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Abstract It iswidely known that dry friction damping
can bound the self-excited vibrations induced by nega-
tive damping. The vibrations typically take the form of
(periodic) limit cycle oscillations. However, when the
intensity of the self-excitation reaches a condition of
maximum friction damping, the limit cycle loses sta-
bility via a fold bifurcation. The behavior may become
even more complicated in the presence of any internal
resonance conditions. In this work, we consider a two-
degree-of-freedom system with an elastic dry friction
element (Jenkins element) having closely spaced natu-
ral frequencies. The symmetric in-phase motion is sub-
jected to self-excitation by negative (viscous) damp-
ing, while the symmetric out-of-phase motion is posi-
tively damped. In a previous work, we showed that the
limit cycle loses stability via a secondary Hopf bifur-
cation, giving rise to quasi-periodic oscillations. A fur-
ther increase in the self-excitation intensity may lead to
chaos and finally divergence, long before reaching the
fold bifurcation point of the limit cycle. In this work,
we use the method of complexification-averaging to
obtain the slow flow in the neighborhood of the limit
cycle. This way, we show that chaos is reached via a
cascade of period-doubling bifurcations on invariant
tori. Using perturbation calculus, we establish analyti-
cal conditions for the emergence of the secondary Hopf
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bifurcation and approximate analytically its location. In
particular, we show that non-periodic oscillations are
the typical case for prominent nonlinearity, mild cou-
pling (controlling the proximity of themodes), and suf-
ficiently light damping. The range of validity of the ana-
lytical results presented herein is thoroughly assessed
numerically. To the authors’ knowledge, this is the first
work that shows how the challenging Jenkins element
can be treated formally within a consistent perturba-
tion approach in order to derive closed-form analytical
results for limit cycles and their bifurcations.

Keywords Flutter · Nonlinear vibration · Non-
periodic solution · Nonlinear modes · Modal interac-
tion · Averaging

List of symbols

Latin letters

a Amplitude
a1,max/min Max/min amplitude
d Differential
deq Equivalent damping of Jenkins element
f Generic function
f0,1,2 Power series coefficients
ft Generated force of Jenkins element
i Imaginary unit

√−1
keq Equivalent stiffness of Jenkins element
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t Time
x Generalized coordinate
x Vector of unknowns of first-order sys-

tem
D Poincare section w.r.t. slow time scale
Emech Mechanical energy averaged over one

period of vibration
O Order (perturbation)
S Poincare section w.r.t. fast time scale

Sub-, superscripts, operators

�̇ Derivative with respect to time
�̂ Fixed point solution
� Mean-free value
�̄ Normalized parameter
‖�‖ Euclidian norm
|�| Determinant
[�] Dependency on time history

Greek letters

�θ Phase lag of oscillators
ε Small parameter
γ Friction intensity
κ Coupling stiffness
λ Eigenvalue of Jacobian
ω Oscillation frequency
ωst Natural frequency for sticking slider
ωsl Natural frequency for frictionless slid-

ing
ω̃ Energy-dependent natural frequency
ρ Amplitude ratio
τ ∗ Stick-slip transition time
θ Phase of oscillator
ν Parameter ratio
ξ1,2 In-phase/out-of-phase damping
ξ1,div Bifurcation yielding divergence
ξ1,fold Fold bifurcation point
ξ1,Hopf Secondary Hopf bifurcation

ξ̆
start/end
1,Hopf Predicted secondary Hopf bifurcations

Abbreviations

CX-A Complexification-averaging (method)
LCO Limit cycle oscillation
LTO Limit torus oscillation
2DOF Two-degree-of-freedom (system)

1 Introduction

Mechanical systems usually consist of several sub-
structures assembled by joints in which nonlinear con-
tact interactions inevitably occur [1]. The dissipa-
tive dry frictional interactions often provide the dom-
inant contribution to the overall energy dissipation
in mechanical systems [2]. Besides vibration mitiga-
tion, friction damping has acquired high technical rel-
evance because of its stabilizing effect on otherwise
unstable self-excited vibrations. These are the conse-
quence of destabilizing negative damping contributions
which can be encountered in various applications: flut-
ter vibrations of airfoils [3], chatter in machining pro-
cesses [4,5] like in rolling mills [6], in control tasks
[7–9], in robotics [10], and in brake squeal [11]. The
driving example for the current work is cascade flut-
ter vibrations of turbomachinery blades [12,13]. Addi-
tional frictional interfaces are here often deliberately
introduced to mitigate vibrations of the blades [2].
In this application, the self-excitation mechanism is
caused by the unstable aerodynamical interference of
blades within a blade row. In a recent study, we numer-
ically analyzed the stability of self-excited friction-
damped vibration states in the presence of internal res-
onance conditions based on a minimal model [14]. The
main contribution of the present work is the analyti-
cal derivation of existence conditions of quasi-periodic
oscillations for closely spaced modes. In the following
paragraphs, we will briefly recap the most important
results related to this work, before discussing the pur-
pose and outline of this article.

Preliminaries

Sinha and Griffin [15] were the first to show that fric-
tion damping can be used to bound otherwise diverg-
ing self-excited vibrations caused by negative (viscous)
damping. In case of negative damping of a single mode
and well-separated eigenfrequencies, the amplitude-
dependent friction damping leads to periodic limit
cycle oscillations (LCO). If the negative damping
exceeds the point of maximum friction damping, a fold
bifurcation occurs such that the LCO becomes unstable
giving rise to divergent behavior. The dynamics may
become even more complicated when several modes
are subjected to negative damping. Based on a simpli-
fied model of an aerodynamically unstable rotor stage,
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the stability limit of LCOs was determined by general-
ized energy relations based on an averaging technique
[16]. However, the bifurcation type associated with the
stability limit was not addressed in these works. It is
well known that friction nonlinearity can trigger modal
interactions in the presence of internal resonance con-
ditions (e.g., 1:1 or 1:3 resonances). In [14], we studied
numerically a friction-damped two-degree-of-freedom
(2DOF) system subjected to negative viscous damp-
ing. The configuration of the investigated 2DOF system
is motivated by the analysis of rotationally symmetric
structures, e.g., bladed disks, where so-called travel-
ing wave modes occur. The 2DOF system’s modes are
representatives of a forward and backward traveling
mode. Neglecting frictional effects, the system remains
symmetric, with both modes closely spaced based on
the assumption of light aeroelastic coupling. Under the
influence of friction damping on one of the oscillators,
symmetric behavior will only occur in the case of stick-
ing contact. In the case of sliding friction, energy dissi-
pation affects both modes, but also leads to asymmetri-
cal behavior. This asymmetry causes strongmodal cou-
pling, so that a strong energy exchange between both
modes is expected close to internal resonance condi-
tions.
In Fig. 1, the characteristic behavior for the case of
closely spaced modes (near 1:1 internal resonance) is
illustrated in a schematic bifurcation diagram with the
viscous damping being considered as control param-
eter. The trivial case of positive damping leads to
exponentially decaying oscillations that approach the
static equilibrium position (A). Going from positive
to negative damping induces a Hopf bifurcation, caus-
ing dynamic instability of the static equilibrium. The
vibrations grow until dissipative sliding friction com-
pensates the self-excitation and an LCO is formed from
the dynamical balance (B). A secondary Hopf bifurca-
tion causes the loss of periodicity of the LCO beyond
a critical level of negative damping, as indicated by
the splitting of maximum and minimum steady-state
vibration amplitudes (C). Then, the oscillations take the
form of limit torus oscillations (LTOs) at first, much in
line with the well-known case of coupled van-der-Pol
oscillators. More severe negative damping may intro-
duce chaos. Finally, the non-periodic attractor collapses
yielding divergent behavior well before the fold bifur-
cation of the LCO (D) is reached. These findings imply
that the common practice to compute only the LCOs
(using, e.g., Harmonic Balance and numerical contin-

uation), without properly analyzing their stability, may
lead to incompletemodeling of the nonlinear dynamics,
and, hence, to potentially dangerous design decisions
in practical applications.

Purpose of the present work

In this work, we seek to better understand the emer-
gence of the non-periodic oscillations encountered for
the 2DOF system discussed in [14] for the case of
closely spaced modes. In particular, we would like to
establish conditions for the secondary Hopf bifurcation
and analyze how the quasi-periodic oscillations further
bifurcate into chaos. In the analytical development, the
key challenge is the treatment of the Jenkins element1.
To the authors’ knowledge, this is the first work that
shows how a consistent perturbation approach can be
formally applied to analyze this nonlinearity in order to
derive closed-form analytical expressions for the emer-
gence of LCOs and their bifurcations.

Outline of the article

The article is structured as follows: In Sect. 2 we
describe the investigated 2DOF system. In Sect. 3, we
use averaging to derive an approximation for the slow
flow dynamics in the neighborhood of the LCO. In
Sect. 3.3, we analyze the transition from limit torus
oscillations to chaotic oscillations. In Sect. 4, we focus
on the secondary Hopf bifurcation and use perturba-
tion calculus to establish the conditions leading to limit
torus oscillations. We end this work with some con-
cluding remarks, summarizing the main contributions
and providing some related open problems that can be
further investigated.

2 Model description

We investigate a 2DOF oscillator (see Fig. 2a), consist-
ing of two unity masses coupled via linear springs in
parallel to viscous damper elements. The nonlinear dry
friction force acting on the first oscillator is modeled by

1 Also known as elastic dry friction or elastic Coulomb friction
element
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Fig. 1 Self-excited
friction-damped system
with closely spaced modes:
Bifurcation diagram of
vibration amplitude versus
viscous damping. LCO
curve (‘black,’ ‘dashed’),
steady-state solutions
(‘black,’ ‘solid’), and areas
of bounded behavior (‘blue’
and ‘gray’). Arrows indicate
increasing and decreasing
vibration levels. (Color
figure online)

Fig. 2 a 2DOF model
considering in-phase ξ1 and
out-of-phase damping ξ2, b
Jenkins element and c
corresponding hysteresis
cycle for prescribed periodic
motion of the coordinate x1

(a)

(b) (c)

a Jenkins element, see Fig. 2b. The equations of motion
are then given through

ẍ1 + 1

2
(ξ1 + ξ2)ẋ1 + 1

2
(ξ1 − ξ2)ẋ2 + (1 − γ )x1

+ κ(x1 − x2) + γ ft[x1] = 0, (1)

ẍ2 + 1

2
(ξ1 + ξ2)ẋ2 + 1

2
(ξ1 − ξ2)ẋ1

+ x2 + κ(x2 − x1) = 0, (2)

where x1 and x2 indicate the generalized coordinates
and �̇ indicates derivative with respect to time t . The
nonlinear friction force ft[x1] is defined by the hys-
teretic differential law

d ft =
{
dx1 ‖ ft + dx1‖ < 1

0 otherwise
, (3)

where the dependency on time history is indicated by
the operator [ · ]. An advantage of this formulation is
the straightforward implementability within numerical
time-step integration methods by substituting the dif-

123



Analysis of the non-periodic oscillations 1663

ferential by a finite time-step. Figure 2c illustrates the
corresponding hysteresis cycle under prescribed peri-
odic motion of the coordinate x1, including the initial
loading curve.Thehysteresis cycle divides into sticking
and sliding phase of the friction element, transitioning
as soon as the spring force exceeds the friction limit
force of 1. In the sliding phase, the magnitude of the
nonlinear force remains constant.
A similar dynamical system was obtained by non-
dimensionalization in [14].Thenon-dimensionalization
takes into account time normalization with respect to
the natural frequency of the in-phase mode in sticking
condition, the normalization of the nonlinear force by
the friction limit force, and the normalization of the
generalized coordinates by the fraction of nonlinear
spring stiffness and friction limit force. This reduces
the set of parameters to the coupling spring stiffness
κ , the modal damping ξ1,2, and the friction intensity γ

acting on the first oscillator. Note that the Jenkins ele-
ment itself remains independent of γ , but it appears as
a factor in front of the nonlinear force, preserving the
symmetry of the system in sticking condition. Thus,
the linear modes of vibration correspond to symmetric
in-phase and out-of-phase motions. The correspond-
ing in-phase natural frequency results to ωst = 1 (due
to normalization). The natural frequency of the out-
of-phase mode is given by

√
1 + 2κ [14]. Thus, for

κ � 1 (i.e., for weak coupling between oscillators)
the linear natural frequencies are closely spaced. The
(weak) damper coefficients are designed such that ξ1
is associated with the symmetric in-phase and ξ2 with
the symmetric out-of-phase motion. Throughout this
paper, we set ξ1 < 0 and ξ2 > 0. For sufficiently large
vibrations, the force in the friction element saturates,
which leads to nonlinear stick-slip behavior and gener-
ally asymmetrical behavior.

3 Analysis of the slow dynamics in the
neighborhood of the limit cycle

In the following, we gain deeper understanding of the
dynamics by analyzing the slowdynamics of the system
near the LCO. To this end, we use the complexification-
averaging (CX-A) method [17]. Of particular interest
is the bifurcation point of the first LCO stability loss,
i.e., the secondary Hopf bifurcation point, giving rise
to LTOs. Furthermore, the transition process from the
LTOs to chaos will be analyzed.

3.1 Extraction of the slow dynamics using CX-A

In the following, we briefly explain the main ideas
behind the CX-A technique, following [17], while gen-
erally there exist several books discussing averaging
techniques. CX-A is based on a coordinate transform
from a fixed to a rotating coordinate system, which
can be expressed by a new complex-valued variable,
yielding

x j =  j + ̄ j

2
, ẋ j = iω

 j − ̄ j

2
,

ẍ j = iω

(
̇ j − iω

 j − ̄ j

2

)
, (4)

with the oscillation frequencyω, the complex conjugate
�̄ and i = √−1. This transformation reduces the order
of the differential equation system from 2nd to 1st,
while retaining the number of equations. At this point,
dynamics dominated by a single harmonic are assumed,
allowing to introduce the complex-valued ansatz

 j (t) ≈ a j (t)e
iθ j (t)ei

∫
ωdt . (5)

Note, that the integral over frequency
∫

ωdt degener-
ates to ωt only in case of time invariance. Based on
this, the dynamics with respect to x j is assumed to be
decomposable into a fast oscillation with the instanta-
neous (fast) oscillation frequency ω and a slow modu-
lation of amplitude a j and phase θ j . Under the premise
of well-separable time scales, averaging over the fast
dynamics and splitting into real and imaginary parts,
leads to a set of explicit first-order differential equations
with respect to the slow dynamics. Applied to Eqs. (1)
and (2), the following set of equations is obtained

ȧ1 = − 1

2ω
(κ a2 sin (θ1 − θ2)

+ 1

2
(ξ1 − ξ2)ω a2 cos (θ1 − θ2)

+1

2
(ξ1 + ξ2) ω a1 + γ ω deq(a1) a1

)
, (6)

θ̇1 = − 1

2 a1 ω
(κ a2 cos (θ1 − θ2)

− 1

2
(ξ1 − ξ2) ω a2 sin (θ1 − θ2)

−
(
−ω2 + κ − γ + γ keq(a1) + 1

)
a1

)
, (7)
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ȧ2 = − 1

2ω

(
1

2
(ξ1 + ξ2) ω a2 − κ a1 sin (θ1 − θ2)

+1

2
(ξ1 − ξ2) ω a1 cos (θ1 − θ2)

)
, (8)

θ̇2 = − 1

2 a2 ω

(
ω2 a2

+ 1

2
(ξ1 − ξ2) ω a1 sin (θ1 − θ2)

−a2 − κ a2 + κ a1 cos (θ1 − θ2)) , (9)

in terms of the unknowns a1, a2, θ1, θ2 and their asso-
ciated time derivatives. Without loss of generality, the
amplitudes are defined as positive a1 > 0, a2 > 0. The
terms keq(a1) and deq(a1) are the equivalent stiffness
and damping of the Jenkins element as defined later.
Without loss of generality, one can reduce the problem
to an autonomous set of 3 equations governing the slow
amplitude modulations a1 and a2 and the slow phase
difference (lag) which is defined as�θ = θ1−θ2. This
leads to what we will refer to as slow flow equations,

ȧ1 = − 1

2ω
(κ a2 sin (�θ)

+ 1

2
(ξ1 − ξ2)ω a2 cos (�θ)

+1

2
(ξ1 + ξ2) ω a1 + γ ω deq(a1) a1

)
, (10)

ȧ2 = − 1

2ω

(
1

2
(ξ1 + ξ2) ω a2 − κ a1 sin (�θ)

+1

2
(ξ1 − ξ2) ω a1 cos (�θ)

)
, (11)

�θ̇ = 1

2ω

(
−γ + γ keq(a1) + κ cos (�θ)

(
a1
a2

− a2
a1

)

+1

2
(ξ1 − ξ2) ω sin (�θ)

(
a1
a2

+ a2
a1

))
. (12)

Averaging the nonlinear force of the Jenkins ele-
ment, ft[x1], yields the expressions for the amplitude-
dependent equivalent stiffness keq and damping deq
[18] as follows:

Fig. 3 Behavior of keq and deq with respect to τ ∗; point of diver-
gence ξ1,div determined by numerical simulation of Eqs. (1) and
(2) with ξ1 < 0, ξ2 = 0.011, κ = 0.1, γ = 0.5

keq(a1) = 2τ ∗(a1) − sin(2τ ∗(a1))
2π

,

ωdeq(a1) = 1

π
sin2(τ ∗(a1)) (13)

with τ ∗(a1) =
{
acos(1 − 2

a1
) a1 > 1

π 0 < a1 ≤ 1
. (14)

The parameter τ ∗ can be interpreted as the stick-slip
transition time. In the sticking case it holds that, a1 ≤ 1.
In this case, the stick-slip transition does obviously
not occur, which corresponds to τ ∗ = π (due to sym-
metry of hysteresis cycle). Consequently, the Jenkins
element correctly degenerates to a conservative spring
with keq = 1 and deq = 0. For increasing vibration lev-
els beyond the sticking limit, i.e., a1 > 1, the stick-slip
transition occurs earlier along one period of vibration,
i.e., τ ∗ decreases. The maximum equivalent damping
is reached for τ ∗ = π/2, where keq = 0.5. As the
amplitude goes to infinity, the friction effect becomes
negligible such that both keq and deq asymptotically
approach zero. The nonlinear dependence of the equiv-
alent damping and stiffness with respect to the parame-
ter τ ∗ is depicted inFig. 3.Thegray shaded area, limited
by τ ∗(a1(ξ1,div)), indicates divergent curve ranges, i.e.,
τ ∗ related to unbounded amplitude growth. The indi-
cated limit is based on numerical results for the given
parameter values.
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Fig. 4 Frequency–energy relation along the LCO
obtained under variation of ξ1 < 0: The discrete
points (‘black,’ ‘x’) are obtained by solving the slow
flow equations (10)–(12) (ȧ1 = ȧ2 = �θ̇ = 0),
initialized with small/high mechanical energy for solutions
along the lower/upper half of the LCO curve (cf. Fig. 1), or,
continuous interpolation of the discrete solution points by
piecewise cubic splines (‘blue,’ ‘solid’); indication of limit
cases for sticking slider ωst and frictionless sliding ωsl; point of
divergence ξ1,div determined by numerical simulation of Eqs. (1)
and (2); − 0.216 ≤ ξ1 ≤ 0, ξ2 = 0.011, κ = 0.1, γ = 0.5.
(Color figure online)

3.2 Approximation of the energy-dependent
oscillation frequency

To simulate the slow flow given by Eqs. (10)–(12), the
oscillation frequency ω needs to be specified. We are
interested in the dynamics near the LCO. Indeed, to
compute the LCO with frequency ω, we impose condi-
tions for periodicity, namely, ȧ1 = ȧ2 = θ̇1 = θ̇2 = 0.
With this, Eqs. (6)–(9) degenerate to an algebraic sys-
tem of four equations for the four unknowns a1, a2,
�θ and ω, which are solved numerically. The resulting
frequency of the LCO is illustrated in Fig. 4, where it
is depicted as function of the corresponding mechani-
cal energy of the system averaged over one period of
vibration when it oscillates on the LCO, obtained by
varying the negative damping ξ1 < 0. The averaged
mechanical energy, i.e., the averaged sum of potential
and kinetic energy, is formally given by

Emech = 1

4
(1 − γ + κ)a21 + 1

4
(1 + κ)a22

− 1

2
κa1a2 cos(�θ)

+ 1

2π

∫ 2π

0

∫
ft[x1]ẋ1dtdτ

+ 1

4
ω2(a21 + a22) , (15)

where τ = ωt . This frequency–energy relation holds
strictly only at the LCO, i.e., for the time-periodic solu-
tion, which represents a special stationary solution of
themechanical systemwith negative damping. Perturb-
ing the initial conditions corresponding to the LCO,
but staying sufficiently close in the neighborhood of
the LCO, we postulate that this frequency–energy rela-
tion still provides a reasonable approximation denoted
symbolically in the form,

ω = ω̃ (Emech(a1, a2,�θ)) . (16)

Of course, the above described numerical solution
method only generates a discrete sequence of points.
To simulate the slow flow equations (10)–(12), how-
ever, a continuous expression (i.e., a function) of the
oscillation frequency in terms of the states a1, a2,�θ

is needed, which we obtained using interpolation. To
this end, we applied a piecewise cubic Hermite inter-
polation between about 400 discrete solution points in
the interval Emech ∈ (0, 500). Note, that this interval
contains also energy levels beyond the fold bifurcation
(i.e., points along the upper half of the LCO curve), cf.
Fig. 1.

3.3 Cascade of period doubling leads to chaos

Now, we are in the position to analyze to what extent
the slowflowapproximation, Eqs. (6)–(9) togetherwith
Eq. (16) reproduce the dynamics of the initial system
[Eqs. (1) and (2)]. We note at this point that the ansatz
used for the previous complexification-averaging anal-
ysis is based on the assumption that there exists a single
fast frequency ω, and that there is a slow–fast separa-
tion of the non-stationary dynamics, i.e., that there is no
mixing of scales.Whenever either of these conditions is
not satisfied we expect that our analytical predictions
will diverge compared to the exact solutions derived
by direct numerical simulations of the initial system of
governing equations. In Fig. 5, we compare the bifur-
cation diagrams, with respect to the negative damping
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Fig. 5 Comparison of the
slow flow approximation
(Eqs. (10)–(12)) against the
initial system (Eqs. (1) and
(2)) with respect to the
amplitude-damping
diagram: The discrete points
are obtained by direct
numerical integration
initialized on the LCO
considering a small
perturbation; ξ1 < 0,
ξ2 = 0.011, κ = 0.1,
γ = 0.5

(a) (b) (c) (d) (e)

Fig. 6 Phase space projection (‘gray,’ ‘solid’) and Poincaré map (‘black,’ ‘.’) associated with section S (associated with the fast time
scale), obtained by direct numerical simulations of the initial system [Eqs. (1) and (2)]

(a) (b) (c) (d) (e)

Fig. 7 Phase space projection (‘gray,’ ‘solid’) and Poincaré map (‘black,’ ‘.’) associated with section S (associated with the fast time
scale), obtained from the analytical slow flow approximation

parameter ξ1. The vibration level is depicted in terms
of the maximum, a1,max, and minimum, a1,min, vibra-
tion amplitudes at steady state; we note that the derived
steady state is not necessarily periodic, nor even sta-
tionary. In spite of the complexity of the dynamics of
the system, both the secondary Hopf bifurcation point,
ξ1,Hopf , and the point of divergence, ξ1,div, are captured
by the analysis with remarkable accuracy. The minor

deviations are attributed to the aforementioned analyt-
ical simplifications: Truncation to a single harmonic,
separation of time scales, and presumed invariance of
frequency–energy dependence.
Figure 6 depicts Poincaré maps associated with a
Poincaré sectionS (associatedwith the fast time scale).
To this end, given that the initial system [Eqs. (1) and
(2)] is four-dimensional, we introduce the following
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(a) (b) (c) (d) (e)

Fig. 8 Phase space projection (‘gray,’ ‘solid’) and Poincaré map (‘black,’ ‘.’) associated with D (associated with the slow time scale),
obtained from the slow flow approximation; ‘�’ represents mean-free variables

Poincaré section,

S = {x|x2 = 0, ẋ2 > 0} (17)

with respect to the initial, fast variables x = [x1, x2, ẋ1,
ẋ2]T. Studying the intersections of the orbits of the
dynamical system with the Poincaré section S we
obtain a three-dimensional Poincaré map. For simplic-
ity, we depicted just two-dimensional projections of
this three-dimensional map, namely the ẋ1-x1-plane.
It can be seen that the LTO transitions toward chaotic
oscillations for increasing magnitude of the negative
damping. Analytical predictions obtained from the
slow flow approximation are depicted in Fig. 7. Here,
the evolution of the variables x on the fast time scale
was recovered using Eqs. (4) and (5). Again, the slow
flow approximation is in good agreementwith the exact
numerical simulation, however, a slight shift of the
dynamics appears to be introduced below ξ1 < −0.1.
We conclude that the proposed slow flow approxi-
mation, including the assumptions on the frequency–
energy dependence, is sufficiently accurate to further
characterize the dynamics on the slow time scale.
Figure 8 depicts two-dimensional projections of the
three-dimensional Poincarémaps associatedwith a dif-
ferent Poincaré section D for the slow flow dynamics
[Eqs. (10)–(12)],

D = {a|a2 = 0, ȧ2 > 0}, (18)

with respect to the slowvariables a = [a1, a2, ȧ1, ȧ2]T.
Here, � denotes mean-free variables. Note that the
amplitudes a1 and a2 typically do not have zero cross-
ings. Hence, the steady-state mean value is subtracted
so that one can use the common formulation of the
Poincaré section in Eq. (18) (involving zero crossings).

The slow time scale provides a clearer picture of the
dynamics: The (quasi-periodic) limit torus oscillations
are seen as closed curves in the phase projections
within Fig. 8. The Poincaré map consists of a sin-
gle point for ξ1 = −0.055. Apparently, a cascade
of period-doubling bifurcations takes place until the
chaotic regime is reached. This behavior is consistent
with the results shown in Fig. 5 for the original system,
but occurs slightly shifted for ξ1 < −0.12. In Table 1,
we listed estimations for the first successive period-
doubling bifurcation points and their ratios δi for the
slow flow system. Apparently, the period doublings do
not approach the Feigenbaum ratio (δF ≈ 4.6692) [19],
at least for the slow flow system.

In [14], the chaotic nature of the original system’s
dynamics past the secondaryHopf bifurcationwas con-
firmed by numerically estimated Lyapunov exponents
following [19]. This method is particularly suitable for
smooth systems, while the results for non-smooth sys-
tems (e.g., due to frictional forces) should generally be
taken with caution. The estimation of Lyapunov expo-
nents for this type of systems is still under research,
a summary of different approaches can be found for
example in [20].

4 Analytical investigation of the secondary Hopf
bifurcation

We now focus on the transition from limit cycle oscil-
lations to limit torus oscillations. We seek to estab-
lish analytically the conditions for the emergence of
non-periodic oscillations in the mechanical system of
Fig. 2, and to obtain a closed-form approximation for

2 Chaos was first encountered for ξ1 ≈ −0.15 and ξ ≈ −0.1335
for the original system and the slow dynamics approximation,
respectively.
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Table 1 Estimation of the first period-doubling bifurcations i with the associated self-excitation level ξ1,i and their ratio δi for the slow
flow approximation

i 1 2 3 4 5

ξ1,i −0.105575 − 0.126635 − 0.1320575 − 0.13318 −0.1333425

δi = ξ1,i − ξ1,i−1

ξ1,i+1 − ξ1,i
– 3.8838 4.8307 6.9077 –

the point of the secondaryHopf bifurcation. To this end,
we use perturbation calculus to approximate the fam-
ily of LCOs and analyze its stability. The accuracy and
efficacy of the analytical methodology are evaluated by
comparison against the exact numerical simulation of
the initial problem [Eqs. (1) and (2)].

4.1 Approximation of the fixed points of the slow
flow by means of perturbation analysis

The LCO (time-periodic solution) on the fast time scale
corresponds to a fixed point of the slow flow and is
determined by setting the left hand sides of Eqs. (6)–(9)
to zero. It turned out to be useful to transform the slow
flow by introducing a new set of variables: Instead of
a1, a2, we introduce the new variables ρ = a2/a1 and
τ ∗ (stick-slip transition time) which is uniquely related
to a1 as defined in Eq. (14). With this variable transfor-
mation, the governing algebraic equations determining
the fixed points of the slow flow can be cast into the
form:

0 = κ ρ̂ sin
(
�θ̂

)
+ 1

2
(ξ1 − ξ2) ω̂ ρ̂ cos

(
�θ̂

)
+ 1

2
(ξ1 + ξ2)ω̂ + γ ω̂ deq(τ̂

∗), (19)

0 = κ ρ̂ cos
(
�θ̂

)
− 1

2
(ξ1 − ξ2) ω̂ sin

(
�θ̂

)
ρ̂

+ ω̂2 − κ + γ − γ keq(τ̂
∗) − 1, (20)

0 = 1

2
(ξ1 + ξ2) ω̂ ρ̂ − κ sin

(
�θ̂

)
+ 1

2
(ξ1 − ξ2) ω̂ cos

(
�θ̂

)
, (21)

0 = ω̂2 + 1

2
(ξ1 − ξ2) ω̂ sin

(
�θ̂

)
ρ̂−1

− 1 − κ + κ ρ̂−1 cos
(
�θ̂

)
. (22)

We use perturbation calculus to approximate the
fixed points of this set of transformed algebraic equa-

tions. To this end, we introduce the small parameter
ε which will act as the formal perturbation parameter
of our analysis. To introduce the small parameter we
assume that the coupling and damping terms are small,
scaled according to the following relations:

κ = εκ̄, ξ1 = ε2ξ̄1, ξ2 = ε2ξ̄2. (23)

Recall that the condition of weak coupling is needed to
have closely spaced natural frequencies in the mechan-
ical system of Fig. 2: The ratio of the natural fre-
quencies in the linear case when only sticking contact
occurs equals

√
1 + 2κ . A typical value for κ is 0.1

leading to about 10% difference in the natural frequen-
cies. Moreover, the secondary Hopf bifurcation occurs
already for very light damping, with typical values for
ξ1 of − 0.035 and for ξ2 of 0.011. Thus, it holds that
‖ξ1,2‖ � κ � 1, as defined in Eq. (23). It should be
emphasized that nonlinearity is not assumed as weak,
i.e., γ is considered to be a system parameter of order
O(ε0). Yet we impose the condition γ ≤ 1 which
is necessary to have positive stiffness values for all
springs in the model (Fig. 2).
We seek an approximation to the fixed point in terms
of τ̂ ∗, ρ̂, �θ̂ and ω̂, where �̂ denotes fixed point quan-
tities. In accordance with regular perturbation theory
(see, e.g., [17]), these quantities are expanded in regu-
lar power series in ε, of the form

f = f0 + f1ε + f2ε
2 + O(ε3) . (24)

As will be shown later, reasonable results are achieved
already for a second-order approximation (up to and
including the ε2 term). The power series and Eq. (23)
are substituted into Eqs. (19)–(22). The equations
contain several nonlinear terms, namely, sin(�θ̂),
cos(�θ̂), ωdeq(τ ∗), keq(τ ∗), and 1/ρ. In accordance
with perturbation calculus, each nonlinear term is
expanded into a Taylor series of sufficient order, and
the power series of the unknowns (Eq. (24)) is substi-
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tuted. The unknown coefficients of the power series are
then determined successively by matching (balancing)
the coefficients at each order separately, starting with
the leading-order O(ε0) terms. With this, the follow-
ing second-order approximation of the fixed point of
the slow flow equations is obtained:

τ̂ ∗ = π −
√

−2π ξ̄1

γ
ε + O(ε3), (25)

ρ̂ = 1 +
⎛
⎝ ξ̄21

κ̄2 − ξ̄1 ξ̄2

2 κ̄2 − 4

3κ̄

√
−2ξ̄31π

γ

⎞
⎠ ε2

+ O(ε3), (26)

�θ̂ = ξ̄1

κ̄
ε + O(ε3), (27)

ω̂ = 1 + O(ε3). (28)

As expected, non-trivial fixed points only exist for ξ1 ≤
0.

4.2 Calculation of the secondary Hopf bifurcation
point

Clearly, the limit torus on the fast time scale corre-
sponds to a periodic orbit on the slow time scale, and
the bifurcation of the limit cycle to the limit torus corre-
sponds to a secondary Hopf bifurcation. Consequently,
on the slow time scale, this point is associated with
(primary) Hopf bifurcation of the fixed point of the
slow flow equations given by Eqs. (25)–(28). Hence, to
locate this point and establish conditions for its exis-
tence, it suffices to analyze the asymptotic stability of
the approximated fixed point of the slowflow and prove
that the conditions forHopf bifurcation hold at the point
of instability of the fixed point. This is done in the con-
ventional way, based on the eigenvalues of the Jaco-
bian with respect to the slow flow equations (10)–(12).
Accordingly, the characteristic equation governing the
eigenvalues, λ, can be explicitly computed by imposing
the following condition,

1

2

∣∣∣∣∣∣
− j1 − d1 − λ −d2 c − κ̄ s −κ̄ ρ̂ c + ρ̂ d2 s
−d2 c + κ̄ s −d1 − λ κ̄ c + d2 s

κ̄
(
ρ̂ + ρ̂−1

)
c − d2

(
ρ̂ − ρ̂−1

)
s+ j2 −κ̄

(
1+ρ̂−2

)
c+d2

(
1−ρ̂−2

)
s d2

(
ρ̂+ρ̂−1

)
c+κ̄

(
ρ̂−ρ̂−1

)
s−λ

∣∣∣∣∣∣=0,

where the following abbreviations have been intro-
duced, d1 = 1

2

(
ξ̄1 + ξ̄2

)
, d2 = 1

2

(
ξ̄1 − ξ̄2

)
, s =

sin
(
�θ̂

)
and c = cos

(
�θ̂

)
, together with the addi-

tional notations,

j1 = γ
∂a1deq (a1)

∂a1

∣∣∣∣
a1=â1

= γ
(cos(τ̂ ∗) − 1)2

π
= 4γ

π
+ 4ξ̄1ε

2 + O(ε3),

j2 = γ a1
∂keq (a1)

∂a1

∣∣∣∣
a1=â1

= −γ
2

(
cos(τ̂ ∗) − 1

) (
cos(τ̂ ∗)2 − 1

)
π sin(τ̂ ∗)

= 4

√
−2γ ξ̄1

π
ε + O(ε3).

The solution of the characteristic equation yields the
following second-order analytical approximation for
the eigenvalues:

λ(1) = −2 γ

π

−
(
(9 ξ̄1+ξ̄2) γ −π κ̄2−2 κ̄

√
−2πγ ξ̄1

)
4 γ

ε2

+ O(ε3), (29)

λ(2,3) = ±i

√
2

2
κ̄ ε

− −(ξ̄1 − 3ξ̄2)γ + π κ̄2 + 2 κ̄
√

−2πγ ξ̄1

8 γ
ε2

+ O(ε3). (30)

Recalling that ξ1 < 0, one can infer that λ(1) remains
real-valued, whereas λ(2,3) appear as a complex-valued
pair. Thus, the sought bifurcation occurs when λ(2,3)

crosses the imaginary axis. This is the necessary con-
dition for the realization of the Hopf bifurcation; it can
also be shown (not reported here) that the additional
sufficient conditions are also met [21]. So indeed a
Hopf bifurcation occurs at the point of instability of
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(a) (b)

(c) (d)

Fig. 9 Critical damping ξ1,Hopf at the secondary Hopf bifurca-
tion: a dependence of analytical result on out-of-phase damping
ξ2 and coupling-to-nonlinearity ratio κ2/γ ; b–d comparison of
the analytical result (‘pink’) to exact result determined by direct
numerical simulation of the original equations ofmotion [Eqs. (1)

and (2)] (‘black’) under variation of ξ2, κ and γ . Nominal param-
eters are set to ξ2 = 0.011, κ = 0.1, γ = 0.5. The point of diver-
gence ξ1,div was determined by numerical simulation of Eqs. (1)
and (2). (Color figure online)

the fixed point and a new limit cycle oscillation is gen-
erated in the slow flow dynamics which corresponds to
the limit torus oscillation in the fast dynamics.
The condition 	{λ(2,3)} = 0 leads to the following
value for the critical damping,

ξ̆
start/end
1,Hopf = 3ξ2

(
1 − ν

(
1 ∓ 2

√
2

3

√
1 − 3

ν

))
(31)

with ν = πκ2

γ ξ2
. (32)

Apparently, besides the expected transition from limit
cycle to limit torus, another transition back to a sta-
ble cycle is possible. This will be further discussed
in the next subsection. It is interesting to note that
the bifurcation value ξ̆

start/end
1,Hopf is a function of the out-

of-phase damping ξ2 and the coupling-to-nonlinearity-
ratio κ2/γ . This relation is illustrated in Fig. 9a. Solu-
tions for ξ̆ start/end1,Hopf only exist for ν ≥ 3, i.e., if κ2

γ
≥ 3ξ2

π
.

This means that the positive damping of the (out-
of-phase) higher-frequency mode must be sufficiently
small (for given γ and κ) for this bifurcation to occur.
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(a) (b) (c)

Fig. 10 Examples for which the limit cycle regains stability
via another secondary Hopf bifurcation: a κ = 0.074, ξ2 =
0.011, γ = 0.5, b κ = 0.21, ξ2 = 0.011, γ = 0.5, c γ =

0.7, κ = 0.1, ξ2 = 0.011. Analytical result in ‘pink,’ numerical
reference in ‘black.’ The parameter sets are indicated in Fig. 9

4.3 Assessment of the analytical results against the
exact numerical simulations

We now compare the previous analytical results to the
results of exact numerical simulations. The location of
the secondary Hopf bifurcation, in terms of the criti-
cal damping value ξ1,Hopf , is illustrated in Fig. 9. The
corresponding analytical result is given in Eq. (31).
As throughout this work, the numerical reference was
obtained by simulation of the initial system [Eqs. (1)
and (2)].
Overall the analytical result is in good agreement with
the numerical reference. Deviations occur at the ranges
where the assumptions underlying the perturbation
approach are violated. More specifically, the assump-
tion concerning the hierarchy of the orders of mag-
nitude, ‖ξ1,2‖ � κ � γ (cf. Eq. (23)) must hold
to ensure reasonable accuracy. For instance, the ana-
lytical results are accurate for ξ2 < 0.02 (Fig. 9b)
and ξ2 < κ < 0.2 (Fig. 9c). In contrast, if ‖ξ1‖ or
ξ2 approach the order of κ , the accuracy is poor (as
expected). Similarly, if κ approaches the order of γ

(order ε0), the analytical result is no longer valid.
As noted earlier, the analytical approximation yields
two critical values of ξ1, as expressed in Eq. (31). The
onewith smallermagnitude, ξ̆ start1,Hopf , corresponds to the
point where the limit cycle becomes unstable giving
rise to a stable limit torus. The one with larger magni-
tude, ξ̆ end1,Hopf , refers to another secondary Hopf bifurca-
tionwhere the limit cycle regains stability.As seen from

these results, for a wide range of parameters, ξ̆ end1,Hopf
lies beyond the point of divergence, ξ1,div, and, there-
fore, it is never reached. The point of divergence and
the corresponding gray shaded area indicate parameter
ranges leading to unbounded amplitude growth based
on numerical simulation of Eqs. (1) and (2). For other
parameter combinations, however, the secondary Hopf
bifurcation can be reached, e.g., for 0.6 < γ < 0.8 in
Fig. 9d, or for κ ≈ 0.074 and κ ≈ 0.21 in Fig. 9c. The
resulting bifurcation diagram is illustrated in Fig. 10
for three different parameter sets. Again, reasonable
agreement between the analytical results and numeri-
cal solutions is achieved with respect to the bifurcation
point.

5 Conclusions

We considered a system of twoweakly coupled oscilla-
tors, with an elastic dry friction element attached to one
of the oscillators, subjected to negative viscous damp-
ing of the symmetric in-phase and positive damping of
the out-of-phase motion. When increasing the magni-
tude of the negative damping, thewell-understood limit
cycle oscillations lose stability and bifurcate into limit
torus oscillations. For some parameter ranges, an addi-
tional secondary Hopf bifurcation may occur beyond
which the limit cycle regains stability. In other cases,
the quasi-periodic oscillations further bifurcate into
chaotic dynamics. The analysis of the slow flow in the
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neighborhood of the limit cycle revealed that chaos is
reached via a cascade of period-doubling bifurcations.
Assuming weak coupling, of O(ε), (leading to closely
spaced natural frequencies) and even weaker damping,
of O(ε2), we derived an analytical approximation of
the limit cycle using perturbation calculus. A stabil-
ity analysis provided a closed-form expression for the
point of the secondary Hopf bifurcation and conditions
for its existence. In particular, it was established that
non-periodic oscillations occur for sufficiently weak
coupling and sufficiently strong nonlinearity. The qual-
ity of the analytical results was thoroughly validated by
comparing them against exact numerical simulations of
the original equations ofmotion of the initial dynamical
system.

The key challenge for deriving the closed-form
approximations was the treatment of the dry friction
nonlinearity (Jenkins element). To tackle this, a change
of variables was carried out, involving the normalized
stick-slip transition time. As the Jenkins element is
commonly used to model nonlinear hysteresis (includ-
ing tribology andmaterial behavior),webelieve that the
proposed approach will be instrumental to analyze sys-
tems far beyond the one considered in this work. Here,
we anticipate that our results will trigger more efforts
within our scientific community to derive analytical
approximations in order to gain deep understanding
of parameter dependencies, in addition to system-
atic numerical simulation. This will help in predictive
design of oscillating systems with dry friction under-
going instabilities, LCOs, LTOs, and chaotic motions.
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