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Abstract A new algorithm for the estimation of the
robustness of a dynamical system’s equilibrium is pre-
sented. Unlike standard approaches, the algorithm does
not aim to identify the entire basin of attraction of the
solution. Instead, it iteratively estimates the so-called
local integrity measure, that is, the radius of the largest
hypersphere entirely included in the basin of attraction
of a solution and centred in the solution. The procedure
completely overlooks intermingled and fractal regions
of the basin of attraction, enabling it to provide a signifi-
cant engineering quantity in a very short time. The algo-
rithm is tested on four different mechanical systems of
increasing dimension, from 2 to 8. For each system,
the variation of the integrity measure with respect to a
system parameter is evaluated, proving the engineering
relevance of the results provided. Despite some limita-
tions, the algorithm proved to be a viable alternative to
more complex and computationally demanding meth-
ods,making it a potentially appealing tool for industrial
applications.
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1 Introduction

Stability is one of the most important properties of a
dynamical state. Although several definitions of stabil-
ity exist [30], it can be stated that if a motion is stable,
small perturbations have only a transient effect on the
system dynamics, which tends to return to the stable
motion. Engineers heavily exploit this concept, and,
indeed, the study of the stability of the working condi-
tions of a device is an indispensable step of the design.
For linear systems, in a dynamical sense, stability is a
sufficient condition to guarantee the safe operation of a
device. However, this is not necessarily true for nonlin-
ear systems.While linear dynamical systems have only
one solution, nonlinear systems have, in general, many.
Ifmore than one solution is stable, the systemdynamics
will converge to one of them depending on the initial
conditions. The set of initial conditions in the phase
space from which the system converges to a particular
solution is called basin of attraction (BOA) of the solu-
tion, which is bounded for multi-stable systems. This
concept is fundamental for assessing the robustness of
a stable solution.

The fact that a BOA is bounded has obvious critical
implications for real systems. Let us assume that a sys-
tem (for instance, an aeroplane) is correctly working in
the desired dynamical state (steady flight conditions).
Suddenly, a short impulse (a violent wind gust) per-
turbs the system and moves it away from this state. If
the system remains in its BOA, it will again converge to
the original state after a short transient. Considering the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-021-06936-9&domain=pdf
http://orcid.org/0000-0003-3323-6901


2074 G. Habib

aeroplane example, the transient might consist of van-
ishing oscillations of the wings, causing no real danger.
Conversely, suppose the perturbationmakes the system
cross its BOA boundaries. In that case, it will converge
towards another dynamical state, which, for an aero-
plane, might consist of flutter wing oscillations, repre-
senting a danger for the system integrity. As a matter
of fact, the assessment of flutter-free flight conditions
for aeroplanes involves several lengthy tests [24,34].

This phenomenonexists inmanyandvarious dynam-
ical systems, ranging from mechanical ones, such
as braking systems (generating brake squeal [22,51])
and aircraft landing gears (causing the generation of
shimmy vibrations [2,56]), to very different systems
such as traffic flow or power grids, where the escape
from the BOA can cause traffic jams [41] and power
blackouts [11,37,42]. The implications of limitedBOA
are well-known to scientists dealing with dynamical
systems, and indeed several quantitative measures of
system robustness exist (often referred to as dynam-
ical integrity measures [44,48,53,54]). However, in
industrial approaches, they are usually overlooked if
not ignored. This is mainly related to the difficulty of
computing BOAs.

A few methods for the identification of BOAs of
continuous dynamical systems exist [23,32]. Analyti-
calmethods are generally based onLyapunov functions
[13]. A Lyapunov function is a continuously differ-
entiable locally positive definite function whose time
derivative is locally negative semi-definite around the
equilibrium point. The region of space in which these
properties are verified is part of the BOA of the equi-
librium [38]. However, there is no general procedure to
find Lyapunov functions [38], and their computation is
practically impossible for large-dimensional systems;
therefore, it is not a feasible option for the majority of
real applications [23].

The most intuitive and commonly implemented
numericalmethod consists of performing direct numer-
ical simulations, imposing a grid of points of the
system’s phase space as initial conditions and veri-
fying if the system converges or not to the desired
solution. Assuming that the mesh is sufficiently fine,
this method accurately identifies BOAs of the sys-
tem. However, it is computationally very costly since
it requires a large number of numerical simulations,
which increases exponentially with the dimension of
the system, becoming practically infeasible even for
medium size systems. For this reason, BOA repre-

sentations are often limited to bidimensional sections
[45]. This method is intrinsically very inefficient since
from each numerical simulation it extracts only one
bit of information. Furthermore, it is practically unus-
able experimentally. Probabilistic approaches, based
on Monte Carlo sampling, are an alternative method
for reducing computational cost [39,50,51,63]; how-
ever, they do not provide any insight about the system
dynamics, and their outcome is not comparable with
integrity measures [32]. The cell mapping method, first
developed byHsu [20,21,52], is probably themost effi-
cient numerical method for BOA estimation; its basic
idea is to consider the state space not as a contin-
uum, but rather as a collection of a large number of
state cells, with each cell taken as a state entity; this
method is computationally very efficient, having the
advantage of being perfectly suited for parallel com-
putation [1]. Developments of the method, such as
the generalized cell mapping [18,19], the subdivision
cell mapping [5–7] and the multi-degree-of-freedom
cell mapping method [26,57,58,64], enable to inves-
tigate even relatively large dynamical systems. A first
attempt to extend the method to a data-driven model-
free approach, therefore implementable also in exper-
imental environments, was recently proposed by Li et
al. [33].

Virgin and co-workers [60,61] obtained remark-
able results developing an experimental method for
BOA estimation based on stroboscopic surface cross-
ing. However, this method is intrinsically limited to
3-dimensional systems (or to systems reducible to 3
dimensions [62]). Despite a significant effort by the
scientific community, thus far, there is nomethod effec-
tively implementable in an industrial environment for
the thorough computation of dynamical system robust-
ness.

1.1 Dynamical integrity measures

A procedure to quantify the robustness of a dynam-
ical state was first proposed in [53]. Several mea-
sures of robustness, called dynamical integrity mea-
sures, were defined. Thompson [53] first introduced the
global integrity measure (GIM). This was rapidly re-
examined by Soliman and Thompson [48], who intro-
duced the local integrity measure (LIM), the impul-
sive integritymeasure (IIM) and the stochastic integrity
measure (SIM). Later, in a series of papers, Rega and
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Fig. 1 Basin of attraction of the unforced Duffing oscillator ẍ +
0.1ẋ−x+x3 = 0. The black andwhite regions indicate the basin
of attraction of the equilibria at (−1, 0) and (1, 0), respectively.
The white circle indicates the LIM (0.7683), the white line the
IIM (0.7725) and the red dashed circle the IF (0.8049)

Lenci [31,44] carefully evaluated the relevance of these
integrity measures and proposed new ones, such as
the integrity factor (IF) and the actual global integrity
measure (AGIM). These dynamical integrity measures
proved to be a valuable tool to quantitatively investigate
phenomena of BOA erosion, particularly important for
safe engineering design [32,40,45].

Figure 1 illustrates the BOA of two coexisting equi-
libria of a Duffing oscillator, which enable us to illus-
trate the difference between the various integrity mea-
sures proposed in the literature.

• The GIM is the extent of the area of one solution’s
BOA within a specific range of the phase space. In
the figure, it is given by the total extent of the black
region.

• The LIM is the minimum distance from an equi-
librium point to its basin boundary in any direction.
Generally, if extended to periodic or quasiperiodic
solutions, one point of the solution is chosen for
measuring the LIM. In Fig. 1 the LIM is given by
the radius of the white circle.

• The IIM is analogous to the LIM; however, it con-
siders perturbations only in directions related to
the system velocity, acknowledging that an impulse
causes variations of the velocity of a mechanical
system. In Fig. 1, the IIM is given by the solid white
line; for this specific case, the difference between
LIM and IIM is quantitatively negligible.

• The SIM is a stochastic quantity, defined in terms
of the mean escape time when the attractor is sub-
ject to additive white noise excitation of prescribed
intensity.

• The IF is given by the radius of the largest hyper-
sphere that lies entirely in the BOA. In Fig. 1 it is
given by the red circle, which is slightly larger than
the circle referring to the LIM, and it is not centred
in the equilibrium point.

• The AGIM is analogous to the GIM; however,
it excludes points surrounded by not converging
points in the phase space. This integrity measure
acknowledges that BOAs are obtained from a finite
number of discrete points and aims at not counting
fractal regions.

Integrity measures provide significant engineering
quantities, characterizing the robustness of a dynamical
state. Apart from the GIM (and partially also the SIM),
they all neglect intermingled and fractal regions of the
BOA, which are not practically useful because of their
intrinsic uncertain character.

2 Basic idea and objective

The objective of the present study is to develop an algo-
rithm for the rapid assessment of the robustness of a
stable equilibrium point. For addressing this task, the
algorithm should iteratively quantify an integrity mea-
sure, disregarding intermingled and fractal regions of
the BOA. Let us consider the integrity measures pre-
sented in Sect. 1.1. The SIM is based on a probabilis-
tic quantity; therefore, it requires a sufficiently large
number of samples to be computed. The GIM and the
AGIMdepend on the global extent of the BOA; hence it
is computationally expensive to evaluate them. On the
contrary, theLIM, the IIMand the IFdependonly on the
local geometry of the BOA. However, the IIM is con-
ceived explicitly formechanical systems, where pertur-
bations related to impacts affect the system’s velocity;
accordingly, it does not have a general character. The
LIM and the IF are similar measures of the system
integrity; however, for the designed algorithm’s objec-
tive, the LIM presents several advantages. First of all,
the IF is relatively expensive to be exactly calculated in
large-dimensional systems; it corresponds to the largest
empty sphere problem [3] in geometry, and its compu-
tation is based on the definition of the Voronoi diagram
[46,55]. Although faster approximate methods to com-
pute the IF exists [27], the computation of the LIM is
significantly simpler and faster. Furthermore, in view
of an iterative procedure, the LIM provides the impor-
tant advantage that, if at an iteration step a particular
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value of the LIM is defined, all the phase space exter-
nal to the hypersphere defined by the LIM (that we call
hypersphere of convergence) can be immediately dis-
regarded; this is not true for the IF. As illustrated in [48]
and in [45], inmost cases the various integritymeasures
provide qualitatively similar results. This fact allows us
to use the most convenient one for our purposes, which
is the LIM.

Acknowledging these premises, the algorithm is
based on a simple framework. Subsequent iterative
steps consist of performing a time simulation of the
system and estimating the LIM value. The estimated
LIM value either decreases or remains constant at each
iteration. It defines a hypersphere in the phase space,
which limits the region of interest of the analysis. Ini-
tial conditions of each simulation are defined within
this hypersphere, as described in Sect. 3.3.3.

Although relatively simple and intuitive, this frame-
work presents various challenges, which, if not cor-
rectly addressed,might significantly increase computa-
tional time. The first problem is related to each simula-
tion’s stopping criterion, which directly impacts com-
putational time. Then, an intelligent choice of initial
conditions for each simulation is required for a faster
convergence to an acceptable estimate of the true LIM
value. Finally, since the procedure is iterative, a stop-
ping criterion for the whole algorithm is also required.
These aspects are investigated in the remaining part of
the paper.

The developed algorithm, as explained later, is appli-
cable only for the robustness assessment of equilib-
rium points and not for other types of solutions (such
as periodic and quasiperiodic). The implementation of
the algorithm to periodic solutions will be the subject
of future studies. The research’s long-term objective is
to provide an algorithm potentially implementable in
experiments and appealing for industrial applications.

3 Algorithm description

The algorithm can be divided into three main phases:
data input, preprocessing and iterative computation.
The various phases are described in details below.

3.1 Data input

Data input includes: (i) the equations governing the
dynamics of the system, either autonomous ordinary
differential equations or difference equations, (ii) the
boundaries of the phase space, (iii) the discretization
interval of the phase space (required for convergence
analysis, as explained later), (iv) the definition of other
quantities, such as the maximal simulation time, the
simulation tolerances and the utilized time integrator
(in the case of ordinary differential equations). The
boundaries of the phase space indicate limits beyond
which the system is assumed as diverged. In other
words, if during a simulation the state of the system
crosses the phase space boundary, the simulation is
immediately interrupted, and the algorithm assumes
that the trajectory does not converge to the equilibrium
of interest. The cases of non-autonomous systems, par-
tial or delayed differential equations are not addressed
here. However, we plan to extend the present procedure
for those cases in future studies.

3.2 Preprocessing

The preprocessing consists of various steps; not all of
them are always necessary. Namely:

• Reorganization of the equations of motion. In most
cases, it is convenient to transform the system in
modal coordinates of the underlying linear system
for the equilibrium point of interest. In particular,
this helps for the definition of the distance in the
phase space, as explained in Sect. 3.2.1.

• Identification of the equilibrium point of interest,
if not directly provided by the user. Equilibrium
point can be computed through a numerical simula-
tion utilizing initial conditions, which are known to
be within the basin of attraction of the equilibrium
point. Alternatively, it can be directly calculated
from the equations of motion utilizing numerical
methods.

• Define a time integration interval. This is needed
to have trajectories defined by a finite number of
points equidistributed in time.

• Initialize LIM value. The initial LIM value is cal-
culated as the minimal distance between the equi-
librium point and the phase space boundary.

• Define initial conditions for the first simulation. A
random point of the phase space (within the given
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boundary) is a reasonable choice. Initial conditions
of subsequent simulations are computed according
to the procedure described in Sect. 3.3.3.

3.2.1 Distance definition

Identifying an integrity measure requires the definition
of distance in the phase space because the system vari-
ables are, in general, physically diverse. Keeping in
mind the practical purposes of the analysis, defining
a distance in a significant engineering way is conve-
nient. Since the algorithm is tested only on mechanical
systems in this study, we define the distance accord-
ingly. We assume that two points in the phase space are
equidistant from the equilibrium point of interest if the
energetic level of the underlying linear system at those
points is the same.

Let us consider a generic autonomousn-DoFmechan-
ical system, whose linearized equations of motion
around a stable equilibrium are

Mẍ + Cẋ + Kx = 0, (1)

where M and K are symmetric and positive definite.
Performing amodal analysis of the system and neglect-
ing damping, the system can be reduced to

q̈i + ω2
i qi = 0, for i = 1, . . . , n. (2)

The system in Eq. (2) has the same energy level E =
1/2 for the following states

• q̇l = 1, qi = 0, q̇ j = 0, for i = 1, . . . , n, j =
1, . . . , n, j �= l

• ql = 1/ωl , qi = 0, q̇ j = 0, for i = 1, . . . , n,
j = 1, . . . , n, i �= l,

which are therefore assumed equidistant from the equi-
librium. Accordingly, in the phase space of the system
in modal coordinates, the distance between a generic
point and the equilibrium is computed as

d =
√
√
√
√

n
∑

i=1

(

ω2
i q

2
i + q̇2i

)

, (3)

and, in general, the distance between two points A and
B is computed as

dAB =
√
√
√
√

n
∑

i=1

(

αi (qiA − qiB)2
) +

n
∑

i=1

(

αn+i (q̇iA − q̇iB)2
)

,

(4)

where qiA and qiB are the coordinates of the two points
and αi are the weights. In the case of an n-dimensional
mechanical systems, defined in the underlying linear
modal space, the vector α = [α1, . . . , α2n] has the
from α = [

ω2
1, . . . , ω

2
n, 1, . . . , 1

]

. We remark that the
adopted definition of distance loses significance far
from the equilibrium point because of the nonlinear
nature of the dynamical systems studied.

Although engineering significant, this definition is
arbitrary and not applicable in many dynamical sys-
tems, for which the αi coefficients should be chosen
according to appropriate criteria. Despite being rele-
vant for the practical meaning of the result provided,
the definition of distance does not affect the algorithm’s
effectiveness.

3.3 Iterative computation

Once all input data are provided and preprocessing is
performed, the iterative computation can be started.
This is the core of the algorithm and it includes the
following steps:

I perform a time integration of the system
II classify the obtained trajectory as:

(a) converging to the desired solution
(b) non-converging to the desired solution

III if the trajectory does not converge to the desired
solution, recompute the LIM

IV verify if the stopping criterion is fulfilled; if yes,
then terminate the procedure

V define initial conditions for the next simulation and
go to step I.

3.3.1 Time series classification

Since time integration is, computationally, the most
expensive operation of the algorithm, it is critical to
limit the integration to the minimal essential time. For
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this purpose, a strategy inspired by the cell mapping
method is implemented. In practice, the whole phase
space is subdivided into cells. Each point of a trajectory
is associated with the cell it lies in. Assuming that the
cell occupiedby thedesired equilibriumpoint is known,
if a trajectory reaches that cell, it is classified as “con-
verging” to the desired solution (Fig. 2, trajectory 1).
Consequently, all the cells containing points of that tra-
jectory are also classified as “converging” (green cells
in Fig. 2). If a trajectory crosses the boundary of the
phase space admissible region, it is classified as “non-
converging” (or “diverging” from the phase space, as
trajectory 2 in Fig. 2), and similarly all cells containing
points of that trajectory.These twocases are straightfor-
ward to be recognized and do not present any particular
difficulty. If the convergence to the desired equilibrium
is too slow, or if the cells are excessively small, a cer-
tain number of cells surrounding the one containing the
desired equilibrium point can be, by default, classified
as “converging”. In this way, time-series reaching those
cells are interrupted, saving computational time.

For the recognition of fixed points different from the
desired equilibrium, we consider that, if several subse-
quent points of a trajectory lie in the same cell, then the
trajectory is assumed to have converged to a previously
unknown fixed point (Fig. 2, trajectory 3); therefore, it
is classified as “non-converging”. If a trajectory passes
through a very slow region (for instance, close to a sad-
dle point), then many points might lie in the same cell,
leading to detecting a non-existent fixed point. In order
to avoid this occurrence, a sufficiently large number of
subsequent points lying in the same cell are required to
classify the cell as a fixed point (40 points by default).
Although this slightly slows down the computation, the
detection of each new solution is performed only once
during the iterations; therefore, it is not a practical issue.

The recognition of periodic motions is somehow
more troublesome.We consider that, if non-subsequent
points pass through the same cell, then the trajectory is
considered converged to a previously unknown peri-
odic solution (Fig. 2, trajectory 4), and it is classi-
fied as “non-converging”. However, a trajectory might
encounter cells already tracked by previous points of
the same trajectory even if there is no periodic solution.
This usually happens, for instance, while a trajectory
spirals around a stable fixed point. In order to avoid
the detection of non-existent periodic solutions, the
algorithm requires that a cell must be touched by non-
consecutive points several times (5 by default) before

the algorithm stops the simulation and assumes that
it identified a periodic solution. We also remark that
since, in general, the time step utilized is not an integer
fraction of the period of a solution, there is no guar-
antee that a periodic trajectory, after one period, will
reach a cell already tracked. Therefore, the detection
of a periodic solution might require the time series to
travel along the periodic path for several loops. Fur-
thermore, the algorithmmight confuse very small peri-
odic solutions with fixed points; however, this does not
compromise the algorithm’s effectiveness,which needs
only to distinguish between trajectories converging and
not converging to the desired solution. Cell dimension
and time-step duration are also parameters affecting the
correct classification of trajectories.

Quasiperiodic and chaotic attractors are detected
and classified as periodic solutions if a point of their
trajectory passes through the same cell several times.
The algorithm is unable to distinguish between chaotic,
quasiperiodic or periodic solutions. However, the iden-
tification of such solutions might require more time
than the predefined maximal time for each time series.
If a trajectory does not reach any of the conditionsmen-
tioned above within the available time, then the devel-
oped algorithm offers two possibilities: supervised and
automatic classification. In supervised classification,
the computation is interrupted, and the algorithm asks
the user to decide, based on a representation of the tra-
jectory in the phase space and in time, if the trajectory
converges or not to the equilibrium. In the automatic
classification case, the trajectory is directly marked as
“non-converging”.Ultimately, for the scopeof the algo-
rithm, it is sufficient to classify cells as either converg-
ing or non-converging. Referring to Fig. 2, yellow and
red cells are “non-converging” cells, while green cells
are “converging” ones.

If a point of a trajectory lies in a cell already tracked
by a previous time series, the simulation stops and all
the cells touched by the present simulation are assumed
to have the same convergence properties of the cell
reached. This case is illustrated by trajectory 5 in Fig. 2.
Because of the different time scales of a dynamical sys-
tem’s modes, trajectories usually rapidly approach an
invariantmanifold before converging towards an attrac-
tor [4,16,17]; therefore, they tend to gather around
these invariant manifolds, reaching already investi-
gated cells within a short time. This dynamical phe-
nomenon enables the algorithm to proceed relatively
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Fig. 2 Illustrative examples
of trajectory classification.
(1) Converging to a known
equilibrium; (2) leaving the
considered phase space
region; (3) converging to an
unknown equilibrium; (4)
converging to a periodic
solution; (5) converging to
an already tracked cell

(1)

(2)

(3)

(4)

(5)

ẋ

x

quickly after the computation of the first few trajecto-
ries, as will be illustrated in Sect. 4.

If stable solutions, different from the desired one,
are known from previous analysis, then cells contain-
ing these solutions are classified as “non-converging”
in advance. This facilitates the classification of the tra-
jectories and reduces computational time.

On the one hand, the proposed classification cri-
terion can lead to even significant inaccuracies if the
cells are too large. On the other hand, smaller cells
increase computational time since they reduce the
probability of reaching already investigated cells (this
behaviour is validated in Sect. 4). Therefore, a trade-
off between accuracy and rapidity must be reached
while choosing cells’ dimension. Nevertheless, the
LIM is not computed according to the cell classifica-
tion but directly from the points of the time series, as
the shortest distance between the equilibrium and any
“non-converging” point; thus, the cell dimension is not
strictly related to the LIM resolution. We also remark
that the algorithm does not require to store information
about all the cells, as it is for the cell mapping method,
but it is necessary only to save the tracked cells; there-
fore, in general, memory is not a particular issue for
the algorithm.

3.3.2 Stopping criteria

We consider three different stopping criteria:

1. The algorithm performs a predefined number of
iterations.

2. The algorithmstops if the estimatedLIMvalue does
not decrease for a given number of iterations.

3. The algorithmstops if the density of thepoints in the
hypersphere of convergence reaches a predefined
value.

In this study, we always let run the algorithm for a
predefined number of iterations. However, for a general
user, it might be convenient to use a different criterion.
In light of the numerical results illustrated in Sect. 4,
the other two criteria are discussed later.

3.3.3 Define initial conditions for next simulation

The definition of the initial conditions of each simula-
tion is a pretty critical step for the algorithm. Since the
algorithm aims to iteratively reduce the LIMvalue until
a good approximation is obtained, initial conditions are
chosen within the hypersphere of convergence, accord-
ing to the latest LIM value calculated. Additionally,
we aim to fill the space within the hypersphere of con-
vergence in a relatively homogeneous way; this sug-
gests choosing initial conditions as the most remote
point of the phase space from points already tracked
within the hypersphere of convergence. However, this
is a computationally expensive procedure, which cor-
responds to solve the largest empty sphere problem [3]
(as for computing the IF). Nevertheless, there is no
need for precisely identifying the most remote point;
therefore, an approximate procedure based on a genetic
algorithm is developed for this purpose [27]. First, all
tracked points within the hypersphere of convergence
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Fig. 3 Illustrative example
of initial condition
selection. red dashed line:
hypersphere of
convergence; black dots:
points of previous
trajectories; red, blue and
green dots: potential initial
condition points
(individuals), green dots
mark the best performing
individual, blue dots mark
best individuals after the
first one. a Points directly
tracked by previous
simulations; b remaining
points after nearby points
are eliminated; c first
generation of genetic
algorithm; d second
generation of genetic
algorithm. (Color figure
online)

(a) (b)

(c) (d)

ẋ ẋ

ẋ ẋ

x x

x x

and slightly outside of it are considered (Fig. 3a). Then,
points very close to each other are merged in order
to reduce computational time in the following steps
(Fig. 3b). After that, a given number of potential initial
conditions are randomly generated within the hyper-
sphere of convergence; these are the “individuals” of
the first generation of the genetic algorithm (red and
green dots in Fig. 3c). The coordinates of these points
are their “chromosomes”, and the “fitness function” is
given by the minimal distance from any point previ-
ously tracked (black dots in the figure). The individual
with the highest fitness function (green dot) is kept as
an individual of the next generation. The new genera-
tion also includes individuals generated from random
variations of the best individuals’ chromosomes of the
previous generation and fully randomly generated new
individuals (red dots in Fig. 3c, d). The procedure con-
tinues for a prescribed number of generations.

4 Algorithm validation

In this section, the proposed algorithm is applied to
four different systems of increasing dimension. First, a
Duffing oscillator, encompassing a negative linear stiff-
ness and a positive cubic one, is considered, which is
the same system utilized for the generation of the BOA
in Fig. 1. Then, a two-DoF system, consisting of a van
der Pol-Duffing oscillator with an attached tuned mass
damper (TMD) [12,15], is studied. Later, a pitch and
plunge wing profile with an attached nonlinear tuned
vibration absorber is considered [36]. Finally, the algo-
rithm is applied on a chain of four masses presenting a
bistability related to a geometrical nonlinearity.
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Table 1 Main algorithm parameters used for the computations

Parameter Duffing Duf.—van der Pol Pitch and plunge wing Chain of masses

n (num. cells per direction) 701 701 1501 1001

Space boundaries [−2,−2, 2, 2] [−3,−3,−3,−3, 3, 3, 3, 3] [−0.2,−0.2,−2,−2,−1,−1,
0.2, 0.2, 2, 2, 1, 1]

[5 × x02, 5 × x03]

TS (time int. interval) 0.05 0.05 0.05 0.05

Rel. and abs. toll. 10−8 10−8 10−8 10−8

Genetic algorithm

Number of generations 5 5 10 5

Individuals per gen. 20 20 20 20

4.1 Duffing oscillator

We consider an unforced Duffing oscillator, whose
dynamics is governed by the equation of motion

ẍ + 2ζ ẋ − x + ax3 = 0. (5)

The system has three fixed points, x01 = (x01, ẋ01) =
(0, 0), x02 = (−1/

√
a, 0) and x03 = (1/

√
a, 0); if

ζ > 0 and a > 0, the trivial equilibrium is unstable
and the other two are stable [25].

We apply the proposed algorithm to this system, util-
ising the fixed point x02 as the desired solution, while
any other steady-state solution, i.e. the fixed point x03,
is considered undesired. The position of the undesired
equilibrium point is not provided to the algorithm.

Before initializing the procedure, the distance in the
phase space is normalized according to the definition
in Eq. (4), with α = [

ω2
1, 1

]

and ω1 = 2, that is the
natural frequency of the system linearized around x02.
Initially, the parameter values ζ = 0.05 and a = 1 are
utilized,making the system identical to the one used for
obtaining Fig. 1. The results are presented in Fig. 4. For
the computation, we utilized the parameters indicated
in Table 1.

Figure 4a illustrates all the points tracked during
the entire computation in the phase space. Blue points
mark trajectories converging to the desired equilibrium;
orange points indicate non-converging points. Black
points mark the initial conditions utilized, while the red
and black crosses represent the desired and undesired
equilibrium points, respectively; the undesired equilib-
rium was found directly by the algorithm. Finally, the
red dashed circle is the hypersphere of convergence
(which is 2-dimensional and reduces to a circle).

Studying the robustness of one of the stable equi-
librium of this system is not challenging because of its
small dimension. However, it is ideal for illustrating
how the algorithm works, and it enables us to perform
a first evaluation of the algorithm’s effectiveness. Fig-
ure 4b depicts the trend of the estimated LIM value at
each iteration. We notice that the estimated LIM value
decreases very rapidly. After only one simulation, it
decreases to 0.788,which closely approximates the real
LIM value, which is 0.768 (obtained from the BOA in
Fig. 1). The trajectory corresponding to the first simula-
tion (whose initial condition is marked by the number 1
in Fig. 4a) starts from a point in the right half-plane, and
its trajectory makes almost one complete loop around
x02 before converging to x03. Therefore, it provides a
reasonable estimate of the LIM value, and it enables
the algorithm to identify x03. The following ten simu-
lations all converge to the desired solution; therefore,
they cannot reduce the LIM value. The twelfth simula-
tion (initial conditions marked by number 12), instead,
does not converge to x02, and improves the estimation
of the LIM value to 0.7791, which has a difference of
less than 1% from the exact LIM value. All the remain-
ing simulations converge to x02; accordingly, they do
not reduce the estimated LIM value.

Figure 4c illustrates the time required for the vari-
ous steps of the procedure. The red line, marking the
time required for defining each initial condition, has
a clear increasing linear trend due to the increasing
number of points included in the hypersphere of con-
vergence. For the case under study, this time is not very
large; however, it can increase significantly for large-
dimensional systems. In those cases, as illustrated later,
it is required to correctly choose the parameters of the
genetic algorithmprocedure for defining the initial con-
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Fig. 4 a Trajectories in the
phase space for the system
in Eq. (5); red and black
crosses mark desired and
undesired equilibrium
solutions, respectively; blue
dots: converging
trajectories, orange dots:
non-converging trajectories,
black dots: initial
conditions, dashed red
circle marks LIM. b
Iterative estimated LIM. c
Computational time per
iteration; black line: total
step time, blue line:
simulation time, red line:
time for defining following
initial condition. (Color
figure online)
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ditions in order to limit it. The blue line indicates the
time required for each simulation. The first two simu-
lations require, on average, much more time than the
followingones. That occurs because, once the cells near
the stable solutions have alreadybeen tracked, new sim-
ulations are rapidly interrupted as soon as they reach
a cell already tracked, significantly reducing computa-
tional time. The black line depicts the total time of each
iteration step, which is mainly given by the sum of the
simulation time and the time required for choosing the
initial conditions, plus some additional operation, such
as defining the new LIM value. The whole procedure,
performed on a single core of a commercial personal
computer (processor i5-10600 3.30 GHz), took 5.04
seconds. Although this time is minimal if compared
with a brute force computation of the BOA or with a
Monte Carlo approach for robustness evaluation, the
cell mapping method is significantly faster [1]. Nev-
ertheless, we remark that we did not try to reduce the
computational time in anyway, if not by rationally plan-
ning the basic logic of the algorithm. Indeed, time inte-
grations were performed utilizing the standard ODE45

function in MATLAB, which is relatively slow com-
pared to other solvers [43]. Some advantages of the
present approach over the cell mapping method will
be addressed while referring to larger-dimensional sys-
tems.

Figure 5a illustrates the trend of the estimated LIM
as an average of 40 computations. The shaded area indi-
cates the standard deviation from the average value,
marked by the black line. Although the selection of the
initial conditions is partially random, the figure illus-
trates that the trend of the estimated LIM value is rel-
atively uniform for all the different computations. Fig-
ure 5b, c illustrates the trend of the final estimated LIM
value and the time taken for the whole computation,
considering different numbers of cells (n indicates the
number of cells for each dimension, and the total num-
ber of cell is n2). The figures are obtained from 150 dif-
ferent repetitions for each considered n value. Accord-
ing to Fig. 5b, the estimated LIM value is relatively
accurate even for a very small number of cells, and
precision does not significantly improve, even increas-
ing n from 400 to 1300. On the contrary, computational
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Fig. 5 Considering the system in Eq. (5), a estimated value for
each iteration; b final estimated value for various number of cells
(n is the number of cells in each dimension); c time required for
the computation for various number of cells. Black lines indi-

cate the average value, shaded areas mark the standard deviation
obtained from 40 computations (a) and 150 computations for
each n value (b, c)

time increases practically linearly with n, as illustrated
in Fig. 5c. This observation suggests that the number of
cells is critical for having a fast and accurate evaluation.

Figure 6 illustrates the trend of the LIM for vari-
ations of a and ζ parameters. The results confirm the
expectation that increasing a the LIM decreases, in fact
x02 and x03 get closer and closer; while, for a → 0,
x02 and x03 diverge to±infinity, therefore also the LIM
value increases unboundedly. Similarly, increasing the
damping ratio ζ , the energy required to go from one
equilibrium to the other one increases, which explain
the trend of the LIM value in Fig. 6b. To some extent,
this result illustrates the possibility of utilizing the pro-
posed algorithm for design purposes.

4.2 Duffing-van der Pol oscillator with an attached
tuned mass damper

We now consider a Duffing-van der Pol oscillator with
an attached TMD, as the one studied in [12,15]. The
equation of motion of the system is

Mẍ + Cẋ + Kx + b (x, ẋ) = 0, (6)

where

x =
[

x1
x2

]

, M =
[

1 0
0 r

]

, K =
[

1 + γ 2r −γ 2r
−γ 2r γ 2r

]

,

C =
[ −2 (μ1 + γμ2r) −2γμ2r

−2γμ2r 2γμ2r

]

, b =
[

αx31 + 2μ1x21 ẋ1
0

]

,

(7)

x1 and x2 are the displacements of the primary system
and the TMD, respectively, r is the mass ratio between
the primary system and the TMD, μ1 is the negative
damping of the primary system,μ2 is the TMD’s damp-
ing ratio, γ is the natural frequency ratio between the
primary system and the TMD, and α is the cubic stiff-
ness coefficient of the primary system. Before apply-
ing the algorithm for LIM estimation, we transform
the system in modal coordinates by implementing a
standard modal analysis of the undamped system, lin-
earized around its trivial equilibrium. This leads to the
system of equations

q̈ + UTCUq̇ + �q + UTb (q, q̇) = 0, (8)

whereU contains the eigenvectors of the system,q indi-
cates the modal displacements and� = diag

(

ω2
1, ω

2
2

)

,
with ω1 and ω2 natural frequencies of the undamped
system. The modal analysis enables us to identify the
vector α = [

ω2
1, ω

2
2, 1, 1

]

, necessary for defining the
distance in the phase space.

For this study, we fixed the parameter values at
r = 0.05, γ = 0.97, μ2 = 0.12 and α = 0.3, which
provide ω1 = 0.8815 and ω2 = 1.1004, while we
initially set μ1 = 0.075 (all quantities are assumed
dimensionless). For these parameter values, the triv-
ial solution is stable; however, the bifurcation analysis
performed in [15] showed that it coexists with a stable
and an unstable periodic solution.

The results of the algorithm for LIM estimation are
illustrated in Fig. 7. For the computation, we utilized
the parameters indicated in Table 1. Figures 7a and 7b

123



2084 G. Habib

Fig. 6 Considering the
system in Eq. (5), estimated
LIM for various values of a
(a) and ζ (b)
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Fig. 7 a, b Projection of
the collected points in the
phase space for the system
in Eq. (8); blue dots:
converging trajectories,
orange dots: non-converging
trajectories, black dots:
initial conditions, dashed
green lines: sections of the
hypersphere of
convergence, black lines:
coexisting periodic attractor.
c Iteratively estimated LIM
(various computations). d
Computational time per
iteration; black line: total
step time, blue line:
simulation time, red line:
time for defining following
initial condition. (Color
figure online)
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depict all the collected points in the phase space, pro-
jected in the q1, q̇1 and q2, q̇2 spaces. Orange and blue
pointsmark diverging and converging points to the triv-
ial solution, respectively; the green dashed circle rep-
resents a section of the hypersphere of convergence;
the black line is a projection of the limit cycle oscilla-
tion identified by the algorithm. Since Fig. 7a, b is the
projection on a 2-dimensional plane of objects existing
in a 4-dimensional space, lines are overlapping, and
it is not easy to distinguish them. However, we notice

that the algorithm was able to identify the limit cycle
oscillation correctly.

Figure 7c shows the trend of the estimated LIM
value. The solid black line refers to the computation
which produced Fig. 7a, b, while the blue dashed lines
indicate the trend of LIM obtained repeating the com-
putation multiple times. First, we notice that, also for
this system, few simulations are sufficient for provid-
ing a somewhat accurate estimate of the LIM value.
Furthermore, all plotted lines have a very similar trend,
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Fig. 8 a bifurcation
diagram of the system in
Eq. (8), b estimated LIM
over a range of μ1 values
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which suggests that this behaviour of the algorithm is
general and consistent, despite the partial randomness
in the selection of the initial conditions of the simula-
tions. Figure 7d indicates the computational time of the
procedure, where red and blue lines indicate the time
required for defining the initial conditions and for the
simulations, respectively, while the black line marks
the total time of each iteration. Similarly to the case
studied in the previous section, the time utilized for
defining the initial conditions increases linearly, and
the simulation time is much more significant for the
first few simulations than for the following ones, even
though the system is now 4-dimensional. The total time
required for the computation was 40.3 seconds.

Figure 8a depicts the bifurcation diagram of the sys-
tem, whose trivial solution loses stability for μ1 =
0.1005 through a subcritical Andronov-Hopf bifurca-
tion. The generated branch of unstable periodic solu-
tions coexists with the stable trivial solution for μ1 <

0.1005; then, it turns back and becomes stable at
μ1 = 0.0619, in correspondence of a fold bifurca-
tion. According to this bifurcation diagram (generated
through the continuation toolbox MatCont [8], exten-
sive results of the bifurcation analysis are provided in
[15]), and we expect that for μ1 ∈ (0.0619, 0.1005)
the robustness of the trivial solution is bounded. Also,
the trend of the branch of unstable solutions suggests
that the robustness of the trivial solution decreases
for increasing μ1 values. Implementing the algorithm
for LIM estimation over this range of μ1 values, the
expected behaviour is fully confirmed. As it is illus-
trated in Fig. 8b, for μ1 < 0.0619 the LIM value
obtained is limited only by the imposed boundaries of
the phase space, while for μ1 ∈ (0.0619, 0.1005) the
LIM value decreases as μ1 increases, reaching zero

for μ1 = 0.01005. However, we remark that the line
depicting LIM values reaches zero with a non-vertical
tangent, differently from the branch of unstable solu-
tions. This difference suggests that the algorithmmight
have been inaccurate in estimating the LIM value in the
vicinity of the Andronov-Hopf bifurcation.

4.3 Pitch and plunge wing with an attached nonlinear
tuned vibration absorber

Let us consider a pitch and plunge wing profile with an
attached nonlinear tuned vibration absorber, as the one
studied in [36]. The pitch and plungemodel considered,
used to describe an airfoil motion, was implemented in
various studies [10,28,29], while the nonlinear tuned
vibration absorber is practically a tuned mass damper
also encompassing a nonlinear restoring force [14,15].
Equations of motion governing the dynamics of the
system are

Mẍ + Cẋ + Kx + b (x) = 0, (9)

where

x =
⎡

⎣

y
α

x̃

⎤

⎦ , K =
⎡

⎣

�2 + εγ βu2 − εγ λ −εγ

−εγ λ r2α − νu2 + εγ λ2 εγ λ

−γ γ λ γ

⎤

⎦ ,

C =
⎡

⎣

ζh + εζ + βu −εζλ −εζ

−νu − εζλ ζα + εζλ2 εζλ

−ζ ζλ ζ

⎤

⎦ ,

M =
⎡

⎣

1 xα 0
xα r2α 0
0 0 1

⎤

⎦ , b =
⎡

⎣

εξ (y − x̃ − λα)3

ξαα3 + ελξ (x̃ + λα − y)3

ξ (x̃ + λα − y)3

⎤

⎦ ,

(10)
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y indicates the heave displacement,α the pitch rotation
and x̃ the absorber displacement, non-dimensionalized
with respect to the semichord of the airfoil, while u
is the non-dimensional flow velocity. For the physical
meaning of all the other parameters, we address the
interested reader to [36]. The adopted parameter values
are xα = 0.2, rα = 0.5, β = 0.2, ν = 0.08, � = 0.5,
ζα = 0.01, ζh = 0.01, ξα = 1, ε = 0.05, λ = 1,
ζ = 0.11, γ = 0.462 and ξ = 0.218; initially, u is set
at 1.236.

Since a standard modal analysis cannot be applied
to the case under study because the stiffness matrix K
is not symmetric (although alternative methods exist
[35]), we applied a different approach for defining the
distance in the phase space. We first transform the sys-
tem in first order form, i.e.

ẏ = Ay + b̃ (y) , (11)

where

y =
[

x
ẋ

]

, A =
[

0 I3
−M−1K −M−1C

]

, b̃ =
[

0
−M−1b

]

.

(12)

Then, we transform it in Jordan normal form by apply-
ing the coordinate transformation y = Tq, where

T = [

Re(s1) Im(s1) Re(s2) Im(s2) Re(s3) Im(s3)
]

,

(13)

and s1, s2, s3 are the eigenvectors of A, reducing the
system to

q̇ = Wq + T−1b̃ (q) , (14)

where W is a block-diagonal matrix. In q, variables
are not organized anymore as displacements and veloc-
ities. We, therefore, define the distance in the phase
space, weighting it with respect to the damping of
each mode, provided by the real part of the eigenval-
ues of A, indicated with λ1, λ2 and λ3. Therefore we
have α = [λ1 λ1 λ2 λ2 λ3 λ3]. This procedure
enables us to reasonably balance the effect of perturba-
tions in each direction in the phase space. Nevertheless,
it is not required to compute these transformations to
apply the algorithm for LIM estimation; instead, one

can directly utilize physical coordinates, normalizing
the distance based on practical considerations relevant
for the system under study.

The application of the algorithm was particularly
troublesome for this systembecauseof its lowdamping.
In fact, although various parameter setting were tried,
either the algorithm required very long simulations for
identifying limit cycles, or it confused the spiralling tra-
jectories converging towards the stable trivial solution
as converged to a non-existent limit cycle. Therefore,
we manually identified new solutions. In other words,
if the algorithm could not recognize if a trajectory con-
verges towards the desired solution or to an unknown
one, the computation paused, and we could indicate to
the software if the cells encountered by the trajectory
had to be marked as “converging” or “not-converging”
(for the identification of the LIM value, it is irrelevant
if a solution diverges from the considered portion of
the phase space or it converges to another solution).
We remark that also for other numerical techniques,
such as cell-mapping, distinguishing between a centre
(surrounded by infinitely many limit cycle) and a sink
equilibrium point in slightly damped systems is very
challenging [59].

The result of the computation is illustrated in Fig. 9.
For the computation, we utilized the parameters indi-
cated in Table 1.

Figure 9a–c shows all the tracked points of the var-
ious numerical simulations, projected in the q1, q2,
q3, q4 and q5, q6 spaces. Blue and orange points indi-
cate converging and non-converging points, respec-
tively, black points mark initial conditions of the sim-
ulations, and green dashed lines represent sections of
the hypersphere of convergence. Although the stable
limit cycle coexisting with the trivial solution was not
directly identified, in all the projection, it can be clearly
recognized that the orange points are enclosed by a
smooth curve, which marks a limit cycle. The figures
are rather hard to interpret because of themultiple over-
lapping lines. However, the projection on the q3, q4
plane seems to provide a pretty clear view of the BOA
of the trivial solution.We tried to plot two-dimensional
sections of the phase space instead of projections; how-
ever, points are not dense enough to provide a mean-
ingful image; therefore, we omitted such figures. As
depicted in Fig. 9d, the estimated LIM value rapidly
decreases in few iterations, immediately providing a
reasonable estimate of the LIM value. After iteration

123



Dynamical integrity assessment of stable equilibria 2087

20 40 60 80 100
0

0.01

0.02

0.03

0.04

1.22 1.24 1.26 1.28 1.3 1.32
0

0.05

0.1

0.15

0.2

0.25

1.21 1.22 1.23 1.24 1.25 1.26
0

0.004

0.008

0.012

(a) (b) (c)

(d) (e) (f)

q2 q4 q6

L
IM α

L
IM

q1 q3 q5

iteration u u

Fig. 9 a–c Projection of the collected points in the phase space
for the system in Eq. (14); blue dots: converging trajectories,
orange dots: non-converging trajectories, black dots: initial con-
ditions, dashed green lines: sections of the hypersphere of con-

vergence. d Iteratively estimated LIM. e Bifurcation diagram,
solid lines: stable solutions, dashed lines: unstable solutions. f
Estimated LIM over a range of u values. (Color figure online)

12, only iteration 30 did not converge to the trivial solu-
tion, improving the estimate of the LIM value.

Figure 9e illustrates the bifurcation diagram of the
system (generated through the continuation software
AUTO [9], extensive results of the bifurcation anal-
ysis are provided in [36]). The trivial solution loses
stability through a supercritical Andronov-Hopf bifur-
cation for u = 1.255, which in general does not mine
the robustness of a stable fixed point. However, the
branch of periodic solutions undergoes various other
bifurcations. First, a couple of Neimark–Sacker bifur-
cations generates a branch of quasiperiodic solutions
for u ∈ (1.264, 1.279) (not illustrated in the figure).
Then a fold bifurcation at u = 1.313 makes the branch
turn back, reaching the region of stability of the trivial
solution. Overall, the bifurcation diagram shows that
the trivial solution is not globally stable for u > 1.212.
This behaviour was perfectly confirmed by the algo-
rithm when applied for u ranging from 1.21 to 1.255,
as shown in Fig. 9f. For u < 1.212, the LIM value was

limited uniquely by the set boundaries of the phase
space. For u ∈ (1.212, 1.254), the LIM value has a
trend, which closely resembles the trend of the branch
of unstable periodic solutions in Fig. 9e. This simi-
larity suggests that the algorithm can provide signifi-
cant information for design purposes. We remark that
a classical local bifurcation analysis would not directly
illustrate that the trivial solution has bounded stabil-
ity in the investigated range of u values because of its
supercritical characteristic.

4.4 Chain of four masses

The lastmodel considered in this study is a chain of four
lumped masses, as the one illustrated in Fig. 10. Four
identical masses, connected by identical linear springs
and dampers, are free to move in the horizontal direc-
tion. The second mass is attached to two other springs
positioned vertically, as illustrated in the figure. l0 is
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Fig. 10 Mechanical model of the chain of four masses

the vertical elongation of the spring, whose elongation
at rest is lr , where lr > l0. k, m and c indicates the
stiffness of the springs, the masses and the damping
coefficients of the dampers, respectively.

Assuming, without loss of generality, that k = 1 and
m = 1 (all quantities are assumed dimensionless), the
equation of motion of the system is

Mẍ + Cẋ + Kx + b (x) = 0, (15)

where

x =

⎡

⎢
⎢
⎣

x1
x2
x3
x4

⎤

⎥
⎥
⎦

, M =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

, C = c

⎡

⎢
⎢
⎣

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎤

⎥
⎥
⎦

K =

⎡

⎢
⎢
⎣

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎤

⎥
⎥
⎦

, b =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

2x2

(

1 − lr√

l20+x22

)

0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(16)

Imposing that l0 = 1, the system has the equilibrium
points

x01 =

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦

, x02 = −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

√
144l2r −289

34√
144l2r −289

17
2
√

144l2r −289
51√

144l2r −289
51

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, x03 = −x02,

(17)

x01 is real for any lr value, while x02 and x03 are real for
lr > 17/12. Ifx02 andx03 are real, they are stable,while
x01 is unstable. In the following, we aim at studying the
robustness of x02.

First, we centre the coordinates of the system
around x02 by defining the coordinates y = x −

x02. Then, we perform a classical modal analysis,
considering the underlying undamped linear system,
in order to obtain the distance weight vector α =
[

ω2
1, ω

2
2, ω

2
3, ω

2
4, 1, 1, 1, 1

]

, where the natural frequen-
cies depend on lr .

Initially, we set c = 0.05 and lr = 2, for which
we have ω1 = 0.7455, ω2 = 1.21, ω3 = 1.6409 and
ω4 = 1.9662. Applying the algorithm for LIM estima-
tion, we obtain the results illustrated in Fig. 11. For the
computation, we utilized the parameters indicated in
Table 1.

Figure 11a, b shows the projection of collected
points in the q1, q̇1 and q3, q̇3 spaces. Blue and orange
points mark converging and non-converging points,
respectively; black points indicate initial conditions of
the simulations; the red dashed lines represent sections
of the hypersphere of convergence; the black cross
marks the coexisting stable equilibrium x03 (found
automatically by the algorithm). Although lines over-
lap because of the projection, the q1, q̇1 plane offers a
pretty clear picture of the compact region of the BOAs
of the two attractors. Nevertheless, Fig. 11b suggests
that the high dimensionality of the system significantly
complicates the global analysis of the system. In fact, in
that projection, x03 seems to be within the hypersphere
of convergence of x02 (obviously, it is not within it).

Figure 11c shows the trend of the estimated LIM
value, where the light blue lines refer to other computa-
tions of the algorithm. The trend is similar to the previ-
ous systems, i.e. the first few simulations are the most
revealing for the estimation. Nevertheless, we notice
that the final estimated LIM values in the various com-
putations, after 100 iterations, have a significant varia-
tion.

Figure 11d illustrates the time required for the var-
ious phases of the algorithm, organized for each itera-
tion. The red and blue lines indicate the time required
for choosing the initial conditions of each simulation
and the time required for the numerical integration,
respectively; the black line marks the total iteration
time. The trend of the simulation time (blue line) qual-
itatively reminds the results obtained for the systems
previously studied. Initially, simulations are relatively
long; then, they require less time since trajectories
rapidly reach cells already tracked. The time required
for choosing the initial conditions increases linearly
with the iterations because of the increasing number
of points within the hypersphere of convergence. It is
still relatively short because we purposely reduced the
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Fig. 11 a, b Projection of the collected points in the phase space
for the system in Eq. (15); blue dots: converging trajectories,
orange dots: non-converging trajectories, black dots: initial con-
ditions, dashed red lines: sections of the hypersphere of conver-
gence, black cross: coexisting stable equilibrium. c Iteratively
estimated LIM (various computations). d Computational time

per iteration; black line: total step time, blue line: simulation
time, red line: time for defining following initial condition. e
Distance of each initial condition from the closest tracked point
in the phase space various computations). f Estimated LIM com-
puted over a range of lr values. (Color figure online)

number of generations in the genetic algorithm. This
parameter represents a trade-off between finding ini-
tial conditions really as remote as possible and the time
required to find them. The entire computation took 108
seconds.

Figure 11e indicates the distance d between each
initial condition and the closest tracked point in the
hypersphere of convergence. Because of the increas-
ing density of points, the value of d naturally decreases
after each iteration (in average), and it is an indicator
of the density of points in the hypersphere of conver-
gence. However, we notice that its decreasing trend is
very slow, and after 100 iterations, it still has a value
larger than half of the LIM. This result explains how
empty and unexplored the phase space is, even after
so many simulations, which is related to the relatively
large dimension of the system. This fact suggests that,
although the proposed algorithm provides a quantity

significant from an engineering point of view, it gives
no guarantee that other undetected attractors exist.

Concerning the engineering pertinence of the result
provided, Fig. 11f illustrates how the LIM value varies
with lr . As lr tends to 17/12, the value of the LIM tends
to zero, since for lr = 17/12 x02 and x03 merge. On the
contrary, increasing lr the value of the LIM increases,
as the energy required to reach x03 from x02 increases.
This result confirms the engineering relevance of the
outcome of the computation.

Considering the low density of points in the phase
space, we repeated the computation in Fig. 11 increas-
ing the number of iteration from 100 to 1000.

The results, illustrated in Fig. 12, show that the addi-
tional simulations did not significantly improve the esti-
mation of the LIM value (after the first 50 iterations,
only iteration 79 and 757 were not converging), whose
final value was 0.8136. This value is larger than the
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Fig. 12 a, b Projection of
the collected points in the
phase space for the system
in Eq. (15); blue dots:
converging trajectories,
orange dots: non-converging
trajectories, black dots:
initial conditions, dashed
red lines: sections of the
hypersphere of convergence,
black cross: coexisting
stable equilibrium. c
Iteratively estimated LIM. d
Distance of each initial
condition from the closest
tracked point in the phase
space various computations.
(Color figure online)
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value provided by the best performing computation in
Fig. 11c after only 100 iteration, that is 0.7481. This
fact, together with the general observation that most
of the simulations, after the first few ones, converge
to the desired solution, provides relevant indications
about the strategy for the definition of the initial con-
ditions. In fact, on the one hand, selecting, as initial
conditions, remote points of the hypersphere of conver-
gence enables to homogeneously fill the hypersphere,
potentially revealing attractors hidden in pockets of the
phase space. On the other hand, this is probably not
an efficient strategy for increasing the accuracy of the
estimated LIM value in a short time. For this objective,
selecting points closer to the boundary of the hyper-
sphere is probablymore efficient. This observation sug-
gests that the algorithm for selecting initial conditions
should be adapted to the objective of the analysis, that
is, either obtaining an accurate estimation of the LIM
(but potentially wrong, if an attractor is unrevealed) or
having a more rough estimation but still more reliable.

Although not desirable from the point of view of
the safety of the estimation because of the large unex-
plored space, the low density of points in the phase

space clearly illustrates how theproposed algorithmhas
nomemory issues. In contrast, the cellmappingmethod
requires significant memory for large-dimensional sys-
tems [1].

4.5 Comparison of stopping criteria

We now aim at investigating the different stopping cri-
teria proposed in Sect. 3.3.2. Namely, (i) interrupt the
computation after a predefined number of iterations,
(ii) when a given number of consecutive iterations do
not reduce the estimated LIM, or (iii) when the tracked
points within the radius of convergence reach a specific
density. The three criteria are compared for the analysis
of the chain of four masses.

For the comparison,we ran the algorithm1000 times
for 100 iterations. Based on the results obtained, we
computed the LIM value that the algorithmwould have
estimated adopting a different stopping criterion and
the time it would have taken. Results are illustrated in
Fig. 13.

Figure 13a, b depicts the estimated LIM value and
the required time for a predefined number of itera-
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Fig. 13 Comparison of estimated LIM and time required for the
computation utilizing various stopping criteria. Results relative
to the system in Eq. (15). a, b Predefined number of iterations;
c, d computation stopped when N consecutive iterations do not

reduce the estimated LIM value; e, f computation stopped when
the average d value decreases below a predefined dlim value. The
solid lines mark the average of 1000 computations, while the
grey areas indicate the standard deviation

tions. The black lines mark the average value, while the
grey areas indicate the standard deviation. Considering
Fig. 11c, the trend of Fig. 13a is not surprising. After
about 30 iterations, the estimated LIM value decreases
very slowly; besides, the standard deviation remains
relatively large for any number of iterations consid-
ered. After 100 iterations, the LIM value still has a
slightly decreasing trend, meaning that a much larger
number of iterations is needed to approximate the actual
LIM value correctly. Conversely, the required time for
the computation increases linearly, and it is highly pre-
dictable, as proved by its small standard deviation.

Figure 13c, d refers to the second proposed stop-
ping criterion. Namely, the computation is interrupted
if N consecutive iterations fail to reduce the LIMvalue.
According to the results in Fig. 13c, N ≈ 10 is proba-
bly the lower limit for a reliable computation. Further
increasing N reduces the LIM value only slightly. As
in the previous case, the computational time increases

linearly with N ; however, it has a significant standard
deviation, making it hardly predictable.

Results of the third stopping criterion are presented
in Fig. 13e, f. In this case, the computation is inter-
rupted if d (the distance between each initial condition
and the closest tracked point) is below a predefined
dlim value on average. The average of d is computed
according to the last ten d values measured. Indeed,
d is strictly related to the density of tracked points in
the hypersphere of convergence; a smaller d value indi-
cates a higher density of tracked points. According to
Fig. 13e, for small values of dlim, the trend of the esti-
mated LIM value becomes steeper. This phenomenon
is due to the slowly decreasing trend of d for increasing
iterations, as illustrated in Figs. 11e and 12d. Accord-
ingly, as d decreases, the computational time increases
with an increasing steepness. Consequently, it is very
hard to set a proper dlim value. In fact, if dlim is too
large, the standard deviation of the estimated LIM is
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Fig. 14 Comparison of the three stopping criteria with respect
to the average estimated LIM value and computational time. The
data are the same as in Fig. 13

too large to provide reliable results. Conversely, if dlim
is too small, computational time might be excessively
large. Additionally, the suitable choice of the dlim value
strongly depends on the system under study.

Considering the illustrated results, the third criterion
is the most complicated to implement, while the first
and second are somewhat similar and easy to imple-
ment. An advantage of the first criterion over the sec-
ond one is that it allows one to predict the required
computational time accurately. A direct comparison of
the three criteria in terms of their efficiency is provided
in Fig. 14, where the average computational time is
plotted against the average estimated LIM value. The
figure clearly shows that the first and second criteria
are computationally equivalent since the two corre-
sponding curves almost overlap. Besides, Fig. 14 also
illustrates that the third criterion is more efficient than
the other two since it provides lower LIM estimates in
less time, on average. These contradictory results sug-
gest that the best choice of the stopping criterion might
depend on practical constraints and the specific system
at hand.

5 Discussion

5.1 Algorithm evaluation

Applying the proposed algorithm to various systems,
presented in Sect. 4, illustrated its effectiveness but
also highlighted some of its limitations. Regarding the
advantages of the procedure, we remark:

• The algorithm provided a value, which could quan-
titatively characterize the robustness of a stable
equilibrium. Applying the algorithm on a Duffing
oscillator showed that this value is indeed a good
estimation of the LIM. For the other, larger sys-
tems, the obtained LIM value was not compared
with the exact one; however, its trend for variations
of one parameter illustrated that the provided value
has engineering relevance.

• The algorithm converges to a meaningful estima-
tion of the LIM in very few steps, which makes it
potentially very quick.

• Simulations after the first few ones are relatively
short, even for large-dimensional systems, enabling
one to set a large number of iterations keeping the
required time reasonable.

• Theprocedure does not requiremuchmemory, even
for large-dimensional systems, differently from
other methods for computing BOAs.

• The algorithm neglects intermingled and fractal
region, contrary to probabilistic approaches [37,39,
49,50], which might overestimate the safe robust
region.

About the limitations of the procedure, we highlight
the following:

• The procedure is not well-suited for parallel com-
putation. Each iteration is computed after the pre-
vious one is completed. Some operations can be
parallelized, such as the algorithm for defining the
initial conditions; however, this would not signif-
icantly speed up the computation. Nevertheless, if
the algorithm is implemented for parametric anal-
ysis, it can be easily parallelized for the various
considered values of the parameter. The author
obtained Figs. 6, 8b and 11f in a similar way.

• The procedure provides information about one
attractor only, while other methods for studying
global dynamics generally produce information rel-
ative to all the detected attractors at the same time.
This limitation might be overcome with a proper
redesign of the algorithm, which will be the sub-
ject of future studies.

• Simulations after thefirst fewones improve the esti-
mation of the LIM value very slowly. This problem
is related to the algorithm utilized for defining ini-
tial conditions, which looks for empty regions of
the hypersphere of convergence, and does not aim
at finding the boundary of the BOA.
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• In high-dimensional systems, the phase space is
filled very slowly. Unless a considerable number of
simulations are run, stable solutions existing within
the estimated hypersphere of convergence may be
undetected. This limitation is an intrinsic issue of
large-dimensional systems, which can hardly be
solved utilizing a purely numerical approach, as
done in this study. Probably, the best strategy is
to reduce the dimension of the system as much
as possible before applying the algorithm, neglect-
ing modes that seem less relevant for the system’s
robustness. Although the algorithmwas able to pro-
vide a quantitatively significant result also for an 8-
dimensional system in a very short time, industrial
systems might be significantly larger. This aspect
should be carefully evaluated in future develop-
ments of this research.

5.2 Future developments

Several decades of research optimized existing method
for robustness assessment, such as the cell mapping
method, which is now very efficient. On the contrary,
up to the author’s knowledge, this is the first attempt
to study robustness, directly aiming to find an integrity
measure in a multi-dimensional system. Therefore, we
believe that the proposed algorithm can be significantly
improved and, in the future, might become a valid alter-
native to the cell mapping method. Probably, the main
aspects which should be improved are the following:

• Numerical simulations were performed with the
MATLAB functionODE45,which is one of the less
efficient algorithms in terms of velocity of compu-
tation [43]. Adopting a more efficient time inte-
grator could reduce the computational time by one
order of magnitude or more.

• The problem of the choice of each simulation’s
initial conditions was already partially discussed
in this paper. The approach utilized in this study
aims at homogeneously filling the hypersphere of
convergence. However, this is probably not the
best way to quickly obtain an accurate LIM value.
Besides, choosing initial conditions becomes sig-
nificantly time-consuming for large-dimensional
systems if many iterations are required and the
number of points inside the hypersphere of con-
vergence increases. Alternative strategies should be
tested. In some cases, it might be possible to define

a critical section of the phase space, limiting the
system robustness, and choose initial conditions in
that subspace. For example, considering the pitch
and plunge wing studied in Sect. 4.3, the analy-
sis clearly revealed that the system’s eigenvectors
associated with the eigenvalue with the smaller real
part spanned a critical section of the phase space
concerning the robustness of the trivial solution.
Another approach for defining the initial condi-
tions is to choose them on a single line, aiming
at precisely identifying one point of the stability
boundary, which might generate a trajectory par-
ticularly revealing in terms of the maximum extent
of the hypersphere of convergence. Finally, a ran-
dom choice of initial conditions has the advantage
of being very rapid, and it might be advantageous in
large-dimensional systems. All of these possibili-
ties present advantages and disadvantages, depend-
ing on the dimension of the system, on the shape
of its basin of attraction and on the number of iter-
ations performed. In future studies, these different
methods should be investigated, aiming at program-
ming an algorithm to choose the best strategy for
each given situation automatically. However, the
individualistic nature of nonlinear systems makes
it very hard to define a general procedure that is at
the same time rapid and reliable.

• The proposed algorithm has already several param-
eterswhich strongly affect the computational speed.
The main ones are the relative and absolute toler-
ance of the time integration, the number of cells in
the phase space, the parameters of the genetic algo-
rithm for initial condition selection. In this study,
the relevance of some of them was investigated;
the others should also be studied to optimize the
performance of the algorithm.

• At the moment, the algorithm can study the robust-
ness of equilibrium points only. In the future, it
should be extended to other types of solutions, such
as periodic and quasiperiodic motions. Also, the
robustness of chaotic solutions is worth investigat-
ing, although it might be excessively challenging.

• The algorithm is defined for numerical computa-
tions. However, we plan to extend it to experi-
mental investigations, as well, for which no well-
established alternative exists [47,61,65]. That
would require some modifications, for instance,
regarding the choice of the initial conditions, which
should obey some practical limitations. Further-
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more, the subdivision of the phase space in cells
might be unnecessary. These aspects will be the
subject of future studies.

• The algorithm can be implemented for parametric
analysis, i.e. studying how the LIM value varies
with one (or more) parameter. In the absence of
global bifurcations, the variation of LIM is smooth,
and two close values of the varying parameter pro-
duce similar LIM values. The similarity of the LIM
values could be exploited as it is usually done in
continuation analysis, where the previously com-
puted solution is used as an initial guess for the fol-
lowing one. Such an approach might significantly
accelerate the computation. However, so far, no
strategy is proposed for this purpose.

Concerning the results shown in Sect. 4, we notice
that for all the systems under study, a bifurcation anal-
ysis, combined with continuation techniques, provides
already very extensive information about the robust-
ness of the stable equilibrium. This observation high-
lights the importance of such well-established tech-
niques for the global analysis of dynamical systems.

6 Conclusions

In this study, a new algorithm for estimating the
robustness of a stable equilibrium was developed. The
algorithm utilizes an approach different from existing
numerical methods for global analysis. It does not aim
at studying the whole basin of attraction of a solution;
instead, it directly tries to estimate the local integrity
measure (LIM) [48], which defines the largest hyper-
sphere in the phase space of the system, centred in the
equilibrium, fully included in the basin of attraction of
the equilibrium of interest. From an engineering point
of view, this quantity has obvious relevance for the
safety of a dynamical system.

The algorithm was then tested on four different
mechanical systems of increasing dimension (from 2 to
8). For each of the systems, the algorithm produced a
meaningful estimation of the LIM in a relatively short
time. In particular, the results highlighted that a few
numerical simulations are already sufficient for pro-
viding a rough but practically relevant estimation of
the LIM. This outcome suggests that the algorithm
has the potentiality to be utilized in industrial envi-
ronments, where rapid solutions are generally pursued.
The algorithm still presents several drawbacks, detailed

in Sect. 5.1, which is not surprising, considering that it
is the first time that the problem of robustness of a solu-
tion is facedwith a similar approach. Nevertheless, sev-
eral ways of improving the algorithm, concerning the
speed of computation and reliability of the result were
discussed and will be the subject of future studies.
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