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Abstract This paper investigates the unlocking of a
non-conventional nose landing gear mechanism that
uses a single lock to fix the landing gear in both its
downlocked and uplocked states (as opposed to hav-
ing two separate locks as in most present nose land-
ing gears in operation today). More specifically, we
present a bifurcation analysis of a parameterized math-
ematical model for this mechanical system that fea-
tures elastic constraints and takes into account internal
and external forces. This formulation makes it possi-
ble to employ numerical continuation techniques to
determine the robustness of the proposed unlocking
strategy with respect to changing aircraft attitude. In
this way, we identify as a function of several parame-
ters the steady-state solutions of the system, as well as
their bifurcations: fold bifurcations where two steady
states coalesce, cusp points on curves of fold bifur-
cations, and a swallowtail bifurcation that generates
two cusp points. Our results are presented as surfaces
of steady states, joined by curves of fold bifurcations,
over the plane of retraction actuator force and unlock
actuator force, where we consider four scenarios of the
aircraft: level flight; steep climb; steep descent; inter-
mediate descent. A crucial cusp point is found to exist
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irrespective of aircraft attitude: it corresponds to the
mechanism being at overcentre, which is a position
that creates a mechanical singularity with respect to
the effect of forces applied by the actuators. Further-
more, two cusps on a key fold locus are unfolded in a
(codimension-three) swallowtail bifurcation as the air-
craft attitude is changed: physical factors that create
these bifurcations are presented. A practical outcome
of this research is the realization that the design of this
and other types of landing gear mechanism should be
undertaken by considering the effects of forces over
considerable ranges, with a special focus on the over-
centre position, to ensure a smooth retraction occurs.
More generally, continuation methods are shown to
be a valuable tool for determining the overall geomet-
ric structure of steady states of mechanisms subject to
(external) forces.

Keywords Numerical continuation · Bifurcation
theory · Swallowtail bifurcation · Aerospace

Mathematics Subject Classification 70G60 ·
70K50 · 34C60 · 34C60

1 Introduction

Landing gears on aircraft are designed to absorb ground
loads during landing and taxiing. They have evolved
over time from fixed external structures into mecha-
nisms that are retracted when an aircraft becomes air-
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borne. In order to transform from a mechanism to a
structure, a modern retractable landing gear requires
locking mechanisms to fix (or lock) its position in one
of two states: when the aircraft is in contact with the
ground, the landing gear needs to be fixed in its fully
deployed position, or be downlocked; when the aircraft
is flying, the landing gear needs to be fixed in its fully
retracted position, or be uplocked. The design of amod-
ern landing gear therefore requires consideration of its
motion as a mechanism.

Traditional literature on landing gear mechanism
analysis [1–4] considers the kinematics of a landing
gear, with the aim of ensuring that retraction is achiev-
able from a geometric perspective. Once initial ana-
lytical work has been conducted, landing gear design-
ers in industry perform time history simulations with
dynamic models of landing gear mechanisms. These
models are created by using multibody dynamic simu-
lation software, such as ADAMS [5] or SimMechanics
[6], and incorporate further details of a landing gear’s
design. Such an approach is also widely adopted in
academic literature on landing gear analysis [7–9]. For
engineers in industry, the advantage of usingmultibody
simulation for landing gearmechanism design/analysis
is that the dynamic models are straightforward to con-
struct, and the respective software package can be used
for multiple applications beyond mechanism analysis.

Although time history simulations are useful for
investigating transient dynamic behaviour, it can be
time-consuming to investigate the variation of long-
term dynamics throughout a parameter space, due
to the need for long simulations to be repeated for
many different parameter values. Furthermore, crucial
points that govern dynamic behaviour (such as bifur-
cations or unstable equilibria) are difficult to identify
in this way. Moreover, while kinematic and simula-
tion approaches are still used in current landing gear
mechanism research [10,11], increasing complexities
associated with modern landing gear mechanisms have
pushed researchers to explore different approaches for
performing landing gear mechanism analysis—with
a view to identifying methods that could be adopted
within industrial design and analysis practices.

One approach to overcome these difficulties, from
the field of dynamical systems theory, is numerical
continuation. This techniques allows one to compute
branches of different types of dynamic features, includ-
ing equilibria, periodic orbits and their bifurcations
under the simultaneous variation of one ormore param-

eters. This is achieved, for suitably formulated models
such as systems of differential equations, by setting
up root finding problems whose solution branches are
then solved, as a function of a continuation parame-
ter, by combining prediction of nearby solutions with
Newton-Raphson iterations. In particular, this allows
one to find steady-state solutions as zeros of the gov-
erning system. Approaches with the latter capability,
such as polynomial continuation, have been used as
mechanism kinematic analysis methods formany years
[12–14]. However, numerical continuationmethods are
able to additionally determine dynamic stability infor-
mation and detect bifurcations. Bifurcation detection is
achieved by checking bifurcation conditions, which for
steady states either encode changes of stability (eigen-
values of the Jacobian matrix with zero real parts) or
changes of certain higher-order terms. Appending such
additional conditions to the original system of equa-
tions gives an extended root finding problem, whose
solution branches trace the locus of the respective bifur-
cation points when an additional parameter is allowed
to vary. The interested reader may refer to a variety of
different texts [15–18] for further background informa-
tion on bifurcation theory and numerical continuation
methods.

These techniques have been implemented and are
available as software packages, such as the numerical
continuation codeAUTO[19], andhavebeen employed
successfully in a variety of engineering disciplines,
including a range of aerospace applications [20–24].
The more recent integration of numerical continuation
software with SimMechanics [25] has made these tools
more accessible to industrial engineers. This culmi-
nated in their adoption by Airbus as an analysis tool
[26], with the specific suggestion that they be adopted
for landing gear mechanism design and analysis.

Numerical continuation methods have to date been
used to analyse conventional landing gear mechanisms
[27–30] as well as some non-conventional ones with
multiple sidestays [31,32] or single lock mechanisms
[33,34]. In all cases, ensuring that the landing gear can
be locked is critical to demonstrate its functionality—
yet difficulties have been identified with both multiple
side stay and single lockmechanisms. Current research
has identified that fold bifurcations of steady states
play an important role in separating these locked and
unlocked positions [32,33]. Some of these key bifurca-
tions persist under parameter changes or variations in
external loading conditions, whilst others do not [34].
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Given the influence that these bifurcations can have
on a landing gear mechanism’s operation, it is impor-
tant for engineers to understand the physical interpre-
tation of these types of bifurcations of steady states,
and the conditions under which they persist. Without
such knowledge, engineers risk designing landing gear
mechanisms that may not function as expected under
certain conditions, potentially leading to operational
failures.

This paper presents an in-depth study of the unlock-
ing process for a non-conventional landing gear mech-
anism: conventional landing gear designs use two dif-
ferent mechanisms to downlock and uplock the land-
ing gear; the landing gear mechanism considered in
this work uses a single mechanism to both down-
lock and uplock the nose landing gear. Such a mecha-
nism offers weight savings over conventional designs,
because there is no need for a separate uplock mech-
anism and actuator. The trade-off is that the process
of unlocking the landing gear from uplock becomes
more complicated, as the unlock and retraction actu-
ator forces can work against each other. This nega-
tive coupling can be avoided by using a force mea-
sure, rather than the conventional proximity sensor, to
define when the landing gear is unlocked from uplock
[33]. Recent work [34] has shown that the use of a
forcemeasure prevents the unlock and retraction forces
from working against each other, even under varying
external (steady) load conditions; however, this does
not explain the physical reasoning behind this obser-
vation. The bifurcation study presented here aims to
investigate the unlocking from uplock of a single lock
landing gear, to explain when and why this process is
robust to changes in aircraft attitudes. Such changes in
aircraft attitude may arise intentionally (due to the air-
craft climbing or descending) or as a transient response
to gusts or turbulence.

The paper is organised as follows. Section 2 presents
some background on nose landing gear mechanisms,
introduces the model equations for the specific landing
gear mechanism under consideration, and provides a
discussion of the motion of the landing gear. Section 3
then presents the in-depth analysis of the effects of air-
craft attitude on the unlocking process. The final Sect. 4
provides some concluding remarks.

(a) (b) (c)

Fig. 1 Example nose landing gear mechanisms, shown a down-
locked, b retracting/extending and c in the uplocked position

2 Background and model equations

A retractable nose landing gear of an aircraft conven-
tionally uses planar mechanisms to operate, often as a
4-bar linkage mechanism with some constraints on the
motion.While there are a range of differences in config-
urations, all nose landing gearswill feature: amain strut
to transfer vertical loads into the fuselage; some sup-
porting elements to resist forces thatmay cause bending
on the main structure; a means to lock the landing gear;
sources of actuation to move the landing gear and dis-
engage locks. A landing gear mechanism’s operation
can be classified into three distinct phases: unlocking;
extension/retraction; locking. The process of locking
and unlocking the landing gear turns it from a struc-
ture into a mechanism, so that it may be extended or
retracted.

Figure 1 shows a schematic example of a land-
ing gear mechanism in three positions: (a)—deployed
and downlocked; (b)—moving between locked states;
(c)—retracted and uplocked. The main strut, which is
near vertical in the deployed position, is held in place
by an overcentremechanism, consisting of two sidestay
links, which are in turn kept in the overcentre posi-
tion by two lock links; the latter rest against physical
stops (not shown) that limit their motion in one direc-
tion. When deployed, the vertical load on the landing
gear transfers through the sidestays and pushes these
stops together, keeping the lock engaged. To retract the
landing gear, an unlock actuator is used to move the
locklinks directly, unlocking the mechanism by over-
coming an energy barrier. A larger retraction actuator is
then able to retract the landing gear into the fuselage by
rotating it around the rotational joint of the main strut.
Once the landing gear has been retracted such that it is
entirely stowed in the fuselage, it is clamped in posi-
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(a)

(b)

Fig. 2 Downlocked landing gear: a joint naming convention;
b exploded view showing gravitational and internal mechanism
forces

tionwith a dedicated uplockmechanism. Thesemecha-
nisms are typically latches that catch part of the landing
gear structure, engaging automatically once the land-
ing gear strut reaches its uplocked position. To deploy
the landing gear, the uplock mechanism needs to be
disengaged: this requires a specific uplock actuator to
release the uplock. Conventional landing gears, such as
the one shown in Fig. 1, therefore require three actu-
ators, which each add weight and complexity to the
landing gear system.

With appropriate design, it is possible to create a
landing gear mechanism that can use the same locking
mechanism to both uplock and downlock the landing
gear. The landing gear of this type that is the subject of
this paper is shown in Fig. 2a in the deployed position,
while Fig. 3 shows it in its uplockedposition. In contrast
to the design in Fig. 1, the locklinks now connect to
the main strut, rather than to their own support on the
fuselage.

2.1 Mathematical model

The mathematical model of the landing gear in this
study is formulated by considering the forces that act
on each element of the mechanism shown in Figs. 2
and 3. The links are assumed to be rigid bodies,
described in terms of their location and orientation

Fig. 3 Uplocked landing gear showing spring placement, unlock
force and retraction moment; here L1 is the shock strut, L2 and
L3 are the sidestay links, and L4 and L5 are the locklinks

with respect to a global co-ordinate system, and con-
nected to one another by planar rotational joints. Previ-
ous work on landing gear mechanisms formulated the
model as a set of algebraic equations to describe the
mechanism’s equilibrium position in response to exter-
nally applied forces [27,29,30,32]. Coetzee developed
an approach that enables numerical continuation to
be applied directly to mechanism models created in
multibody dynamics software packages—akey enabler
for their uptake within engineering industrial practice.
Here, a mechanism’s rotational joints are replaced with
equivalent elastic joints (bushes), which transforms
an inelastically constrained system (described math-
ematically by index-3 differential algebraic equations
(DAEs) that standard numerical continuation methods
cannot handle) into a system with constraints that can
‘flex’ (described mathematically by ordinary differen-
tial equations (ODEs) that are amenable to numerical
continuation methods). The key is that the mechanism
is not rigid but can ‘flex’ a bit, so that it is described by
systems of differential equations with energy barriers.
For a landing gear model developed by Coetzee, the
error introduced by ‘freeing up’ inelastic constraints
in this manner was shown to have a minimal quanti-
tative effect [34]. More generally, models with some
flexibility may even provide results that are closer to
a real-life system, as the landing gear mechanism also
has finite-stiffness joints.

In this spirit, all of the landing gear’s links are
joined to each other in the mathematical model by flex-
ible rotational joints, or bushes [34]. The equations of
motion are derived by following a similar approach
to that used to formulate the algebraic steady-state
equations in earlier works on landing gear mechanism
analysis [27,28,31,33]: each individual link within the
mechanism is considered in isolation from the rest
of the mechanism, and three resulting equations are
formed by balancing forces and moments for the link.
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Internal joint forces are applied at the points on the link
where it joins to the rest of the mechanism—typically
the end points.

To formulate the model, links are defined in the co-
ordinate system indicated in Fig. 2a; all internal forces
are indicated in Fig. 2b, where the directions and rel-
ative magnitudes of the forces are for illustrative pur-
poses only. In addition to the gravitational and internal
forces shown in Fig. 2, there are three ‘external’ forces:
an unlock actuator force (Ful ); a downlock spring force
(Fsp); a retraction actuator force (Fret ). For generality,
the retraction actuator force in this model is applied to
act with a constant moment arm ( L1

2 ) to create a retrac-

tion moment, Mret = Fret
L1
2 . The positions of the

external forces andmoment are shown for the uplocked
landing gear in Fig. 3, with the spring element high-
lighting the spring force’s line of action. For thismodel,
the unlock actuator acts in the same direction as the
downlock spring. Note that Fig. 3 also introduces the
naming convention for the five links of the model.

Including these forces, the equations of motion are
derived using a sign conventionwith positive directions
as indicated in Fig. 2a. Moments are taken about each
link’s centre of gravity. This process provides 15 equa-
tions to describe the motion of the mechanism (as in
[34]), which are given per link by equations (1)–(5):

m1 ẍ1 =RD
x − RC

x − RH
x + m6gx

− Fret
L1

2
sin θ1 − Fspx + Fulx + m1gx ;

m1 ÿ1 =RD
y − RC

y − RH
y − m6gy

+ Fret
L1

2
cos θ1 − Fspy + Fuly − m1gy;

I1θ̈1 = L1

2
cos θ1(R

D
y − m6gy) − L1

2
sin θ1(R

D
x − m6gx )

− (Hx − x1)R
H
y + (Hy − y1)R

H
x − (Cx − x1)R

C
y

+ (Cy − y1)R
C
x . (1)

m2 ẍ2 =RB
x − RA

x + m2gx ;
m2 ÿ2 =RB

y − RA
y − m2gy;

I2θ̈2 = L2

2
cos θ2(R

B
y + RA

y ) − L2

2
sin θ2(R

B
x + RA

x ). (2)

m3 ẍ3 =RC
x − RB

x + RBb
x + m3gx ;

m3 ÿ3 =RC
y − RB

y + RBb
y − m3gy;

I3θ̈3 = L3

2
cos θ3(R

C
y + RB

y − RBb
y )

− L3

2
sin θ3(R

C
x + RB

x − RBb
x ). (3)

m4 ẍ4 =RE
x − RBb

x + m4gx ;
m4 ÿ4 =RE

y − RBb
y − m4gy;

I4θ̈4 = L4

2
cos θ4(R

E
y + RBb

y ) − L4

2
sin θ4(R

E
x + RBb

x ).

(4)

m5 ẍ5 =RH
x − RE

x + Fspx − Fulx + m5gx ;
m5 ÿ5 =RH

y − RE
y + Fspy − Fuly − m5gy;

I5θ̈5 = L5

2
cos θ5(R

H
y + RE

y ) − L5

2
sin θ5(R

H
x + RE

x ). (5)

Quantities in Eqs. (1)–(5) can be identified with ref-
erence to Figs. 2 and 3, noting the convention that (e.g.)
RA
x is the component of vector RA that acts in the

global co-ordinate x direction, and x1 and y1 are the
CG co-ordinates for linkL1. The exception is the force
between links L3 and L4, denoted as RBb. The terms
Hx , Hy , Cx and Cy are the x and y co-ordinates of
joints C and H.

The equation for the spring force terms Fspx and
Fspy is given in [34]:

Fspx =ksp(x1 − x5)

(
1 − lus

ltot

)

+ csp

(
(ẋ1 − ẋ5)

(
1 − lus

ltot

)

+ (x1 − x5)

l2tot
((x1 − x5)(ẋ1 − ẋ5)

+(y1 − y5)(ẏ1 − ẏ5))) ;
Fspy =ksp(y1 − y5)

(
1 − lus

ltot

)

+ csp

(
(ẏ1 − ẏ5))

(
1 − lus

ltot

)

+ (y1 − y5)

l2tot
((x1 − x5)(ẋ1 − ẋ5)

+(y1 − y5)(ẏ1 − ẏ5))) ,

(6)

where lus is the unsprung spring length and the total
spring length, ltot = √

(x1 − x5)2 + (y1 − y5)2.
The internal joint forces, for simplicity, are given as

[34]:

RA = kA
[
x2 − L2

2 cos θ2 − Ax

y2 − L2
2 sin θ2 − Ay

]

+ cA
[
ẋ2 + L2

2 θ̇2 sin θ2

ẏ2 − L2
2 θ̇2 cos θ2

]
;
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RB = kB
[

(x3 − L3
2 cos θ3) − (x2 + L2

2 cos θ2)

(y3 − L3
2 sin θ3) − (y2 + L2

2 sin θ2)

]

+ cB
[

(ẋ3 + L3
2 θ̇3 sin θ3) − (ẋ2 − L2

2 θ̇2 sin θ2)

(ẏ3 − L3
2 θ̇3 cos θ3) − (ẏ2 + L2

2 θ̇2 cos θ2)

]
;

RBb = kBb
[

(x4 − L4
2 cos θ4) − (x3 − L3

2 cos θ3)

(y4 − L4
2 sin θ4) − (y3 − L3

sin θ3)

]

+ cBb
[

(ẋ4 + L4
2 θ̇4 sin θ4) − (ẋ3 + L3

2 θ̇3 sin θ3)

(ẏ4 − L4
2 θ̇4 cos θ4) − (ẏ3 − L3

2 θ̇3 cos θ3)

]
;

RC = kC
[
Cx − (x3 + L3

2 cos θ3)

Cy − (y3 + L3
2 sin θ3)

]
;

RD = kD
[
Dx − (x1 + L1

2 cos θ1)

Dy − (y2 + L1
2 sin θ1)

]

− cD
[
ẋ1 − L1

2 θ̇1 sin θ1

ẏ1 + L1
2 θ̇1 cos θ1

]
;

RE = kE
[

(x5 − L5
2 cos θ5) − (x4 + L4

2 cos θ4)

(y5 − L5
2 sin θ5) − (y4 + L4

2 sin θ4)

]

+ cE
[

(ẋ5 + L5
2 θ̇5 sin θ5) − (ẋ4 − L4

2 θ̇4 sin θ4)

(ẏ5 − L5
2 θ̇5 cos θ5) − (ẏ4 + L4

2 θ̇4 cos θ4)

]
;

RH = kH
[
Hx − (x5 + L5

2 cos θ5);
Hy − (y5 + L5

2 sin θ5)

]
. (7)

The k terms are the joint stiffness values; the c terms
are the joint damping values. Previous work identi-
fied that the steady-state behaviour of the landing gear
mechanism is insensitive to joint damping forces, pro-
vided the system has some damping [34]. Damping
forces were therefore not included for RC and RH to
keep the implementation of the equations of motion as
simple as possible.

Table 1 presents the numerical values for the model
parameters used in this study, as well as the initial con-
ditions (state values) used to initiate the numerical con-
tinuation runs.

2.2 Landing gear mechanism motion

Although this paper focuses on the process by which
the landing gear is unlocked from its uplocked state,
this section introduces the motion of the landing gear
throughout its operation to contextualise the subse-
quent analysis. Figure 4 provides some example land-
ing gear positions that are achievable for the land-
ing gear mechanism that is the subject of this cur-
rent study. Panels (a1)–(a3) show the landing gear in
‘above-overcentre’ positions; panels (b1)–(b3) show
the landing gear in ‘below-overcentre’ positions. Panel

(c) shows the landing gear’s motion in terms of two
states: θ4 is the angle that link L4 makes with the hor-
izontal axis; θov is the overcentre angle, defined as the
difference in orientation between the two locklinks.
The landing gear is said to be at overcentre when the
overcentre angle is zero; this occurs at the two extreme
points of the retraction cycle, when the landing gear
is fully deployed (dot-dash line OvD , panel (c)) or
fully retraced (dot-dash lineOvU , panel (c)). The labels
(a1)–(b3) in panel (c) correspond to landing gear posi-
tions depicted in panels (a1)–(b3).

In an actual landing gear, locking is achieved with
physical stops that limit the below-overcentremotion of
the landing gear’s locklinks, such that the landing gear
cannot move beyond the positions shown in Fig. 4b1
(downlocked) or Fig. 4b3 (uplocked). While the anal-
ysis of the overall mechanism is able to cover the full
motion of a landing gear mechanism, locklink stops
would therefore constrain the landing gear’s motion,
specifically, preventing it from reaching the dark grey
lower section of the curve in Fig. 4c. The case shown in
panel (b2) would therefore be unachievable for a real
landing gear mechanism.

To achieve the motion described in Fig. 4, only two
actuators are required for the landing gear to move:
the retraction actuator, and a single unlock actuator.
Figure 5 provides a graphical representation of how the
retraction and unlock actuator forces may be scheduled
to achieve a successful retraction. The first stage of
retraction uses the unlock actuator force (dashed line,
Fig. 5) to move the locklinks from below-overcentre
(θov < 0) to above-overcentre (θov > 0): a motion of
(b1) to (a1) in Fig. 4 will occur. Once the locklinks
are raised, the retraction actuator force is increased to
retract the landing gear: a motion of (a1) to (a3) will
occur. When in position (a3), the landing gear is fully
retracted but the lock links are unlocked, so to uplock
the gear the unlock actuator force is reduced to zero: a
motion of (a3) to (b3) will occur, driven by the force
provided by the lock spring. At the end of this process,
the landing gear will be in position (b3)—the retraction
actuator force is then reduced, and the mechanism is
fixed in position (b3) by the lock link stops.

Deploying the landing gear requires the reverse
motion to be actuated; however, a challenge arises
regarding the scheduling of actuator forces when
attempting to unlock from uplock. Unlike unlocking
from downlock, when unlocking from position (b3)
the retraction actuator has to support the weight of the
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Table 1 Landing gear parameters/initial state variables

Model parameters Model parameters/initial states
Name Description Value Name Description Value

L1 Shock strut length 2.9 m θ1 Shock strut orientation 1.35 (rad)

L2 Upper sidestay length 1.6 m θ2 Upper sidestay orientation −0.96 (rad)

L3 Lower sidestay length 0.8 m θ3 Lower sidestay orientation −1.66 (rad)

L4 Left locklink length 0.4 m θ4 Left locklink orientation 0.63 (rad)

L5 Right locklink length 0.4 m θ5 Right locklink orientation −1.04 (rad)

m1 Shock strut mass 120 kg x1 Shock strut c/g x position −0.32

m2 Upper sidestay mass 10 kg x2 Upper sidestay c/g x position −0.92

m3 Lower sidestay mass 5 kg x3 Lower sidestay c/g x position −0.54

m4 Left locklink mass 1 kg x4 Left locklink c/g x position −0.29

m5 Right locklink mass 1 kg x5 Right locklink c/g x position 0

csp Lock spring damping 50 Ns/m y1 Shock strut c/g y position −1.4

ksp Lock spring stiffness 100 N/m y2 Upper sidestay c/g y position 0.61

lus Unsprung spring length 1 m y3 Lower sidestay c/g y position −0.46

kA Joint A stiffness 1 ×106 N/m y4 Left locklink c/g y position 0.09

kB Joint B stiffness (sidestay) 1 ×106 N/m y5 Right locklink c/g y position 0.03

kBb Joint B stiffness (locklink) 1 ×106 N/m Fret Retraction force 375 N

kC Joint C stiffness 1 ×106 N/m I1 Shock strut inertia 84 kgm2

kD Joint D stiffness 1 ×106 N/m I2 Upper sidestay inertia 2.1 kgm2

kE Joint E stiffness 1 ×106 N/m I3 Lower sidestay inertia 0.27 kgm2

kH Joint H stiffness 1 ×106 N/m I4 Left locklink inertia 0.013 kgm2

cA Joint A damping 1 ×108 Ns/m I5 Right locklink inertia 0.013 kgm2

cB Joint B damping (sidestay) 1 ×108 Ns/m cD Joint D damping 1 ×108 Ns/m

cBb Joint B damping (locklink) 1 ×108 Ns/m cE Joint E damping 1 ×108 Ns/m

landing gear before the unlock actuator can disengage
the locklinks. If not enough retraction actuator force
is applied, or if too much retraction actuator force is
applied, the unlock actuator will need to provide more
force than necessary in order to move the landing gear
from position (b3) to (a3). It is this portion of the exten-
sion process that will be the focus for the following
analysis, which builds on previous work [33,34] by
considering four distinct flight load cases analogous
to: straight and level flight; steep climb; steep descent;
moderate descent.

3 Variations in retraction surface to changes in
aircraft attitude

In this section, the process of unlocking the landing
gear from uplock (to begin deployment) is studied to
determine how changes in the landing gear’s load angle

affect the underlying equilibrium structure. Although
pilots typically attempt to maintain a reasonably con-
stant attitude when deploying the landing gear, the air-
craft will be susceptible to changes in loading caused
by gusts of wind. Such gusts may create instantaneous
changes in aircraft attitude and loading. While these
disturbances are intrinsically transient, their influence
on landing gear unlocking behaviour can be considered
by changing the direction in which the external accel-
erations act on the gear mechanism. In a steady state,
such changes in direction of external accelerations are
analogous to considering the aircraft in a steady climb
or descent.

The following subsections therefore consider four
distinct flight cases: straight and level flight; a climb; a
steep descent; a moderate descent. The case of straight
and level flight has been considered in previous work
[34]. It is included here because it provides the neces-
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Fig. 4 Example landing gear positions. The mechanism’s
motion is observed by moving clockwise or anti-clockwise
around panel (c)

Fig. 5 Anexample landing gear actuator schedule. The solid line
indicates the retraction actuator force; the dashed line indicates
the unlock actuator force; vertical dash-dot lines indicate landing
gear positions in Fig. 4

sary context and starting point for the study presented
here; moreover, we present an additional discussion
of the physical reasoning behind the existence of key
bifurcations, including those for level flight.

For each case of aircraft attitude, we compute the
branches of steady states of Eqs. (1)–(5) with the actu-
ator force Fret as the continuation parameter, while
all other parameters remain fixed; see Table 1. This is
achieved, after expressing Eqs. (1)–(5) as a system of
first-order ODEs, with the numerical continuation code
AUTO [19] as integrated into the MATLAB Dynami-
cal Systems Toolbox [25]. We use the standard AUTO
accuracy settings [19], which ensure that equilibria are
computed with an accuracy of 10−6, while bifurcation
points are detected with a maximal error of less than
10−3. Throughout, the computed steady states are rep-
resented by the angle θ4 between the two locklinks; see
Fig. 4. Repeating such continuations for sufficiently
closely spaced fixed values of the unlocking actua-
tor force Ful allows us to render the steady states as
surfaces in the three-dimensional (Fret , Ful , θ4)-space,
which is done withMATLAB. During the continuation
of branches of steady states AUTO detects fold bifur-
cations (with respect to Fret ) as saddle-node bifurca-
tions, where the steady state has a real eigenvalue 0,
that is, there is a change of stability. AUTO is able
to then continue the fold in two paramters as curves in
(Fret , Ful , θ4)-space;moreover, this package computes
the scalar normal form on the (one-dimensional) cen-
tre manifold of the fold/saddle-node bifurcation, which
allows one to detect cusp bifurcation points as points
where the second-derivative of the normal form van-
ishes. When the third derivative of this normal form is
also zero, which is a point of codimension three that
may be encountered when an additional parameter—
the attitude of the aircraft in our case—is changed,
then there is a swallowtail bifurcation; see, for exam-
ple, [16,17,35] for details on the cusp and swallow-tail
bifurcations. As will be shown, in the (Fret , Ful , θ4)-
space for fixed aircraft attitude, the swallowtail bifurca-
tion manifests itself as the emergence or disappearance
of a pair of cusp points on a curve of fold bifurcations.

3.1 Landing gear unlocking: straight and level flight

As our starting point, Fig. 6 shows a surface of equilib-
ria for the NLGmechanism under purely vertical load-
ing conditions, representative of an aircraft in undis-
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(c)(b)(a)

(d)

Fig. 6 Bifurcation diagram of landing gear unlocking for an air-
craft in straight and level flight; shown are: equilibria in the plane
of angle θ4 versus the actuator force Fret for unlock actuator force

a Ful = 0 N and b Ful = 50 N; c two-parameter continuation of
fold points in the (Fret , Ful )-plane; d surface of equilibria and
their bifurcations in (Fret , Ful , θ4)-space

turbed straight and level flight. Panel (a) shows the
equilibrium structure for Ful = 0 N; panel (b) shows
the equilibrium structure for Ful = 50 N. Note that the
landing gear mass values have been scaled down from
typical values, and that retraction actuator forces below
500Nare not considered in order to separate bifurcation
structures associated with downlock from this analy-
sis (as much as possible). In both panels (a) and (b),
light grey curves correspond to what will be referred to
herein as ‘above-overcentre’ solutions, and dark grey
curves show ‘below-overcentre’ solutions. Here and in
all subsequent figures, dashed curves indicate unsta-
ble equilibria, with solid curves used to denote stable
equilibria. Points of fold bifurcation are represented by
black circles. Black dots labelled (a2), (a3), (b2) and
(b3) refer to their respective landing gear positions in
Fig. 4. Panel (c) shows the fold curves in isolation,
in the actuator forces’ plane: the star representing C∗

is coloured blue; all other cusp points are highlighted
in red. The surface in panel (d) contains three loci of
fold bifurcations, indicated by the solid black curves,
which separate regions of stable (blue) and unstable
(red) equilibria. Circles on the fold curves correspond
to cusp bifurcations, with a star representing the crucial
cusp point, C∗.

The process of unlocking a nose landing gear from
uplock in straight and level flight is known to require
a fold point to transition between the below-overcentre
and above-overcentre curves [33]. For the current study,
fold point FP2 provides this transition. With reference
to Fig. 6a, the uplocked landing gear (i.e. one where
the locklinks are below-overcentre) rests on the below-
overcentre curve (at point (b3)). Unlocking the land-
ing gear therefore requires forces to move the mecha-
nism from point (b3) on the the below-overcentre curve
(Fig. 6a) to point (a3) on the above-overcentre curve
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(Fig. 6b). When the unlock actuator force Ful = 0
N, point (a3) cannot be reached with the retraction
actuator alone. A qualitative change in the equilibria
occurs as the unlock actuator force is increased, which
enables the landing gearmechanism to be unlocked: the
resulting equilibrium structure, once the unlock actua-
tor force is increased to 50 N, is shown in Fig. 6b. It can
be seen that unlike the case in panel (a), increasing the
retraction actuator force can cause the NLG to tran-
sition from the below-overcentre curve [e.g. landing
gear at point (b2)] to the above-overcentre curve (point
(a3)). This transition through overcentre corresponds
to the gear being unlocked from the stowed position.
Once this transition has occurred, the landing gear can
be extended by reducing the retraction actuator force.
This extension process is represented by a movement
along the above-overcentre curve, from point (a3) to
point (a2) and beyond.

The surface in Fig. 6d provides a graphical repre-
sentation of how the transition in equilibrium struc-
ture occurs as a function of the unlock force Ful . At
the critical cusp point, C∗, the system shows a trans-
critical bifurcation in the (θ4, Fret )-plane. It is at this
point that the above- and below-overcentre equilibrium
curves become jointed momentarily. When the unlock
force is increased beyond the critical cusp point’s value,
the connections between the stable and unstable equi-
librium curves changes: this corresponds to the transi-
tion through a saddle point of the equilibrium surface
in (Fret , θ4,Ful )-space [33,36].

The other two fold bifurcations, FP1 and FP3, are
reasoned to arise due to a change in moment balance
between the retraction actuator force and the landing
gear’s weight. Consider the shock strut L1 in isola-
tion: as the mechanism retracts, the X position of the
shock strut’s centre of gravity moves further from the
X position of the shock strut’s attachment point D,
which increases the moment created by the landing
gear’s weight (which acts in the Y direction). When
the shock strut is retracted to be 90◦ to the gravita-
tional force vector, the moment arm for the landing
gear’s weight reaches its maximum value. Subsequent
motion of the shock strut past 90◦ reduces the moment
arm for the landing gear’s weight. The fold points FP1
and FP3 represent the points in the above- and below-
overcentre curves (respectively) when the moment arm
for the landing gear’s weight reaches its maximum
value, which in this case (due to the geometry and rel-
ative masses of the landing gear) is when θ1 ≈ 88◦.

There is a very slight difference in retraction force value
(observeable by careful consideration of Fig. 6c), due
to the different locklink orientation between the two
cases—FP1 corresponds to the locklinks being above-
overcentre, while FP3 occurs when they are below-
overcentre.

Given the intrinsic dependence of these two folds
on a moment balance, the qualitative and quantitative
nature of their existence depends on both the mass and
geometry of the landing gear. Different mass distribu-
tions or landing gear geometries will change the point
during retraction at which this moment balance occurs,
so for some geometries or mass distributions this bal-
ance may not be exceeded during normal operation.
Hence, the existence of fold points FP1 and FP3 is
specific to the current mechanism.

While previous work identified that a transcritical
bifurcation occurs at the crucial cusp pointC∗, and that
it must be passed in order to unlock the landing gear
[33], no reasoning was offered as to the physical sig-
nificance of C∗. To identify the physical significance
of the transcritical bifurcation, the meaning of the fold
bifurcation FP2 must first be inferred through careful
consideration of the landing gear’s behaviour close to
this bifurcation. Moving through FP2 by decreasing
the retraction actuator force will cause the locklinks to
‘jump’ away from the retracted overcentre position of
the landing gear. If FP2 occurs in the below-overcentre
curve (as in Fig. 6a), this jump will be from a posi-
tion just below overcentre to a position further below
overcentre. If FP2 occurs in the above-overcentre curve
(as in Fig. 6b), this jump will be from a position just
above overcentre to a position further above overcentre.
At the point where FP2 transitions between the above-
overcentre andbelow-overcentre curves, fold point FP2
must be at a position that could jump to both below-
overcentre and above-overcentre curves, i.e. FP2 must
correspond to the landing gear being at overcentre. As
cusp C∗ defines the transition of FP2 between the two
curves, the cusp point C∗ corresponds to the landing
gear being at overcentre. The overcentre position is
significant because the retraction actuator is unable to
move themechanism from this position (without break-
ing the mechanism)—it is therefore a singularity with
respect to one of the force parameters within themodel.
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3.2 Landing gear unlocking: steep climb

As the aircraft attitude changes from straight and level
to climb, the equilibrium structure changes signifi-
cantly from the case shown in Fig. 6. Figure 7 shows
results for the NLG mechanism under an extreme non-
vertical loading condition, where gravity is acting at
40◦ to the vertical, pointing towards the rear of the air-
craft. This corresponds to the case of an aircraft climb-
ing at an extreme angle—an angle that would not be
encountered in typical civilian aircraft flight. The case
for the NLG mechanism with no unlock actuator force
is shown in Fig. 7a. In comparison with the straight
and level case, fold points FP1, FP2 and FP3 still exist,
although they have undergone quantitative changes. In
addition to these quantitative changes from the straight
and level case, the above overcentre equilibrium curve
has changed qualitativelywith the addition of fold point
FP4. When the unlock actuator force is increased to 50
N (panel (b)), fold point FP4 disappears, leaving only
quantitative differences between the climb and level
flight cases for high unlock force values. The surface
in Fig. 7d shows that the disappearance of FP4 between
the cases in panels (a) and (b) is due to a cusp bifurca-
tion in the branch of fold points FP4: when the unlock
actuator force is increased past this cusp (point C4,
Fig. 7c), fold point FP4 is destroyed.

The value of θ4 at which fold points FP1 and FP3
occur has changed between the level and climbing air-
craft cases, yet the retraction force value at which they
occur has remained unchanged.As discussed in the pre-
vious section, these folds occur because of a moment
balance between the retraction force and the landing
gear’s weight. As the landing gear’s weight has not
changed, the force value at which this balance occurs
is unaffected; however, the point in the retraction cycle
(and hence position of the landing gear) when this bal-
ance is reached is highly dependent on aircraft attitude.
Gravity now acts perpendicular to the shock strut when
θ1 = 50◦, so the moment balance between weight and
retraction force occurs at θ1 ≈ 48◦.

When considering unlocking from uplock, two sig-
nificant quantitative changes are observed in Fig. 7c
compared to the straight and level case. First, the retrac-
tion actuator force at FP2 has reduced significantly
from the straight and level case due to two effects. In the
retracted position, a smaller component of gravity acts
to extend the landing gear, reducing the force required
to maintain equilibrium—this is the main effect that

contributes to a low retraction actuator force require-
ment. In addition, elements of the mechanism are now
working to keep the landing gear retracted under their
(local) gravitational loading. Consider a pretend line
running through the shock strut’s pivot point, in the
direction of gravity (i.e. 40◦ to the vertical for this
case). As the NLG mechanism is retracted, parts of
the mechanism pass through this line. This means that
their weight is now acting to aid retraction, rather than
hinder it, thus further reducing the retraction actuator
force requirement.

The second significant quantitative change from the
straight and level case is that the unlock actuator force
at the crucial cusp point C∗, when the landing gear
is at overcentre, has decreased. When climbing (com-
pared to straight and level flight), there is an increase
in the weight component that acts to rotate the lock-
links to be above overcentre, which reduces the unlock
actuator force needed to maintain equilibrium at the
overcentre position. Although this reduction in unlock
actuator force requirement is beneficial when consid-
ering unlocking from uplock, it is worth noting that
the climb case would drive sizing of the lock springs to
ensure thatC∗will still occur at a positive unlock force
value even if one lock spring were to fail (to provide
appropriate system redundancy).

By considering the equilibrium surface of Fig. 7d,
the only qualitative change that has resulted from
increasing the gravity angle is the addition of the locus
of fold points FP4. This point is related to unlocking
the landing gear from downlock (rather than uplock),
and is present in the straight and level curve but out-
side of the retraction actuator force range considered in
this work [33]. Figure 7c shows that FP4 persists until
the unlock force value reaches the cusp point C4. This
cusp point is the crucial cusp point for unlocking the
landing gear from its downlocked position. Although
not the specific focus of this paper (which is more con-
cernedwith unlocking fromuplock), the significance of
C4 and the locus of point FP4 will be discussed briefly.

Before the landing gear is retracted, the locklinks
need to be raised to be above overcentre. This is
achieved by using the unlock actuator. Point C4 in
Fig. 7c gives the minimum actuator forces required to
unlock the landing gear from downlock. As the aircraft
climbs, the fold locus FP4 in Fig. 7c shifts to higher
retraction forces but lower unlock actuator forces: the
lower unlock actuator force arises because the compo-
nent of the gravitational force acting to oppose the lock-
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(c)(b)(a)

(d)

Fig. 7 Bifurcation diagram of landing gear unlocking for an
aircraft climbing at 40◦; shown are: equilibria in the plane of
angle θ4 versus the actuator force Fret for unlock actuator force

a Ful = 0 N and b Ful = 50 N; c two-parameter continuation of
fold points in the (Fret , Ful )-plane; d surface of equilibria and
their bifurcations in (Fret , Ful , θ4)-space

links has reduced; the higher retraction force occurs
because gravity has a greater moment arm to oppose
the retraction of the shock strut. It is this shift that has
brought point FP4 into the force range considered in
this study, while for the straight and level case FP4
occurs for an Fret value below 500 N.

Overall, no significant qualitative changes to unlock-
ing from uplock have been observed for a climbing
aircraft, compared to the baseline straight and level
flight case. The one qualitative change that is observed
relates to unlocking from downlock, although the fea-
tures present in this change are known to occur for
the straight and level case (albeit outside the force
range considered). This change has been considered
only briefly, as it is associated with unlocking from
downlock rather than uplock. The quantitative changes
observed suggest that the climbing case is likely to be a

limiting case for the uplocking process rather than the
process of unlocking from uplock.

3.3 Landing gear unlocking: steep descent

Figure 8 presents another extreme flight case, this time
for an aircraft descending at 40◦. Comparing the case in
panel (a) (for Ful = 0 N) with the equivalent straight
and level flight case (Fig. 6a), there are now no fold
bifurcations in the below-overcentre curve. The sin-
gle fold present in the above-overcentre is the same
number of fold bifurcations as occur in the above-
overcentre curve in Fig. 6a, but its physical interpre-
tation has changed—hence, it is labelled FP2. Increas-
ing the unlock actuator force to Ful = 50 N results in
the retraction curves of Fig. 8b: here, the one fold that
occurred in panel (a) has transitioned from the above-
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(c)(b)(a)

(d)

Fig. 8 Bifurcation diagram of landing gear unlocking for an air-
craft descending at 40◦; shown are: equilibria in the plane of
angle θ4 versus the actuator force Fret for unlock actuator force

a Ful = 0 N and b Ful = 50 N; c two-parameter continuation of
fold points in the (Fret , Ful )-plane; d surface of equilibria and
their bifurcations in (Fret , Ful , θ4)-space

overcentre curve to the below-overcentre curve. This
behaviour is the opposite to the transition that occurred
for FP2 in straight and level flight (Fig. 6a, b), suggest-
ing some high-level bifurcation occurs as the aircraft
pitches nose down.

The retraction surface in Fig. 8d now has a single
fold locus. Although this fold point still transitions
between the above-overcentre and below-overcentre
curves as the unlock force is varied, the projection
in Fig. 8c shows a qualitative change has occurred
between this case and the baseline straight and level
case (Fig. 6c)—the cusp points now occur at a higher
Fret value than the majority of the fold locus over the
range considered, rather than at a lower force.

Despite the significant qualitative changes, the pro-
cess of unlocking from uplock remains unchanged:
increasing the retraction actuator force initially causes
the uplocked landing gear to move along the below-

overcentre curve; applying an unlock actuator force
moves fold point FP2 between the two curves, enabling
the landing gear to be unlocked; the minimum required
unlock force is indicated by the cusp point, C∗, corre-
sponding to the overcentre position of the landing gear.

The absence of folds FP1 and FP3, however, means
that the landing gear response during extension and
retraction has changed. The physical meaning of fold
FP2 has also changed subtly from the default straight
and level case. These two points are discussed in the
following two paragraphs.

A landing gear retraction and extension process will
be designed, either via appropriate actuator placement
or actuator control, so that the landing gear does not
experience major ‘jumps’ during retraction or exten-
sion. The cases in Figs. 6 and 7 require equivalent
streategies to ensure that the gear can be retracted
smoothly past FP1. The disappearance of fold FP1
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from the retraction surface in Fig. 8d, however, means a
different retraction approach is required for an extreme
nose-down case. Knowing how and where the qualita-
tive change in retraction surface occurs as the aircraft
pitches nose-down is therefore essential to ensure an
appropriately robust retraction strategy is used.

The change in gravitational direction caused by an
aircraft pitching nose down means that there is no
longer a point in the retraction cycle when the land-
ing gear reaches the moment balance point between the
landing gear weight and retraction actuator moments.
As a result of this, FP2 now represents the point where
the landing gear locklinks ‘jump’ directly between
the above-overcentre and the below-overcentre curves.
This contrasts with the straight and level case, where
FP2 corresponded to a jump either from just above-
overcentre to further above-overcentre, or from just
below-overcentre to further below-overcentre.

Two questions now need to be addressed: the first is
how has the retraction surface changed as the aircraft
pitches nose-down; the second iswhen does this change
occur.

3.4 Landing gear unlocking: intermediate descent

The process through which the retraction surface has
changed can be explained, in part, by considering an
intermediate surface, as shown in Fig. 9: the case of
an aircraft descending at 12◦. Panels (a) and (b) are
similar to their respective panels for the steep descent
case in Fig. 8 (i.e. each contain one fold bifurcation).
The retraction surface in Fig. 9d, however, shows that
between the low and high unlock force values of panels
(a) and (b) there is a regionof the surfacewheremultiple
fold points exist for a single unlock force value. Within
this region, the equilibria in the (θ4, Fret )-plane are
equivalent to the cases seen in Figs. 6 and 7. These
regions are defined by features in the FP2 fold curve,
detailed in Fig. 9c.

Unlike all of the other cases considered up to
this point, the fold locus associated with unlocking
(nominally the locus of fold point FP2) now contains
four cusp points within the force range considered—
C1,C2,C3 and C∗. For unlock force values below C3,
the retraction curves are similar to those in Fig. 9a.
When Ful is increased past C3, two fold points appear
in the below-overcentre curve, making it similar to the
cases shown in Figs. 6a and 7a. The landing gear is

unlocked from uplock when the unlock force passes
the crucial cusp C∗, and once unlocked the retraction
curves are qualitatively as the cases shown in Figs. 6b
and 7b. Increasing Ful beyond C1 sees the two fold
points in the above-overcentre curve merge and disap-
pear, resulting in retraction curves that are similar to
those in Fig. 9b.

The presence of cusp points C1 and C3 in Fig. 9c
suggests that fold points FP1, FP2 and FP3 in Figs. 6
and 7 are in fact part of the same fold locus. In Sects. 3.1
and 3.2, FP1 and FP3 were identified to correspond
to the point in the retraction cycle where the moment
arm for the landing gear’s weight is at a maximum
value; FP2 defines the point where the locklinks would
‘jump’ away from being close to overcentre to become
more unlocked. Cusp points C1 and C3 must therefore
occur when these two definitions coincide, i.e. when
the unlock actuator force Ful (which aids retraction
when applied in a positive direction) causes the lock-
link ‘jump’ to occur when the landing gear’s weight is
at its maximum moment arm. Their existence is there-
fore dependent on the mass distribution and the kine-
matics of the landing gear. The transition from Figs. 9
to 8 as the aircraft pitches (nose down) from −12◦ to
−40◦ is charachterised by a bifurcation occuring in the
fold locus. The following subsection presents a two-
parameter continuation of the fold locus to identify the
bifurcation behind the qualitative change in retraction
surface.

3.5 Two-parameter continuation of crucial fold FP2

Figure 10 shows the loci of fold points FP2 for air-
craft flight angles of: (a) 0.0◦; (b) −5.0◦; (c) −6.0◦;
(d) −7.5◦; (e) −12◦; (f) −18◦. Cusp points are indi-
cated by circles, with the crucial cusp C∗ indicated
with a star. Panel (a) presents the fold curve for the
case shown in Fig. 6. The fold curve contains two cusp
points, C2 and C∗, and is similar to the equivalent fold
curve for the case of an aircraft climbing.As the aircraft
descends to −5◦ (panel (b) of Fig. 10), an additional
cusp point (C1) appears in the unlock force range under
consideration. A further decrease in aircraft attitude to
−6◦ (panel (c)) shows that the unlock force value to
reach cusp C1 decreases as the aircraft pitches nose
down. In panel (d), a fourth cusp point (C3) enters the
picture, and the subsequent decrease in aircraft attitude
from −7.5◦ to −12◦ (moving from panel (d) to panel
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(c)(b)(a)

(d)

Fig. 9 Bifurcation diagram of landing gear unlocking for an air-
craft descending at 12◦; shown are: equilibria in the plane of
angle θ4 versus the actuator force Fret for unlock actuator force

a Ful = 0 N and b Ful = 50 N; c two-parameter continuation of
fold points in the (Fret , Ful )-plane; d surface of equilibria and
their bifurcations in (Fret , Ful , θ4)-space

(e)) shows that the unlock force value to reach cusp C3

increases as the aircraft pitches nose down. In addition
to the movement in C3, cusp C1 has mover closer to
C2. Between panels (e) and (f), C1 and C2 coalesce,
leaving C∗ and C3 as the only remaining cusp points
once the aircraft has pitched nose down to−18◦ (panel
(f) of Fig. 10). This coalescence of two cusp points
is characteristic of the transition through a swallowtail
bifurcation [35]; hence, the presence of a swallowtail
bifurcation between the descent angles−12◦ and−18◦
is shown in Fig. 10e, f.

Further evidence for the presence of the swallowtail
bifurcation is presented in Fig. 11. Figure 11a1 shows
the case for an aircraft pitching nose down at −13.2◦,
with four cusp points visible. A zoomed view of the
crucial cusp point C∗, Fig. 11a2, highlights the shape
of the fold locus in the neighbourhood of C∗, showing
that C2 is closest (along the fold curve) to C1. The

overcentre cuspC∗ does not look like the other cusps in
the (Fret ,Ful)-plane, because the overcentre position
is singular with respect to the retraction actuator force
Fret . Due to its unique physical meaning, C∗ cannot
be unfolded by a combination of Ful and Fret—it is
structurally stable.

A further decrease in pitch angle to −14.9◦ sees
cusp point C1 move closer to C2 and C∗, such that
they are virtually indistinguishable from one another
in Fig. 11b1. The enlarged view in Fig. 11b2 shows
that point C1 is approaching C2 as the aircraft pitches
down. The qualitative change occurs by the time the
aircraft pitches nose down to −16.0◦ (panel (c1)), as
cusp points C1 and C2 disappear.

From the application perspective, the swallowtail
bifurcation emerges as the geometric object via which
the retraction surfaces change from the straight and
level case in Fig. 6c to the steep descent case seen
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Fig. 10 Variation in crucial fold locus with changing aircraft flight angles: a 0.0◦; b −5.0◦; c −6.0◦; d −7.5◦; e −12◦; f −18◦
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Fig. 11 Variation in fold locus for gravity angles of: a −13.2◦; b −14.9◦; c −16.0◦; panels a2–c2 are enlarged views of panels a1–c1
near the point C∗
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in Fig. 8c. The physical reasoning used previously to
explain the presence of cusp point C1 in Fig. 9 can be
used here again: it implies that a more negative air-
craft pitch angle that moves C1 closer to the crucial
cusp point C∗ indicates that the moment balances that
define C1 happen closer to overcentre. Hence, the fol-
lowing can be concluded: for aircraft pitch attitudes
above those of the swallowtail point the landing gear
weight’s moment arm reaches a maximum value when
the locklinks are above-overcentre (since C1 exists);
for the aircraft pitch attitude exactly at the swallowtail
point the landing gear weight’s moment arm reaches
the maximum when the landing gear is at overcentre;
and for aircraft pitch attitudes below that of the swal-
lowtail point, therefore, the landing gear weight’s max-
imum moment arm cannot be reached (since C1 does
not exist). In the latter case, the retraction moment is,
hence, no longer able to exceed the required maxi-
mum value during the mechanism’s operation. In other
words, the qualitative change in retraction actuator sur-
face that arises due to the landing gear moving through
the swallowtail bifurcation is significant from a design
perspective: to achieve a smooth extension of the land-
ing gear once it is unlocked, one must ensure that the
location of the swallowtail bifurcation is outside the
flight envelope; this requires the implementation of an
appropriate retraction strategy, either with actuation
control or appropriate actuator positioning.

The results in this section have also shown that, irre-
spective of the qualitative changes that occur in the fold
curve, the crucial cuspC∗ always separates the landing
gear’s uplocked states from its unlocked states. This is
because C∗ occurs when the landing gear’s locklinks
are parallel with one another, which means that they
behave as a pinned structure. Thismeans that the retrac-
tion force is unable to move the landing gear such that
the ends of the locklinks (joints B and H in Fig. 2a)
move. Only a force with a component perpendicular to
the locklinks will achieve this, and such a force can-
not be generated elsewhere in the mechanism (other
than at the locklinks themselves). Hence, the crucial
cusp point C∗ cannot be removed in this way, meaning
that it is inherent to this particular nose landing gear
design—demonstrating that the strategy of using C∗
to identify a force measure is robust to variations in
external loading.

4 Concluding remarks

Our study demonstrated that knowledge of the geomet-
ric structure of the steady-state surface (over appropri-
ate ranges of two key input forces) may be used as a
tool to inform the design of a retraction mechanism
that works smoothly (that is, without abrupt jumps)
throughout the anticipated flight envelope (defined here
as the range of aircraft attitudes). More specifically, we
showed that the minimum forces required to unlock the
landing gear from uplock can be identified by consid-
ering the mechanism in equilibrium at the overcentre
position, that is, by determining the position of the cusp
point C∗. We remark that this does not require a simu-
lation of the whole landing gear retraction or extension
cycle, meaning that force requirements can be derived
right at the start of the landing gear design process.

This work highlights several potential avenues for
future investigations. The point at which the swal-
lowtail bifurcation occurs is likely to depend heav-
ily on a given gear’s geometry and mass distribution.
Numerical continuation may provide an effective way
of investigating how the unlocking or uplocking pro-
cess changes when geometric quantities (lengths of
links) are used as continuation parameters. This would
provide a parameter map for landing gear design-
ers, allowing them to identify, for example, whether
their design needs an actuator that provides an ever-
increasing retractionmoment, or whether the retraction
moment should peak before uplock to ensure a smooth
retraction.

The use of a single locking actuator for both uplock-
ing and downlocking has not been investigated for the
case of amain landing gear. The process ofmaintaining
uplock of a main landing gear mechanism during dis-
turbances (such as an aircraft pitching under the action
of a gust) would depend heavily on the geometry of
the side stay in relation to the shock strut. The three-
dimensional (rather than planar) nature of a main land-
ing gear mechanism adds a considerable level of com-
plexity. We suggest that the approach presented here
may also prove beneficial for the analysis required to
ensure correct operation of unlocking and deployment
throughout the anticipated flight envelope also for such
more complicated landing gear mechanisms.

While the subject of this study is a nose landing
gear mechanism, the relation between detectable bifur-
cation points and the mechanism’s kinematic position
demonstrates the general value of bifurcation analy-
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sis and numerical continuation for mechanism analy-
sis. Mechanisms are used in a variety of applications,
from robotics to suspension systems, and the approach
presented here may lead to interesting discoveries in
these other fields that relate key mechanism behaviour
to detectable bifurcation points.
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