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Abstract This paper provides a redesigned version of
the Standard High Gain Observer (SHGO) to cope with
the peaking phenomenon occurring during the transient
periods as well as the sensitivity to high frequency mea-
surement noise. The observer design is performed for a
class of uniformly observable systems with noise free
as well as noisy output measurements and the resulting
observer is referred to as Non Peaking Filtered High
Gain Observer (NPFHGO). The NPFHGO shares the
same structure as its underlying SHGO and differs only
by its corrective term which is still parameterized by a
unique positive scalar up to an appropriate expression
involving nested saturations. Of a fundamental interest,
the power of the scalar parameter does not exceed one
unlike in the case of the SHGO where this power grows
from 1 to the system dimension. Moreover, it is shown
that the equations of the NPFHGO become identical to
those of the SHGO after a transient time horizon that
can made arbitrarily small for sufficiently high values
of the design parameter. A particular emphasis is put on
the case of systems with noisy output measurements.
It is shown how a multiple integrator of the corrupted
outputs can be cascaded with the original system lead-
ing to an augmented system included in the class of
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systems for which the NPFHGO has been designed.
The performance and main properties of the NPFHGO
are highlighted and compared to those of its underly-
ing SHGO through simulation results involving a single
link robot arm system.
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1 Introduction

An intensive research activity has been devoted to the
observer design for uniformly observable systems over
the last four decades (see for instance [1-10] and ref-
erences therein). A particular emphasis has been put
on the Standard High Gain Observer (SHGO) design
for fundamental as well as simplicity purposes [5].
Indeed, SHGO have been extensively used for the out-
put feedback control design of nonlinear systems (see
[11] and references therein). The structure of a SHGO
is very simple since it consists in a copy of the system
dynamics up to a corrective term given by the product
of the observer gain by the output observation error.
There are two features of the SHGO that are worth
to be mentioned. Firstly, the observer gain is param-
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eterized by a unique design parameter, i.e. a positive
scalar denoted 6, which has to be taken generally high
enough to ensure the underlying observation error con-
vergence. Secondly, the design parameter 6 intervenes
with positive powers ranged from one to the system
dimension, commonly denoted n. These features could
be essentially crucial from numerical implementation
point of views for systems with high dimensions when
relatively high values of 6 are required. Moreover, there
are two main issues of SHGO that have to be pointed
out, namely the peaking of the observer state variables
during the transient periods and the observer sensitivity
to the output measurement noise.

Several solutions have been recently proposed to
alleviate the sensitivity to measurement noise of SHGO
[12—-17]. A redesigned version of SHGO has been pro-
posed in [15] for a class of nonlinear systems of dimen-
sion n. Though the observer dimension is equal to
2(n — 1), the underlying observer gain is parameter-
ized by a scalar design parameter the power of which
is limited to 2. Such a design feature allows to enhance
the observer performance with respect to the ubiqui-
tous measurement noise. The same objective has bee
investigated in [14] using a cascade observer the dimen-
sion of which is equal to 2n. More specifically, the
observer consists in cascading two subsystems of the
same dimension as the original system. The first sub-
system is nothing than a copy of the original system
with a simple correction term which linearly depends
on the state of the second subsystem, while the sec-
ond subsystem is a linear filter driven by the output
observation error, namely the error between the output
measurement and an output prediction provided by the
first subsystem.

The peaking phenomenon is a challenging problem
that has been recently investigated [18-22]. A suitable
redesign of the SHGO has been proposed in [19] lead-
ing to an observer of the same dimension as the orig-
inal system where the power of the observer gain is
limited to one. The observer design proposed in [15]
has been reconsidered in [20] to deal with the peak-
ing phenomenon by properly using nested saturation
functions.

In the present paper, one aims at investigating the
design of an observer with filtering capabilities while
allowing a significant reduction of the peaking phe-
nomenon. Such observer shall be referred to as Non
Peaking Filtering High Gain Observer (NPFHGO) and
its design shall be achieved in a context accounting for

@ Springer

the free noise output case and the noisy output case as
well. The unifying of both cases is made possible by
considering a class of uniformly observable systems
where the expression of the outputs only depends on
the system state. Such outputs may coincide with the
system real outputs if the latter are assumed to be noise
free. In the case where the real measurements are noisy,
the system outputs correspond to a filtered version of
the real measurement outputs, i.e they are the outputs
of an appropriate filter, namely a multiple integrator,
which is a part of the system and the entry of which are
the real measurement outputs. Moreover, two unknown
essentially bounded functions are involved in the class
of systems. The first one is treated as a disturbance
while the second one allows to identify the case where
the class of considered system involves a filter that pro-
vides the system outputs.

The main motivation behind the consideration of the
above class of systems is to move away in a first step
the problem dealing with the observer sensitivity to
noise and to focus only on the problem dealing with
the peaking phenomenon. Indeed, a Non Peaking High
Gain Observer (NPHGO), the structure of which is very
similar to that of its underlying SHGO, is designed for
the above class system. The main difference between
both observers lies in the corrective term of the NPHGO
which is expressed through nested saturation functions.
More specifically, the corrective term is parameterized
by a scalar design parameter 6 the power of which
does not exceed one. Two fundamental properties of
the NPHGO have to be emphasized. The first property
deals with the fact that under an appropriate assumption
on the essential bound of the second unknown func-
tion, it is shown that the state estimate is bounded dur-
ing the transient periods by a function «(6) such that
limg_, » (@(0)/6) = 0. The second property consists
in the fact that the NPHGO equations become identical
to those of its underlying SHGO after a transient time
horizon that can be made arbitrarily small by choosing
sufficiently high values of the design parameter 6.

It is worth noticing that the NPHGO becomes a
NPFHGO when it is designed for systems with filtered
outputs. Such an issue shall be fully detailed by con-
sidering a class of systems with noisy outputs which
shall be cascaded with an appropriate multiple integra-
tor of the outputs in such a way that the augmented
system is included in the class of systems for which a
NPHGO can be designed. Then one shall show how the
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so designed NPHGO is specialized and performs as a
NPFHGO.

The paper is organized as follows. The problem
formulation is presented in Sect. 2 with a particu-
lar emphasis on the considered class of systems and
the SHGO design assumptions. The equations of the
SHGO are briefly presented and its main properties,
established in [23], are recalled. The design of the
NPHGO is detailed in Sect. 3 with a particular emphasis
on the appropriate nested saturation functions involved
in the observer gain. The main steps of the observer
design are put forward through five propositions and
the main properties of the proposed NPHGO result-
ing from these propositions are summarized in a theo-
rem. In Sect. 4, the design of a NPFHGO for a class of
systems with noisy outputs is emphasized. It is shown
how a system with noisy outputs can be augmented
by a multiple integrator of these noisy outputs in such
a way that the augmented system is included in the
class of systems for which a NPHGO can be designed.
Then, the equations of the underlying NPHGO are
derived and it is shown how this observer acts as a
NPFGHO, namely it significantly reduces the peaking
of the state variables during the transient periods while
improving the sensitivity to noise of the observer. In
Sect. 5, the performance of the proposed NPFHGO
and its main properties are highlighted and compared
to those of a SHGO through an example dealing with
a single-link robot arm system. Finally, concluding
remarks are given in Sect. 6. For clarity purposes, the
proofs of all propositions are detailed in Appendices
A-E.

Throughout the paper, [; denotes the k x k identity
matrix; || - | denotes the euclidian norm; for any Sym-
metric Positive Definite (SPD) matrix Q, )L(éw) (resp.

)»(Qm)) denotes its maximum (resp. minimum) eigen-
value and og =,/ )»(QM) /A(Q’") is its conditioning num-
ber. More specifically, one defines the following matri-
ces.

0 I

A =0, Ak:(O 0

)eRka for k> 2,
ey
Cr=(10...0) e R* for k> 1, )
Bii, €RY, k=2, 1<ko<k with
By ky(ko) =1 and By k, (i) =0,
iefl,....k}\ {ko}, 3)

T - A
Te=(y...m) ., A=A —TiCy for k
> 1, )
U= (1...1) eRF for k>1, )

1 1

The parameter 0 involved in the expression of A (6)
is a real positive number.

On other aspects, let n > 1 be a positive integer and
leté" = (& ... &) e R"with§ e R,i =1,...,n;
then for any integer 1 < k < n, one defines g i € R¥
as follows

gl =(&.. . &)eR, k=1,...,n (7

Finally, one recalls a useful property: If Ay isan x n
Hurwitz matrix, then there exist a k x k SPD matrix P
and a positive real uy such that

PeAy + Al Pe < —2pk . 3)
2 The problem formulation
One aims at providing a NPFHGO for a class of dis-

turbed nonlinear systems described by the following
equations

X = Apx +@(u, x) + By e(t) 9)
V= Cx +v(t) = x1 + v(1)
where x = (xl ... Xp )T € IR" denotes the state of the
system with x; € R fori = 1,...,n; u € IR denotes

the system input and y € IR denotes the output of the
system, the matrices A,, C, and B, , are defined as
in (1)-(3) with k = k9 = n, v(¢) is the output noise
and the function ¢ : [0, +00[ +— IR denotes the sys-
tem uncertainties and may depend on the input and
uncertain parameters. It shall be treated as an unknown
function which explicitly depends on time ¢ for # > 0.
Finally, ¢ (u, x) € IR”" denotes a nonlinear vector field
and each of its n components has a triangular struc-

ture with respect to x, i.e. ¢;(u,x) = ¢;(u, x;) for
i =1,...,n where x; is the sub-vector of x as defined
by (7).

The class of systems (9) is included in a class of
systems considered in [23] for which a SHGO has
been designed under appropriate assumptions usually
used in the context of high gain observer design. As
stated above, the main motivation behind the NPFHGO
design is to cope with the peaking phenomenon occur-
ring during the transient periods and to improve the
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sensitivity of the observer with respect to output mea-
surements noise. For this end, one shall proceed as fol-
lows. First, one shall introduce a large class of systems
which includes system (9) and where the expression
of the output only depends on the system state and
hence does not explicitly depend on the noise. A high
gain observer that copes with the peaking phenomenon,
referred to as NPHGO, will be designed for this class
of systems and the main properties of the underlying
observation error will be put forward. Then, one shall
come back to system (9) to prove that it is included
in the considered large class of systems and hence the
proposed design of the NPHGO can be mimed lead-
ing thereby to a NPFHGO which copes not only with
the peaking phenomenon problem but also with the
observer sensitivity to noise.

Let us now consider the following class of systems
which shall be used to design the NPHGO

{J‘C = Aux +@(u, x) + By, ,6(t) + Bn,iww(t)

y=Cux = x1 (10

where 1 <i, <n—1,B,,;, € R"isadefinedasin(3)
withk =nand kg = iy; w : [0, +00[ — IR s atime
varying unknown function the consideration of which
shall be motivated later. All the other variables involved
in system (10) keep the same meaning as in system
(9). Notice that to avoid the redundance of variables,
the same notation is used for the state variables and
dimensions of systems (9) and system (10), i.e. x and n.
However, both systems are different since they assume
different structures and the fact that the class of systems
(10) includes systems (9) will be detailed later. Let us
now focus on system (10).

The NPHGO observer design will be performed
under the following usual assumptions.

Al. The state x(¢) and the control u(¢) are bounded, i.e.
x(t) € Xand u(t) € U where X C R" and U C
IR are compact sets. More precisely, there exists a
positive constant py, such that V¢ > 0, |x;(¢)] <
pm,i=1,...,n.

A2. The functions ¢ (u, x) fork = 1, ..., n are Lip-
schitz on X with respect to x uniformly in u, i.e.
fork =1, ..., n, one has

AL, > 0; Vu e U;V(x,x) € X x X,
k

o, &) — o, x)l < L Y%l (1)
i=1

where X; = X; — x;.
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A3. The unknown function ¢ is essentially bounded,
i.e.
38, > 0; Ess sup|e(t)| < 6. (12)
t>0
A4. The unknown function w is essentially bounded,
ie.
35y, > 0;  Ess sup |w(?)| < 8y (13)
>0
Since one will use saturation technics to cope with the
peaking phenomenon, let us define the following satu-
ration function

Vz € R, sat-(z) =rsat(z/r)
if |z] <7

if|z] >r "’ (14)

)z
| 7 sign(z)
where r > 0 is a positive real and sign(-) is the usual

signum function.
Let

R > py, (15)

be a positive real where pys is defined as in Assump-
tion Al, be a positive real. One saturates the system
nonlinearities ¢;’s for k = 1, ..., n as follows

L Xi) = @i (u, satg(xy), ..., satr(x;)).
(16)

@} (u, x1, ..

According to Assumption A2 and from the fact that
the saturation function (14) is globally Lipschitz with
a Lipschitz constant equal to 1, the functions ¢;’s for
i=1,...,n satisfy

YueU; VY&, x)eR"xR", |¢} (u,)?l,...,)?k)
k
—gp xi )| < Ly | (17)
i=1
A constant bound can be derived for |} (u X1y oen, )?k)
— (pi (u, x1, ..., x)|. Indeed, one has

lop (w, 1, X)) — @ (u, x1, ... xp) |
k k
<Ly Z Isatg(X;) — satgr(x;)| < 2Ly Z R

i=1 i=1

<2nLyR. (18)
where
L, = L;. 19
o= max Ly (19)

Two upper bounds can be derived for the norm
of the error vector of the saturated nonlinearities
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@ (u, x, x) EY * (u )?) — ¢* (u, x) using either
inequality (17) or (18). Indeed, the first bound can be
derived using (17) as follows

k n
G, 0] < Ly Y 15| < Ly Y |5

i=1 i=1
SﬁL¢||il|v k=1,,n, (20)
and hence
@* (u, X, x)|| < nLylX|l. 20

A constant bound can be derived using (18). Indeed,
one has

9", %, 0)| <+/n max |@}(u, X, x)|
1<k<n
<2ny/nLyR. (22)

Now, one postulates that the observer redesign can be
handled for the following class of systems.

{x =A,x + <PS(M, x) + Bn,ns(t) + Bn,iww(t)

y==Cux =x1 @9

where ¢* (u, x) = (¢ (u, x1) ... (pfl(u,x))T. Indeed,
since system (10) coincides with system (23) on X, the
observer that shall be designed for system (23) could
be used in order to estimate the trajectories of system
(10) which always lie in X. A class of MIMO systems
which coincides with system (23) in the single output
case and in the absence of w(¢) has been considered in
[23] where a SHGO has been designed for this system.
The observer equations for system (23) specialize as
follows

X = Ak +¢ . %) = 0A O (Caf — ). £ (10) € X,
(24)

where x € IR” denotes the state estimate, I';, is defined
asin (4) with k = n and the underlying coefficients y;’s,
i = 1,...,n are chosen such that the matrix A,, =
A, — T, C, is Hurwitz; A, (0) is a diagonal matrix
defined as in (6) with k = n and 6 > 1.

Let ¥ = X — x be the observation error associated
to the SHGO (24). From (23) and (24), one has

X= A +¢u, %, x) —0A O, Ck

- Bn,ng(t) - Bn,iww(t)» (25)
where @°(u, x,x) = ¢*(u, x) — ¢*(u, x). Proceed-
ing as in [23], one can straightforwordly show that the

observation error vectors X, (¢) fork = 1, ..., n, where
X, is defined as in (7), satisfy the following property

30y > 0; VO > 0y; Yu € U;Vx(ty) € X; Vt > 1y,

15,01 < op, (641 P05 |

5 S
T grTE T ﬁneiw+1—k)’ (26)
with
Hn
Pn = —an 7)
)
218

and where the SPD matrix P, and the positive real w,
are given by equation (8) with k = n and A, = A,
given by (4), §, and §,, are the essential upper bounds
of |e(t)| and |w(¢)| given in Assumptions A3 and A4
respectively, 6p = max (1, nL(p/,Bn), L, is the Lips-
chitz constant given by (18) and o p, is the conditioning
number of the matrix P,.

Remark 2.1 According to inequality (26), in the absence
of the unknown function w(?), i.e. when §,, = O,
the asymptotic observation errors related to X;, k =
1, ..., n, can be made as small as desired by choosing
0 sufficiently high. Indeed, in this case, the underlying
asymptotic ultimate bounds is equal to /#' Since
k < n, this bound is always lower or equal than ﬁ‘i‘e
which indeed tends to O when 6 goes to oco. In the case
where §,, # 0, the above property is no longer true
unless an additional constraint is made on §,,. Indeed,
if §,, # 0, then one can easily check that the result-
ing asymptotic ultimate bound can be made as small as
desired if the following condition on §,, is satisfied

Su

<
w — on—iw ?

38, >0; &

(28)

where 6 > 6y. More precisely, under condition (28),
inequality (26) specializes as follows

) B Bty 8 +38
1%l < o, (ek lemot IO)IIX(IO)IIJr#),
(29)

Recall that in condition (28) the variable n denotes
the dimension of the considered class of systems and
the variable i,, is the rank of the state component the
dynamics of which explicitly depends on w(?).

The above SHGO (24) particularly suffers from the
peaking phenomenon which takes place along the tran-
sient periods. In the following, one will show how to
address the underlying problem appropriately.
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3 Design of NPHGO

The NPHGO is a redesigned version of the SHGO
(24), which significantly reduces the peaking of the
observer state variables during the transient periods.
Such a performance improvement is achieved by a suit-
able modification of the observer through the consid-
eration of adequate saturation functions as it shall be
detailed later, after providing the observer equations.
Before giving the equations of the proposed observer,
one introduces the following definition which is needed
for the observer design.

Definition 3.1 Let A, and '), be respectively the n x n
matrix and the n column vector defined as in (1) and
(4) with k = n. The n coefficients y;’s of the vector

I'p, i = 1,...,n are said to satisfy the strong stabil-
ity requirement with respect to A, if and only if for
eachk € {1, ..., n}, the matrix Ay defined as in (4) is
Hurwitz.

Notice that a similar notion has been introduced in
[20] but the structures of the matrices Ay are different
from those given by (4). Moreover, it is worth men-
tioning that some algorithms allowing to specify the
appropriate y;’s, i = 1, ..., n, according to the strong
stability requirement given in Definition 3.1, are avail-
able in [24]. An approach based on one of these algo-
rithms shall be proposed in Sect. 3.2.

3.1 Equations of the observer

The equations of the proposed NPHGO can be written
as follows

F= AR+ u, %) —0HE), o) eX, (30)

where £ = (%...%) € R, % = & —
x1, 6 > 0 is a design parameter and H(X]) =
(HiE) ... Hy(81))" € R with Hi(F)) € R for
i=1,...,n,is defined as follows

Hi(x1(t)) = sat, (y1%1(¢t)) and

Hi(51(1)) = sat, (e_y—iHi_l(x1<r>>> for

i—1

i=2....n. 31)

where the y;’s,i = 1, ..., n satisfy the strong stability
requirement with respect to A,,, given in Definition 3.1;
0 is a design parameter and is chosen sufficiently high
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in particular to satisfy 6 > %, i=2,...,n;v>0
is also a design parameter the choice of which shall be
discussed later.

According to the expressions of the corrective terms
H;’s,i =1, ..., nandbearing in mind the definition of
the saturation function given by (14), one can check that
the expressions of these terms depend on the magnitude

of |x1(¢)| and they can be expressed as follows

o 1H10)] >% — H(E (1)

= v sign(% (1)) U, (32)
o [Xi()] = — = Hxi()
V0"
= A O3 (1), (33)
o Vkell,...,n—1},
- V
J/k+19k < |x1()| < W —
- AT O
Hne) = (v si’fgn(ah(t))Un_k) ’ (34)

where (I'yy, T'x), (Uy, Uy—x) and (A, A,) are given by
(4), (5) and (6), respectively.

Before stating the results which put forward the main
properties of observer (30), one shall introduce some
definitions and notations which shall be used through-
out the analysis of the observer properties. Indeed, one
defines the following partition {Sk}—1<k<n—1 on the
interval [0, 2R] where R is defined as in (15),

S =12.2R],
Y1
v v

Sk = , 1,
Vi205 17y 10K
k=0,...,n—2 and

v
8}171 = [07 ]/ 0”_1] . (35)

Each S; shall be referred to as a sector. For each
k e {—1,...,n — 2}, Skt is the lower sector of S.
Similarly, for each k € {0,...,n — 1}, S is the
upper sector of Si. In the remaining of this section, one
assumes without loss of generality that |X;(fp)| € S—1.

Now, one shall put forward the time instants at which
|X1(t)| enters and leaves the different sectors Sy since
the initial time instant #y by setting the following defi-
nitions (see Fig. 1).

o If |x1(t)| leaves Sip—; and enters Sy for k =
0,...,n—1,forthei’thtime, at a finite time inst'ant,
then such a time instant shall be denoted by t,f’_)l X
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Fig.1 Evolution of |x| (¢)| through the sectors Sy with the asso-
ciated time instants of crossing

and one shall state that t,@l ¢ €xists. According to
this definition, one has

v

v ~ ()
|x1(l ) > ——= and [X1({ 2 )= ——,
Lk Yk k-LE Vir160%

+16

with 17 = timy o (17, , — ) where h > 0

is a positive real. More precisely, the time instant

tlgljl’ « 18 the time instant at which | X1 (¢)| enters S.
e Similarly, if |x{(¢)| leaves Sy and enters Si—i

for k =0, ...,n—1,forthei’thtime ata finite time

instant, then such a time instant shall be denoted by
t,E',)( | and one shall state that t,fl,)(_l exists. Since
|X1(t)| is continuous, one shall a(iopt the following
definition,

- i)+
and |x1(z,5f,)(_1)| >

v
|xl(tkk 1 )| = — >
e+10%

v

je+16%
with t,i l){+1 = limy_,0 (t,i,){ 1+ h) where h > 0
1s'a positive real. More precisely, the time instant
t,g,)(_ | is the time instant at which |X; (1)| leaves S.
In the sequel, one shall state a set of propositions
before giving the main theorem where the main prop-
erty of the observation error associated to system (23)
and observer (30) is given. In all these propositions,
system (23) is assumed to satisfy Assumptions A1-A4.
Now, one states the following proposition the proof

of which is given in Appendix A.

Proposition 3.1 Assume that |x1(ty)| € S—1. Then,

6)) tﬁll)’o > 0 exists with limg_, oo (tﬁll)’o — t0> =0,

i) 3 o, > 0 vr <t ol < o), with

limg_, oo (a_l,w /9) —0.

The behaviour of |x(¢)| for t > t( ) o is detailed

by four propositions which are stated in what follows.
The first of these propositions can be interpreted as
a generalization of Proposition 3.1 since it details the
evolving of |x1(f)| from the sector S_ to the sector
Sp—1. Its statement is given below and its proof is given
in Appendix B.

Proposition 3.2 Assume that |x|(ty)| € S—1. Then, for
any k € {0, ...,n — 1}, one has
) =0

.. 1 1 ~ 1
(i) 3oy o > 0V < 10 L IEON < o)

with limg o (e, ,/6) = 0.

(1) t,il_)l ¢ > 0 exists with limg_, (t,ﬁl_)l P

According to Proposition 3.2, |x1 (¢)| will successively
leave the sector Sy _1 to enter S fork =0, ..., n— 1.
This in particular means that |x (¢)| will enter the sector
S,_1 at the time instant t(l_)2 41 and one has

1 = .
vt < tli—)Z,n—l’ IX®I < ,(z )2 _19 With
- (M) _
Jim (an—2,n—1,0/0) =0. (36)

The time evolution of |xi(¢)| in the sector S, is
described in the following Proposition the proof of
which is given in Appendix C.

Proposition 3.3 If trgl—)l,n—Z exists and if the bound §,
of w(t) given by Assumption A4 satisfies condition
(28), then one has

~; =0 where t(l)l = (1) —

1
(i) limgo0 7, s

(1)
tn 2n71’

1
(i) 3oy, Ve < L IFON < ey,

with limg_, 5o (aéljl’nizgg/@) =0.

Notice that the statement in Proposition 3.3 deals with
the case where t( ) 4_n €xists. The non existence of

such a time 1nstant means that for t > t,(ll_)z a1

|X1(2)| still evolve in S,,_; and never leaves it. In
such a case and according to (33) one will have for
all + > t(l)zn L HGD) = A I, % and the equa-
tions of observer (30) will c01nc1de with those of
the SHGO (24). If the time instant t( )1 -2 exists,
ie. |X1(2)| leaves S,_1 and enters Sn_z, then accord-
ing to Proposition 3.3, the time period of the stay-
ing of |X1(¢)] in S,—; tends to zero when 6 goes
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to infinity. Moreover, the vector of observation error
remains bounded by oz,gl)l a2 forallz < t( )1 2

with limy_s oo ( ,(11)1 n_2’9/0> = 0. The behaviour of

|X1(t)| for t > t( ) n_o 18 detailed in the following

proposition the proof of which is given in Appendix D.

Proposition 3.4 If1\", |, exists and if the bound 6,
of w(t) given by Assumption A4 satisfies condition
(28), then there exists k € {1, ..., n — 1} such that

@) t 1 i exists with limg_, oo r,f | = 0 where r,f )1 =

(2) (€9
UGk — k=1
(1)

Gi) 3o, , > 0: Ve < 12 IFON < o)), with
limg— oo (o, ,/6) =0.
According to Proposition 3.4 and in the case where
t,EL)]’nfz exists, there exists a sector S;_; with k €
{1, ..., n— 1} which is such that, when | x| (¢)| reaches
and enters this sector (at the time instant t,E 1,2 - itstill
evolve in this sector during a time period which tends to
0 when 6 goes to infinity. After this time period, |x(?)|
does not enter the upper sector Si_ but it comes back
to the lower sector Sy at the time instant tlgz)l - Recall

that according to the adopted notations, t( )1 & corre-

sponds to the time instant at which |x(¢)] leaves Sk—1
and enters Sy for the second time bearing in mind that
the existence of t,il_)l’ & (.e. the time instant where the
same scenario occurred for the first time) has already
been established by Proposition 3.2. An illustration of
Proposition 3.4 is given in Fig. 1.

Remark 3.1 Accordlng to Proposition 3.4, tk 1 © may
exist fork € {1,...,n — 1}. It is indeed shown in the
proof of this proposition that k cannot be equal to zero,
ie. t(le)’o does not exist. Otherwise said, it is shown that

|X1(t)| never come back to S_; after the time instant

(1) o- This also means the sequence t" i 0} is finite

and reduced to t( )

Remark 3.2 It should be emphasized that the situation
of |x1 ()| at the time instant t,ﬁz_)l ¢ 18 similar to its situa-

tion at the time instant t,El)l - Hence, the time evolution

t()

evolution after the time instant ’/E—)l « Which has been

detailed in Propositions 3.2-3.4 . According to these
Propositions and bearing in mind Remark 3.1, |xX{(¢)]
will evolve in the sectors Sy, ..., S,—1 while || x(?)]|
remains bounded. More precisely, one has

of |X1(¢)] since the time instan Lk is similar to its
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a. For any ¢ > t( 1)0, |X1(¢)| evolves in one of the

sectors Sy, . . ., S,—1. Moreover, the time period of
the staying of |X|(¢)| in each of these sectors tends
to 0 when 6 goes to infinity.

b. For any finite time 7 > 0,

Jag >0; Vi<T, |x(@)| <ag with
lim (ag/6) = 0. (37)
6— 00

In the sequel, one shall show that there exists a time
instant at which |x; (¢)| enters for the last time the sector
S,—1 and never leaves it. Notice that, since this time
instant, the equations of observer (30) coincide with
those of the SHGO (24).

One now states the main Proposition the proof of
which is given in Appendix E.

Proposition 3.5 If the bound &, of w(t) given by
Assumption A4 satisfies condition (28), then the sequence

{tlgl)lk} is finite for any k € {0, ..., n — 1}

Let us denote by i; the number of terms in the

sequence [t,ﬁ o h k] . According to Proposition 3.5,

ix is finite for any k € {0,...,n — 1}. In particular,

there exists a finite time instant t,Elfg 1,)171, such that for

allt > t:”;r)l 1+ |¥1(2)] never leaves S, 1. This means

that, for t > f(lnzly), |» the equations of observer (30)

coincide with those of the SHGO (24).

On other aspects, since the time period of staying
of |X1(¢)| in each sector S for k = —1,...,n — 1
tends to 0 when 6 tends to infinity, one deduces that

limg oo (1373 = 10) = 0.

Remark 3.3 The result provided by Proposition 3.5,
i.e. ix is finite, in particular means that for each k =
1, ..., n, there exists a time instant from which the &
first equations of the observer (30) coincide with their
counterpart in observer (24) since each saturation func-
tion involved in the corrective term of (30) become
equal to the identity function . The notion of strong
stability requirement allowed to treat each subsystem
composed by the underlying first k equations as a per-
turbed systems and an appropriate ultimate bound is
derived. When k = n, the overall system is recovered
and observer (30) coincides with (24). Notice that and
as stated before, the concept of strong stability require-
ment has been used in [18,20] even though the under-
lying involved developments and arguments are quite
different from those detailed in this paper.
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The main property of observer (30) directly results
from the above results and it can be formulated in the
following Theorem.

Theorem 3.1 Consider system (23) subject to Assump-
tion A1-A4 together with observer (30) and assume
that the bound &, of w(t) given by Assumption A4
satisfies condition (28). Then, each component X; =
Xi(t) —x;(t) fori =1, ..., n, of the observation error
satisfies the following property,

36* > 0; Vo =6% AV >0

n—2,n—

dag > 0; Vu € U; Vx(fp) € X, onehas, (38)
() Vt st tp<t< t,ﬁlﬁgf,i,l, X (D] < ag,

() Ve =150 g )]

(ip—1)
. i1 — G(t—t " )
< min {ozg, op, <9’ 1P =201/ o9

8¢ + Sup
tavig) | <

where B, is defined by (27), P, is given by (8) with k =
nand Ay = A, where A, is defined as in (4) and §, Su
are as defined by (12) and (28), respectively. Moreover,
one has limg_s oo (tfffg"r)l_l — to) = limg_ o0 (019 /6)

Remark 3.4 The analysis of the time evolution of
|X1(¢)| carried out through Propositions 3.1-3.5 has
assumed that the initial condition |X; (79)| € S_1.Inthe
case where |X[(ty)| € Sg» where k* € {0, ...,n — 2},
one can show that the time evolution of |x (¢)] still be
similar to its evolution in the case where | X1 (fg)| € S—1
up to the following minor difference. Indeed, by pro-
ceeding as in the proof of Proposition 3.2, one can show
that |x (¢)| will first cross the lower sectors until enter-
ing in S, as in the case where |X1(fp)| € S—1. Then,
if |X1(z)| leaves S, to go to the upper sectors, it will
reach the most upper sector and then come back to the
lower ones as described in Proposition 3.4. Notice that
the most upper sector may be S_; and this was not
possible when |X{ ()| € S—. Now, it suffices to con-
sider any time instant at which |x;(¢)| evolves in the
most upper sector and one can show that the time evo-
lution of | X1 ()| since this time instant is similar to its
evolution when |X(f)] € S—1.

3.2 Tuning the observer design parameters

The corrective term of observer (30)—(31) involves
three design parameters, the vector I',, and the posi-
tive reals 6 and v. As stated above, the n coefficients
vi’s, of the vector I'), have to satisfy the strong stability
requirement with respect to A,,. An appropriate choice
of these parameters can be achieved using one of the
following two approaches to which one shall refer as
Approach 1 and Approach 2.

Approach 1: Assign the poles of A, to predefined
values and compute the underlying I',,. This can be
easily achieved for example by calling one of mat-
lab standard functions ’acker’ or ’place’. After the
obtention of the y;’s, check the full stability require-
ment by computing the roots of the n — 1 polynomials
P =2+ 5 ik =1,...,n — 1. The full
stability requirement is fulfilled if all the roots of each
polynomial have negative real parts.

Approach 2: This approach is based on Theorem 3 in
[24] which provides a recursive algorithm allowing to
generate the coefficients y;’s that satisfy the full sta-
bility requirement. This algorithm can be described as
follows: Let 6 ~ 4.07959 be the unique real root of
x3—5x2 +4x — 1 = 0and let @ > 0 be a positive
real. The values of the y;’s,i = 1, ..., n are computed
as follows:

Ol2
Y1 =aq, yzzﬁ and

Yk = Vicy
Voyia
At a first glance, the second approach seems more
attractive than the first one since it allows to provide the
appropriate coefficients y;’s in a direct manner. How-
ever, the first approach has not to be systematically
discarded. Indeed, when the dimension of the system
is relatively low, say lower than 10, the strong stabil-
ity requirement is often satisfied when the coefficients
y;’s are chosen such that the matrix A, is Hurwitz with
predefined eigenvalues. This issue has been checked
numerically in simulation by considering many sets of
predefined eigenvalues for A,,. For example, if all the
eigenvalues of A, are assigned to (—1), then the strong
stability requirement is satisfied for all n lower or equal
to 11.
The choice of the design parameters 6 and v has to be
achieved by a trial an error approach. It is well known

k=3,...,n. (40)
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that in the case of the SGHO, relatively high values of
0 allow a fast convergence of the observation error to
zero but amplify the peaking phenomenon. Since the
behaviour with respect to the peaking phenomenon has
been significantly improved, the use of relatively high
values for the parameter 6 in observer (30) is no longer
discouraged. Let us now focus on the level of saturation
v and assume that the value of 6 is fixed. It is clear that
for very high values of v, the peaking phenomenon still
be present and the behaviour of the NPGHO becomes
identical to that of the SHGO. However, very low val-
ues of v may lead to longer transient periods of the
observer. This means that the period of staying of the
observation error X1 (¢) in each sector S before leaving
it becomes longer. More precisely, if v is chosen such
that the product vé is not high enough, then the tran-
sient period becomes longer and the saturation process
may fail [see Eq. (63)] and Eqgs. [(76), (78)].

4 Design of a NPFHGO

Let us now come back to system (9) and let us show
how one can design for this system a NPFHGO, i.e. an
observer similar to (30) which allows to cope with the
non peaking phenomenon as well as with the sensitivity
to noise of the observer. Before detailing this issue, it
should be emphasized that in the case where system (9)
is noise free, i.e. v(f) = 0, then it is easy to see that this
system coincide with (10) where w(#) = 0 and hence an
observer similar to (30) can be designed for system (9).
Let us now focus on the case where v(z) # 0, i.e. the
system output is corrupted by the additive noise v ().
One shall show how system (9) can be augmented by a
multiple integrator of the corrupted output leading to an
augmented system the structure of which similar to that
of system (10). As aresult a SHGO similar to observer
(24) but involving filtering capabilities can be designed.
Such observer is referred to as FHGO. Exploiting the
fact the structure of the FHGO is similar to that of the
SHGO, the redesign approach which led to the NPHGO
can be used to derive a NPFHGO from the FHGO. One
now propose to detail the deriving of the FHGO and
the NPFHGO.
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4.1 Design of the FHGO

Many approaches dealing with the observer designs
have been proposed to reduce the underlying observers
sensitivity to noise measurements either by appro-
priately updating the observer design parameter 6
[16,17,25] or by substituting in the observer correc-
tive term the output observation error by an appropri-
ate filtered version provided by a linear filter cascaded
with the original system [14,26,27]. The main draw-
back of the approach where a linear filter is considered
lies in the fact that the power of the design parame-
ter 6 involved in the resulting observer gain increases
with an amount equal to the filter order and this leads
to the amplification of the peaking phenomenon. Since
the peaking phenomenon has already been coped with
thanks to the saturation functions, one shall adopt the
approach using a filtered version of the output observa-
tion error to deal with the observer sensitivity to high
frequency signals. In [26], the considered linear filter
is simply an integrator of the original system output. A
multiple integrator of the system output has been con-
sidered in [27]. Proceeding as in [26,27] where inter-
esting filtering properties for the underlying integral
observers are recorded, one proposes to augment sys-
tem (23) by a cascade of integrators of the output as
follows

Z - Amz + Bm,my

X = Apx +¢°(u, x) + By ne(t) 41)
y() =z21(t)
where z7 = (z1-..zm) € R™, A, and By, , are

defined asin (1) and (3) withk = ky = m.Notice thatin
order to improve the performance of the observer with
respect to the output noise measurements, the output
of the augmented system (41) is z; (#) which is an inte-
grator of order m of the original system noisy output
y(#). One shall show later, after giving the equations of
the resulting observer, that the first m equations of the
observer can be interpreted as a linear first order filter
that provides a filtered version of the output observa-
tion error which is used in the observer corrective term.
Now, since y = Cp,x 4 v(t), system (41) can be written
under the following form

Z _ Am BumCn Z + 0
) \Ouxn  An X ¢*(u, x)
+Bn+m,n+m5(t) + Bn+m,mv(t) (42)

- Z
=C =2
y n—+m X 1
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where Bj4m n4+m 18 as in (3) with k = kg = n +m and
Byym.m asin (3) withk = n 4+ m and kg = m.

Taking into account the structure of the matrices
A, A, and B,,, one can check that
(42,75
where A, 4, is asin (1) withk =n + m.

According to the above equality, the augmented sys-
tem (42) can be written under the following form

<)Zc> = A (i> B (soS(S,x))

+Bn+m,n+m8(t) + Bn+m,mv(t) (44)

_ Z
Y= Chim <x> =12

where C) 4, 1S as in (2) with k = n 4 m. It is clear that
the structure of the n + m dimensional system (44) is
similar to that of the n dimensional system (10) with
w(t) = v(t) and i, = m. As aresult, a SHGO can be
designed for this system. The equations of the under-
lying SHGO can be written as follows

Z z 0
<£> :An+m (2) + ((pS(u,)e)>

- QA;im )T ntm (Z1 — z1), (45)
where z € R™ and x € IR" are the respective esti-
mates of z and x, A,4,, is a diagonal matrix defined

asin(6)and 'L, = (¥1 ... Yu+m ) € R"™ where
the coefficients y;’s fori = 1, ..., n 4+ m are positive

reals satisfying the strong stability requirement with
respectto A, . Notice that, the equations of the above
observer depend on the variable z (or more precisely
z1) the dynamics of which is governed by the first m
scalar Ordinary Differential Equations (ODE) of sys-
tem (41). Hence the number of scalar ODE’s consti-
tuting the observer is equal to (n + 2m). In order to
reduce the number of these equations to (n + m), one
shall proceed as follows.
First, one can check the following equalities

1
o An(0)),

Com = O Ty )’ (46)
where A, 4, Ay, and A, are diagonal matrices defined
as in (6), I, = (1 ... ym) and T}
(Vm+1 --- Yntm). Using equalities (43) and (46), the
equations of observer (45) can be written under the fol-
lowing expanded form

Apim(0) =diag(Ap(0),

{Z;:Amz'f‘Bm,m)%l _eAy;l(e)Fm(il —21) (47)

X = Apk 4@ U, %) — 0" A O ot nm Gr — 21)

System (47) is constituted by two cascade subsystems
where Z and x are the respective states of these subsys-
tems. It is clear that the time derivative of X is linked
to that of Z through the term Z; — z;, only. Hence, set
n =z —z € R™ and let n; denotes the i’th component
of nfori =1, ..., m. Using the respective first equa-
tions of systems (41) and (47) as well as equalities (46),
the equations of observer (47) can be written using the
states n and x as follows

7? _ Amn(t)—i—Bm,an)?—Bmy
x AnX + " (u, %)
_OA;—tl-m(Q)Fn-i-m’?l

n _Bm,my
=t (1) + (%)
—08, L Oy (48)
Notice that n(f9) = 0 is an appropriate initial value
for the ODE governing 7 since it reduces the transient
period of the filter.

It is clear that system (48) which provides a smooth
estimate, X, of the state x requires the resolution of
n + m scalar ODE’s, only. The first m ODE’s are asso-
ciated to a linear filter of order m the entry of which is
the noisy output observation error, i.e. C,x(t) — y(¢),
and the resulting filtered output provided by this fil-
ter, i.e. n; = Cp,n, is then used in the correction term
in both subsystems (overall observer). Moreover, since
the structure of observer (48) is similar to that of the
SHGO (24), then the same redesign process used to
derive (30) from (24) can be used in a straightforward
manner to derive the equations of a NPFGHO that
inherits the main properties of the NPHGO together
with those of the FHGO. Before giving the equations of
the observer, let us derive an upper bound of the under-
lying observation error under the assumption that the
output measurements noise v(¢) is essentially bounded
by an essential bound §, satisfying a condition similar
to (28). Bearing in mind the significance of the variables
involved in (28) (see, Remark 2.1), the underlying con-
dition can be obtained by substituting in (28), n and
iy by (n + m) and m, respectively, i.e. condition (28)
specializes as follows

- 8y 8y
36, > 0; 8, < —9(n+m)_m = 67 (49)

To summarize, the output measurements noise v(¢)

is assumed to satisfy the following condition

_ )
35, > 0; Ess sup|v(t)| < — (50)
Qn
t>0
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Let £ = <Z where ¥ = X — x be the obser-

vation error associated to observer (48) and system
(44). Then, each component of the observation error,
&,i =1,...,m+ n, satisfies an inequality similar to
(29). In particular, fori = 1,...,n,onehas &, ; = X;
and it satisfies

0o > 0; VO >0y YueU; Vi(to)eX; Vi=>r,

0] = o (371 i

8e + 8y ) 51)

where B4, is defined as in (27) by substituting n by
n + m, the SPD matrix P, is given by Eq. (8) with
k = n + m, 8, and 8, are respectively given (12) and
(50), 0 = max (1, 2(n +m)Ly/Butm) and Ly is the
Lipschitz constant as in inequality (26).

Notice that ||£(#p) || has been substituted by ||x (7) ||
in the right side of inequality (51) since n(#p) = 0 and
hence ||£(fy)|| = [|X(tp)]|. One also notices that the
power of & multiplying the decreasing exponential in
(S1)ism + i — 1 and it was only i — 1 in the bound
associated with the SHGO given by the right side of
inequality (29). This means that a drawback resulting
from the adding of the filter is the amplification of the
peaking phenomenon of the FHGO compared to the
SHGO. Nevertheless, the increasing of this power has
no significant impact since the underlying FHGO shall
be redesigned into a NPFHGO.

Remark 4.1 Notice that condition (50) is very similar
to the one derived in [20]. It is rather conservative since
it requires that the essential bound of the output mea-
surement noise has to be relatively small and of the
order of 6" where n is the dimension of the original
system with noisy outputs. The non dependence of this
condition with the order of the filter, m, is to empha-
sized.

4.2 Equations of the NPFHGO

As stated above, the redesign process that has been
already used to derive the NPHGO (30) from its under-
lying SHGO (24), can be applied to the FHGO (48) to
derive the NPFHGO the equations of which are then
specialized as follows

<77) =Antm (n) + @ (u, n, X, x)
X X
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Fig. 2 Noisy measurements of x|

—0H(m), n(to) =0,%() € X, (52)

A —Bu.my
s _ m,m
where ®%(u,n,x,x) = <¢>S(u,£,x)>’ H(m) €

IR and the corresponding components H; (1) €
R, fori =1, ..., n+m,are defined as follows [com-
pare with (31)]

Hi(n1) = sat, (y1n1) and
H;(n1) = sat, <9LHi_1(n1)> fori =2,...,n.
YVi—1
(53)

where the y;’s, i = 1,...,n + m satisfy the strong
stability requirement with respect to A, given in
Definition 3.1.

It should be emphasized that observer (52) simulta-
neously inherits the main properties of observer (30)
in terms of a significant reducing of the peaking of the
observer state variables as well as those of observer
(48) in improving the performance of the observer sen-
sitivity with respect to high frequency signals.

Remark 4.2 The extension of the NPFHGO design to
the multioutput class of systems considered in [23] can
be straightforwardly handled by simply applying the
saturation process to each scalar output.

5 Example

In this section, the performance and main properties of
the proposed NPFHGO are illustrated and compared
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Fig. 3 State estimation with the NPFHGO

with that of the SHGO through an example involving
a single-link robot arm introduced in [28] and used in
[14]. The underlying mathematical model is described
by the following differential equations

X1 =x2

X2 = K/(J2N)x3 — (F2/J2)x2 — (K /J2)x1
—(mgd/Jy) cos(x)

)'63 = X4 (54)

X4 = 1/JDu — K/(J1N)x1 — K/(J2N)x3
—(F1/J1)xq + &(1)

y=x1+v()

where ¢(¢) and v(¢) denote respectively the disturbance
and the measurement noise, Ji, Jo, K,N, m, g, d,
F1 and F, are the model parameters which are posi-

ESTIMATED

-2 || €— SIMULATED 1

3 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
TIME (s)
150 , : : : : : :
x (t)
100 4 .
50 ESTIMATED
0
50 SIMULATED
-100 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
TIME (s)

tive constants. More specifically, the control sequence
{u(z)} is specified as in [28], i.e.

u = saty {mgdjl/(JzN) — (WLN/K) <L4clx1 + L3

+ L2 (R/(aN)xs = (mgd /1) + LesR /(1N ) |

with M > 0 and saty; defined as in (14), the ¢;’s,
i =1,...,4and L are positive constants. Using the
fact that K/(JoN) = 1, it is easy to check that sys-
tem (54) is under form (10) and as a result a NPFHGO
(and a SHGO) observer(s) can be designed. Indeed, a
NPFHGO of the form (52) has been designed with a
filter of order 2, i.e. m = 2. The parameters of sys-
tem (54) are chosen as follows F; = 0.1, F» = 0.15,
J =015 71, =02, K =04, N =2,m = 0.8,
g = 9.81 and d = 0.6. The control u(t) is com-
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Fig. 4 State estimation with the SHGO

puted with the following parameters setting ¢; = 4,
c = 791, ¢z = 6.026, ¢4 = 1.716, L = 3 and
M = 200. In the simulation, the uncertainty has been
chosen as ¢(t) = sin(5¢), and the output y(z) has
been corrupted with a gaussian noise v(¢z) with a zero
mean value and a standard deviation equal to 0.004 as
shown in Fig. 2. The initial conditions of system (54)
and the observer have been chosen as in [14,28], i.e.
xT(0) = (0.5 0.50.5 0.5) and £7(0) = (0 00 O).
With the considered values for the initial conditions,
the state variables of system (54) are bounded with
x1(t) € [-0.26 0.51], x2(¢) € [—2.63 2.06, x3(t) €
[0.5 38.8] and x4(¢) € [—95.94 127.56]. Hence, the
value of the level R to saturate the nonlinearities in the
observer [see (16)] has to be chosen at least greater
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than the maximum absolute value of the above interval
bounds,i.e. R > py = 127.56. A general rule that can
be adopted for choosing R is to set it to an arbitrarily
great value. Indeed, simulation results which are pre-
sented later have been obtained by setting R = 1000.
Other simulation with other values of R (> pjs) have
been carried out and they led to the same results.

The value of § was set to 150, v to 0.1 and the coef-
ficients y; for k = 1, ..., 6 are chosen such that the
poles of Ag are located at —1. It has been checked
that the underlying value do satisfy the strong stability
requirement. For comparison purposes, a SHGO under
the form (24) has also been designed for system (54)
and it has been simulated with a gain " = (4 6 4 1 )T
in such a way that all the eigenvalues of the (linear part
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Table 1 Comparison of the peaking phenomenon between
NPFHGO and SHGO

NPFGHO SHGO
1% loo 0.5 0.5

1%2]l 00 0.5 92.9466
1%3]1 00 0.6296 8.14 103
IX4ll 00 4.6858 2.8210°

of the) observer are located at (—1). The same value of
6 (= 150) has also been used.

The estimates of the system states provided by the
NPFHGO are given in Fig. 3 where they are compared
to their true (noise-free) values issued from the model
simulation. The smooth state estimates provided by the
observer using noisy output measurements as well as
the absence of peaking of these estimates are worth to
be emphasized.

For comparison purposes, the estimates provided by
the SHGO have been reported in Fig. 4 where they
are compared to their true (noise-free) values issued
from the model simulation. The obtained estimates do
highlight the peaking phenomenon of the SHGO during
the transient periods as well as its sensitivity to the
measurement noise. This fact is also emphasized by
Table 1 where the infinity norm of each component of
the observation error related to the state variables x;
and denoted by ||X;|le0, i = 1, ..., 4 provided by both
observers are reported.

0.1 v Input of the filter (&,(¢) — y()) ]
0 W
Zoom
-0.1 \‘
0.01
-0.2
0
-0.3
-0.01
04
-0.5 L .
0 1 2 3 4 5 6 7 8

TIME (s)

Fig. 5 Input and output signals of the filter in the NPFHGO

In order to put forward the filtering capabilities of
the NPFHGO, the input and output signals of this filter
are given in Fig. 5. Recall that the input of this filter is
the noisy output observation error and its output is the
filtered version 71 (¢) which is used by the corrective
term of the observer [see (52)].

6 Conclusion

A SHGO redesign has been considered bearing in
mind its two main known limitations, namely the
measurement noise sensitivity and the peaking phe-
nomenon occurring during the transient periods, lead-
ing thereby to a NPFHGO. The main properties of the
NPFHGO have been highlighted and compared to those
of its underlying SHGO through promising simulation
results. The proposed observer redesign has been per-
formed for a class of uniformly observable systems
assuming that the output measurements are continu-
ously available. Further studies to extend the proposed
redesign to the case of sampled output measurements
and to the class of non uniformly observable systems
are under consideration.
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A Proof of Proposition 3.1

From (23) and (30), one has

X = Apx + ¢ (u, £, x)
—60H(X1) — By ne(t) — Bni,, w(t), (55)
where ¢* (u, X, x) = ¢*(u, X) — ¢*(u, x).

Since |x{(tp)] € S—i, one has |y;xi(t9)] > v.
Moreover and from the continuity of |xi(¢)| with
respect to time, there exists ¢ > #y such that Vs €
[to, ], |y1x1(s)|] > v. It is clear that xi(s) keeps
the same sign for all s € [f9, t]. Moreover, as long
as |y1x1(#)] > v and according to (32), one has
H(x1 (1)) = vsign(x1())Uy.

Using the comparison lemma, Eq. (55) leads to

X(1) = M5 (1) + / A= G (u, %, x) ds

fo

t
- v@sign(il(t))f eIy, ds
10
t
—/ eA"(tfs)Bn,ne(s)ds
o

t
- / M=), i w(s)ds, (56)
1o

where UT =[1 ... 1] € R" defined as in (5).
The first component x; can be expressed as follows

n—1 . k
) = F) + Y (%ml(m))
k=1 ’
N Z( (l _ S)k 1
o )
(l _ s)zw—l
n (w—1!

@ (u, X, x)ds)
w(s)ds

@ Springer

t _ 1
— / %8(5‘)615‘
1 !

—vOsign(x1(t)) Z

k=1

Multiplying both sides of the above equality by

sign(x1(t))(= sign(x1(f))) and bounding its left side
lead to

lo)k

n—1

B0 < [F1 ()| + 1F )] Y ———

k=1

k1
+Z . (t S) |k(uxx)|ds

(t —s)»!
/ Y ———|w(s)|ds

_ -1
+/ %w(snds
0]

(—o)k

=D
n _ k
0y (tk—fo) (57)

One shall now respectively derive a bound for the third,
fourth and fifth terms of the right side of the above
inequality. Indeed, according to (18), one has

k=1
Z/ ((t $) |~k(uxx)|ds>

(t — 1)
< 2nL¢,RZT. (58)
k=1
Similarly, according to (12) and (13), one has

n—1 _ n
/ Gt ——|e(s)|ds < M(Ss and
— 1! n!

t —s)w=l t —to)'v
O eyias < 05, s9)
o (w—1! P!
Using (58) and (59), inequality (57) leads to

[X1()] < %1 (o) + (61,0 + S
no_k
T
+2nLyR —v0) ) o (60)
k=1
where T =t — g and §_1 o = max(||X ()|, S¢)-
One can check that for

A

6>0") = —(5_1,0 + 8y 4 2nL4R), (61)

and inequality (60) leads to

9 n _ k
|X1(2)] < |X1(t0)| — % Z %
k=1 ’
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- vl
< |[x1(0)| — 5T (62)
Now, set
. X1 (o) — -
o= g (63)
2

Notice that one has r( ) > 0 since |x1(tp)| € S—1.

Let ™, o="M+ 1:_1’0 According to (62), one gets for

1=12

v *) v
|X1(t% o)| < 1X1(t0)| — S0 = (64)
Vi
According to (64), |x1(¢)| will enter Sy after hav-
ing evolved in the sector S_1 during a time period
that does not exceed r . Hence, t( ) o €xists and

(H A (1) ()
onehaStloz S0 —fo = T

. Now, from
(63), one has limg_, o til),o =0 Wthh implies that
limg_ oo 191)’0 = 0 and hence item (i) of the proposi-
tion is proved.

Let us now look for (x( 1) 0. required by item (ii).
Indeed, using (56), (12), (13) and (22), one gets for all
=<t =< t—l,O’

@O0 < lle® = |[1% @)

+ @2n/nLyR + v/nb + 8y + )

t
/ le =) ds
to

n—1 k
. (t — 1)
< RGN Y 1AL —7—
k=0
+ (2n/nLyR + v/n6 + 8y + 8¢)
f— k—1
on AN 1||( D gy
t()k 1 )‘
<2ViRY (1 — 1)
=V kzo !

+ 2ny/nLyR + v/n0 + 8, + )

2L (t — o)k
Y

k=1
<2VnR+ (24/n(nLy, + HR
+v/n6 + 8y + 8¢)

n
Sy - 2al) (65)

Using the fact that limg_, (’(]1) 0~ to) =0, one

can deduce from the expression of Ol( f 0.9 givenby (65)

that limy_ oo (agf‘oﬁ/@) = 0. This ends the proof of
Proposition 3.1. O

B Proof of Proposition 3.2

One shall prove the Proposition by induction on k.
Indeed, for k = 0, the result is provided by Propo-
sition 3.1. Now, let k be fixed in {1,...,n — 1} and
assume that items (i) and (ii) of Proposition 3.2 hold
fork —1,1.e.

@) tlgl)z w1 > 0 exists with

ellm (tlg )2 P ) =0,

- . (D)
(i1) Elak—z,k—l,e >0; Vi< Lo k-1

~ 1 .
IFOI <oy, , with

) 0
Jlim (o, 4/0) = 0. (66)

Lett > t,El_)z‘k | such thatVs € [t 2k 1t 1x1(s)] €

Sk—1. Recall that since |X(s)| € Sk—1, then according
to (35) and (34), the components of H (x;(s)) can be
(D

expressed as follows for all s € [tk—z,k—l’ t],

Hi(F1(s) = y;0/ 1%1(s) forj=1,..., k,

Hj(X1(s)) = vsign(Xi(s)) forj=4k+1,..., n.

(67)

Using the comparison lemma, the solution of the ODE
(55) can be expressed as follows

~ A=tV -
Ry = MR (1D, )

'
+/(1) A= (u, £, x) ds
!

t
-0 /(n eI H (%1 (5)) ds
k2. k—1
t
— f An(t_S)Bn,nS(S) ds
KO
=2.k-1
t
_ /(1) eI B, w(s)(s) ds. (68)
k2 k—1

Proceeding as in the proof of Proposition 3.1, i.e. sub-
stituting the components of H (x(¢)) by their expres-
sions given by (67) and taking into account the fact that
sign(¥1(1)) = sign(¥1(s)) foralls € [1, , . 1], the
output observation error | X1 (¢)| can be bounded as fol-
lows

=i tIEI)Zk 1) 1
FIGIEDY (j,xm(r,gg,“n)

j=0
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/ ((tfs)l)‘ | ‘J‘.(u,)?,x)|ds> that ,
t, 1 1 Vv
jl = V9>9k()1kv51£)1k057 (73)
_ )1
-0 ( /(]) 5) Y ——— %1 ()| ds Combining (71)—(73), one gets
1
o 1 <1 (t — (1)2k D
/, (1 —5)i! F10] < F1@ DI+ 8;5_)1,,{,9 —,‘
+v Z ——ds - J!
j=k+1 gy G=D! j=1
(D
t _ -l Oy & (- T 2o k— 1)
+/(1> %ls(s)lds - — (74)
T-2k-1 (n — D! j=k+1 J:
' (t — s)iv=! (1)
e RO (69) . d | Dt
Bk (i — 1! < | (tli—)z,k—1)| + 8( )1 k.0 Z
Note that according to the induction assumption, one
has b (t — tk s (75)
1 2 k + !
15 Dl < ey e (10) X ( J
= G o (76)
Using (70), the Lipschitz property (18) and the 19"
essential bounds provided by (12) and (13), inequal- 0
ity (69) leads to where © =1 =12 4 and
=~ = (D .
X1 = X1 2 ) M A @) e) '
| = )] | , Pl (0 =agp g k+Za1k W
ta K=l
o N 1
k—2,k— 19] ‘ J' _ealg-zlk lkrk+la (77)
(1) = ()
+2onL RZ (1)2k D -1k = (F1 G o)1 = 5200
i - (VkG" T ‘)19" ’
with L 5 + (78)
o i (f—fzgl)zk D’ aj j— 1k_(l)“k9’j—1 +k and
st j! Yt 1,k—1,k = 2(keD1"
t — t( 1 ) t — t( 1 i According to inequality (76), it is guaranteed that
. '2" 1 » z 2"‘ 1 |%1(2)| is lower than or equal to 9,( if Pk lk(t) <0.
! w!

~ 1 1
<186 DI+ G s

n
+8y +2nL,R) >
j=1

|
o - 15)21( Bl

| .
(t— tlg—)2,k—l)j
j!

—ov Y P (7D
j=k+1
where 6,&1_)1’,{’0 = max(a,ﬁl_)zyk_l,e, 8¢). Now, set
<(1) (D
Sk_1k0 = Okl1 k0 T 0w +2nLyR. (72)

Notice that since limg_, o (a,&ljz i1 9/9> =0, one

, . <1
has hmg%oo( Jacy . 19/9) = limy— oo (31(<—)2,k—1,9

/0) = 0 and as a result there exists 9,51_)1 ¢ > 0such

@ Springer

Otherwise said, if Pk(—)l, (T) < O, then it is guaranteed
that |x1 (¢)| has already left Sx— and entered Sg. Hence,
one shall focus in what follows on the sign of Pk(l_)L (D).

It1sclearfrom(78)thatthea h—1k s, j=0,...,n
are positive. Hence, accordlng to Descartes’ rule of
signs [29], the number of positive roots of the polyno-
mial Pk(i)l «(T)isequalto 1. This means that there exists
auniquereal 7/, , > 0, such that Pk(l_)1 (i) =0.

Since Pk(i)l,k(O) = a(()l,z 1k > 0, one has for all

T2 Bl <0.

Notice that inequality (76) is valid as long as |x (¢)|
evolves in the sector Si_; and it cannot come back
to Sx—p before the changing of its sign. Otherwise
said, |x(¢)| will evolve in Sy since the time instant
L o k1 and it will leave it to enter Sy at a some time



Improved high gain observer design for a class

649

instant which is denoted t,gl)l « according to the adopted
notation. From (76), the time period of the staying of
|X1(2)] in Sg—1 cannot exceed T;°_, ¢, i.€.

@ A D (1)
Tk = Bk — Bto k-1 < Teo1 k- (79)

Let us now calculate the limit of rk
to 00.

Since 7}_, , is aroot of Pk(l_)1 +(t) = 0 and accord-
ing to (77), it satisfies the follow]ng equality,

a(l) koD
“0,k—1,k,0 Z ]k 1k9

Ykt
- ali-lzl,k—l,k (w_10) " =0 (80)

71’,( when 6 goes

* l,k)j

One clearly has limg—oc (af}_y,0/0) =0, j =
0, ..., k. Using this fact, Eq. (80) leads to

(1) k+1
Jim (ak+1k i (710 >=0~

Since a,i le hlk = m, the above equality implies
thatlimp— » 7;_; , = Oandaccording to (79), one gets

limg_ oo Tk(l—)l,k = 0. This leads to

; (1)
e (tk Lk to)
(1 [S)) (1
= Jim <tk Lk~ I—2p—1 T2k tO)

_ 1 (D) (1)
—ell)m (Tk W oy ’0)

= lim rk( )1 * according to (66)

9—>oo

=0.

Let us now look for the positive real algljl ko Of
item (ii) in Proposition 3.2. Indeed, proceeding as in
the proof of Proposition 3.1, one gets for all t1££)2 i1 =

t < tlgl_)l,k, [compare with (65)],

~ ~ (1
(OGS
(1 )l +2n /AL R
+v/nb + 8y + 8)

n

1) ) J
Z(tk Lk~ l—2,k- 1)

j=1

(1) (1)
=S k19T (“k—z,k—l,e +2ny/nLyR

n .
o0+ 8, +8) 3 ()

j=1

= 0‘151)1 k0" 1)

From the fact that limg_ (a,ﬁl_)z 1 0/9) =

limg_, o0

fk(l—)l « = 0, one deduces from the expression of
o, 1o given by (81) thatlimg.oc (o, ,/6) = 0.
This ends the proof of Proposition 3.2. O

C Proof of Proposition 3.3
Let t > 1, | such that |f1(1)] € S,-1. ie.
X1 (1) < #. According to (33), H(x1(¢)) =
A, 1(0)I", %1 (r). Moreover, since the essential bound
8y satisfies (28), then each component of the observa-
tion error satisfies an inequality similar to (29) which
specializes as follows when accounting for (36),

—pBu0(t— tn n— ) (1)
21 % o n—1,0

8e + ,
+m), l=1,...,}’l. (82)

In particular,

%, ()| < op, (ei“

Ind ~ 9)1
|x1<t>|=|£1<r>|sapn( bt l2n 00,

8e + 8y
+—n 5, ) (83)

If the sequence {tr(Li—)l,n—Z}iil is non empty, then
|X1(1)| leaves S,,_1 and enters S,_; at the time instant

trgl_)l 2o+ Using (83), one gets for t = t( )1 N2>
M+ v
%1, 21, 0 = T

o) —op, D, O + S
=op, (an—z,n—l,ee Prnt 4 01 B, :

One can check that the above equality leads to

(1)
(1) ZLZO ﬁ"GPn n—2,n— 197/"9 . (84)
0P oP,Vn (8e + Sw)

! VB, —
It is clear from (84) that
lim ', = 0. 85
foe 11 (85)

Let us now bound ||x(2)|| for t < t( ) 2o~ Indeed, as

in the proofs of Propositions 3.1 and 3. 2 one can show
that for all ¢ < 'V [compare with (65) and (81)],

n—1,n—2>

O A TR (G
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+2n/nLyR + v/nb + 8, + 8;)
" k
} :( (1) (1 )
n—1,n—2 " ‘n—2,n—1 .
k=1

From the fact that ||x(t - DII= a,sl)z n—1,9>ONe
gets

~ (1
IFON < a2y 1o+ (@01 0+ 20VALR

n
+oe + 8, +8) Y ( ;”1> 2400,

k=1

Sincelimgo (o1, 1 4/0) = limg-oo 7" =0,

one can easily deduce from the expression of oz,(ll_)l 0

given by (86) that limy._.c («f, ,/6) = 0. This ends
the proof of Proposition 3.3.

D Proof of Proposition 3.4

(eY) /D

Letr > 1,7, ,such that Vs €]z, 5, t], [X1(s)] €
Sn-2. Proceedmg as in the proof of Proposition 3.2,
one can show that for 8 high enough, one has [compare
with inequality (75)]

X1 (0] < |X](tn 1,n— 2)|
n— l (1) )j

3(1)192 n 1,n—2

1
v (1 — trg—)l,n—Z)n

2 n!

3

P —max((x,(ll)lg,é )+ 8y +2nLyR.

1

s(D
where §, 7,

Sett =1t —1,", ,;the last inequality becomes
~ ~ (D) -l ‘[j Ov l'n
X1 (D] < |)C1(t 1,, D+, 1.6 T 5
! 2 n!
Jj=1
Vv (D) i T/ Ov "

yr 1 o0 2 T g (87)

According to the definition of S,(ll_)l’e and since
limgﬁoo
( M /9) — 0, one has limg_ o0 (S“_) /9) —0.
n—1,0 n—1,0
Now, |x1(¢)| will evolve according to one of two
scenarios. The first scenario corresponds to the case
where |X1(¢)| leaves S,_; and enters S,,_3. The second

@ Springer

one deals with the case where |x1(¢)| does not leave
the sector S,,_» and still evolve inside it. In order to
analyze the time evolution of | X1 (¢)| and in particular to
identify the scenario according to which it will evolve,
one introduces the following polynomial in t

n—1

(n) 1 j
Py z(f)—%n Ln— 2+Za1n 12T’

j=1
1
_ear(Li 12T (88)
with
(1) _ v 1%
aOn 1,n-2 — ()/ 9”_1 - yn_19”_2)’
40 51 g
n .
Ajn—1n-2 = I ,j=1,...,n—1, and
v
40 _v )

n,n—1,n—-2 !

Inequality (87) can be rewritten as follows
v
Vn—1 gn—2"
From the above inequality, one can deduce the follow-
Ing property

0l < PO L+ (90)

151(0)] > — P () > 0. 1)

)/,1_19"72
Property (91) means that if there exists a time instant
t at which |x;(¢)| leaves S,,_» and enters S,_3, then
this time instant ¢ is such that Prfl)] a_2(7) > 0 where

(0]

T=1—1," 12 Hence, one shall focus in what follows

on the sign of P( )1 n_n(T).

It is clear from (89) that a(()}r)l_l,n_z < 0 and

ajn-1n—2 > 0, j = 1,...,n. Hence, the number
of changes of the coefficient signs in the polynomial
P,fl_)l 1_o is equal to 2 and according to Descartes’ rule

of signs, the polynomial P( )1 .o admits either 2 or
zero positive real roots. Let us consider these two cases.
Case 1: P(l)l 1o (T) admits two positive real roots.

Letdenote by 71 and 13 these roots. Since PHQ] nn(0) =

a(()li ln—2 < 0, one deduces that V‘L’ elr, rol,

1
PV (1) > 0and VT ¢ [11, ), PV}, (1) <O0.
a ) .3 €xists, then one nec-

1
essanlyhasr( )Zn 3—1,5 )2n 3= r(l)ln 5 €], 1ol

Moreover, using similar developments as in the proof
of Proposition 3.2, one can show that the two posi-
tive real roots 71 and 1, are such that limy_.» 7; = 0,
i = 1,2 and this implies that limg_, o, T,

Hence, if the time instant 7,

) —
n—2,n-3 — 0.
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One can also show that there exists oc,gl)z n_3.0 Such

O Zol < oY, 5, with

limg— oo (i3,3.0/0) =0.
Case 2: PV

n—1,n—

Pn( )1n ,(7) keeps the same sign for all 7. Since

P(l)1 e ,0) = a(()lr)l tn—2 < 0, one has Vr >
0, P(l)1 2—2(t) < 0. Combining this fact w1th inequal-
ity (90) allows to deduce that |x(¢)| < - 9”_2 Oth-
erwise said, |X(z)| cannot enter S,,_3 and still evolve
in S, 3. Let us analyze the behaviour of |x;(¢)| when
evolving in S, . For this aim, set 7 = ¢ — bt 2
and consider the following polynomial in T

(D ~ (1) v
P, (t) = (|X1(ln_1,n_2)| - W)

that for all t < ¢

»(7) admits no root. In this case,

8(1) ! T/ Ov "

0, 10 177 Tl
n—1 j

M T ovt

G102 T 5
Jj n

A n—1
A 1 ' (e)) j
- Zaj,n—l,n—frj - 90’1)”71)”721/,

=1

92)

wheretheaﬁr)l L s, j=1,...,

(89).
Now, inequality (87) can be rewritten as follows

n are defined by

50 < POy (0) + (93)

in

From the above inequality, one can deduce the fol-
lowing property

POy () < 0= |51(1)] < (94)

v
Vn on—1 :

According to inequality (94), |X (t)| will necessarily
enter S,,_1 when P,fl_)z(r) becomes negative and it still

evolve in S, as long as P,fl)z(r) < 0. Hence, let us

focus on the sign of P,fl_)z(t).
Again, using Descartes’ rule of signs, it clear that the
polynomial equation P(l)z(r) =0hasa unique posi-

tive real root denoted by z;;_,. Note that 7 = £ 0is also

a real root of Pn(—)2' Hence, the polynomial Prf_)z(f)
remains positive when t lies between the two non neg-
ative real roots, i.e. T €]0, 7;_,[ and it becomes neg-
ative as soon as 7 > T,_,. This means that |X(z)]

will leave S,_» to come back to S,_; at the latest
at the time instant ¢t = trgl)l u_n + To_5. According
to the adopted definitions and since |X1(¢)| will enter
S,_1 for the second time at this time instant, one
deduces that t( _ exists and one has t( )2 ol =

t,51_)1 n_n T T, 0r equlvalently r,(l) 2 ,(12)2,1 =

trgl—)l,n—Z < 1:”_2. Again, by using similar develop-

ments as in the proof of Proposition 3.2, one can show

that limg_ oo 1(1)2 =0 and that there exists ot,(ll)z P

such that for all 1 < 1., |, [Z(1)]| < ", , with

limg oo (a,gl_)w /9) —0.

To summarize, in the above developments describ-
ing the behaviour of |x{(¢#)| when leaving S,_1, the
following two exclusive scenarios have been put for-
ward:

1. The first scenario consists in the case where
|X1(t)] may leave S,_» and enter S,_ g at a

; ; ) — M
time instant 7, 5, 3 = 1,7, 2+7: 2n 3

with limg_s oo ‘L'( )2 23 = 0. Moreover, there exists

', 5 suchthatforallr <1, 5 50| <

o, s with limg o (o, 3/0) =0.

2. The second scenario corresponds to the case where
|X1(¢)] still evolve in S,,—» during a time period
equal to 1121_)2 and then comes back to S, at
the time instant t(z)z a1 With limg_, o0 1:,5132 =0.

Moreover, there exists a( )2 o such that for all # <

1 . . 1
D LRI < @, with limg_ o (a; D

/6) = 0.

According to these two possible scenarios, the reals
t,gzlz e rlgl) and a(l) > (Orequired by the Proposition are
obtained when the second scenario is occurring and one
has k = n—2.In the case where the first scenario occurs
but not the second one, the same reasoning can be pur-
sued to analyze the behaviour of |x{(¢)| from the time
instant when it leaves S,_» and enters S,,_3. It is easy
to see that |x(¢)| will still evolve according the above
two exclusive scenarios. As soon as the second scenario
occurs inside a sector k, the parameters required by the
Proposition are obtained. Note that & is assumed to be
in {1, ...,n — 1} in the statement of the Proposition.
Now, one will show that if |x| (¢)| reaches the sector Sy,
only the second scenario will occur. Indeed, assume that
there exists a time instant ¢, > t( )0 such that |x(2)|
leaves Sy and enters S_ at the time instant 7,. Accord-
ing to the adopted notation, one has |X{(t,)| = ﬁ and
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110 > % Taking into account the continuity of
|X1(¢)|, one has It > 1,;Vs €]t,,t], |xX1(s)] € S_1.
This in particular means that

1)) > — 95)

V1

Since |X1(s)| evolves in S_ for all s €]t,, t], one can
process as in the proof of Proposition 3.1 to derive the
following inequality [compare with (62)]

- - vo
X1 (D] < |x1(t)| — 70 —1q). (96)

Notice that the above inequality (96) is valid under
assumptions similar to those adopted to generate
inequality (62). In particular, the design parameter 6
is assumed to be high enough and satisfies [compare
with (61)]

2
0 > - (max(||%(ta)ll, 8¢) + 8w + 2nLyR) . 97)

The choice of 8 asin (97) is possible since || X (7,) || < ag
with limg, o % = 0 (see (37)).

Combining (96) with the fact that + > 7, leads to
X1(0)] < |x1(tn)| = % which is in contradiction with
inequality (95). Hence, | X (¢)| will evolve according to
the second scenario inside the sector Sy, i.e. it will leave
it to enter Sy. This ends the proof of Proposition 3.4. O

E Proof of Proposition 3.5

Let iy denote the number of terms in the sequence
{t (l)] kti=1 when this sequence is finite. The proof
of the Proposition will be achieved by induction on
k. Indeed, for k = 0 one has ip = 1, i.e. |x1(¢)
never comes back to S_; after the time instant tﬁll) 0
as detailed in the end of the proof of Proposition 3.4.
Now, forafixedk € {1, ..., n—1}, one shall assume
that Vj € {1,..., k — 1}, the sequence {I](-l_)l’j},z] is

finite and one has to prove that the sequence { t,E'_) Lkdi=1
is finite. _

According to the induction assumption, {t,E’_)2 r_1ti=1
is finite and one has ’

(ik—1)

Vi =0 s X0 = (98)

v

Without loss of generality, assume that i, < k.
According to (34), the first k equations of the obser-
vation error system related to observer (30) can be

written under the following condensed form for all
r> t(lk 1)
k—2,k—1°

Xy = ALk + @), £, xp)

@ Springer

— AT OTRCLF1(1) + Brifisn (1)
— By i, w(1), (99)

where X, Xy, xp, @) € R¥ are the respective sub-

vectors of %, £, x and ¢* defined as in (7), Ax as in
(1), (Cx) asin (2), T'x as in (4), Ay as in (6), By x as
in (3) with kg = k and By ;, as in (3) with kg = iy,.
Recall that Ay = Ay — ['vCy is Hurwitz and therefore
there exist a SPD Py and a positive real p; satisfying
inequality (8).

Notice that the error system (99) has the same struc-
ture as the error system (25) and the term Xz 1 (¢) in (99)
plays the role of £(#) in (25). Moreover, one recalls that
according to (37), one has

50 <ag,j=1,....n, (100)

for any t < T where T > 0 is any fixed arbitrarily
large positive number.

Besides, the essential bound §,, is assumed to satisfy
inequality (28). According to these facts, the obser-
vation error X Xj, j = 1,....k, satisfies an inequality

similar to (29) for all ¢ > t(lkzllz |- such inequality

specializes as follows

@ )
—0B(t—1551 )

1% (1)] < (9"‘1

Oﬂ )O‘PkOl(;, j=1,...,k, (101)
where By is defined as in (27) with n substituted by &,
P, = PkT and
ap = g + 8y (102)

Let t,:_l > t,ilkzllz | be a time instant such that

gk—1 = 0Pk l_tk E/lc) D — !
Qﬁk
T ﬂ (klog(6) + log(Br)) -

(103)

According to the definition of #;_; and using (101),
one has

* ~ op. - .
Vi =1y, |xj(f)|§2ﬂ—(0l0/9), Jj=1 ...k
k

(104)

Notice that according to the induction assumption,
|%1(¢)] cannot come back to Si_5 for all ¢ > t,ﬁlkzllz I
Hence, according to Remark 3.2, V ¢ > tkfl, |X1 ()]

will evolve throughout the sectors Sg—1,...,S;—1-
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Assume that there exists t,E,)c | > tk 1» Where i is a

positive integer, at which |X(¢)| leaves S and enters
Si_1 for the i’th time. Notice that if such a time instant
does not exist then the induction is proved.

Set

=6 %P" +1 with L, =max(L,,1). (105)
k

One shall prove the following property which is
needed in the remaining of the proof,

(O
Eltkk 1> =1

k @) j
@ Mk (=t j—1)
V[>tklk 1,;2—‘
=L
(i) k
r—t
_ l( fk—1)
-2 k!
: @ 0) _
with lim (i), =1} ) =o. (106)

30y > 0; VO > 6;

3

To prove property (106), set T = t — t,il,)( | and

consider the following polynomial in T

ko -j—1 —k—1
- Nk TJ 1
PT)=|— - 107
@=1% ]Z:} il 2 K (107

Using the Descartes’ rule of signs, the equation P(T) =
0 admits a unique positive real root, say fk(ll)<—1' Since

P0) = % >0, one has: VT > Tk(l,){ . P@ <0
which also implies that TP () < 0. According to the
definition of 7, the expression of the positive real t_lgf,)(_l

involved in (106) is t,fl,){ | = t,El,)( l—i-Tk(l,)( |- Moreover,

r,f,)( | satisfies

_i) )/ -6y !
M (Tk,k—l) 1<Tk,k—1>
0 — j! 2 k! '

The left side of the above equality is a polynomial in

r,il,){ , and all its coefficients tend to zero when when 6

goes to infinity. This implies that limg_, o fk(i,)(_l =0
and the property (106) is hence proved. 1

Now, let 7 > ") | such that %1 (1)| € Sk_;. Then,
one has [compare with (69)]

e
B0 < Y = [F )]
— J!
j=0
(t =5/ .
+Z/<,> 1),| 7. 5. ds

Tk k—1

(@) n (@) i
(t—t ) (t—t )hw
k,k—1 18, k,k—1

n! iy!

n (@)

oy 3 Utk

j!

Since §,, satisfies (28) and from the fact thatn —i,, >
1, the above inequality leads to

e ey
B(O] < F ()]
— J!
J
t—s ~
kk 1

- ré’i D" B =G

&

n! (% Iw!
n l‘—l‘(l) )/
—6v Z kk 1
Jj=k+1
200+ 0, (108)

with

k-1 (=t )
Qo =Y4 ¢| ,+1(t,§’,1 Dl

(=)~ o
+>" u,x,x)|ds
Z]_l f’li;c I (] DI | ( )|
—i—g—w(t_’lifl)« D
[4 [ i (109)

i)
1 (t—t )/
O(r) = YIop B |7 J+1(t;§’,1 Dl

J ~
+2 - k+1f<l) B (t(/v)l)' |45 (u, X, x)| ds
(@) n (@) J
+58—(’ gy yn e

According to (18) and (37), one has for j = k +
1,...,n,

@3 (u. %, x)] <2nLyR and |%;(t0}_ )] < a(110)
Using (104) and (110), Q(t) can be bounded as follows

o) < (t—t,ﬁ’,i 1)" o ’i (t—t,f’}C D

Jj=k+1

N ré’i D’

+2nLyR Z

j=k+1
(@) n n (i)
(t—t ) (t—t )/
45, k=1 Z kk—1
n! . j!
Jj=k+1
0 \k
(t—1 )
< &9+ + (86 4+ 2nL,R — 6v)
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n _ . J
Z w’ (111)
. J:
Jj=k+1
where &g is as given by (102), §¢ = max(ay, §;). Note
thatsince limg_, o, (g /6) = 0,0nehaslimg_,  (89/6)
=0.

Now, choose 6 high enough such that 89 +2nLy R —
o < —%. Note that such a choice is possible since
limg_, » (69/0) = 0. With such a choice, inequality
(111) becomes

I S LR B (S Y
) i)

o) <
! !
k! j=k+1 J:
N R Gt/ S i
Y 2 ((k+ D!
(112)
Let us now bound Q(7). Indeed, according to (104)
andsmcetlgl)( 1> tk 1 ,onehasforj=1,...,k—1,
|x1+1(tkk DI = Zﬁ (g /0) . (113)
Similarly, Vs € [t'}_,. ], one has for j = 1,....k,

L
@5, % %)) < 2L, 1% < 47275 @p/0).  (114)
J Bk

Using (113) and (114) and from the fact that 1 <
iw < k, Q(t) defined by (109) can be bounded as fol-
lows

— tlgll)c )’
Q) < 511} 1)|+2 (e/e)z -
(@)
Lyop (=5 y)’
+ (425 @ /0) + ) R
( P 0 JX_; J!
i L,o o
~ . (@) LoOP op, 0
< %@ _)|+< +1>( )
k,k—1 ﬂk 0
k ()
(t—t )/ -
— KL Gince Sy < ap
J=1
I
- D) Nk =t 1) ) _
= [F1( )l + ?ZT &,
j:

(115)

where 7, and I: are given by (105).

Hence, for t > ’/E/)c | and using property (106),

inequality (115) leads to
- (i) Nk
0 a =10

0@) = x5 DI+ ST (116)

@ Springer

Combining (108), (112) and (116), one gets for all
t= ;Igljl,k’

F0] < &)l + “90_2#
0 (t — tlill)c l)k-‘rl '
2 (k+1)
< |)Z1(t,£f,)< DI+ ae(t_t,é#
i) i)
2 (k+ 1!
- mvlek * 2(kvi i~ i
(3(k1r€1)&9 _a—if) 1)> 117)
Now, set
o =i ¢ KT DE (118)

vl

Combining (117) and (118), one gets for all ¢ >
Br_ps 1X1@0] < W, ie. t,f’f)l’k = 1} 1~ This ends
the proof of Proposition 3.5. O
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