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Abstract Flutter is a major constraint on modern tur-
bomachines; as the designs move toward more slender,
thinner, and loaded blades, they become more prone to
experience high cycle fatigue problems. Dry friction,
present at the root attachment for cantilever configu-
rations, is one of the main sources of energy dissipa-
tion. It saturates the flutter vibration amplitude growth,
producing a limit cycle oscillation whose amplitude
depends on the balance between the energy injected
and dissipated by the system. Both phenomena, flutter
and friction, typically produce a small correction of the
purely elastic response of the structure. A large num-
ber of elastic cycles is required to notice their effect,
which appears as a slow modulation of the oscilla-
tion amplitude. Furthermore, even longer time scales
appear when multiple traveling waves are aerodynam-
ically unstable and exhibit similar growth rates. All
these slow scalesmake the system time integration very
stiff and CPU expensive, bringing some doubts about
whether the final solutions are properly converged. In
order to avoid these uncertainties, a numerical contin-
uation procedure is applied to analyze the solutions
that set in, their traveling wave content, their bifurca-
tions and their stability. The system ismodeled using an
asymptotic reduced order model and the continuation
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results are validated against direct time integrations.
New final states with multiple traveling wave content
are found and analyzed. These solutions have not been
obtained before for the case of microslip friction at the
blade attachment; only solutions consisting of a single
traveling wave have been reported in previous works.
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1 Introduction

Flutter onset is currently a very important limitation
in modern turbomachinery, where blade designs are
getting more slender and closer to their mechanical
limit. It is an aeroelastic instability where the gas flow-
ing around the blades tends to amplify the small elas-
tic oscillations of the blades. As a consequence, the
blade vibration amplitude grows exponentially until
nonlinear effects, typically due to friction forces at
the blade root in the case of Low Pressure Turbines
(LPT), become relevant. Hopefully, the dissipation pro-
duced by nonlinear friction is strong enough to limit the
growth of the aeroelastic instability and avoid a catas-
trophic blade failure. In this case, there is a balance
between nonlinear friction damping and unstable flutter
growth such that a final Limit Cycle Oscillation (LCO)
state sets in with a bounded blade vibration amplitude.

The determination of this final vibration amplitude
is crucial to estimate the blade fatigue level. This typ-
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ically requires a CFD description of the aerodynamic
flow coupled with a FEM for the motion of the bladed-
disk with nonlinear friction effects. These simulations
can include a number of simplifications (linearized
CFD, partial fluid-structure coupling, reduced number
of modes for the motion of the structure,...), but they
are always quite involved and CPU costly.

In a tuned configuration, if the final state ismade of a
single Traveling Wave (TW), then the calculations can
be reduced to just one flow passage and one sector of
the bladed-disk. This constitutes a huge computational
reduction in the usual case of large blade counts.

For this reason, there has recently been some
research activity looking into the expected TW com-
position of the final LCO state. Aeroelastic models of
the bladed-disk with different levels of detail have been
used to try to decide whether, in a tuned rotor, the final
LCO state is always made of a single TW or if there
can also be multi-TW final states.

In [4], a mass-spring model with microslip friction
is used to analyze the problem. The system is inte-
grated in time with fully coupled and semi-uncoupled
linearized aerodynamic effects. Both formulations pro-
duce very similar results, indicating that, in the usual
case of small vibration amplitude, aerodynamic forces
can be safely assumed to be linear. Time evolution of
the system first showed the slow growth of the unsta-
ble TWs and, afterward, the nonlinear interaction of
unstable TWs through the effect of friction at the fir-
tree, which takes place on an even longer time scale.
In all cases reported, this interaction always ended up
selecting a final state composed of just one single TW,
the most aeroelastically unstable one.

A multiple scales method is applied in [9,10] to
further simplify the mass-spring model. The resulting
asymptotically reduced equations describe the evolu-
tion of the system directly in the slow time scale (asso-
ciatedwith the small effects of flutter and friction), with
the fast elastic oscillations filtered out and can be inte-
grated with a much lower computational cost. Again,
the simulations performed always produced single TW
final states, although other unstable TWs close to the
most unstable one were also found as possible final
states of the system. The selection of the final single
TW state is sensitive to the initial conditions. These
initial conditions were picked from a random distribu-
tion [9] or both from a random distribution and starting
from a pure TW [10].

Multi-TW solutions were reported as another pos-
sible final state in [8]. The model used consisted of 7
blades with linear aerodynamic effects and Coulomb
friction forces to describe the effect of the contact
between adjacent blades. In order to obtain the multi-
TW states, the linear aeroelastic characteristics of the
system were selected to have two unstable TWs with
a quite high negative aerodynamic damping value. A
realistic model of a LPT bladed-disk with linear aero-
dynamic forces and contact interaction at the tip shroud
was considered in [7]. Here, it was shown that the
inclusion of strong nonlinear coupling effects at the tip
shroud can producemulti-TWfinal states. The analysis
was continued in [2], to show that nonlinear tip con-
tact effects change the vibrationmodes and frequencies
of the system with respect to those obtained with lin-
earized contact conditions. These changes in frequen-
cies and mode shapes have to be considered in order to
correctly estimate the amplitude of the resulting limit
cycle oscillations.

In the present work, we consider the case of flutter
vibrations with microslip contact forces at the blade
fir-tree, where the effect of friction does not substan-
tially change the natural vibration modes. As it was
mentioned above, previous works on this configuration
[4,9,10] have only found final vibration states consist-
ing of just one singleTW.The idea is to apply numerical
continuation techniques [6] to analyze the stability of
the solutions and search for multi-TW states. This pro-
cedure eliminates the need for direct time integration of
the system, which requires very long integration times
and always leaves some uncertainty about whether the
final state is fully converged.

To this end, first, we briefly introduce the asymptotic
model used, study the stability of the zero solution (no
blade vibration) and compute the single TW solutions
that appear when the magnitude of the flutter instabil-
ity is increased. Then, we analyze the linear stability
of single TW solutions and perform numerical contin-
uation to follow new branches of multi-TW solutions
that bifurcate from single TW solutions when they lose
stability. New multi-TW states are obtained, with very
rich TW content. They have two different frequencies
and propagate around the rotor with nonuniform blade
to blade amplitude.
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Fig. 1 Mass-spring model of the bladed-disk

2 Asymptotic model

A simple mass-spring model is used to represent the
bladed-disk (Fig. 1). The system has 2 degrees of free-
dom per sector, one for the blade motion x j and one for
the friction displacement y j . It includes: elastic cou-
pling among the different blades to account for the
effect of the disk Kc, linear aerodynamic forces Fa,
and microslip friction forces F f (y) at the blade attach-
ment. Similar models have been successfully used in
previous works for the description of flutter vibration
of a nearly flat modal family (see [9,10]).

The equations of motion of the mass-spring system
are given by

mbẍ + kb(x − y) + Kcx + cmatẋ + Fa = 0,

m f ÿ + kb(y − x) + F f (y) = 0,
(1)

where mb is the mass of the blade and m f is the mass
of the nonlinear friction Degree of Freedom (DOF) in
each sector. The elastic coupling between both DOF
is kb. It is convenient to rewrite this set of equations
in dimensionless variables in order to clearly compare
the relative importance of the different terms. Dividing
Eq. (1) by the characteristic elastic force of the system
Fc = mbω

2
bxc, one gets

x̃T T + (x̃ − θ ỹ) + K̃cx̃ + 2ξmatx̃T + F̃a = 0,

γ θ ỹT T + (θ ỹ − x̃) + F̃ f (ỹ) = 0,
(2)

where x̃ = x/(Fc/kb), ỹ = y/yc (yc is the microslip
characteristic displacement), the time is made dimen-
sionless T = ωbt with the blade alone natural fre-
quency ωb = √

kb/mb, γ = m f /mb, and θ =
yc/xc = kb/(Fc/yc). The dimensionless forces are
expressed as F̃a = Fa/Fc and F̃ f = F f /Fc.

The nondimensional parameter θ is usually very
small because the displacement of the fir-tree is typi-
cally much smaller than the modal displacement of the
blade (or, in other words, the stiffness of the friction is
much larger than that of the blade elastic mode).

There are two very different time scales in this prob-
lem. One corresponds to oscillations with the elastic
frequency of the blade and, the other, which is much
slower, is associated with the small effects of flutter
and nonlinear friction. A multiple scales method (see,
e.g., [1]) can be applied to obtain, in the limit θ � 1,
an asymptotic model with the fast elastic oscillations
filtered out. The derivation of the asymptotic model
is completely analogous to that explained in detail in
[9,10] and is omitted here.

The asymptotic model expressed in terms of com-
plex TW amplitudes A j and the slow time scale τ =
θT , can be written in the form

d

dτ

⎛
⎜⎝

A1
...

AN

⎞
⎟⎠ = (Melastic + Maero + Mfriction)

⎛
⎜⎝

A1
...

AN

⎞
⎟⎠ ,

(3)

where N = 24 is the number of blades of the rotor.
The elastic and aerodynamic matrices are diagonal in
the TW basis

Melastic =
⎡
⎢⎣

− ξmat
θ

+ i �ω1
θ

· · · 0
...

. . .
...

0 · · · − ξmat
θ

+ i �ωN
θ

⎤
⎥⎦ , (4)

Maero =

⎡
⎢⎢⎣

− ξ1a
θ

+ i η1a
θ

· · · 0
...

. . .
...

0 · · · − ξ N
a
θ

+ i ηN
a
θ

⎤
⎥⎥⎦ , (5)

and the friction matrix is diagonal in the displacement
basis

Mfriction = − i

2
EH

⎡
⎢⎣
Q(|X1|) · · · 0

...
. . .

...

0 · · · Q(|XN |)

⎤
⎥⎦ E. (6)

E is the change matrix from TW amplitudes to blade
displacements, and EH denotes the conjugate trans-
pose of E. This matrix represents the discrete Fourier
transform and is given by

E = 1√
N

⎡
⎢⎢⎢⎣
e
i
(
2π1
N

)
1 · · · e

i
(
2πN
N

)
1

...
. . .

...

e
i
(
2π1
N

)
N · · · ei

(
2πN
N

)
N

⎤
⎥⎥⎥⎦ . (7)

The complex blade displacements are represented
by X j , and they are related to the dimensionless dis-
placements x̃ j by

x̃ j = X j (τ )eiT + c.c., (8)
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Fig. 2 Elastic frequencies of the bladed-disk

which corresponds to the first order in the asymptotic
expansion [9,10]. Furthermore, the complex displace-
ments X j are related to the TW amplitudes A j by
X = EA.

The coefficients �ω j in the elastic matrix repre-
sent the small deviations of the natural frequencies of
the modal family from the blade alone normalized fre-
quency (see Fig. 2). The material damping coefficient
of the structure has the value ξmat = cmat/2

√
kbmb =

2 × 10−4 (much smaller than the aerodynamic damp-
ing).

The Olofsson model [11] is used to describe the
microslip friction at the blade attachment. The dimen-
sionless friction force F̃ f j is related to the DOF ỹ j by
a loading–unloading cycle, which is shown in Fig. 3.
The magnitude of the friction force corresponding to
the unloading part of the cycle is given by

F̃ f j = F̃ L − 2

⎛
⎝1 −

(
1 − ỹL − ỹ j

2

)5/2
⎞
⎠ , (9)

and, the subsequent loading part is obtained as

F̃ f j = −F̃U + 2

⎛
⎝1 −

(
1 − ỹU + ỹ j

2

)5/2
⎞
⎠ . (10)

The complex friction coefficient Q(|X j |) in the fric-
tion matrix Mfriction used in the asymptotic model is
related to the first term of the Fourier series expansion
of ỹ j (see [9]). This coefficient accounts for the non-
linear dissipation and frequency change produced by
friction at the fir-tree and depends on the amplitude of
the blade elastic cycle |X j |. Real and imaginary parts
of Q(|X j |) are shown in Fig. 4. The microslip regime
is bounded by |X | ≤ 0.5.

The coefficients inMaero are the aerodynamic damp-
ing and frequency correction of the TWmodes. A sinu-
soidal shape (blade aerodynamic interaction with itself
and with its adjacent blades only) has been selected to

Fig. 3 Olofsson model for the friction force in the microslip
regime

Fig. 4 Real (top) and imaginary (bottom) parts of the complex
friction coefficient Q(|X |)

mimic the typical data in a realistic LPT (see, e.g., [3])

ξ
j
a = ξa0 − ξa1 sin

(
2π j

N
+ ξa2

)
(%), (11)

η
j
a = ηa0 − ηa1 cos

(
2π j

N

)
(%), (12)

where j is the TW wavenumber, ξa0 = 0.25, ξa1 =
0.75, ξa2 = −0.05 , ηa0 = 1.4 and ηa1 = 1. The aero-
dynamic coefficients are shown in Fig. 5. The aerody-
namically unstable TW modes (i.e., ξ ka < 0) are repre-
sented with a shaded area. Note that the mean aerody-
namic damping is stable and there are 9 unstable TWs.
Also, as it is usual in the turbomachinery field we also
use the term number of Nodal Diameters (ND) to refer
to the wavenumber of a TW.

The coefficient ξa1 will be used later on as the bifur-
cation parameter to explore the solutions of the system.
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Fig. 5 Aerodynamic damping and frequency correction coeffi-
cients

By changing this parameter, we explore different lev-
els of the flutter instability increasing or decreasing the
number of unstable TW modes and their damping.

3 Traveling wave solutions

Equation (3) admits the trivial solution, which corre-
sponds to no blade motion. Linearizing the problem
around this solution A j = 0 + a j yields

d

dτ

⎛
⎜⎜⎝

...

a j
...

⎞
⎟⎟⎠

= diag
[
−ξ̃ j + i

(
ω − R[Q(0)]

2

)]
⎛
⎜⎜⎝

...

a j
...

⎞
⎟⎟⎠ , (13)

where a j represents the perturbed TW amplitude, with

|a j | � 1, ξ̃ j = (ξ
j
a +ξmat)/θ , and ω̃ j = (�ω j+η

j
a)/θ .

This is a diagonal constant coefficient system, and
the eigenvalues of the matrix are given by

λ j = −ξ̃ j + i

(
ω̃ j − R[Q(0)]

2

)
. (14)

As the flutter intensity is increased through the
parameter ξa1 [see Eq. (11)], the trivial solution

becomes unstable for the first time at ξ̃ j = ξ
j
a +ξmat

θ
= 0

for any j . As it can be seen in Fig. 5, this happens first
for j = 6, which is the most aeroelastically unstable
TW mode. For higher values of ξa1 , the adjacent TW

modes become also unstable. The effect of friction is
just a shift in frequency of magnitude R[Q(0)]/2 in
the aeroelastic modes.

There is another type of simple solutions of the sys-
tem which corresponds to a single TWwith wavenum-
ber r , with all blades vibrating with the same amplitude
and frequency

Ar = √
N Rre

i(mr τ+α),

A j = 0 for j = 1, . . . , N and j �= r, (15)

where
√
N Rr is the modulus of the TW amplitude, mr

is the frequency correction of the single TW solution
and α represents an arbitrary phase. Note that the mag-
nitude of the blade displacements |X j | = Rr for every
j , so all the entries in the friction matrix in Eq. (3)
are equal to Q(Rr ). Therefore, after introducing the
expression (15) in system (3), the following nonlinear
equations are obtained

J[Q(Rr )] = 2ξ̃r , (16)

which determines the value of Rr for a given aerody-
namic level ξ̃r , and

mr = ω̃r − 1

2
R[Q(Rr )], (17)

which directly gives the frequency of this periodic solu-
tiononce thevalue Rr is known.Equation (16) indicates
that the amplitude of the single TW periodic solution
is the result of the balance between the growth rate of
the aeroelastic instability and the nonlinear damping of
the friction [10].

Since J[Q(|X |)] ≤ 0, the existence of single TW
solutions requires ξ̃r < 0. Therefore, for each unstable
TW mode with wavenumber j = r, there is a single
TWsolutionwith complex amplitude Ar that bifurcates
from the trivial solution precisely when the real part
of the eigenvalue λr from (14) becomes positive. The
stability of these single TW solutions is analyzed in the
next section

4 Stability of the traveling wave solutions

Single TW solutions [Eq. (15)] are periodic solutions
of system (3). To study their stability, we introduce a
change of variable to make these solutions steady in
the new formulation. By factoring out the frequency of
single TW solutions, mr , we have

A = Beimr τ . (18)
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Introducing the change of variable (18) in Eq. (3),
and substituting the value of mr from (17), gives

d

dτ

⎛
⎜⎜⎝

...

Bj
...

⎞
⎟⎟⎠

= − i

2
EHdiag

[
Q(|X j |) − Q(Rr )

]
E

⎛
⎜⎜⎝

...

Bj
...

⎞
⎟⎟⎠

+ diag
[
−(ξ̃ j − ξ̃r ) + i(ω̃ j − ω̃r )

]
⎛
⎜⎜⎝

...

Bj
...

⎞
⎟⎟⎠ ,

(19)

where single TW solutions are now steady solutions of
this autonomous system.

The stability characteristics of single TW solutions
can now be obtained by computing the eigenvalues of
the Jacobian matrix of Eq. (19), evaluated at one of
these solutions. To this end, we linearize the system
writing the solution as a single TW with wavenumber
r plus a small perturbation
⎛
⎜⎜⎜⎜⎜⎜⎝

B1
...

Br
...

BN

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...

1
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

a1
...

ar
...

aN

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

√
N Rre

iα. (20)

Expression (20) is introduced in the system of eqs.
(19) and only linear terms in the perturbation are
retained. The resulting linear system for the time evo-
lution of the TW perturbations can be expressed as

d

dτ

⎛
⎜⎜⎜⎜⎜⎜⎝

...

ar−1

ar
ar+1

...

⎞
⎟⎟⎟⎟⎟⎟⎠

= − i

4
Q′(Rr )Rr (

⎛
⎜⎜⎜⎜⎜⎜⎝

...

ar−1

ar
ar+1

...

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

...

ār+1

ār
ār−1

...

⎞
⎟⎟⎟⎟⎟⎟⎠

)

+diag
[
−(ξ̃ j − ξ̃r ) + i(ω̃ j − ω̃r )

]

⎛
⎜⎜⎜⎜⎜⎜⎝

...

ar−1

ar
ar+1

...

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(21)

where Q′(Rr ) is the derivative of the complex friction
coefficient Q(|X |) evaluated at Rr . System (21) has
some particular characteristics that are worth noting.

The complex conjugate of the perturbation, ā j ,
appears through the linearization of the modulus of the
blade displacement |X j |, present in the friction terms
Q(|X j |). A perturbation with wavenumber r + k on
a TW with wavenumber r produces also a complex
conjugate component with wavenumber r − k. As a
consequence, despite the fact that the system is tuned
(that is, all sectors of the bladed-disk are identical), dif-
ferent TW perturbations are not uncoupled. Because of
the nonlinearity of the friction terms, the TW pertur-
bations ar+k and ar−k are coupled in pairs, and the
perturbation ar is decoupled from the rest.

The second term in system (21) contains the damp-
ing differences ξ̃ j − ξ̃r . Near the most aeroelastically
unstable TW, the aerodynamic damping values are very
similar (see Fig. 5). Their differences are thus very
small and generate even longer time scales, associated
with the selection of a particular TW as the final state.

This long time scale has been noticed in previous
works [4,9,10], and it can be clearly seen in Fig. 6,
where system (3) is integrated in time starting from
a small initial condition (A j = 0.01 for every j)
and with ξa1 = 0.75. Initially, there is an exponen-
tial growth of the aeroelastically unstable TW modes
(straight lines due to logarithmic scale). The slope of
this growth (blued dashed line) is practically given by
the most unstable aerodynamic damping ξ6a (the mate-
rial damping of the structure is much smaller). How-
ever, the slope of the TW decay in the nonlinear inter-
action region (red dashed line), which is related to the
difference of aerodynamic dampings ξ

j
a − ξ ra , is much

smaller and it takes a very long time to select the final
TW with wavenumber 6. Direct time integration, even
for this asymptotic model, requires long computation
times, and there is always a certain level of doubt about
whether the convergence to the final state has been
reached.

Now, expanding the small perturbation a = u + iv,
Eq. (21) can be written in real and imaginary part as

d

dτ

(
u
v

)
= J(Rr )

(
u
v

)
, (22)

where J(Rr ) is the Jacobian matrix evaluated at the
amplitude Rr of a singleTWsolutionwithwavenumber
r . Therefore, a single TWsolution branch is stable if the
real part of all the eigenvalues of the Jacobian matrix
are less or equal to zero or unstable if the real part of
any of the eigenvalues is positive.
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Fig. 6 Time evolution of the solution of system (3) with initial
condition A j = 0.01 for every j

Fig. 7 Bifurcation diagram for the single TW solution with
wavenumber 8. Solid (dashed) line indicates stable (unstable)
solution

As an example, for wavenumber 8, the single TW
solution curve is computed for values of the bifurcation
parameter ξa1 ∈ [0.2, 1.0]. Its stability is determined
by the eigenvalues of the Jacobian matrix at each point,
as shown in Fig. 7. For values close to ξa1 = 0.2, only
the trivial solution exists, which becomes unstable at
the point ξ̃6 = 0, since the TW with wavenumber 6 is
the most unstable. When the bifurcation parameter is
increased and ξ̃8 = 0, the single TW8 branch emerges
from the trivial solution, and it is initially unstable.
Then, after a Hopf Bifurcation (HB) point, the LCO
corresponding to TW8 becomes a stable solution.

The same process is repeated again for every TW
mode that becomes aerodynamically unstable in the

interval ξa1 ∈ [0.2, 1.0]. Gathering the information of
each individual bifurcation diagram (as in Fig. 7), the
stability of every single TW solution and the trivial
solution is represented in Fig. 8. The trivial solution
corresponds to the horizontal plane and is stable when
there is no aerodynamically unstable TWmode present
in the system. The straight dotted line corresponds to
ξ̃6 = 0, where the trivial solution becomes unstable.
The single TW solutions emerge from the trivial solu-
tion when a TW mode becomes unstable (This con-
dition is represented by the curved dotted line and is
given by ξ̃r = 0).

The single TW solution with wavenumber 6 (which
corresponds to the most unstable aerodynamic damp-
ing) is always stable, but adjacent ones (with slightly
less aerodynamic damping) only become stable as the
bifurcation parameter ξa1 is increased. Every singleTW
that changes stability does it through a HB. Also, for
a given value of the bifurcation parameter ξa1 , even
though multiple single TW solutions exist, not every
one of them has a stable LCO.

Previous works only reported the most aerodynam-
ically unstable TWs as final states of single TW solu-
tions [10] after performing numerical integration. Also,
themost unstablemode seemed to have the largest basin
of attraction. In thiswork, the stability results show that,
for example, when ξa1 = 1, only 5 out of the 10 aero-
dynamically unstable TW modes have a stable LCO.
These TW modes are precisely the most aerodynami-
cally unstable ones, and their stability region is larger
the more unstable a TW mode is.

5 Multi-traveling wave solutions

Wenow look formore complicated stable solutions that
can bifurcate from the HB in single TW solutions. The
approach to track these branches and compute their
stability is to use numerical continuation. In particu-
lar, the numerical continuation software AUTO [6] is
used. AUTO is a package that can continue steady solu-
tions of ordinary differential equations and determine
its bifurcation points using one (or more) free parame-
ters. Furthermore, it continues periodic solutions, deter-
mining the Floquet multipliers at each step to compute
the stability of these branches. The algorithms imple-
mented in this software are explained in detail in [5].

Even though single TWsolutions are periodic, recall
that they became steady in Eq. (19) after performing a
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Fig. 8 Bifurcation diagram of the traveling wave solutions from
the trivial solution. Solid (dashed) line indicates stable (unstable)
solutions

change of variable and eliminating the frequency mr

(which is the small correction of the elastic frequency).
Therefore, periodic solutions of Eq. (19) are actually
solutions with two frequencies in the original system
(3).

The change in stability of single TW solutions
occurred through a HB, so we apply numerical con-
tinuation to track the branches that emerge from these
points. The results show that a stable state only emerges
fromTW4.From theother singleTWsolutions, the new
branch was always unstable.

The new solutions are represented in Fig. 9. Here,
from the single TW with wavenumber 4 a multi-TW
solution appears from the HB point. This multi-TW
solution is stable for a very narrow range of values
of the bifurcation parameter (ξa1 ∼ 0.5 − 0.515), but
its TW components grow to a considerable amplitude
(see the inset in Fig. 9where the TWmodeswith largest
amplitudes are represented). As one continues decreas-
ing the bifurcation parameter, a Torus Bifurcation (TB)
occurs and the multi-TW solution loses stability. In
addition, the new frequency associated with this multi-
TW branch is represented in Fig. 10. This frequency
grows along the multi-TW branch and coexist with the
single TW frequency m4.

The TW content of the stable multi-TW solution
found is illustrated in Fig. 11 for different values of the
bifurcation parameter ξa1 . As the bifurcation parameter
moves closer to the end of their stability region, there
is more modal content of different TWs, except for the

Fig. 9 Bifurcation diagram for the TW with wavenumber 4.
Solid (dashed) line indicates stable (unstable) solutions

Fig. 10 Multi-TW frequency branch. Solid (dashed) line indi-
cates stable (unstable) solutions

TWwith wavenumber 4, which corresponds to the sin-
gle TW solution fromwhich this newmulti-TWbranch
emerged.

Numerical time integration of system (3) has also
been performed in order to check the results of the
numerical continuation. The time evolution of the dif-
ferent TW components of the solution is presented in
Fig. 12 for ξa1 = 0.502, showing the convergence of
the system to amulti-TW state. The initial condition for
this simulation is the single TW4 solution plus a small
perturbation of 0.01 to every TW mode. Nevertheless,
for this value of the aerodynamic damping there are 4
stable single TW LCOs that coexist with the multi-TW
solution, so for different initial conditions the final state
can be a single TW. Also, notice that, in contrast to the
casewhere the final statewas a single TWsolution (Fig.
6), the required time integration formulti-TWsolutions
is now roughly an order of magnitude larger.

Finally, the displacements of the blades |X j | of the
new multi-TW solution for ξa1 = 0.502 are plotted
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Fig. 11 TW content of the multi-TW solution for different val-
ues of the aerodynamic damping

Fig. 12 Time evolution of the system to a multi-TW solution.
The system evolves from the single TW4 solution plus a 0.01
perturbation to every TW component

in Fig. 13. The multi-TW solution takes the form of a
travelingwavewith non-uniform amplitude that rotates
around the bladed-disk. The solution represented in this
figure is actually the envelope of the fast elastic oscil-
lation (which was filtered in the asymptotic model) of
blade j . The period of this envelope (roughly ∼ 300)
is the one associated with the new frequency present in
the multi-TW solution (see Fig. 10).

Despite the complexity of the multi-TW solutions
that are obtained in this work, the maximum blade dis-
placement that they produce is always smaller than that
associated with the single TW solution with highest
amplitude (corresponding to the most aerodynamically
unstable wavenumber 6). As presented in Table 1, the
maximum blade displacement of the TW solution is
17% higher than that of the multi-TW solution. There-

Fig. 13 Multi-TW solution: blade displacements

Table 1 Comparison of the maximum blade displacements

Multi-TW TW6 Relative difference

0.224 0.269 17%

fore, from the point of view of the calculation of the
fatigue of the blades, it seems that it is conservative to
consider only the highest amplitude TW solution.

In order to have a wider range of existence of sta-
ble multi-TW solutions, we have explored a num-
ber of modifications of the parameters in system (3):
(i) increase/reduce the spread of the elastic frequen-
cies (Fig. 2), (ii) increase/reduce the values aerody-
namic frequency correction (top plot in Fig. 5), and
(iii) change the aerodamping (bottom plot in Fig. 5) to
have more/less unstable modes with similar aerodamp-
ing values.

Modifications (i) and (ii) changed the stability
regions of single TW solutions. Decreasing the fre-
quency correction of both the structure and the aero-
dynamic matrix enlarged the single TW instability
regions. However, by doubling the frequency terms, the
stability region of TW solutions grew with respect to
the case shown in Fig. 8. Nevertheless, after performing
numerical continuation it was found that there were no
stable multi-TW states in neither of these cases. The
changes in aerodynamic damping characteristics are
represented in Fig. 14. The baseline configuration is
the one already used throughout this paper. Two new
configurations are explored: (a)Wide, where the damp-
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Fig. 14 Aerodynamic damping modifications

Fig. 15 Bifurcation diagram for theTWsolutionwithwavenum-
ber 2 (Wide case). Solid (dashed) line indicates stable (unstable)
solutions

ing coefficients of the unstable region are more similar,
and (b) Peak, with more variation in the unstable aero-
dynamic dampings.

It was found that the onlymodification that ended up
producing more stable multi-TW solutions was the one
that made the unstable aerodynamic damping values
more similar (Wide in Fig. 14).

For theWide case, the multi-TW solution bifurcates
from theTWsolutionwithwavenumber 2 through aHB
andconnects againwith the samebranch at a secondHB
point (Fig. 15). With respect to the baseline case, this
new solution is now stable for a much larger interval of
values of the bifurcation parameter ξa1 . Furthermore,
as before, the maximum displacement of the blades
produced by the multi-TW solution remains below that
of the single TW solution with highest amplitude (see
Table 2), even though their difference is now much
smaller.

Table 2 Comparison of the maximum blade displacements

Multi-TW TW6 Relative difference

0.4 0.411 2.7%

6 Conclusions

Multi-TW stable states are found in a simplified model
of a bladed-disk with microslip friction at the bladed-
disk attachment. The model describes the vibration
of a nearly flat modal family with several aerody-
namically unstable modes and is derived through the
application of a multiple scales method that allows
to filter out the fast elastic blade oscillation. Numer-
ical continuation techniques are applied to follow the
branches of newmulti-TWsolutions that bifurcate from
single TW solutions at the stability change. Previous
works reported only single TWfinal states, which were
obtained through direct time integrations of the model.
The continuation method directly computes the final
states and their stability, avoiding the need of perform-
ing very long time integrations to reach a converged
final state.

The following final remarks summarize the main
results of this work:

1. The stability analysis of the zero solution (no blade
vibration) indicates that nonlinear friction only pro-
duces a frequency shift in the aeroelastic modes.

2. Single TW solutions bifurcate from the trivial solu-
tion as the flutter intensity is increased. The sta-
bility analysis of these solutions shows that there
is a long time scale associated with the difference
between the aerodynamic damping values of unsta-
ble modes, which is responsible for the very slow
selection of the final state. This long time scale had
been detected in time integrations presented in pre-
vious works [4,9,10].

3. There is always a stable single TW solution, which
corresponds to themost unstable aerodynamicmode
and has the largest amplitude of all single TW solu-
tions. The adjacent TW solutions are first unstable,
and they can become stable as the intensity of flutter
is increased. There may be several stable single TW
limit cycles for the same parameter values.

4. At the point of stability change of single TW
solutions, new multi-TW solutions appear. Multi-
TW solutions have two different frequencies, with
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non-uniform blade vibration amplitude, and rotate
around the bladed-disk. The range of stability of
these multi-TW solutions is seen to be related to the
presence of unstable aeroelastic modes with sim-
ilar aerodynamic damping values. The closer the
unstable aerodynamicdampingvalues, the larger the
region of stability of the multi-TW solutions.

5. Multi-TW solutions give rise to blade vibration
amplitudes that are always below that of the single
TW solution. Therefore, from the point of view of
blade fatigue calculation, it seems that it is conser-
vative to consider only the highest amplitude single
TW solution.
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