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Abstract Studies of rocking motion aim to explain
the remarkable earthquake resistance of rocking struc-
tures. State-of-the-art assessment methods are mostly
based on planar models, despite ongoing efforts to
understand the significance of three-dimensionality.
Impacts are essential components of rocking motion.
Wepresent experimentalmeasurements of free-rocking
blocks on a rigid surface, focusing on extreme sensi-
tivity of impacts to geometric imperfections, unpre-
dictability, and the emergence of three-dimensional
motion via spontaneous symmetry breaking. These
results inspire the development of new impact models
of three-dimensional facet and edge impacts of poly-
hedral objects. Our model is a natural generalization of
existing planar models based on the seminal work of
George W. Housner. Model parameters are estimated
empirically for rectangular blocks. Finally, new per-
spectives in earthquake assessment of rocking struc-
tures are discussed.
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1 Introduction

Rocking is the typical response of many structures to
dynamic loads such as earthquakes. Rocking structures
include masonry columns, arches, walls [7,15,16,23],
innovative earthquake protection structures such as
rocking shear-walls and frames [14,38], and some
tanks, machines or vehicles [4,18,22]. Understanding
the non-smooth dynamics of rocking motion is essen-
tial to properly design and to assess the safety of these
structures.

Rockingmotion of quasi-rigid objects is an example
of contact-induced hybrid multibody dynamics, where
episodes of continuous motion are interrupted by short
impacts. Rocking is inherently nonlinear, which pre-
vents the use of the theory of linear vibrations [21].
Moreover the time history of motion is notoriously
unpredictable inmanycases for two reasons [8,35]. The
lack of reliable and accurate impact models is a cen-
tral problem of research concerning rocking motion.
Modeling friction and transitions between stick and
slip is another crucial question, even though the motion
of many rocking structures (such as slender blocks)
appears to be free of slip, and in such cases impact
models are the only source of difficulty.

Impacts between hard objects have a very short dura-
tion. Accordingly, impact models used in the context of
rigid body dynamics often take the mathematical form
of an instantaneous mapping assigning a post-impact
velocity to given pre-impact velocity state. Such dis-
crete models are phenomenological descriptions of a
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Fig. 1 Three types of
rocking impacts: edge
impact in a planar model
(a), and in a
three-dimensional model
(b); and facet impact in a
3D model (c)

complex, multi-scale physical process, and thus they
are often unable to provide accurate predictions. In the
case of straight impacts at a point contact, the coeffi-
cient of restitution is the standard phenomenological
parameter, describing the motion in the normal direc-
tion. In the case of oblique frictional impacts, additional
parameters are required to describe how the tangential
and rotational motion of the colliding objects change
during the impact process. Among others, a Coulomb-
type coefficient of friction and the tangential coefficient
of restitution are often used in this context. The param-
eters of impact maps aremost often determined empiri-
cally and they are affected by various factors including
material properties of the colliding objects (stiffness,
strength, ductility, etc.), and other mechanical parame-
ters (e.g., masses, velocity of collision, frictional char-
acteristics of surfaces) [35].

The impacts of rocking objects occur in the pres-
ence of linear contact (Fig. 1a, b) or surface contact
(Fig. 1c). Both contact setups are geometrically degen-
erate in the sense that points within a spatially extended
region establish contact simultaneously. Degeneracy
implies that the impact map is significantly affected
by those geometric imperfections of the contact region,
which are comparable in size to the deformations of the
objects during an impact. In the case of light impacts
of a quasi-rigid block on a hard surface (a common sit-
uation in the context of rocking motion), this mecha-
nismmanifests itself as extreme sensitivity to geometric
imperfection, which is in sharp contrast with the more
predictable motion of objects on a compliant surface
[12]. For example, the slightest concavity of the base
of a rigid, planar rocking block results in the concentra-
tion of contact forces at the vertices (Fig. 2a), whereas
a slightly convex, polyhedral base may gives rise to a
rapid sequence of very light impacts sweeping along
the whole edge (Fig. 2b). Obviously, the two types of

impact affect the angular velocity of the block differ-
ently.

Unlike other factors affecting the outcome of an
impact, geometric imperfection varies among speci-
mens in an unpredictable way. We believe that it has
crucial role in the commonly observed unpredictability
and irreproducibility of motion trajectories observed in
physical experiments. The presence of such an effect
limits the use of the traditional approachof impactmod-
eling: empirically calibrated impactmodels cannot pre-
dict time histories. This feature of geometric imperfec-
tions is our motivation to develop an impact model that
takes into account the effect of imperfections.We think
that such a model is an important initial step toward the
ability to assess the safety of rocking structure in the
presence of unpredictability and irreproducibility.

Housner’s classical impact model for a planar rock-
ing block [23] assumes that the impulse transmit-
ted during a rocking impact occurs at the corner of
the block, which is consistent with the assumption
of a slightly concave base surface (Fig. 2a). In con-
trast, physical experiments clearly indicate significant
deviation from the predictions of Housner’s model
[3,5,20,28,31,32,36]. More recently, several authors
proposed empirical model corrections [3,5,20,28,31],
or a priori chosen geometric imperfections [36], to
match the mean value of experimental measurements.
Very recently, a few authors have proposed to con-
sider the possibility of arbitrary geometric imperfec-
tions, in order to reproduce not only the mean, but also
the observed variability of experimental results [10].
In the present paper, we revisit the problem of the pla-
nar rocking block, and present previous results using a
unified approach in Sect. 2.

While the planar models uncover important aspects
of rocking motion, real rocking motion is three dimen-
sional, either because of out-of-plane excitation or
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Fig. 2 Illustration of geometric imperfections and their effect
on a planar rocking impact. A concave edge results in the impact
model of Housner [23] (a). A slightly convex edge (b) induces
no energy loss. The models proposed by Ther and Kollár [36]
(c), and by Kallitzonis [24] (d) are consistent with other types

of imperfection. For an arbitrary imperfection, the possible out-
comes of the impact can be parameterized by a single scalar λ

representing the location of the resultantρ of the impulsive forces
(e)

as the result of spontaneously emerging out-of-plane
motion even under planar initial motion and excitation.

Relatively, few works treat rocking as a 3D prob-
lem. The rocking motion of a rigid cylinder has been
known for long time to be inherently three dimensional
[34]. Rocking cylindrical columns have been studied
numerically by using rigid models [25,37] as well as
the discrete element method [1]. Some experimental
investigations focusing on the spatial rocking behavior
of ancient cylindrical columns have also been reported
[19,30]. It is notable however that cylindrical blocks
behave differently than polyhedral objects as they typ-
ically roll smoothly instead of undergoing impacts due
to the lack of sharp vertices.

The first numerical model of 3D free rockingmotion
of a polyhedral block [26] focused on continuous
motion, and did not propose an impact model. A sim-
ilar analysis of an arbitrary rigid body with rectangu-
lar base by [40] proposed a natural 3D extension of
Housner’s impact model by assuming that the impact
impulse is concentrated at a vertex of the object. In
addition, the effect of slip was investigated in several
papers [10,11,13].

Several authors including [11,17,40] pointed out
that the overturning of a 3D block can occur under
excitations which are lower than those which over-
turn a corresponding 2D block. Hence, 3D models are
important for earthquake assessment. At the same time,
none of these works attempted to systematically inves-
tigate the set of possible outcomes of three-dimensional
impacts and the role of geometric imperfections. In
order to fill this gap, we introduce three impact parame-
ters in the case of facet impacts, and two parameters for

edge impacts, which capture all physically relevant out-
comes of an impact without slip. Thereby, we obtain
for the first time a universal 3D rigid impact model.
The impact parameters of some free rocking blocks
are determined through fitting simulated trajectories to
experimental data. We use these results as well as basic
physical laws to estimate the relevant ranges of model
parameters.

The rest of the paper is organized as follows. In
Sect. 2, we review themost common rigid, planar mod-
els of rocking impacts in a unified framework focusing
on the case of a single monolithic block, and on the
role of geometric imperfection. Then, we present an
experimental demonstration of transition from planar-
free rocking motion into three-dimensional rocking
by a spontaneous symmetry breaking. This experi-
ment illustrates the crucial role of geometric imperfec-
tions. In Sect. 4, we develop the new, three-dimensional
model of rocking impacts, which is highly analo-
gous to planar models, but it can account for spon-
taneous symmetry-breaking. The experimental results
are revisited in Sect. 5, and the parameters of the
new impact model are fitted empirically. Section 6
concludes the work, and outlines future steps toward
the successful application of spatial impact models in
earthquake design.

2 A review of planar impact models

Consider a rigid, planar, rectangular object with mass
m, andmassmoment of inertia about the center of mass
(COM) θ . Immediately before the impact, the block
rocks around vertex Vb, until the base VbVa hits the

123



1842 P. L. Várkonyi et al.

Fig. 3 Rocking impact of a free-standing block in two dimen-
sions

ground. Let h and b denote the height of the COM of
the block, and the half-length of VbVa , according to
Fig. 3.

When the base of the block hits the ground, all points
along VbVa come into contact simultaneously, and con-
tact forces may emerge anywhere along VbVa . Hous-
ner’s model [23] assumes that

H1: immediately before the impact, the block rotates
about Vb

H2: the rotational momentum of the block about the
vertex Va colliding to the ground is preserved

H3: the vertex Va stays in sticking contact with the
ground after the impact

These assumptions determine uniquely the post-impact
angular velocity of the block in terms of the pre-impact
value as follows.

According to assumption H1, the velocity vector of
the COM is v− = ω− ·[h,−b]T. Similarly, assumption
H3 implies that the post-impact COM velocity is v+ =
ω+ · [h, b]T. The preservation of angular momentum
about point Va

θω−+mh2ω−−mb2ω− =θω++mh2ω++mb2ω+
(1)

yields

ω+ = r · ω− (2)

where

r = rHou := θ + mh2 − mb2

θ + mh2 + mb2
(3)

The scalar r will be referred to as angular velocity
reduction factor (AVRF).

If we introduce the following notions

– sticking impact: an impact where the impact point
has 0 post-impact tangential velocity

– inelastic impact: an impact where the impact point
has 0 post-impact normal velocity

then assumptions H2–H3 can be formulated in a more
concise way as:

H4: a single, perfectly inelastic sticking impact occurs
at the vertex Va

While Housner’s model does not include explicit
assumptions about geometric imperfections, assump-
tion H4 is consistent with certain geometric imperfec-
tions (Fig. 2a) but inconsistent with others.

Many experimental works confirmed that the lin-
ear relationship (2) is a good approximation but the
AVRF (3) derived using Housner’s assumptions under-
estimates experimentally measured values [9,36]. The
inaccuracy of the model has been attributed to the
fact that H2 is not more than an a priori assumption
[33]. To address this limitation, several works sug-
gested improved models using either empirical mod-
ifications of the AVRF or modifications in Housner’s
initial assumptions [6,27,28]. For example, Kalliontzis
et al. [24] proposed using a reduced effective width of
the base, which was motivated by the fact that small
deformations of the underlying surface give rise to a
spatially extended contact region along the base during
the impact. The effectivewidth introduces a free param-
eter 0 ≤ ν ≤ 1 into the model and the corresponding
value of r

r = rKal := θ + mh2 − mν2b2

θ + mh2 + mν2b2
(4)

can be anywhere in the interval r ∈ (rHousner, 1).
Ther and Kollár [36] pointed out the crucial role of

geometric imperfections in the case of a hard under-
lying surface. In order to improve model accuracy,
they proposed an a priori infinitesimally small geomet-
ric imperfection (Fig. 2c), which implies that a rock-
ing impact consists of a sequence of two elementary
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impacts at points M and Va of Fig. 3. The smallness of
the imperfection means that its effect on the physical
properties (m, θ ) of the block is negligible. Further-
more, the points Vb, M , Va are almost collinear, and
the elementary impacts occur within very short time.
This assumptions allowed them to estimate the effect
of the two elementary impacts according to

H5: The outcome of a sequence of elementary impacts
can be calculated as if they occurred immediately
after one another in the nominal impact configu-
ration of the perfect block.

In addition,H4was replaced by amore general assump-
tion

H4a: whenever a point of the imperfect surface hits
the ground, a perfectly inelastic sticking impact
occurs.

They showed that the corresponding AVRF

r = rTK := θ + mh2

θ + mh2 + mb2
(5)

closely matched the mean value of many physical
experiments. Wittich and Hutchinson [39] examined
a model with arbitrary geometric imperfection and
demonstrated how the corresponding value of r can be
determined under assumptions H1, H4a, H5. Interest-
ingly, the previously mentioned model of Kallitzonis
[24] is also equivalent of assuming a hard surface with
geometric imperfection in the form of a concave sec-
tion surrounded by two identical convex segments (Fig.
2d).

Chatzis et al. [10] seems to be the first one to notice
that the linear momentum transferred along the base
during the impact process can be replaced by an instan-
taneous resultant momentum [Px , Py]T under assump-
tions H1, H3. All possible outcomes of the impact
can be parameterized by a single scalar λ represent-
ing the position of the resultant impact force (Fig. 2e).
Accordingly, they proposed to use assumptions H1, H3
together with

H2a: the rotational momentum of the block about a
specified internal impact point of the base given
by the parameter λ is preserved

The AVRF now becomes

r = rCha := θ + mh2 − mλb2

θ + mh2 + mλb2
(6)

Importantly, the model of [10] is universal in the
following sense: it captures all possible post-impact
states through a single scalar parameter λ. On the other
hand, the approach of [10] does not give a hint on how to
choose λ. Clearly, many different factors may affect λ
(e.g.,material properties, impact velocity, etc.). Among
these, the key role of geometric imperfections was first
pointed out by [36,39].

One can also set up theoretical bounds on the param-
eter λ. The straightforward assumptions of nonnegative
energy absorption implies 0 ≤ λ, whereas unilateral
nature of contact forces implies −1 ≤ λ ≤ 1. Hous-
ner’s assumptions correspond to λ = 1, and a slightly
convex base (as in Fig. 2b)would induce an impactwith
λ ≈ 0 under assumptions H1, H4a, and H5. We notice
without proof that all values in the interval λ ∈ (0, 1)
can be realized by choosing an appropriate geometric
imperfection. Thus, the resulting AVRF rCha(λ) can
take arbitrary values within the interval (rHou, 1).

It is noticeable that some experimental works report
AVRF values below rHou, which would correspond to
λ > 1 [5,20]. Impact parameter values beyond theoret-
ical bounds are typically caused by unmodeled effects
such as slip [5] or additional energy absorption of pin
joints in the experimental device [20] .

In Sect. 4, we develop a similar model of three-
dimensional rocking impacts involving edge and sur-
face contacts. Our contribution consists of a parame-
terization of all possible outcomes in order to ensure
universality of the newmodel. Theoretical limits of the
model parameters will also be identified.

3 Spontaneous emergence of out-of-plane motion
in physical experiments

3.1 The experimental setup

The free rocking motion of eight stone blocks (Fig.
4) with identical nominal heights h and half width b1
but different half depths b2 has been investigated. The
blocks were manufactured from the same solid gran-
ite slug. Examining the sliced surfaces, no cavities or
cracks were found, so the blocks were considered to
be homogeneous. The density of the granite blocks is
ρ = 2692 ± 43 kg/m3.
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Fig. 4 Stone blocks used in the experiment and the coordinate
system attached to the rocking block

The motion of the blocks was recorded with the aid
of an X-IMU inertial motion unit device produced by
X-IO Technologies. We use an orthogonal coordinate
frame fixed to the rocking block (Fig. 4) such that the
x-axis is parallel to the edge of length b1 and the z-
axis points vertically up. During the experiments, each
block shown in Fig. 4 was tilted in the xz plane and
released five times. Then, each blockwas turned upside
down, and the experiments were repeated. The two set-
tings will be referred to as positions A and B.

Thebodieswere released froma state of edge contact
with initial angular velocity close to 0 and an initial
inclination angle slightly below the neutral position of
the block (ϕn = 0.245 rad). The initial inclinations
were for all experiments in the range of 0.17 rad <

ϕ0 < 0.24 rad. The support mediumwas a solid granite
block of size 50 by 40 by 20 cm resting on a massive
steel support.

Before the recorded experiments, some preliminary
tests were run using 120 fps action cameras (GoPro
Hero 8 Black) to investigate the effect of sliding and
bouncingduring impact. The front- and side-viewof the
block were recorded, and the frames of the movie were
analyzed. No visible signs of sliding and or bouncing
were observed.

Figure 5 shows time history data of three experimen-
tal tests. The first two belong to granite block three, but
the experiment was carried out in positions A and B,
respectively. The last test belongs to block eight, which
has a larger depth. Panels (a, d, g) show components of
the angular velocity, where nonzero values of ωx or ωz

are both signs of spatial motion. Panels (b, e, h) depict
Euler angles ϕx , ϕy and ϕz representing the attitude of
the block using the zyx convention. (That is, a general

rotation is the composition of three consecutive rota-
tions about the local z, y, and x axes by angles ϕz , ϕy

and ϕx .)
The X-IMU estimates time histories of the acceler-

ation vector, angular velocity vector, attitude, and local
magnetic field vector using on-board sensors includ-
ing accelerometers, a triple-axis gyroscope, and mag-
netometers. Two operation modes are offered by the
device. The attitude heading reference system (AHRS)
modes combine all sensor data including the magne-
tometer. We observed that the big amount of steel
equipment in the laboratory caused large systematic
errors, and thus this mode could not be used. The iner-
tial measurement unit (IMU) mode excludes magne-
tometer data. This mode provides sufficiently accu-
rate angular velocity estimations, but large drift was
observed in some of the attitude estimations (see Fig.
5e). Throughout the experiment, we used IMU mode
with 256Hz rate, and the drift of attitude data was com-
pensated as described below (Fig. 5c, f, i). Themodified
Euler angles were determined as follows:

– The local maximum points of |ωy | in the angular
velocity diagram were located numerically.

– These points mark the moment of an impact in
which an edge of length b1 is in contact with the
ground. Thus, the ϕy Euler angle should be zero

– A piecewise linear error function was added to the
Euler angles to enforce 0 value of the appropriate
components at the impact times.

The same correction steps were also repeated for the
ϕx Euler angles.

3.2 Results of the experiment

Despite the xz plane being a plane of reflection sym-
metry, significant out-of-plane motion was observed in
almost all cases (Fig. 5). In addition, large differences
were observed between the A and B positions, whereas
multiple trials in the same position yieldedmore similar
results. Both phenomena are the results of manufactur-
ing imprecisions of the object, and our observations
suggest that minor imperfections of the block strongly
affect rocking motion. For blocks with large depth, we
recorded lateral motion emerging from time to time,
but decaying very rapidly, so motion appeared to be
planar most of the time (Fig. 5g).

In order to quantify these observations, two quanti-
ties were determined for every experimental trial:
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Fig. 5 Measured angular velocities (a, d, g), Euler angles (b, e,
h), and corrected Euler angles (c, f, i) of the third block rock-
ing in positions A (a–c) and B (d–f) as well as the eighth block

rocking in position A. Note large drift in e. The corresponding
OPMF and AVRF values are given above the diagrams
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Fig. 6 Mean and standard deviation of measured out-of-plane
motion factors (a) and angular velocity ratios (b) for each posi-
tion (A or B) of the eight blocks

– the out-of-plane motion factor (OPMF) is the ratio
of the maximal absolute values of the Euler angles
corresponding to out-of-plane and in-plane rotation
Φ = maxt |ϕx (t)|/maxt |ϕy(t)| during the entire
course of the rocking motion after the first impact.

– the AVRF was estimated based on ten subsequent
local maximum values of the corrected |ϕy | incli-
nation angle (ϕy,i ; i = 1, 2, . . . , 10) of the block.
First, the vertical uplift of the COM at the max-
imal inclination angles was calculated as ui =
h sin ϕy,i − b1(1− cosϕy,i ). Then, an AVRF value
corresponding to two adjacent maximum values
was calculated as rexp,i = √

ui+1/ui . The final esti-
mated AVRF rEXP was the median of the nine val-
ues corresponding to one single experimental trial.

The measured AVRF and OPMF values for differ-
ent values of block depth (b2) are shown in Fig. 6.
The out-of-plane motion factor was found to be as
high as 0.1 for low values of b2, which is the result of
spontaneous symmetry breaking induced by geomet-
ric imperfections. High dispersion of the AVRF data
is likely also caused by imperfections, which can be
explained by planar models. However the AVRF data
also suggests that average values depend on b2, which
cannot be explained by planar models. The amount of
experimental data is insufficient to draw detailed con-
clusions about the role of b2; however, the presented
results clearly indicate that such an effect exists. This
is our motivation to present a new three-dimensional
impact model.

4 A new, three-dimensional impact model

This section is devoted to development of our new
impact model. First, a general description of hybrid
rocking motion is given to clarify the role and the types
of impacts. Then, the basic idea of the new impact
model is presented in Sect. 4.2. This is followed by a
general formula applicable to all types of impact maps
(Sect. 4.3). The initial formula is further developed into
a fully explicit expression in terms of impact parame-
ters, which is applicable to edge impacts (Sect. 4.4)
and to two different types of facet impacts (Sects. 4.5–
4.6). A unified map applicable to any facet impact is
given (Sect. 4.7). Finally, we establish some theoretical
bounds of impact parameters (Sects. 4.8–4.9) .

4.1 The role of impacts during rocking motion

Three-dimensional rocking motion of quasi-rigid, con-
vex, polyhedral objects is a combination of continu-
ous and discrete components. Contact-free motion is
barely observed except for perhaps very small ampli-
tude bouncing motion. Accordingly, models of rocking
motion often ignore the possibility of free flight. Slip
may or may not be significant depending on contacting
materials and geometry of the objects. Here, we keep
focusing on slip-free motion, which is the most com-
mon behavior of slender blocks unless the underlying
surface is slippery. With these restrictions, the possi-
ble contact modes of motion are surface contact (i.e.,
rest), edge contact (rocking around the edge) and vertex
contact (rocking possibly with spin component). Tran-
sitions between these modes occur through impacts.
More specifically, rocking under vertex contact typi-
cally ends when all points along an adjacent edge of
the block reach the ground simultaneously giving rise
to an edge impact. The typical post-impact motion of
slender rocking object is rocking about the other end-
point of that edge. In a similar fashion, rocking about
an edge terminates when all points of the base facet
reach the ground simultaneously, giving rise to a facet
impact. Then, the typical post-impact mode is rocking
about a vertex or another edge of that facet.

In addition, vertex contact terminating in a facet
impact is also possible but non-generic, so it is not
discussed here.

It is worth noting that sustained edge or facet con-
tact (rest) can not be created by any of the single impact
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Fig. 7 Transitions during
two- and three-dimensional
rocking motion

transitions listed above. One of the special features of
rockingmotion is the accumulation of infinite sequence
of impacts in finite time intervals, which is often called
Zeno behavior [2,8]. In planar models, a Zeno point
occurs whenmotion stops. For three-dimensionalmod-
els, a Zeno sequence of edge impacts may terminate
in a state of rest or in a state of sustained edge con-
tact (i.e., rocking). A Zeno sequence of facet impacts
may only terminate in a state of rest. Figure 7 provides
a schematic overview of the possible contact modes
and generic transitions between them, including Zeno
behavior.

4.2 Overview of the impact model

Similarly to planar impacts, three-dimensional rocking
blocks have sustained contact at an edge or at a vertex
immediately before an impact. Hence, it is reasonable
to use an extension of assumption H1 (see Sect. 2). In
addition, it is also reasonable to ignore the possibility

of free flight and slip, similarly to assumption H3 in
Sect. 2.

Analogously to planar rocking, wewill approximate
the impact by an instantaneous mapping of velocities.
Then, the outcomeof the impact is uniquely determined
by the spatial distribution of impulsive forces trans-
ferred to the object along the edge or facet involved
in the impact, and the exact time history of force dur-
ing the impact process does not matter. Moreover, we
can further simplify the description by considering the
resultant of the impulsive forces in the spirit of Chatzis
et al. [10].

There are however some differences between pla-
nar and spatial impacts. We have seen that an arbi-
trary distributed planar impulse is equivalent of a sin-
gle resultant impulse ρ, which can be represented by
its components ρx , ρy and its location xR (Fig. 8a).
Two parameters are determined by the kinematic con-
straints associated with no slip and no liftoff, and thus
the possible outcomes of a planar impact can be param-
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Fig. 8 Resultants of distributed impulses in twoand three dimen-
sions. a Planar impulse distributed along a line. b Wrench rep-
resentation of a three-dimensional impulse distributed along a

surface. c Modified wrench representation of the same impulse.
dModifiedwrench representation of an impulse distributed along
a line section VbVa

eterized by one scalar parameter (which was denoted
by λ in Sect. 2).

In contrast, the resultant of a spatially distributed
three-dimensional impulse has six independent param-
eters, and representation of the distributed impulse by
an equivalent single resultant impulse (which has only
five parameters) is in general not possible. In the field
of robotics, a distributed force is often represented by
a ’wrench’: a resultant force vector ρ = [ρx , ρy, ρz]
along an appropriately chosen line of action (speci-
fied by two parameters) and an additional torque vec-
tor of magnitude τ parallel to ρ. This representation is
unique. Impulses can be represented in a completely
analogous way by a resultant impulse and an angular
impulse, which can be parameterized by three compo-
nents ρx , ρy, ρz , two coordinates xR, yR of the resul-
tant ρ as well as by the magnitude of the torque τ (Fig.
8b).

For convenience, wewill use a slightly different rep-
resentation of the distributed impulsive impact forces
by using a ’modified wrench’, which consists of the
resultant impulse ρ = (ρx , ρy, ρz) and an additional
vertical angular impulse vector of magnitude τ . The
coordinates xR, yR are used to specify the line of action
of ρ (Fig. 8c, d).

The modified wrench representation is unique pro-
vided that ρz �= 0. Its parameters can be calculated in
the case of facet impact as follows. Assume that the dis-
tributed impulse acts over a facet F lying in the x − y
coordinate plane and it is given by the function p(x, y)
with components px (x, y), py(x, y), pz(x, y). Then,

the parameters of the modified wrench are calculated
by surface integrals:

ρ =
∫
F

p(x, y)dS (7)

xR = ρ−1
z

∫
F
xpz(x, y)dS (8)

yR = −ρ−1
z

∫
F
ypz(x, y)dS (9)

τ =
∫
F
xpy(x, y) − ypx (x, y)dS. (10)

For edge impacts, p is distributed along that edge,
and analogous linear integrals are used to determine the
resultant. If the distribution of the impulse is discrete,
then summation can be used instead of integration.

The main advantage of the modified wrench repre-
sentation is the fact that for arbitrary pz(x, y) ≥ 0,
the possible locations of the point R : (xR, yR, 0) are
exactly the points of the facet F according to (8)–(9).
Similarly, for an edge impact, the possible locations of
R : (xR, yR, 0) are exactly the points of the edge VbVa
involved in the impact. The latter will allow us later to
use a single scalar parameter λ instead of xR and yR .

4.3 General formula of the impact map

Consider a three-dimensional impact of a rocking block
with mass m and moment of inertia tensor Θ . Let ux ,
uy , uz denote unit vectors along the coordinate axes.
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Fig. 9 Components of the
post-impact angular velocity
ω+ after an edge impact of a
homogenous block with
b1 = b2 = 5 cm, h = 20 cm
m = 1 kg at tilt angle of 5◦
for pre-impact angular
velocity ω− = [1, 0, 0]T

The pre- and post-impact velocity of the center of
mass, and angular velocity are v−, v+, ω−, ω+. Let
Vb, and Va denote points of contact before and after the
impact. (These points are unique in the case of rocking
about a vertex, but non-unique in the case of rocking
about an edge.) Let R denote the point where the mod-
ified wrench of the impact impulse intersects the xy
plane. The corresponding position vectors are rb, ra ,
rR , and rc is the position vector of the COM.

The impact map ω− → ω+ can be expressed as
follows. The kinematic constraints of rocking motion
immediately before and after the impact yield

v− = ω− × (rc − rb) (11)

v+ = ω+ × (rc − ra) (12)

The angular impulse momentum theorem applied to
point R yields

(rc − rR) × (mv+) + Θω+ =
(rc − rR) × (mv−) + Θω− + τuz

(13)

One can replace the cross products in (11)–(13) by
matrix multiplication, using the matrix

Rb =
⎡
⎣ 0 −uT

z (rb − rc) uT
y (rb − rc)

uT
z (rb − rc) 0 −uT

x (rb − rc)
−uT

y (rb − rc) uT
x (rb − rc) 0

⎤
⎦

(14)

and two other matrices RR , Ra composed in the same
way:

v− = Rbω
− (15)

v+ = Raω
+ (16)

−RR(mv+) + Θω+ = −RR(mv−) + Θω− + τuz

(17)

Then, ω+ can be expressed as

ω+ = (Θ − mRRRa)
−1 [

(Θ − mRRRb)ω
− + τuz

]
(18)

4.4 Explicit formula for edge impacts

In this case, Vb, and Va are the two endpoints of the
edge involved in the impact, and R is a point along the
edge. Hence, one can introduce the scalar parameter λ

such that

rR = ra + rb
2

+ λ
ra − rb

2
(19)

which also implies that RR = (Ra + Rb)/2+ λ(Ra −
Rb)/2. Thereby, we obtain from (18) a closed-form
expression of the impact map in terms of known quan-
tities and two impact parameters λ and τ :

ω+ =
(

Θ − m
Ra + Rb + λ(Ra − Rb)

2
Ra

)−1

...

... ·
((

Θ − m
Ra + Rb + λ(Ra − Rb)

2
Rb

)
ω− + τuz

)

(20)

Figure 9 illustrates the dependence of the impact
map on the impact parameters. The dominant effect of
λ is to set the amount reduction in the component of the
angular velocity vector perpendicular to the impacting
edge (which is the x component in the case illustrated
by the figure), whereas τ affects dominantly the z com-
ponent of angular velocity, and if the tilt angle α of the
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Fig. 10 Notation of edge
impacts (a) and facet
impacts (b) illustrated by a
rectangular block of size
2b1 by 2b2 by h. In b, we
assumed that the index of
the Vb vertex is b = 2

block is not 0, then τ also affects the third (in this case:
y) component.

Later, Sect. 5 shows that one can fix τ = 0, and the
remaining impact parameter λ still allows a reasonable
fitting of simulated trajectories to experimental mea-
surements.

4.5 Explicit formula of facet impact followed by
vertex contact

Let Vi , i = 1, 2, . . . , n denote the vertices of the
facet involved in the impact and ri the correspond-
ing position vectors. Before a facet impact, the object
rocks about an edge adjacent to that facet in gen-
eral, whichmeans two immobile vertices. Let Vb−1, Vb
(b ∈ {1, 2, . . . , n}) be the pre-impact axis of rotation.
(The index b − 1 should be understood modulo n).

Immediately after the impact, the object rocks either
about a vertex or about an edge of the base facet (see
Fig. 7). Here, we discuss the first scenario.

So now, Va , a ∈ {1, 2, 3, . . . , n} is the unique vertex
contacting the ground after the impact. As before, the
impact is given by the general formula (18).

In this case, rR cannot be expressed in terms of a sin-
gle scalar parameter λ. Instead, one can use two param-
eters xR and yR . Alternatively, if the facet is rectangu-
lar, then it is convenient to introduce two dimensionless
parameters λlon, λlat according to Fig. 10b such that

rR = r1 + · · · + r4
4

+ rb+1 − rb
2

λlon+ rb − rb−1

2
λlat.

(21)

Then, the explicit expression of the impact map in
terms of the impact parameters is given by (18), and
(21) using the notation (14) for fixed values of a.

Importantly, the index a of the post-impact point of
contact Va cannot be chosen a priori in the case of a
facet impact. The feasibility of all values of a can be
tested one by one by evaluating the impact map, and
by checking the requirements associatedwith unilateral
contact:

uT
z v+ > uT

z v− (22)

uT
z (v+ + ω+ × ri ) ≥ 0 (23)

for i = 1, 2, . . . , n. The first formula reflects that uni-
lateral contact forces should increase uT

z v, and the sec-
ond one means that none of the vertices penetrates into
the ground after the impact.

Ideally, this process should always provide a unique
feasible solution; however, this is not true in general.
As illustration, we show numerical results of this pro-
cess for a rectangular block of mass m = 1 kg, and
sizes b1 = 5 cm; b2 = 3 cm; h = 20 cm in Fig.
11. We assumed b = 2 (i.e., rocking about V1V2
before the impact) and pre-impact angular velocity
ω− = [0,−1, 0]T. Each panel corresponds to a fixed
value of τ . The figure shows numerically identified
regions of the impact parameterswherea = 3 and those
where a = 4, i.e., the impact is followed by rocking
about vertex V3 and vertex V4, respectively. In addi-
tion, there are regions of the impact parameters where
no feasible solution exists, and others where there are
two solutions.

The observed non-existence of the solution means
that there are non-trivial ranges of the impact parame-
ters, which are physically impossible. In addition, non-
uniquenessmeans that there are ranges of the parameter
values where the chosen parameterization of impact is
ambiguous.
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Fig. 11 Illustration of a
facet impact of a block.
Background colors show the
index a of the vertex in
contact with the ground
after the impact.
Dash-dotted lines depict the
singularity of (18). Dashed
rectangles depict the region
(27); the energy bound (26)
is satisfied in the region
above the continuous curves

In order to get rid of nonuniqueness and nonexis-
tence, we will postulate that

uT
z ω+ = 0, (24)

i.e., there is no ‘spinning’ motion immediately after
an impact. This assumption can be used to express
τ explicitly from (18) after both sides of (18) have
been multiplied by vector uT

z from left. In the case of a
homogeneous cuboid block, we obtain the trivial result
τ = 0. Equation (24) is merely an assumption which
does not follow from physical laws; however, it is plau-
sible, as dry friction is likely to eliminate the spinning
component of motion when a whole facet is in contact
with the ground. As we will see, this assumption is also
in agreement with experimental results.

Finally, (24) guarantees a unique feasible solution as
shown in Fig. 11a. In particular, the impact is followed
by rocking about V3 if λlat > 0 and rocking about V4
if λlat < 0. A sketch of the proof of uniqueness is
presented in “Appendix.”

4.6 Explicit formula of facet impact followed by edge
contact

Similarly to the previous type of facet impact, the
explicit expression of the impact map is given by (18),
and (21) using the notation (14). In contrast to the previ-
ous case, there are two immobile vertices immediately
after the impact (say Va and Va−1); furthermore, the
kinematics of rotation implies that (24) must be satis-
fied. In the case of a slender cuboid block, it is easy to
see thatVa−1Va must be the edge of the base facet oppo-
site to Vb−1Vb. Furtermore, these constraints imply that

λlat = τ = 0, whereas λlon can be arbitrary. Hence,
we only have one free parameter. This is not surpris-
ing given that facet impact followed by edge contact
is essentially an example of two-dimensional hybrid
rocking motion. Hence, in this case, the impact map is
identical to the one-parameter map of planar rocking
impacts of [10] revised by us in Sect. 2.

4.7 Unified impact map of facet impacts

Our findings in the previous two subsections imply that
the two types of facet impacts canbegivenbyone single
impact map as shown in Fig. 11a. The impact map has
two parameters: λlat, and λlon. Every parameter value
delivers a unique solution, and the type of post-impact
motion is determined by the sign of λlat. For example,
if pre-impact motion is rocking about V1V2, then post-
impact motion of rocking about vertex V3 if λlat > 0;
rocking about the edge V3V4 if λlat = 0, and rocking
about V4 if λlat < 0.

The dependence of the impact map on the parame-
ters is shown in Fig. 12. The map is continuous every-
where but non-smooth at λlat = 0. The dominant effect
of λlon is to set the amount of reduction in the com-
ponent of ω+, which is parallel to ω− , whereas λlat
controls the emergence of an angular velocity compo-
nent perpendicular to ω−.
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Fig. 12 Contour plot of the
x and y components of the
post-impact angular
velocity ω+ after a facet
impact of a block with
m = 1 kg, b1 = 5 cm;
b2 = 3 cm; h = 20 cm. The
pre-impact angular velocity
is ω=[0,−1, 0], which
corresponds to rocking
around edge V1V2. Note
that the third component of
ω+ is 0 by (24). The
component uyω

+ is
non-smooth function of the
impact parameters at
λlat = 0 because the
post-impact mode of contact
depends on the sign of λlat

If a rocking block has large width to depth ratio (like
blocks 7 and 8 in Fig. 4), the experimentally observed
motion is usually almost perfectly planar. In contrast,
our new impact model introduces large lateral angular
velocity component unless λlat is very close to 0. This
apparent contradiction can be resolved by noting the
behavior of simulated blocks after such an impact. The
facet impact is followed by spatial motion involving a
sequence of edge impacts. Large depth value implies
that the lateral component of the motion decays very
rapidly (relatively to the time-scale of the longitudinal
motion) and disappears through a Zeno point even if
λlat was not very close to 0. After this short transient,
our model predicts planar motion in agreement with
experiments.

4.8 Theoretical limits of parameters of edge impacts

Similarly to planar impacts, the parameters λ, τ of edge
impacts capture all possible outcomes, but it remains
to find theoretical limits of these parameters. As we
have seen, λ determines the position of the resultant
ρ, which must belong to the segment VbVa . From this
observation, we obtain the limits

−1 ≤ λ ≤ 1. (25)

Secondly, the impacts may not increase the kinetic
energy of the rocking block. The kinetic energy of a
rigid body rotating by angular velocity ω about a fixed

point X can be calculated as 1
2ω

T (Θ + mRT
x Rx )ω

where Rx is the matrix composed from rx according to
(14). Then, we have

ΔE := 1

2
ω+T

(
Θ + mRT

a Ra

)
ω+ − . . .

· · · − 1

2
ω−T

(
Θ + mRT

b Rb

)
ω− ≤ 0. (26)

The region of the τ − λ parameter plane consistent
with the last two contraints is always bounded, as λ

is bounded by (25), and for each value of λ, ΔE is
a quadratic function of τ with positive leading coeffi-
cient. It should also be noted that for τ = 0, (26) implies
λ ≥ 0 in analogy with previous findings about planar
impacts. Figure 13 illustrates these bounds for various
values of ω−. It should be noted that the contour lines
are not affected by multiplication of ω− by a constant
factor, nor by adding an arbitrary y component to ω−.

Another theoretical bound is provided by a singu-
larity of the inverted matrix Θ − mRRRa in (18). We
note without proof that such singularites do exist, but
for slender blocks, they appear for large values of λ,
which are irrelevant due to (25) .

There is at least one more theoretical bound for edge
impacts, which reflects the fact that the torque τ orig-
inates from frictional forces generated by tangential
motion during the impact, thus it cannot be arbitrary.

Finding the induced constraints of τ is beyond the
scope of this work.
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Fig. 13 Energy balance of an edge impact of a homogenous
block of size 10 cm by 10 cm by 40 cm and total mass 1 kg at tilt
angle of 5◦ for several pre-impact angular velocities. The regions
of the parameter plane on the right sides of the curves result in
reduction in the kinetic energy

4.9 Theoretical limits of parameters of facet impacts

For facet impacts, bounds similar to those of edge
impacts apply. First of all, the point R must be a point
of the impacting facet. In the case of rectangular facets,
this means

−1 ≤ λlat ≤ 1

−1 ≤ λlon ≤ 1 (27)

The energy bound (26) (solid curves in Fig. 11) as well
as the singularity of (18) (dash-dotted curves in Fig. 11)
are also applicable to facet impacts. Again, we note
without proof that the singularity appears for irrele-
vant ranges of (λlat, λlon) provided that the block under
investigation is slender. In addition, there are bounds of
τ similarly to edge impacts that we do not investigate
in this paper.

5 Empirical fitting of impact parameters

5.1 Methods

We now revisit the experimental tests introduced in
Sect. 2. The motion always starts with the following
phases of motion:

1. inital rocking about edge V1V2
2. facet impact
3. motion with sustained contact at V3 and/or V4.

This phase includes one or several episodes of
rocking about vertex V3, vertex V4 or about edge
V3V4. Each such episode is followed by an edge
impact at edge V3V4. The number of impacts may
also be infinite in the case that a Zeno point occurs
during this phase of motion.

4. an edge impact or a facet impact when V1 and/or
V2 reaches the ground again

In order to reproduce the observedmotion numerically,
we developed a custom-made code in MATLAB envi-
ronment,which simulates rockingmotion on anyvertex
or edge as dictated by the Newton–Euler equations of
rigid body motion. This was complemented with event
detection algorithms to detect impact times and Zeno
points, as well as numerical implementations of the
impact maps. The code follows the logical structure of
Fig. 7.

This code is capable of simulating rocking motion
of a block if the physical properties of the block (size,
mass, moment of inertia), the initial time of release t0,
initial tilt angle α, the parameters of edge impacts at
edge V3V4 during phase 3 (λ, τ ) and the parameters
of the first facet impact in phase 2 (λlat, λlon, τ ) are
specified.

The aim of this code is to find optimal values of the
initial conditions and impact parameters, matching the
experimentally measured trajectories. To that end, we
introduce the error function

ε(t0, α, . . . ) =(tend − t0)
−1

×
∫ tend

t0
|ωm(t) − ωs(t, t0, α, . . . )|dt

(28)

where tend is the time when the sequence of episodes
listed above ends. ωm , and ωs are measured and sim-
ulated angular velocity functions, and ωs depends on
the initial conditions and model parameters introduced
above. In order to reduce the number of unknown
parameters, we fix τ = 0 both for edge and for facet
impacts. In addition, we assume that each of the λ,
λlat, λlon impact parameters take constant values along
an individual rocking test. The unknown initial condi-
tions (t0, α) and the model parameters λ, λlat, λlon have
been determined by semi-automated numerical mini-
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mization of the error function ε: a rough fitting was
first obtained by trial-and-error, the results of which
was used as initial guess in the fminsearch numerical
optimization algorithm of MATLAB software [29].

An example of trajectory fitting is shown in Fig. 14,
and the optimum values are summarized in Fig. 15 for
both position (A or B). The fitting of λlat was omitted
for blocks 7 and 8, for which lateral motion decayed
very rapidly. In the next two subsections, two important
observations about these results are presented.

5.2 Variability of impact parameters

The first observation from Fig. 15 is the presence of
large variability in the parameter values. This is partly
caused by inaccurate measurement data. For exam-
ple, impacts often cause rapid oscillations in measured
angular velocity values (see Fig. 14), which is likely an
artifact caused by mechanical vibration of the gyro-
scopes. Variation of initial tilt angles in the experi-
mental tests may also contribute to variance of fit-
ted parameter values because the impact maps often
depend on impact velocities in a nontrivial way. Phe-
nomena neglected by the model (bouncing, slip, elastic
deformations, etc.), may also contribute to inaccuracy
of fitting and noise in the fitted parameter values. All
these factors call for a more extensive and controlled
experimental campaign to properly calibrate the impact
model in the future.

However, it is important to note that sensitivity of
impacts to geometric imperfections could in itself cause
large variability. Experiments using positions A and B
of the same columns involve different geometric imper-
fections. Even subsequent tests of the same column in
the same position involve different imperfections, due
to moving over different areas of the underlying sur-
face or due to the possible presence of small grains
under the rocking blocks. The observed variability is
thusmore than just aweakness of ourmodel, the experi-
ments, or the analysis. Sensitivity implies that the antic-
ipated result of model calibration is a realistic range of
model parameters rather than specific values. Accord-
ingly, impact parameters should be treated as uncertain
parameters during the analysis of rocking motion. In
particular, earthquake response analysis should verify
the safety of a rocking structure for a whole range of
impact parameter values rather than for single values
of those parameters. This can be done via repeated sim-

ulations to assess the safety of one single block under
a given excitation.

5.3 Violation of theoretical bounds

A closer look at the fitted λlon parameter values reveals
that they are in the range (0, 1.5). This is consistent
with the bound (26); however, the limit (25) is often
violated by λlon values exceeding 1. In general, the
violation of a theoretical bound indicates limitations
of a model such as unmodeled effects (e.g., bouncing,
slip, pivoting friction, or finite duration of impacts) or
some simplifying assumption (e.g., using constant val-
ues of impact parameters during each individualmotion
sequence). In this particular case, large λ means unex-
pectedly high reduction in angular velocity.We suspect
that this may be caused by neglected energy loss during
continuous rocking motion due to pivoting friction or
micro-slip. The same explanation applies to the unex-
pectedly high λ parameter values of edge impacts.

The fitted λlat values are in the interval (−5, 5),
which is far beyond the limit (27). As in the previous
case, we have no rigorous explanation for the violation
of (27); however, we suspect that the results are caused
by neglected small-scale bouncingmotion as explained
below.

One of the widely established assumptions in the lit-
erature of planar rocking motion is perfectly inelastic
impacts (see assumptionH4 in Sect. 2) despite the obvi-
ous fact that this assumption is not justified the materi-
als used in experimental studies. Why is then inelastic-
ity considered as acceptable? We believe that episodes
of bouncing are indeed present in the experiments;
however, they are of short duration and small ampli-
tude.More specifically, rockingmotion is a behavior of
blockswith relatively small width-to-height (b/h) ratio
(Fig. 3). The kinematics of rotational motion implies
that the base of the block hits the ground with low
velocity (compared to the translational velocity of other
points of the block). Consequently, bouncing motion
after the impact will also have low initial lift-off veloc-
ity. The emerging bouncing motion is similar to the
motion of a rigid bouncing ball, where the process
ends with a Zeno point followed by sustained contact.
The maximum height of bouncing is proportional to
the square of the liftoff velocity and the total duration
of the bouncing sequence is linearly proportional to the
initial liftoff velocity. That is, both quantities are small.
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Fig. 14 Left: circles showmeasured angular velocities of block4
in a free rocking test. Solid line shows simulated trajectories with
optimized parameters: t0 = 2.33 s; α = 0.197 rad; λ = 2.185;
λlat = −2.032; λlon = 0.197. Right: magnified detail of the pre-

vious diagrams. Note that each impact induces an instantaneous
jump in the angular velocity, however in some cases the jump is
too small to be visible

Fig. 15 Numerically fitted impact parameters for the A and B positions of blocks 1 to 8

From a practical point of view, these properties imply
that bouncing is a transient behavior that has little effect
on the dynamics, and it is also difficult to observe.

Theobservations presented above canbe extended to
spatial rocking motion, nevertheless even small-scale
bouncingmay have large effect on the emerging out-of-
plane angular velocity. To illustrate this phenomenon,
imagine a facet impact, in which the resultant of the
impact momentum acts near vertex V3 (see Fig. 11).
Then, the model predicts rocking about vertex V4 after
the impact. If the impact is not ideally inelastic, then
more vertical momentum is transferred to the block
than the momentum predicted by the inelastic model.
The surplus momentum causes the block to jump in the
air, and to undergo bouncing at V4 instead of smooth
rocking.Moreover, the surplusmomentum at V3 during
the impact is compensated by less momentum trans-
ferred to V4 after the impact than the momentum gen-
erated by pure rocking motion during the same time

interval. The surplusmomentumemerging atV3 instead
of V4 amplifies the out-of-plane angular velocity of the
block after the facet impact. This is similar to the effect
of large |λlat| values.

Hence, our second important observation is that the
optimal fit of impact parameters to experimental results
may yield parameter values contradicting previously
found theoretical limits. Such violations indicate limi-
tation of the model. We were able to identify neglected
phenomena, which have similar effects to parameter
values exceeding theoretical bounds. This finding sug-
gests that the practical applicability of the model might
be improved if one uses empirically determined ranges
of impact parameters exceeding theoretical limits. At
the same time, further exploration of this idea is left for
future work.
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6 Conclusions

The remarkable earthquake resistance of rocking struc-
tures inspires ongoing efforts to understand the charac-
teristic features of rocking. The challenges of the anal-
ysis include strong nonlinearity (even at small ampli-
tudes), hybrid dynamics (sudden impacts and continu-
ous motion), and in the case of quasi-rigid blocks and
supports, geometric sensitivity associated with edge
and facet impacts.Models used for the analysis of rock-
ing motion often use various simplifying assumptions,
such as rigidity, inelastic impacts, slip-free motion, and
planar motion.

Our work was inspired by the well-known obser-
vation that free rocking blocks on hard surfaces tend
to transition from planar motion to spatial rocking
via spontaneous symmetry breaking. This is caused
by microscopic geometric imperfections of the block,
which havemacroscopic effect on themotion due to the
extreme geometric sensitivity of edge and facet impacts
of quasi-rigid objects. This phenomenon cannot be
explained by currently available models, and calls
for a new modeling approach, which is three dimen-
sional and non-deterministic. As a first step toward
such a model, we proposed a new universal, three-
dimensional impact model, which can be used in the
context of rigid body dynamics. Universality means
that all reasonable outcomes of the impact are described
by a small set of impact parameters. Our new model is
a natural extension of the planar impact model [10],
which uses one single impact parameter.

The parameters of the new impact model have been
fitted to some free-rocking experiments. The results
show that the parameters are quite unpredictable,which
is not surprising as they are influenced by the effect
of unknown geometric imperfections. We made initial
steps toward identifying possible values of the impact
parameters; however, more experimental data will be
required to accurately identify their relevant ranges and
probability distributions.

The long-term goal of our research effort is to
improve current methods of assessing the earthquake
resistance of rocking structures. We foresee that the
inherently three-dimensional nature of rocking motion
affects the ability of a structure to resist earthquakes
without overturning. Moreover, the unpredictability of
impact parameters suggests that parametric studiesmay
be necessary to assess the safety of a single structure.
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A Uniqueness of the facet impact map

It was demonstrated by numerical simulation (Fig. 11)
that for some values of the impact parameters, the facet
impact map may have no feasible solution or multi-
ple feasible solutions. However, Fig. 11a strongly sug-
gests that there is always one unique solution under
(24) (or equivalently τ = 0). Here, we sketch the proof
of uniqueness in this case.

Forfixedvalues of the impact parametersλlat, λlon, τ ,
the three components ρx , ρy, ρz of an impact impulse
could be determinedbyusing (12). This vector equation
can be decomposed to three scalar equation including
the constraints of no slip at point Va :

uT
x (v+ + ω+ × ra) = 0 (29)

uT
y (v

+ + ω+ × ra) = 0 (30)

as well as inelasticity

uT
z (v+ + ω+ × ra) = 0. (31)
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It is straightforward to show by direct calculation
that v+ +ω+ ×ra is a linear function of ρ for fixed val-
ues of a. As a consequence, the no slip conditions and
the inequality (22) determine the direction of the vector
ρ (i.e., ρ/|ρ|) uniquely. At the same time, inelasticity
(31) can be used to determine the length |ρ|. Moreover,
for slender blocks and realistic values of impact param-
eters, uT

z (v++ω+×ra) is a strictly increasing function
of |ρ|.

If (24) holds, then the no-slip conditions (29)–(30)
associated with different values of a become equiva-
lent. Hence, for all values of a, the direction ρ/|ρ| of
the impact impulse will be the same. The length |ρ| is
however determined by (31) and it will be different for
each value of a. Among these values, the largest one
will provide a unique feasible solution as it implies that
(31) is true, whereas for all values i �= a, the inequality
(23) will be satisfied instead.

In contrast, if (24) does not hold, then the no-
slip conditions (29)–(30) are not equivalent, hence the
direction of ρ may be different for each value of a.
Thus, the arguments outlined above are not applicable.
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