn+1)y(tn+1)z(tn+1)
]
.

(80)

From a 3-D perspective: Considering the FFD in
the Caputo–Fabrizio–Caputo sense and the numeri-
cal scheme given by equation (79), Numerical results
for hyper-Qi chaotic system (80) in three-dimensional
space are shown in Fig. 5a–d for a = 25, b = 2,
c = 15, and d = 35, step size h = 3 × 10−3, simula-
tion time t = 200s, and initial conditions x(0) = 0.1,
y(0) = 0.5, z(0) = 1, and u(0) = 2 for α = 0.90 and
γ = 0.90, respectively. These sub-pictures are similar
to double scrolls in appearance with compact state.

From a 2-D perspective: Considering the FFD in
the Caputo–Fabrizio–Caputo sense and the numerical
scheme given by equation (79), Numerical results for
hyper-Qi chaotic system (80) in two-dimensional space
are shown in Fig. 6a–f for a = 25, b = 2, c = 15, and
d = 35, step size h = 3 × 10−3, simulation time t =
200s, and initial conditions x(0) = 0.1, y(0) = 0.5,
z(0) = 1, and u(0) = 2 for α = 0.90 and γ = 0.90,

respectively. As can be seen, Fig. 6a is like a double
scroll with compact state; Fig. 6b and c are like double
butterflies with compact state in front or back view,
respectively; Fig. 6d and e is like double butterflieswith
compact state in top view or bottom view, respectively;
Fig. 6f is like a disc on the side with compact state.

Involving the FFD in the Liouville–Caputo–Yuhang
sense, which has
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F F−LCY Dα,γ
0,t {x(t)} = a(y(t) − x(t)) + y(t)z(t)u(t),

F F−LCY Dα,γ
0,t {y(t)} = b(x(t) + y(t)) − x(t)z(t)u(t),

F F−LCY Dα,γ
0,t {z(t)} = −cz(t) + x(t)y(t)u(t),

F F−LCY Dα,γ
0,t {u(t)} = −du(t) + x(t)y(t)z(t).

(81)

Based on Theorem 3, the numerical scheme of the
four-dimensional hyper-Qi chaotic system (81) is given
by:
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Fig. 4 Phase portraits of
the hyper-Qi chaotic system
FFD and projected on (a)
the x(t)-y(t) plane; (b) the
x(t)-z(t) plane; (c) the
x(t)-u(t) plane; (d) the
y(t)-z(t) plane; (e) the
y(t)-u(t) plane; and (f) the
z(t)-u(t) plane

Fig. 5 Phase portraits of
the hyper-Qi chaotic system
FFD in (a) the x(t)-y(t)-z(t)
space; (b) the x(t)-y(t)-u(t)
space, (c) the x(t)-z(t)-u(t)
space, and (d) the
y(t)-z(t)-u(t) space
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(tn+1) = x(0) − αγ (Δt)α

Y (α)Γ (α + 2)

n∑

j=0

{
tγ−1

j+1

[
a(y(t j+1) − x(t j+1))

+y(t j+1)z(t j+1)u(t j+1)
] [

(α + 2)(n − j)α − (n + 1 − j)α+1
]

−tγ−1
j

[
a(y(t j ) − x(t j )) + y(t j )z(t j )u(t j )

] [
(α − n + j)(n + 1 − j)α + (n − j)α+1

]}

+ γ (1 − α)tγ−1
n+1

Y (α)

[
a(y(tn+1) − x(tn+1)) + y(tn+1)z(tn+1)u(tn+1)

]
.

y(tn+1) = y(0) − αγ (Δt)α

Y (α)Γ (α + 2)

n∑

j=0

{
tγ−1

j+1

[
b(x(t j+1) + y(t j+1))

−x(t j+1)z(t j+1)u(t j+1)
] [

(α + 2)(n − j)α − (n + 1 − j)α+1
]

−tγ−1
j

[
b(x(t j ) + y(t j )) − x(t j )z(t j )u(t j )

] [
(α − n + j)(n + 1 − j)α + (n − j)α+1

]}

+ γ (1 − α)tγ−1
n+1

Y (α)

[
b(x(tn+1) + y(tn+1)) − x(tn+1)z(tn+1)u(tn+1)

]
.

z(tn+1) = z(0) − αγ (Δt)α

Y (α)Γ (α + 2)

n∑

j=0

{
tγ−1

j+1

[−cz(t j+1) + x(t j+1)y(t j+1)u(t j+1)
]

×
[
(α + 2)(n − j)α − (n + 1 − j)α+1

]

−tγ−1
j

[−cz(t j ) + x(t j )y(t j )u(t j )
] [

(α − n + j)(n + 1 − j)α + (n − j)α+1
]}

+ γ (1 − α)tγ−1
n+1

Y (α)

[−cz(tn+1) + x(tn+1)y(tn+1)u(tn+1)
]
.

u(tn+1) = u(0) − αγ (Δt)α

Y (α)Γ (α + 2)

n∑

j=0

{
tγ−1

j+1

[−du(t j+1) + x(t j+1)y(t j+1)z(t j+1)
]

[
(α + 2)(n − j)α − (n + 1 − j)α+1

]

−tγ−1
j

[−du(t j ) + x(t j )y(t j )z(t j )
] [

(α − n + j)(n + 1 − j)α + (n − j)α+1
]}

+ γ (1 − α)tγ−1
n+1

Y (α)

[−du(tn+1) + x(tn+1)y(tn+1)z(tn+1)
]
.

(82)

From a 3-D perspective: Considering the FFD in
the Liouville–Caputo Yuhang sense and the numerical
scheme given by Eq. (81), Numerical results for hyper-
Qi chaotic system (82) in three-dimensional space are
shown in Fig. 7a–d for a = 25, b = 2, c = 15, and
d = 35, step size h = 5 × 10−3, simulation time
t = 200s, and initial conditions x(0) = 4, y(0) = 4,
z(0) = 2, and u(0) = 2 for α = 0.85 and γ = 0.85,
respectively. For Fig. 7a–d, its sub-image looks like a
three-dimensional single scroll in the state of a disc.

From a 2-D perspective: Considering the FFD in
the Liouville–Caputo Yuhang sense and the numerical
scheme given by Eq. (81), Numerical results for hyper-
Qi chaotic system (82) in two-dimensional space are
shown in Fig. 8a–f for a = 25, b = 2, c = 15, and d =
35, step size h = 5× 10−3, simulation time t = 200s,
and initial conditions x(0) = 4, y(0) = 4, z(0) = 2,
and u(0) = 2 for α = 0.85 and γ = 0.85, respectively.
For Fig. 8a–f, its sub-image looks like planetary orbits
in the solar system, respectively.
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Fig. 6 Phase portraits of
the hyper-Qi chaotic system
FFD and projected on (a)
the x(t)-y(t) plane; (b) the
x(t)-z(t) plane; (c) the
x(t)-u(t) plane; (d) the
y(t)-z(t) plane; (e) the
y(t)-u(t) plane; and (f) the
z(t)-u(t) plane

Fig. 7 Phase portraits of
the hyper-Qi chaotic system
FFD in (a) the x(t)-y(t)-z(t)
space; (b) the x(t)-y(t)-u(t)
space, (c) the x(t)-z(t)-u(t)
space, and (d) the
y(t)-z(t)-u(t) space
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Fig. 8 Phase portraits of
the hyper-Qi chaotic system
FFD and projected on (a)
the x(t)-y(t) plane; (b) the
x(t)-z(t) plane; (c) the
x(t)-u(t) plane; (d) the
y(t)-z(t) plane; (e) the
y(t)-u(t) plane; and (f) the
z(t)-u(t) plane

In summary, based on different theorems, such as
Theorems 1, 2, 3 and in view of different systems, such
as systems (78), (80) and (82), Figs. 3, 4, 5, 6, 7 and
8 show different numerical simulations for the Hyper
Qi chaotic system in Liouville–Caputo sense, Caputo–
Fabrizio–Caputo sense, and Liouville–Caputo Yuhang
sense considering different values of α and γ chosen
arbitrarily.

Remark 1 The time complexity of an algorithm quan-
tifies the amount of time taken by an algorithm to run as
a function of the length of the input. Note that the time
to run is a function of the length of the input and not
the actual execution time of the machine on which the
algorithm is running on. In this work, based on differ-
ent theorems, such as Theorems 1, 2, 3 and in view of
different systems, such as systems (78), (80) and (82),
Figs. 3, 4, 5, 6, 7 and 8 show different numerical simu-
lations for the Hyper Qi chaotic system with step size
h = 5 × 10−3 and simulation time t = 200s. Mean-
while, the space complexity of an algorithm quantifies
the amount of space taken by an algorithm to run as a
function of the length of the input. In this work, based
on different theorems, such as Theorems 1, 2, 3 and in

view of different systems, such as systems (78), (80)
and (82), Figs. 3, 4, 5, 6, 7 and 8 show different numer-
ical simulations for the Hyper Qi chaotic system. From
the perspective of space, the space taken by these sub-
figures are alike in appearance with double scrolls, but-
terflies, disc, and planetary orbits in the solar system.

Remark 2 A fractional-order four-dimensional hyper-
Qi system has been introduced and analyzed as an
example. Chaotic behaviors were observed with differ-
ent fractional orders as a function of the systems param-
eters in Eq. (77). Based on different theorems, such as
Theorems 1, 2, 3 and in view of systems parameters,
such as systems (78), (80) and (82), Figs. 3, 4, 5, 6, 7 and
8 show different numerical simulations for the hyper-
Qi chaotic system with different derivative orders α =
0.95, α = 0.90 and α = 0.85, respectively. Moreover,
from the comparisons about the attractors of the system
with different derivative orders, the simulation figures
are shown in appearance with double scrolls, butter-
flies, disc, and planetary orbits in the solar system.

Remark 3 At present, there are also many other meth-
ods which can be used to solve the fractional-order sys-
tems. For example, Adomian decomposition method
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(ADM) [38]. ADM has the advantages of fast conver-
gence and high precision in dealing with the fractional-
order chaotic differential equations. It is of great value
to the study of the fractional-order chaotic system. The
proposed systems in this study can be analyzed and
solved by using ADM.

5 Conclusion

This study analyzed a four-dimensional fractional
hyperchaoticmodel in detail basedongeneralRiemann–
Liouville–Caputo fractal–fractional derivative.A series
of new operators are constructed using three differ-
ent elements. Moreover, the new operators have two
parameters with fractional order and fractal dimen-
sion. The Qi hyperchaotic fractional attractor is mod-
eled by using these new operators, and the models
are solved numerically using a new and very efficient
numerical scheme.Meanwhile, the solutions have been
investigated to justify the physical adequacy of the
model and the numerical scheme proposed in the res-
olution. The numerical simulations for some specific
fractional-order dynamics and fractal dimension are
presented. Nevertheless, these obtained via generalized
Caputo–Fabrizio and the series of fractal–fractional
derivative show some crossover effects, which is due
to non-index law property. Furthermore, the obtained
from generalized fractal–fractional derivative, in par-
ticular, those with the Mittag–Leffler kernel, show
very strange and new attractors with self-similarities.
Finally, the conclusions are shown that these new oper-
ators are the future tomodelling complexities with self-
similarities in some complex dynamical networks and
and multi-agent systems. In addition to capture more
complexities, new investigations and applications can
be explored with some positive and new outcomes in
various fields of nonlinear science, engineering and
modern technology, cryptography, signal processing,
and control process. These new explorations will be
presented in future research work being processed by
author of the present paper.
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