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Abstract This paper provides a redesigned version of
the Standard HighGain Observer (SHGO) to cope with
the peaking phenomenon occurring during the transient
periods aswell as the sensitivity to high frequencymea-
surement noise. The observer design is performed for a
class of uniformly observable systems with noise free
as well as noisy output measurements and the resulting
observer is referred to as Non Peaking Filtered High
Gain Observer (NPFHGO). The NPFHGO shares the
same structure as its underlying SHGO and differs only
by its corrective term which is still parameterized by a
unique positive scalar up to an appropriate expression
involving nested saturations. Of a fundamental interest,
the power of the scalar parameter does not exceed one
unlike in the case of the SHGOwhere this power grows
from 1 to the system dimension. Moreover, it is shown
that the equations of the NPFHGO become identical to
those of the SHGO after a transient time horizon that
can made arbitrarily small for sufficiently high values
of the design parameter. A particular emphasis is put on
the case of systems with noisy output measurements.
It is shown how a multiple integrator of the corrupted
outputs can be cascaded with the original system lead-
ing to an augmented system included in the class of
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systems for which the NPFHGO has been designed.
The performance and main properties of the NPFHGO
are highlighted and compared to those of its underly-
ing SHGO through simulation results involving a single
link robot arm system.
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1 Introduction

An intensive research activity has been devoted to the
observer design for uniformly observable systems over
the last four decades (see for instance [1–10] and ref-
erences therein). A particular emphasis has been put
on the Standard High Gain Observer (SHGO) design
for fundamental as well as simplicity purposes [5].
Indeed, SHGO have been extensively used for the out-
put feedback control design of nonlinear systems (see
[11] and references therein). The structure of a SHGO
is very simple since it consists in a copy of the system
dynamics up to a corrective term given by the product
of the observer gain by the output observation error.
There are two features of the SHGO that are worth
to be mentioned. Firstly, the observer gain is param-
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eterized by a unique design parameter, i.e. a positive
scalar denoted θ , which has to be taken generally high
enough to ensure the underlying observation error con-
vergence. Secondly, the design parameter θ intervenes
with positive powers ranged from one to the system
dimension, commonly denoted n. These features could
be essentially crucial from numerical implementation
point of views for systems with high dimensions when
relatively high values of θ are required.Moreover, there
are two main issues of SHGO that have to be pointed
out, namely the peaking of the observer state variables
during the transient periods and the observer sensitivity
to the output measurement noise.

Several solutions have been recently proposed to
alleviate the sensitivity tomeasurement noise of SHGO
[12–17]. A redesigned version of SHGO has been pro-
posed in [15] for a class of nonlinear systems of dimen-
sion n. Though the observer dimension is equal to
2(n − 1), the underlying observer gain is parameter-
ized by a scalar design parameter the power of which
is limited to 2. Such a design feature allows to enhance
the observer performance with respect to the ubiqui-
tous measurement noise. The same objective has bee
investigated in [14] using a cascade observer the dimen-
sion of which is equal to 2n. More specifically, the
observer consists in cascading two subsystems of the
same dimension as the original system. The first sub-
system is nothing than a copy of the original system
with a simple correction term which linearly depends
on the state of the second subsystem, while the sec-
ond subsystem is a linear filter driven by the output
observation error, namely the error between the output
measurement and an output prediction provided by the
first subsystem.

The peaking phenomenon is a challenging problem
that has been recently investigated [18–22]. A suitable
redesign of the SHGO has been proposed in [19] lead-
ing to an observer of the same dimension as the orig-
inal system where the power of the observer gain is
limited to one. The observer design proposed in [15]
has been reconsidered in [20] to deal with the peak-
ing phenomenon by properly using nested saturation
functions.

In the present paper, one aims at investigating the
design of an observer with filtering capabilities while
allowing a significant reduction of the peaking phe-
nomenon. Such observer shall be referred to as Non
Peaking Filtering High Gain Observer (NPFHGO) and
its design shall be achieved in a context accounting for

the free noise output case and the noisy output case as
well. The unifying of both cases is made possible by
considering a class of uniformly observable systems
where the expression of the outputs only depends on
the system state. Such outputs may coincide with the
system real outputs if the latter are assumed to be noise
free. In the case where the real measurements are noisy,
the system outputs correspond to a filtered version of
the real measurement outputs, i.e they are the outputs
of an appropriate filter, namely a multiple integrator,
which is a part of the system and the entry of which are
the real measurement outputs.Moreover, two unknown
essentially bounded functions are involved in the class
of systems. The first one is treated as a disturbance
while the second one allows to identify the case where
the class of considered system involves a filter that pro-
vides the system outputs.

Themainmotivation behind the consideration of the
above class of systems is to move away in a first step
the problem dealing with the observer sensitivity to
noise and to focus only on the problem dealing with
the peaking phenomenon. Indeed, a Non Peaking High
GainObserver (NPHGO), the structure ofwhich is very
similar to that of its underlying SHGO, is designed for
the above class system. The main difference between
both observers lies in the corrective termof theNPHGO
which is expressed through nested saturation functions.
More specifically, the corrective term is parameterized
by a scalar design parameter θ the power of which
does not exceed one. Two fundamental properties of
the NPHGO have to be emphasized. The first property
dealswith the fact that under an appropriate assumption
on the essential bound of the second unknown func-
tion, it is shown that the state estimate is bounded dur-
ing the transient periods by a function α(θ) such that
limθ→∞ (α(θ)/θ) = 0. The second property consists
in the fact that the NPHGO equations become identical
to those of its underlying SHGO after a transient time
horizon that can be made arbitrarily small by choosing
sufficiently high values of the design parameter θ .

It is worth noticing that the NPHGO becomes a
NPFHGO when it is designed for systems with filtered
outputs. Such an issue shall be fully detailed by con-
sidering a class of systems with noisy outputs which
shall be cascaded with an appropriate multiple integra-
tor of the outputs in such a way that the augmented
system is included in the class of systems for which a
NPHGO can be designed. Then one shall show how the
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so designed NPHGO is specialized and performs as a
NPFHGO.

The paper is organized as follows. The problem
formulation is presented in Sect. 2 with a particu-
lar emphasis on the considered class of systems and
the SHGO design assumptions. The equations of the
SHGO are briefly presented and its main properties,
established in [23], are recalled. The design of the
NPHGOis detailed inSect. 3with a particular emphasis
on the appropriate nested saturation functions involved
in the observer gain. The main steps of the observer
design are put forward through five propositions and
the main properties of the proposed NPHGO result-
ing from these propositions are summarized in a theo-
rem. In Sect. 4, the design of a NPFHGO for a class of
systems with noisy outputs is emphasized. It is shown
how a system with noisy outputs can be augmented
by a multiple integrator of these noisy outputs in such
a way that the augmented system is included in the
class of systems for which a NPHGO can be designed.
Then, the equations of the underlying NPHGO are
derived and it is shown how this observer acts as a
NPFGHO, namely it significantly reduces the peaking
of the state variables during the transient periods while
improving the sensitivity to noise of the observer. In
Sect. 5, the performance of the proposed NPFHGO
and its main properties are highlighted and compared
to those of a SHGO through an example dealing with
a single-link robot arm system. Finally, concluding
remarks are given in Sect. 6. For clarity purposes, the
proofs of all propositions are detailed in Appendices
A–E.

Throughout the paper, Ik denotes the k × k identity
matrix; ‖ · ‖ denotes the euclidian norm; for any Sym-
metric Positive Definite (SPD) matrix Q, λ

(M)
Q (resp.

λ
(m)
Q ) denotes its maximum (resp. minimum) eigen-

value and σQ =
√

λ
(M)
Q /λ

(m)
Q is its conditioning num-

ber. More specifically, one defines the following matri-
ces.

A1 = 0, Ak =
(
0 Ik−1

0 0

)
∈ Rk×k for k ≥ 2,

(1)

Ck = (
1 0 . . . 0

) ∈ IRk for k ≥ 1, (2)

Bk,k0 ∈ IRk, k ≥ 2, 1 ≤ k0 ≤ k with

Bk,k0(k0) = 1 and Bk,k0(i) = 0,

i ∈ {1, . . . , k} \ {k0}, (3)

�k = (
γ1 . . . γk

)T
, Āk

�= Ak − �kCk for k

≥ 1, (4)

Uk = (
1 . . . 1

)T ∈ IRk for k ≥ 1, (5)

�k(θ) = diag

(
1,

1

θ
, . . . ,

1

θk−1

)
for k ≥ 1. (6)

The parameter θ involved in the expression of �k(θ)

is a real positive number.
On other aspects, let n ≥ 1 be a positive integer and

let ξ T = (
ξ1 . . . ξn

) ∈ IRn with ξi ∈ IR, i = 1, . . . , n;
then for any integer 1 ≤ k ≤ n, one defines ξ

k
∈ IRk

as follows

ξ T
k

= (
ξ1 . . . ξk

) ∈ IRk, k = 1, . . . , n. (7)

Finally, one recalls a useful property: If Ak is a n × n
Hurwitz matrix, then there exist a k× k SPDmatrix Pk
and a positive real μk such that

PkAk + AT
k Pk ≤ −2μk Ik . (8)

2 The problem formulation

One aims at providing a NPFHGO for a class of dis-
turbed nonlinear systems described by the following
equations{
ẋ = Anx + ϕ(u, x) + Bn,nε(t)
y = Cnx + v(t) = x1 + v(t)

(9)

where x = (
x1 . . . xn

)T ∈ IRn denotes the state of the
system with xi ∈ IR for i = 1, . . . , n; u ∈ IR denotes
the system input and y ∈ IR denotes the output of the
system, the matrices An , Cn and Bn,n are defined as
in (1)–(3) with k = k0 = n, v(t) is the output noise
and the function ε : [0,+∞[ �→ IR denotes the sys-
tem uncertainties and may depend on the input and
uncertain parameters. It shall be treated as an unknown
function which explicitly depends on time t for t ≥ 0.
Finally, ϕ(u, x) ∈ IRn denotes a nonlinear vector field
and each of its n components has a triangular struc-
ture with respect to x , i.e. ϕi (u, x) = ϕi (u, xi ) for
i = 1, . . . , n where xi is the sub-vector of x as defined
by (7).

The class of systems (9) is included in a class of
systems considered in [23] for which a SHGO has
been designed under appropriate assumptions usually
used in the context of high gain observer design. As
stated above, themainmotivation behind the NPFHGO
design is to cope with the peaking phenomenon occur-
ring during the transient periods and to improve the
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sensitivity of the observer with respect to output mea-
surements noise. For this end, one shall proceed as fol-
lows. First, one shall introduce a large class of systems
which includes system (9) and where the expression
of the output only depends on the system state and
hence does not explicitly depend on the noise. A high
gain observer that copeswith the peaking phenomenon,
referred to as NPHGO, will be designed for this class
of systems and the main properties of the underlying
observation error will be put forward. Then, one shall
come back to system (9) to prove that it is included
in the considered large class of systems and hence the
proposed design of the NPHGO can be mimed lead-
ing thereby to a NPFHGO which copes not only with
the peaking phenomenon problem but also with the
observer sensitivity to noise.

Let us now consider the following class of systems
which shall be used to design the NPHGO
{
ẋ = Anx + ϕ(u, x) + Bn,nε(t) + Bn,iww(t)
y = Cnx = x1

(10)

where 1 ≤ iw ≤ n−1, Bn,iw ∈ IRn is a defined as in (3)
with k = n and k0 = iw; w : [0,+∞[ �→ IR is a time
varying unknown function the consideration of which
shall bemotivated later. All the other variables involved
in system (10) keep the same meaning as in system
(9). Notice that to avoid the redundance of variables,
the same notation is used for the state variables and
dimensions of systems (9) and system (10), i.e. x and n.
However, both systems are different since they assume
different structures and the fact that the class of systems
(10) includes systems (9) will be detailed later. Let us
now focus on system (10).

The NPHGO observer design will be performed
under the following usual assumptions.

A1. The state x(t) and the control u(t) are bounded, i.e.
x(t) ∈ X and u(t) ∈ U where X ⊂ IRn and U ⊂
IR are compact sets. More precisely, there exists a
positive constant ρM , such that ∀t ≥ 0, |xi (t)| ≤
ρM , i = 1, . . . , n.

A2. The functions ϕk(u, x) for k = 1, . . . , n are Lip-
schitz on X with respect to x uniformly in u, i.e.
for k = 1, . . . , n, one has

∃Lk > 0; ∀u ∈ U ; ∀(x̂, x) ∈ X × X,

|ϕk(u, x̂ k) − ϕk(u, xk)| ≤ Lk

k∑
i=1

|x̃i |, (11)

where x̃i = x̂i − xi .

A3. The unknown function ε is essentially bounded,
i.e.

∃δε > 0 ; Ess sup
t≥0

|ε(t)| ≤ δε. (12)

A4. The unknown function w is essentially bounded,
i.e.

∃δw > 0; Ess sup
t≥0

|w(t)| ≤ δw. (13)

Since one will use saturation technics to cope with the
peaking phenomenon, let us define the following satu-
ration function

∀z ∈ IR, satr (z) = rsat (z/r)

=
{
z if |z| ≤ r
r sign(z) if |z| > r

, (14)

where r > 0 is a positive real and sign(·) is the usual
signum function.

Let

R > ρM , (15)

be a positive real where ρM is defined as in Assump-
tion A1, be a positive real. One saturates the system
nonlinearities ϕk’s for k = 1, . . . , n as follows

ϕs
i (u, x1, . . . , xi ) = ϕi (u, satR(x1), . . . , satR(xi )).

(16)

According to Assumption A2 and from the fact that
the saturation function (14) is globally Lipschitz with
a Lipschitz constant equal to 1, the functions ϕs

i ’s for
i = 1, . . . , n satisfy

∀u ∈ U ; ∀(x̂, x) ∈ IRn × IRn, |ϕs
k

(
u, x̂1, . . . , x̂k

)

−ϕs
k (u, x1, . . . , xk) | ≤ Lk

k∑
i=1

|x̃i |. (17)

A constant bound can be derived for |ϕs
k

(
u, x̂1, . . . , x̂k

)
− ϕs

k (u, x1, . . . , xk) |. Indeed, one has
|ϕs

k

(
u, x̂1, . . . , x̂k

) − ϕs
k (u, x1, . . . , xk) |

≤ Lk

k∑
i=1

|satR(x̂i ) − satR(xi )| ≤ 2Lk

k∑
i=1

R

≤ 2nLϕR. (18)

where

Lϕ = max
1≤k≤n

Lk . (19)

Two upper bounds can be derived for the norm
of the error vector of the saturated nonlinearities
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ϕ̃s(u, x̂, x)
�= ϕs

(
u, x̂

) − ϕs (u, x) using either
inequality (17) or (18). Indeed, the first bound can be
derived using (17) as follows

|ϕ̃s
k(u, x̂, x)| ≤ Lϕ

k∑
i=1

|x̃i | ≤ Lϕ

n∑
i=1

|x̃i |

≤ √
nLϕ‖x̃‖, k = 1, . . . , n, (20)

and hence

‖ϕ̃s(u, x̂, x)‖ ≤ nLϕ‖x̃‖. (21)

A constant bound can be derived using (18). Indeed,
one has

‖ϕ̃s(u, x̂, x)‖ ≤ √
n max
1≤k≤n

|ϕ̃s
k(u, x̂, x)|

≤ 2n
√
nLϕR. (22)

Now, one postulates that the observer redesign can be
handled for the following class of systems.
{
ẋ = Anx + ϕs(u, x) + Bn,nε(t) + Bn,iww(t)
y = Cnx = x1

(23)

where ϕs(u, x) = (
ϕs
1(u, x1) . . . ϕs

n(u, x)
)T

. Indeed,
since system (10) coincides with system (23) on X , the
observer that shall be designed for system (23) could
be used in order to estimate the trajectories of system
(10) which always lie in X . A class of MIMO systems
which coincides with system (23) in the single output
case and in the absence of w(t) has been considered in
[23] where a SHGO has been designed for this system.
The observer equations for system (23) specialize as
follows

˙̂x = An x̂ + ϕs(u, x̂) − θ�−1
n (θ)�n(Cn x̂ − y), x̂(t0) ∈ X,

(24)

where x̂ ∈ IRn denotes the state estimate, �n is defined
as in (4)with k = n and the underlying coefficientsγi ’s,
i = 1, . . . , n are chosen such that the matrix Ān =
An − �nCn is Hurwitz; �n(θ) is a diagonal matrix
defined as in (6) with k = n and θ ≥ 1.

Let x̃ = x̂ − x be the observation error associated
to the SHGO (24). From (23) and (24), one has

˙̃x = An x̃ + ϕ̃s(u, x̂, x) − θ�−1
n (θ)�nCn x̃

− Bn,nε(t) − Bn,iww(t), (25)

where ϕ̃s(u, x̂, x) = ϕs(u, x̂) − ϕs(u, x). Proceed-
ing as in [23], one can straightforwordly show that the
observation error vectors x̃ k(t) for k = 1, . . . , n, where
x̃ k is defined as in (7), satisfy the following property

∃θ0 > 0; ∀θ ≥ θ0; ∀u ∈ U ; ∀x̂(t0) ∈ X; ∀t ≥ t0,

‖x̃ k(t)‖ ≤ σPn

(
θk−1e−βnθ(t−t0)‖x̃(t0)‖

+ δε

βnθn+1−k
+ δw

βnθ iw+1−k

)
, (26)

with

βn = μn

2λ(M)
Pn

, (27)

and where the SPD matrix Pn and the positive real μn

are given by equation (8) with k = n and An = Ān

given by (4), δε and δw are the essential upper bounds
of |ε(t)| and |w(t)| given in Assumptions A3 and A4
respectively, θ0 = max

(
1, nLϕ/βn

)
, Lϕ is the Lips-

chitz constant given by (18) and σPn is the conditioning
number of the matrix Pn .

Remark 2.1 According to inequality (26), in the absence
of the unknown function w(t), i.e. when δw = 0,
the asymptotic observation errors related to x̃ k , k =
1, . . . , n, can be made as small as desired by choosing
θ sufficiently high. Indeed, in this case, the underlying
asymptotic ultimate bounds is equal to δε

βnθn+1−k . Since

k ≤ n, this bound is always lower or equal than δε

βnθ

which indeed tends to 0 when θ goes to ∞. In the case
where δw = 0, the above property is no longer true
unless an additional constraint is made on δw. Indeed,
if δw = 0, then one can easily check that the result-
ing asymptotic ultimate bound can be made as small as
desired if the following condition on δw is satisfied

∃δ̄w > 0; δw ≤ δ̄w

θn−iw
, (28)

where θ > θ0. More precisely, under condition (28),
inequality (26) specializes as follows

‖x̃ k(t)‖ ≤ σPn

(
θk−1e−βnθ(t−t0)‖x̃(t0)‖ + δε + δ̄w

βnθn+1−k

)
,

(29)

Recall that in condition (28) the variable n denotes
the dimension of the considered class of systems and
the variable iw is the rank of the state component the
dynamics of which explicitly depends on w(t).

The above SHGO (24) particularly suffers from the
peaking phenomenon which takes place along the tran-
sient periods. In the following, one will show how to
address the underlying problem appropriately.
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3 Design of NPHGO

The NPHGO is a redesigned version of the SHGO
(24), which significantly reduces the peaking of the
observer state variables during the transient periods.
Such a performance improvement is achieved by a suit-
able modification of the observer through the consid-
eration of adequate saturation functions as it shall be
detailed later, after providing the observer equations.
Before giving the equations of the proposed observer,
one introduces the following definitionwhich is needed
for the observer design.

Definition 3.1 Let An and�n be respectively the n×n
matrix and the n column vector defined as in (1) and
(4) with k = n. The n coefficients γi ’s of the vector
�n , i = 1, . . . , n are said to satisfy the strong stabil-
ity requirement with respect to An if and only if for
each k ∈ {1, . . . , n}, the matrix Āk defined as in (4) is
Hurwitz.

Notice that a similar notion has been introduced in
[20] but the structures of the matrices Āk are different
from those given by (4). Moreover, it is worth men-
tioning that some algorithms allowing to specify the
appropriate γi ’s, i = 1, . . . , n, according to the strong
stability requirement given in Definition 3.1, are avail-
able in [24]. An approach based on one of these algo-
rithms shall be proposed in Sect. 3.2.

3.1 Equations of the observer

The equations of the proposed NPHGO can be written
as follows

˙̂x = An x̂ + ϕs(u, x̂) − θH(x̃1), x̂(t0) ∈ X, (30)

where x̂ = (
x̂1 . . . x̂n

)T ∈ IRn , x̃1 = x̂1 −
x1, θ > 0 is a design parameter and H(x̃1) =(
H1(x̃1) . . . Hn(x̃1)

)T ∈ IRn with Hi (x̃1) ∈ IR for
i = 1, . . . , n, is defined as follows

H1(x̃1(t)) = satν (γ1 x̃1(t)) and

Hi (x̃1(t)) = satν

(
θ

γi

γi−1
Hi−1(x̃1(t))

)
for

i = 2, . . . , n. (31)

where the γi ’s, i = 1, . . . , n satisfy the strong stability
requirement with respect to An , given in Definition 3.1;
θ is a design parameter and is chosen sufficiently high

in particular to satisfy θ >
γi−1
γi

, i = 2, . . . , n; ν > 0
is also a design parameter the choice of which shall be
discussed later.

According to the expressions of the corrective terms
Hi ’s, i = 1, . . . , n and bearing inmind the definition of
the saturation function given by (14), one can check that
the expressions of these terms depend on themagnitude
of |x̃1(t)| and they can be expressed as follows

• |x̃1(t)| >
ν

γ1
�⇒ H(x̃1(t))

= ν sign(x̃1(t))Un, (32)

• |x̃1(t)| ≤ ν

γnθn−1 �⇒ H(x̃1(t))

= �−1
n (θ)�n x̃1(t), (33)

• ∀k ∈ {1, . . . , n − 1},
ν

γk+1θk
< |x̃1(t)| ≤ ν

γkθk−1 �⇒

H(x̃1(t)) =
(

�−1
k (θ)�k x̃1(t)

ν sign(x̃1(t))Un−k

)
, (34)

where (�n, �k), (Un,Un−k) and (�k,�n) are given by
(4), (5) and (6), respectively.

Before stating the resultswhich put forward themain
properties of observer (30), one shall introduce some
definitions and notations which shall be used through-
out the analysis of the observer properties. Indeed, one
defines the following partition {Sk}−1≤k≤n−1 on the
interval [0, 2R] where R is defined as in (15),

S−1 = ] ν

γ1
, 2R],

Sk = ] ν

γk+2θk+1 ,
ν

γk+1θk
],

k = 0, . . . , n − 2 and

Sn−1 =
[
0,

ν

γnθn−1

]
. (35)

Each Sk shall be referred to as a sector. For each
k ∈ {−1, . . . , n − 2}, Sk+1 is the lower sector of Sk .
Similarly, for each k ∈ {0, . . . , n − 1}, Sk−1 is the
upper sector of Sk . In the remaining of this section, one
assumes without loss of generality that |x̃1(t0)| ∈ S−1.

Now, one shall put forward the time instants atwhich
|x̃1(t)| enters and leaves the different sectors Sk since
the initial time instant t0 by setting the following defi-
nitions (see Fig. 1).

• If |x̃1(t)| leaves Sk−1 and enters Sk for k =
0, . . . , n−1, for the i’th time, at a finite time instant,
then such a time instant shall be denoted by t (i)k−1,k
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Improved high gain observer design for a class 637

Fig. 1 Evolution of |x̃1(t)| through the sectors Sk with the asso-
ciated time instants of crossing

and one shall state that t (i)k−1,k exists. According to
this definition, one has

|x̃1(t (i)−k−1,k)| >
ν

γk+1θk
and |x̃1(t (i)k−1,k)| = ν

γk+1θk
,

with t (i)−k−1,k = limh→0

(
t (i)k−1,k − h

)
where h > 0

is a positive real. More precisely, the time instant
t (i)k−1,k is the time instant at which |x̃1(t)| enters Sk .

• Similarly, if |x̃1(t)| leaves Sk and enters Sk−1

for k = 0, . . . , n−1, for the i’th time at a finite time
instant, then such a time instant shall be denoted by
t (i)k,k−1 and one shall state that t (i)k,k−1 exists. Since
|x̃1(t)| is continuous, one shall adopt the following
definition,

|x̃1(t (i)k,k−1)| = ν

γk+1θk
and |x̃1(t (i)+k,k−1)| >

ν

γk+1θk
,

with t (i)+k,k−1 = limh→0

(
t (i)k,k−1 + h

)
where h > 0

is a positive real. More precisely, the time instant
t (i)k,k−1 is the time instant at which |x̃1(t)| leaves Sk .

In the sequel, one shall state a set of propositions
before giving the main theorem where the main prop-
erty of the observation error associated to system (23)
and observer (30) is given. In all these propositions,
system (23) is assumed to satisfy Assumptions A1–A4.

Now, one states the following proposition the proof
of which is given in Appendix A.

Proposition 3.1 Assume that |x̃1(t0)| ∈ S−1. Then,

(i) t (1)−1,0 > 0 exists with limθ→∞
(
t (1)−1,0 − t0

)
= 0,

(ii) ∃α
(1)
−1,0,θ > 0; ∀t ≤ t (1)−1,0, ‖x̃(t)‖ ≤ α

(1)
−1,0,θ with

limθ→∞
(
α

(1)
−1,0,θ /θ

)
= 0.

The behaviour of |x̃1(t)| for t ≥ t (1)−1,0 is detailed
by four propositions which are stated in what follows.
The first of these propositions can be interpreted as
a generalization of Proposition 3.1 since it details the
evolving of |x̃1(t)| from the sector S−1 to the sector
Sn−1. Its statement is given below and its proof is given
in Appendix B.

Proposition 3.2 Assume that |x̃1(t0)| ∈ S−1. Then, for
any k ∈ {0, . . . , n − 1}, one has
(i) t (1)k−1,k > 0 exists with limθ→∞

(
t (1)k−1,k − t0

)
= 0,

(ii) ∃α
(1)
k−1,k,θ > 0; ∀t ≤ t (1)k−1,k, ‖x̃(t)‖ ≤ α

(1)
k−1,k,θ

with limθ→∞
(
α

(1)
k−1,k,θ /θ

)
= 0.

According to Proposition 3.2, |x̃1(t)| will successively
leave the sector Sk−1 to enter Sk for k = 0, . . . , n − 1.
This in particularmeans that |x̃1(t)|will enter the sector
Sn−1 at the time instant t (1)n−2,n−1 and one has

∀t ≤ t (1)n−2,n−1, ‖x̃(t)‖ ≤ α
(1)
n−2,n−1,θ with

lim
θ→∞

(
α

(1)
n−2,n−1,θ /θ

)
= 0. (36)

The time evolution of |x̃1(t)| in the sector Sn−1 is
described in the following Proposition the proof of
which is given in Appendix C.

Proposition 3.3 If t (1)n−1,n−2 exists and if the bound δw

of w(t) given by Assumption A4 satisfies condition
(28), then one has

(i) limθ→∞ τ
(1)
n−1 = 0 where τ

(1)
n−1 = t (1)n−1,n−2 −

t (1)n−2,n−1,

(ii) ∃α
(1)
n−1,n−2,θ ; ∀t ≤ t (1)n−1,n−2, ‖x̃(t)‖ ≤ α

(1)
n−1,n−2,θ

with limθ→∞
(
α

(1)
n−1,n−2,θ /θ

)
= 0.

Notice that the statement in Proposition 3.3 deals with
the case where t (1)n−1,n−2 exists. The non existence of

such a time instant means that for t ≥ t (1)n−2,n−1,
|x̃1(t)| still evolve in Sn−1 and never leaves it. In
such a case and according to (33), one will have for
all t ≥ t (1)n−2,n−1, H(x̃1) = �−1

n �n x̃1 and the equa-
tions of observer (30) will coincide with those of
the SHGO (24). If the time instant t (1)n−1,n−2 exists,
i.e. |x̃1(t)| leaves Sn−1 and enters Sn−2, then accord-
ing to Proposition 3.3, the time period of the stay-
ing of |x̃1(t)| in Sn−1 tends to zero when θ goes
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to infinity. Moreover, the vector of observation error
remains bounded by α

(1)
n−1,n−2,θ for all t ≤ t (1)n−1,n−2

with limθ→∞
(
α

(1)
n−1,n−2,θ /θ

)
= 0. The behaviour of

|x̃1(t)| for t > t (1)n−1,n−2 is detailed in the following
proposition the proof of which is given in Appendix D.

Proposition 3.4 If t (1)n−1,n−2 exists and if the bound δw

of w(t) given by Assumption A4 satisfies condition
(28), then there exists k ∈ {1, . . . , n − 1} such that

(i) t (2)k−1,k exists with limθ→∞ τ
(1)
k−1 = 0 where τ

(1)
k−1 =

t (2)k−1,k − t (1)k,k−1,

(ii) ∃α
(1)
k−1,θ > 0; ∀t ≤ t (2)k−1,k, ‖x̃(t)‖ ≤ α

(1)
k−1,θ with

limθ→∞
(
α

(1)
k−1,θ /θ

)
= 0.

According to Proposition 3.4 and in the case where
t (1)n−1,n−2 exists, there exists a sector Sk−1 with k ∈
{1, . . . , n−1} which is such that, when |x̃1(t)| reaches
and enters this sector (at the time instant t (1)k,k−1), it still
evolve in this sector during a time periodwhich tends to
0 when θ goes to infinity. After this time period, |x̃1(t)|
does not enter the upper sector Sk−2 but it comes back
to the lower sector Sk at the time instant t (2)k−1,k . Recall

that according to the adopted notations, t (2)k−1,k corre-
sponds to the time instant at which |x̃1(t)| leaves Sk−1

and enters Sk for the second time bearing in mind that
the existence of t (1)k−1,k (i.e. the time instant where the
same scenario occurred for the first time) has already
been established by Proposition 3.2. An illustration of
Proposition 3.4 is given in Fig. 1.

Remark 3.1 According to Proposition 3.4, t (2)k−1,k may
exist for k ∈ {1, . . . , n − 1}. It is indeed shown in the
proof of this proposition that k cannot be equal to zero,
i.e. t (2)−1,0 does not exist. Otherwise said, it is shown that
|x̃1(t)| never come back to S−1 after the time instant

t (1)−1,0. This also means the sequence
{
t (i)−1,0

}
i≥1

is finite

and reduced to t (1)−1,0.

Remark 3.2 It should be emphasized that the situation
of |x̃1(t)| at the time instant t (2)k−1,k is similar to its situa-

tion at the time instant t (1)k−1,k . Hence, the time evolution

of |x̃1(t)| since the time instant t (2)k−1,k is similar to its

evolution after the time instant t (1)k−1,k which has been
detailed in Propositions 3.2–3.4 . According to these
Propositions and bearing in mind Remark 3.1, |x̃1(t)|
will evolve in the sectors S0, . . . ,Sn−1 while ‖x̃(t)‖
remains bounded. More precisely, one has

a. For any t ≥ t (1)−1,0, |x̃1(t)| evolves in one of the
sectors S0, . . . ,Sn−1. Moreover, the time period of
the staying of |x̃1(t)| in each of these sectors tends
to 0 when θ goes to infinity.

b. For any finite time T > 0,

∃αθ > 0; ∀t ≤ T, ‖x̃(t)‖ ≤ αθ with

lim
θ→∞ (αθ/θ) = 0. (37)

In the sequel, one shall show that there exists a time
instant at which |x̃1(t)| enters for the last time the sector
Sn−1 and never leaves it. Notice that, since this time
instant, the equations of observer (30) coincide with
those of the SHGO (24).

One now states the main Proposition the proof of
which is given in Appendix E.

Proposition 3.5 If the bound δw of w(t) given by
AssumptionA4 satisfies condition (28), then the sequence{
t (i)k−1,k

}
i≥1

is finite for any k ∈ {0, . . . , n − 1}.

Let us denote by ik the number of terms in the

sequence
{
t (i)k−1,k

}
i≥1

. According to Proposition 3.5,

ik is finite for any k ∈ {0, . . . , n − 1}. In particular,
there exists a finite time instant t (in−1)

n−2,n−1, such that for

all t ≥ t (in−1)

n−2,n−1, |x̃1(t)| never leaves Sn−1. This means

that, for t ≥ t (in−1)

n−2,n−1, the equations of observer (30)
coincide with those of the SHGO (24).

On other aspects, since the time period of staying
of |x̃1(t)| in each sector Sk for k = −1, . . . , n − 1
tends to 0 when θ tends to infinity, one deduces that

limθ→∞
(
t (in−1)

n−2,n−1 − t0
)

= 0.

Remark 3.3 The result provided by Proposition 3.5,
i.e. ik is finite, in particular means that for each k =
1, . . . , n, there exists a time instant from which the k
first equations of the observer (30) coincide with their
counterpart in observer (24) since each saturation func-
tion involved in the corrective term of (30) become
equal to the identity function . The notion of strong
stability requirement allowed to treat each subsystem
composed by the underlying first k equations as a per-
turbed systems and an appropriate ultimate bound is
derived. When k = n, the overall system is recovered
and observer (30) coincides with (24). Notice that and
as stated before, the concept of strong stability require-
ment has been used in [18,20] even though the under-
lying involved developments and arguments are quite
different from those detailed in this paper.
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The main property of observer (30) directly results
from the above results and it can be formulated in the
following Theorem.

Theorem 3.1 Consider system (23) subject toAssump-
tion A1–A4 together with observer (30) and assume
that the bound δw of w(t) given by Assumption A4
satisfies condition (28). Then, each component x̃i =
x̂i (t) − xi (t) for i = 1, . . . , n, of the observation error
satisfies the following property,

∃θ� > 0; ∀θ ≥ θ�; ∃t (in−1)

n−2,n−1 > 0;
∃αθ > 0; ∀u ∈ U ; ∀x̂(t0) ∈ X, one has, (38)

(i) ∀t s.t. t0 ≤ t ≤ t (in−1)

n−2,n−1, ‖x̃i (t)‖ ≤ αθ ,

(ii) ∀t ≥ t (in−1)

n−2,n−1, ‖x̃i (t)‖

≤ min

{
αθ , σPn

(
θ i−1e

−βnθ
(
t−t

(in−1)

n−2,n−1

)
αθ

+ δε + δ̄w

θn+1−iβn

)}
, (39)

where βn is defined by (27), Pn is given by (8) with k =
n andAk = Ān where Ān is defined as in (4) and δε, δ̄w

are as defined by (12) and (28), respectively. Moreover,

one has limθ→∞
(
t (in−1)

n−2,n−1 − t0
)

= limθ→∞ (αθ/θ)

= 0.

Remark 3.4 The analysis of the time evolution of
|x̃1(t)| carried out through Propositions 3.1–3.5 has
assumed that the initial condition |x̃1(t0)| ∈ S−1. In the
case where |x̃1(t0)| ∈ Sk� where k� ∈ {0, . . . , n − 2},
one can show that the time evolution of |x̃1(t)| still be
similar to its evolution in the case where |x̃1(t0)| ∈ S−1

up to the following minor difference. Indeed, by pro-
ceeding as in the proof of Proposition 3.2, one can show
that |x̃1(t)| will first cross the lower sectors until enter-
ing in Sn−1 as in the case where |x̃1(t0)| ∈ S−1. Then,
if |x̃1(t)| leaves Sn−1 to go to the upper sectors, it will
reach the most upper sector and then come back to the
lower ones as described in Proposition 3.4. Notice that
the most upper sector may be S−1 and this was not
possible when |x̃1(t0)| ∈ S−1. Now, it suffices to con-
sider any time instant at which |x̃1(t)| evolves in the
most upper sector and one can show that the time evo-
lution of |x̃1(t)| since this time instant is similar to its
evolution when |x̃1(t0)| ∈ S−1.

3.2 Tuning the observer design parameters

The corrective term of observer (30)–(31) involves
three design parameters, the vector �n and the posi-
tive reals θ and ν. As stated above, the n coefficients
γi ’s, of the vector �n have to satisfy the strong stability
requirement with respect to An . An appropriate choice
of these parameters can be achieved using one of the
following two approaches to which one shall refer as
Approach 1 and Approach 2.

Approach 1: Assign the poles of Ān to predefined
values and compute the underlying �n . This can be
easily achieved for example by calling one of mat-
lab standard functions ’acker’ or ’place’. After the
obtention of the γi ’s, check the full stability require-
ment by computing the roots of the n − 1 polynomials
Pk(λ) = λk + ∑k−1

i=0 γiλ
i , k = 1, . . . , n − 1. The full

stability requirement is fulfilled if all the roots of each
polynomial have negative real parts.

Approach 2: This approach is based on Theorem 3 in
[24] which provides a recursive algorithm allowing to
generate the coefficients γi ’s that satisfy the full sta-
bility requirement. This algorithm can be described as
follows: Let δ ≈ 4.07959 be the unique real root of
x3 − 5x2 + 4x − 1 = 0 and let α > 0 be a positive
real. The values of the γi ’s, i = 1, . . . , n are computed
as follows:

γ1 = α, γ2 = α2

√
δ

and

γk = γ 2
k−1√
δγk−2

, k = 3, . . . , n. (40)

At a first glance, the second approach seems more
attractive than the first one since it allows to provide the
appropriate coefficients γi ’s in a direct manner. How-
ever, the first approach has not to be systematically
discarded. Indeed, when the dimension of the system
is relatively low, say lower than 10, the strong stabil-
ity requirement is often satisfied when the coefficients
γi ’s are chosen such that the matrix Ān is Hurwitz with
predefined eigenvalues. This issue has been checked
numerically in simulation by considering many sets of
predefined eigenvalues for Ān . For example, if all the
eigenvalues of Ān are assigned to (−1), then the strong
stability requirement is satisfied for all n lower or equal
to 11.

The choice of the design parameters θ and ν has to be
achieved by a trial an error approach. It is well known
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that in the case of the SGHO, relatively high values of
θ allow a fast convergence of the observation error to
zero but amplify the peaking phenomenon. Since the
behaviour with respect to the peaking phenomenon has
been significantly improved, the use of relatively high
values for the parameter θ in observer (30) is no longer
discouraged. Let us now focus on the level of saturation
ν and assume that the value of θ is fixed. It is clear that
for very high values of ν, the peaking phenomenon still
be present and the behaviour of the NPGHO becomes
identical to that of the SHGO. However, very low val-
ues of ν may lead to longer transient periods of the
observer. This means that the period of staying of the
observation error x̃1(t) in each sector Sk before leaving
it becomes longer. More precisely, if ν is chosen such
that the product νθ is not high enough, then the tran-
sient period becomes longer and the saturation process
may fail [see Eq. (63)] and Eqs. [(76), (78)].

4 Design of a NPFHGO

Let us now come back to system (9) and let us show
how one can design for this system a NPFHGO, i.e. an
observer similar to (30) which allows to cope with the
non peaking phenomenon aswell aswith the sensitivity
to noise of the observer. Before detailing this issue, it
should be emphasized that in the case where system (9)
is noise free, i.e. v(t) = 0, then it is easy to see that this
systemcoincidewith (10)wherew(t) = 0 andhence an
observer similar to (30) can be designed for system (9).
Let us now focus on the case where v(t) = 0, i.e. the
system output is corrupted by the additive noise v(t).
One shall show how system (9) can be augmented by a
multiple integrator of the corrupted output leading to an
augmented system the structure of which similar to that
of system (10). As a result a SHGO similar to observer
(24) but involvingfiltering capabilities can be designed.
Such observer is referred to as FHGO. Exploiting the
fact the structure of the FHGO is similar to that of the
SHGO, the redesign approachwhich led to theNPHGO
can be used to derive a NPFHGO from the FHGO. One
now propose to detail the deriving of the FHGO and
the NPFHGO.

4.1 Design of the FHGO

Many approaches dealing with the observer designs
have been proposed to reduce the underlying observers
sensitivity to noise measurements either by appro-
priately updating the observer design parameter θ

[16,17,25] or by substituting in the observer correc-
tive term the output observation error by an appropri-
ate filtered version provided by a linear filter cascaded
with the original system [14,26,27]. The main draw-
back of the approach where a linear filter is considered
lies in the fact that the power of the design parame-
ter θ involved in the resulting observer gain increases
with an amount equal to the filter order and this leads
to the amplification of the peaking phenomenon. Since
the peaking phenomenon has already been coped with
thanks to the saturation functions, one shall adopt the
approach using a filtered version of the output observa-
tion error to deal with the observer sensitivity to high
frequency signals. In [26], the considered linear filter
is simply an integrator of the original system output. A
multiple integrator of the system output has been con-
sidered in [27]. Proceeding as in [26,27] where inter-
esting filtering properties for the underlying integral
observers are recorded, one proposes to augment sys-
tem (23) by a cascade of integrators of the output as
follows⎧
⎨
⎩
ż = Amz + Bm,m y
ẋ = Anx + ϕs(u, x) + Bn,nε(t)
ȳ(t) = z1(t)

(41)

where zT = (z1 . . . zm) ∈ IRm , Am and Bm,m are
defined as in (1) and (3)with k = k0 = m. Notice that in
order to improve the performance of the observer with
respect to the output noise measurements, the output
of the augmented system (41) is z1(t) which is an inte-
grator of order m of the original system noisy output
y(t). One shall show later, after giving the equations of
the resulting observer, that the first m equations of the
observer can be interpreted as a linear first order filter
that provides a filtered version of the output observa-
tion error which is used in the observer corrective term.
Now, since y = Cnx+v(t), system (41) can be written
under the following form
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
ż
ẋ

)
=

(
Am Bm,mCn

0m×n An

)(
z
x

)
+

(
0

ϕs(u, x)

)

+Bn+m,n+mε(t) + Bn+m,mv(t)

ȳ = Cn+m

(
z
x

)
= z1

(42)
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where Bn+m,n+m is as in (3) with k = k0 = n +m and
Bn+m,m as in (3) with k = n + m and k0 = m.

Taking into account the structure of the matrices
Am, An and Bm , one can check that(

Am Bm,mCn

0n×m An

)
= An+m, (43)

where An+m is as in (1) with k = n + m.
According to the above equality, the augmented sys-

tem (42) can be written under the following form⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
ż
ẋ

)
= An+m

(
z
x

)
+

(
0

ϕs(u, x)

)

+Bn+m,n+mε(t) + Bn+m,mv(t)

ȳ = Cn+m

(
z
x

)
= z1

(44)

where Cn+m is as in (2) with k = n+m. It is clear that
the structure of the n + m dimensional system (44) is
similar to that of the n dimensional system (10) with
w(t) = v(t) and iw = m. As a result, a SHGO can be
designed for this system. The equations of the under-
lying SHGO can be written as follows( ˙̂z

˙̂x
)

= An+m

(
ẑ
x̂

)
+

(
0

ϕs(u, x̂)

)

− θ�−1
n+m(θ)�n+m(ẑ1 − z1), (45)

where ẑ ∈ IRm and x̂ ∈ IRn are the respective esti-
mates of z and x , �n+m is a diagonal matrix defined
as in (6) and �T

n+m = (
γ1 . . . γn+m

) ∈ IRn+m where
the coefficients γi ’s for i = 1, . . . , n + m are positive
reals satisfying the strong stability requirement with
respect to An+m . Notice that, the equations of the above
observer depend on the variable z (or more precisely
z1) the dynamics of which is governed by the first m
scalar Ordinary Differential Equations (ODE) of sys-
tem (41). Hence the number of scalar ODE’s consti-
tuting the observer is equal to (n + 2m). In order to
reduce the number of these equations to (n + m), one
shall proceed as follows.

First, one can check the following equalities

�n+m(θ) = diag(�m(θ),
1

θm
�n(θ)),

�n+m = (�T
m �T

m+1,n+m)T , (46)

where�n+m,�m and�n are diagonalmatrices defined
as in (6), �T

m = (γ1 . . . γm) and �T
m+1,n+m =

(γm+1 . . . γn+m). Using equalities (43) and (46), the
equations of observer (45) can be written under the fol-
lowing expanded form
{ ˙̂z = Am ẑ + Bm,m x̂1 − θ�−1

m (θ)�m(ẑ1 − z1)˙̂x = An x̂ + ϕs(u, x̂) − θm�−1
n (θ)�m+1,n+m(ẑ1 − z1)

(47)

System (47) is constituted by two cascade subsystems
where ẑ and x̂ are the respective states of these subsys-
tems. It is clear that the time derivative of x̂ is linked
to that of ẑ through the term ẑ1 − z1, only. Hence, set
η = ẑ − z ∈ IRm and let ηi denotes the i’th component
of η for i = 1, . . . ,m. Using the respective first equa-
tions of systems (41) and (47) as well as equalities (46),
the equations of observer (47) can be written using the
states η and x̂ as follows(

η̇
˙̂x
)

=
(
Amη(t) + Bm,mCn x̂ − Bm y

An x̂ + ϕs(u, x̂)

)

−θ�−1
n+m(θ)�n+mη1

= An+m

(
η

x̂

)
+

(−Bm,m y
ϕs(u, x̂)

)

−θ�−1
n+m(θ)�n+mη1 (48)

Notice that η(t0) = 0 is an appropriate initial value
for the ODE governing η since it reduces the transient
period of the filter.

It is clear that system (48) which provides a smooth
estimate, x̂ , of the state x requires the resolution of
n +m scalar ODE’s, only. The first m ODE’s are asso-
ciated to a linear filter of order m the entry of which is
the noisy output observation error, i.e. Cnx̂(t) − y(t),
and the resulting filtered output provided by this fil-
ter, i.e. η1 = Cmη, is then used in the correction term
in both subsystems (overall observer). Moreover, since
the structure of observer (48) is similar to that of the
SHGO (24), then the same redesign process used to
derive (30) from (24) can be used in a straightforward
manner to derive the equations of a NPFGHO that
inherits the main properties of the NPHGO together
with those of the FHGO. Before giving the equations of
the observer, let us derive an upper bound of the under-
lying observation error under the assumption that the
output measurements noise v(t) is essentially bounded
by an essential bound δv satisfying a condition similar
to (28).Bearing inmind the significance of the variables
involved in (28) (see, Remark 2.1), the underlying con-
dition can be obtained by substituting in (28), n and
iw by (n + m) and m, respectively, i.e. condition (28)
specializes as follows

∃δ̄v > 0; δv ≤ δ̄v

θ (n+m)−m
= δ̄v

θn
, (49)

To summarize, the output measurements noise v(t)
is assumed to satisfy the following condition

∃δ̄v > 0; Ess sup
t≥0

|v(t)| ≤ δ̄v

θn
(50)
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Let ξ =
(

η

x̃

)
where x̃ = x̂ − x be the obser-

vation error associated to observer (48) and system
(44). Then, each component of the observation error,
ξi , i = 1, . . . ,m + n, satisfies an inequality similar to
(29). In particular, for i = 1, . . . , n, one has ξm+i = x̃i
and it satisfies

∃θ̄0 > 0; ∀θ ≥ θ̄0; ∀u ∈ U ; ∀x̂(t0) ∈ X; ∀t ≥ t0,
∥∥x̃ i (t)

∥∥ ≤ σPn+m

(
θm+i−1e−βn+mθ(t−t0) ‖x̃(t0)‖

+ δε + δ̄v

θn+1−iβn+m

)
, (51)

where βn+m is defined as in (27) by substituting n by
n + m, the SPD matrix Pn+m is given by Eq. (8) with
k = n + m, δε and δ̄v are respectively given (12) and
(50), θ̄0 = max

(
1, 2(n + m)Lϕ/βn+m

)
and Lϕ is the

Lipschitz constant as in inequality (26).
Notice that ‖ξ(t0)‖ has been substituted by ‖x̃(t0)‖

in the right side of inequality (51) since η(t0) = 0 and
hence ‖ξ(t0)‖ = ‖x̃(t0)‖. One also notices that the
power of θ multiplying the decreasing exponential in
(51) is m + i − 1 and it was only i − 1 in the bound
associated with the SHGO given by the right side of
inequality (29). This means that a drawback resulting
from the adding of the filter is the amplification of the
peaking phenomenon of the FHGO compared to the
SHGO. Nevertheless, the increasing of this power has
no significant impact since the underlying FHGO shall
be redesigned into a NPFHGO.

Remark 4.1 Notice that condition (50) is very similar
to the one derived in [20]. It is rather conservative since
it requires that the essential bound of the output mea-
surement noise has to be relatively small and of the
order of θ−n where n is the dimension of the original
system with noisy outputs. The non dependence of this
condition with the order of the filter, m, is to empha-
sized.

4.2 Equations of the NPFHGO

As stated above, the redesign process that has been
already used to derive the NPHGO (30) from its under-
lying SHGO (24), can be applied to the FHGO (48) to
derive the NPFHGO the equations of which are then
specialized as follows(

η̇
˙̂x
)

= An+m

(
η

x̂

)
+ �s(u, η, x̂, x)
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Fig. 2 Noisy measurements of x1

− θH(η1), η(t0) = 0, x̂(t0) ∈ X, (52)

where �s(u, η, x̂, x) =
( −Bm,m y

ϕ̃s(u, x̂, x)

)
, H(η1) ∈

IRn+m and the corresponding components Hi (η1) ∈
IR, for i = 1, . . . , n+m, are defined as follows [com-
pare with (31)]

H1(η1) = satν (γ1η1) and

Hi (η1) = satν

(
θ

γi

γi−1
Hi−1(η1)

)
for i = 2, . . . , n.

(53)

where the γi ’s, i = 1, . . . , n + m satisfy the strong
stability requirement with respect to An+m given in
Definition 3.1.

It should be emphasized that observer (52) simulta-
neously inherits the main properties of observer (30)
in terms of a significant reducing of the peaking of the
observer state variables as well as those of observer
(48) in improving the performance of the observer sen-
sitivity with respect to high frequency signals.

Remark 4.2 The extension of the NPFHGO design to
the multioutput class of systems considered in [23] can
be straightforwardly handled by simply applying the
saturation process to each scalar output.

5 Example

In this section, the performance and main properties of
the proposed NPFHGO are illustrated and compared
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Fig. 3 State estimation with the NPFHGO

with that of the SHGO through an example involving
a single-link robot arm introduced in [28] and used in
[14]. The underlying mathematical model is described
by the following differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = K̄/(J2N )x3 − (F2/J2)x2 − (K̄/J2)x1

−(m̄gd/J2) cos(x1)
ẋ3 = x4
ẋ4 = (1/J1)u − K̄/(J1N )x1 − K̄/(J2N )x3

−(F1/J1)x4 + ε(t)
y = x1 + v(t)

(54)

where ε(t) and v(t) denote respectively the disturbance
and the measurement noise, J1, J2, K̄ ,N , m̄, g, d,
F1 and F2 are the model parameters which are posi-

tive constants. More specifically, the control sequence
{u(t)} is specified as in [28], i.e.

u = satM
{
mgd J1/(J2N ) − (J1 J2N/K̄ )

(
L4c1x1 + L3c2x2

+ L2c3
(
K̄/(J2N )x3 − (mgd/J2)

) + Lc4 K̄/(J2N )x1
)}

,

with M > 0 and satM defined as in (14), the ci ’s,
i = 1, . . . , 4 and L are positive constants. Using the
fact that K̄/(J2N ) = 1, it is easy to check that sys-
tem (54) is under form (10) and as a result a NPFHGO
(and a SHGO) observer(s) can be designed. Indeed, a
NPFHGO of the form (52) has been designed with a
filter of order 2, i.e. m = 2. The parameters of sys-
tem (54) are chosen as follows F1 = 0.1, F2 = 0.15,
J1 = 0.15, J2 = 0.2, K̄ = 0.4, N = 2, m̄ = 0.8,
g = 9.81 and d = 0.6. The control u(t) is com-
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Fig. 4 State estimation with the SHGO

puted with the following parameters setting c1 = 4,
c2 = 7.91, c3 = 6.026, c4 = 1.716, L = 3 and
M = 200. In the simulation, the uncertainty has been
chosen as ε(t) = sin(5t), and the output y(t) has
been corrupted with a gaussian noise v(t) with a zero
mean value and a standard deviation equal to 0.004 as
shown in Fig. 2. The initial conditions of system (54)
and the observer have been chosen as in [14,28], i.e.
xT (0) = (

0.5 0.5 0.5 0.5
)
and x̂ T (0) = (

0 0 0 0
)
.

With the considered values for the initial conditions,
the state variables of system (54) are bounded with
x1(t) ∈ [−0.26 0.51], x2(t) ∈ [−2.63 2.06, x3(t) ∈
[0.5 38.8] and x4(t) ∈ [−95.94 127.56]. Hence, the
value of the level R to saturate the nonlinearities in the
observer [see (16)] has to be chosen at least greater

than the maximum absolute value of the above interval
bounds, i.e. R > ρM = 127.56. A general rule that can
be adopted for choosing R is to set it to an arbitrarily
great value. Indeed, simulation results which are pre-
sented later have been obtained by setting R = 1000.
Other simulation with other values of R (> ρM ) have
been carried out and they led to the same results.

The value of θ was set to 150, ν to 0.1 and the coef-
ficients γi for k = 1, . . . , 6 are chosen such that the
poles of Ā6 are located at −1. It has been checked
that the underlying value do satisfy the strong stability
requirement. For comparison purposes, a SHGO under
the form (24) has also been designed for system (54)

and it has been simulated with a gain � = (
4 6 4 1

)T
in such a way that all the eigenvalues of the (linear part
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Table 1 Comparison of the peaking phenomenon between
NPFHGO and SHGO

NPFGHO SHGO

‖x̃1‖∞ 0.5 0.5

‖x̃2‖∞ 0.5 92.9466

‖x̃3‖∞ 0.6296 8.14 103

‖x̃4‖∞ 4.6858 2.82 105

of the) observer are located at (−1). The same value of
θ (= 150) has also been used.

The estimates of the system states provided by the
NPFHGO are given in Fig. 3 where they are compared
to their true (noise-free) values issued from the model
simulation. The smooth state estimates provided by the
observer using noisy output measurements as well as
the absence of peaking of these estimates are worth to
be emphasized.

For comparison purposes, the estimates provided by
the SHGO have been reported in Fig. 4 where they
are compared to their true (noise-free) values issued
from the model simulation. The obtained estimates do
highlight the peaking phenomenon of the SHGOduring
the transient periods as well as its sensitivity to the
measurement noise. This fact is also emphasized by
Table 1 where the infinity norm of each component of
the observation error related to the state variables xi
and denoted by ‖x̃i‖∞, i = 1, . . . , 4 provided by both
observers are reported.

In order to put forward the filtering capabilities of
the NPFHGO, the input and output signals of this filter
are given in Fig. 5. Recall that the input of this filter is
the noisy output observation error and its output is the
filtered version η1(t) which is used by the corrective
term of the observer [see (52)].

6 Conclusion

A SHGO redesign has been considered bearing in
mind its two main known limitations, namely the
measurement noise sensitivity and the peaking phe-
nomenon occurring during the transient periods, lead-
ing thereby to a NPFHGO. The main properties of the
NPFHGOhave been highlighted and compared to those
of its underlying SHGO through promising simulation
results. The proposed observer redesign has been per-
formed for a class of uniformly observable systems
assuming that the output measurements are continu-
ously available. Further studies to extend the proposed
redesign to the case of sampled output measurements
and to the class of non uniformly observable systems
are under consideration.

Author contributions The main contributions are summarized
in the Abstract.
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A Proof of Proposition 3.1

From (23) and (30), one has

˙̃x = An x̃ + ϕ̃s(u, x̂, x)

− θH(x̃1) − Bn,nε(t) − Bn,iww(t), (55)

where ϕ̃s(u, x̂, x) = ϕs(u, x̂) − ϕs(u, x).
Since |x̃1(t0)| ∈ S−1, one has |γ1 x̃1(t0)| > ν.

Moreover and from the continuity of |x̃1(t)| with
respect to time, there exists t > t0 such that ∀s ∈
[t0, t], |γ1 x̃1(s)| > ν. It is clear that x̃1(s) keeps
the same sign for all s ∈ [t0, t]. Moreover, as long
as |γ1 x̃1(t)| > ν and according to (32), one has
H(x̃1(t)) = νsign(x̃1(t))Un .

Using the comparison lemma, Eq. (55) leads to

x̃(t) = eAn(t−t0) x̃(t0) +
∫ t

t0
eAn(t−s)ϕ̃s(u, x̂, x) ds

− νθsign(x̃1(t))
∫ t

t0
eAn(t−s)Un ds

−
∫ t

t0
eAn(t−s)Bn,nε(s) ds

−
∫ t

t0
eAn(t−s)Bn,iww(s) ds, (56)

where UT
n = [1 . . . 1] ∈ IRn defined as in (5).

The first component x̃1 can be expressed as follows

x̃1(t) = x̃1(t0) +
n−1∑
k=1

(
(t − t0)k

k! x̃k+1(t0)

)

+
n∑

k=1

(∫ t

t0

(t − s)k−1

(k − 1)! ϕ̃s
k(u, x̂, x)ds

)

−
∫ t

t0

(t − s)iw−1

(iw − 1)! w(s)ds

−
∫ t

t0

(t − s)n−1

(n − 1)! ε(s)ds

− νθsign(x̃1(t))
n∑

k=1

(t − t0)k

k! .

Multiplying both sides of the above equality by
sign(x̃1(t))(= sign(x̃1(t0))) and bounding its left side
lead to

|x̃1(t)| ≤ |x̃1(t0)| + ‖x̃(t0)‖
n−1∑
k=1

(t − t0)k

k!

+
n∑

k=1

∫ t

t0

(t − s)k−1

(k − 1)!
∣∣ϕ̃s

k(u, x̂, x)
∣∣ ds

+
∫ t

t0

(t − s)iw−1

(iw − 1)! |w(s)| ds

+
∫ t

t0

(t − s)n−1

(n − 1)! |ε(s)| ds

−νθ

n∑
k=1

(t − t0)k

k! . (57)

One shall now respectively derive a bound for the third,
fourth and fifth terms of the right side of the above
inequality. Indeed, according to (18), one has

n∑
k=1

∫ t

t0

(
(t − s)k−1

(k − 1)! |ϕ̃s
k(u, x̂, x)| ds

)

≤ 2nLϕR
n∑

k=1

(t − t0)k

k! . (58)

Similarly, according to (12) and (13), one has
∫ t

t0

(t − s)n−1

(n − 1)! |ε(s)| ds ≤ (t − t0)n

n! δε and

∫ t

t0

(t − s)iw−1

(iw − 1)! |w(s)| ds ≤ (t − t0)iw

iw! δw. (59)

Using (58) and (59), inequality (57) leads to

|x̃1(t)| ≤ |x̃1(t0)| + (δ−1,0 + δw

+ 2nLϕR − νθ)

n∑
k=1

τ k

k! , (60)

where τ = t − t0 and δ−1,0 = max(‖x̃(t0)‖, δε).
One can check that for

θ > θ
(1)
−1,0

�= 2

ν
(δ−1,0 + δw + 2nLϕR), (61)

and inequality (60) leads to

|x̃1(t)| ≤ |x̃1(t0)| − νθ

2

n∑
k=1

(t − t0)k

k!
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≤ |x̃1(t0)| − νθ

2
τ. (62)

Now, set

τ
(�)
−1,0 = |x̃1(t0)| − ν

γ1

νθ
2

. (63)

Notice that one has τ
(�)
−1,0 > 0 since |x̃1(t0)| ∈ S−1.

Let t�−1,0 = t0 + τ �−1,0. According to (62), one gets for
t = t�−1,0,

|x̃1(t�−1,0)| ≤ |x̃1(t0)| − νθ

2
τ

(�)
−1,0 = ν

γ1
. (64)

According to (64), |x̃1(t)| will enter S0 after hav-
ing evolved in the sector S−1 during a time period
that does not exceed τ

(�)
−1,0. Hence, t

(1)
−1,0 exists and

one has τ
(1)
−1,0

�= t (1)−1,0 − t0 ≤ τ
(�)
−1,0. Now, from

(63), one has limθ→∞ τ
(�)
−1,0 = 0 which implies that

limθ→∞ τ
(1)
−1,0 = 0 and hence item (i) of the proposi-

tion is proved.
Let us now look for α

(1)
−1,0,θ required by item (ii).

Indeed, using (56), (12), (13) and (22), one gets for all
t0 ≤ t ≤ t (1)−1,0,

‖x̃(t)‖ ≤ ‖eAn(t−t0)‖‖x̃(t0)‖
+ (2n

√
nLϕR + ν

√
nθ + δw + δε)∫ t

t0
‖eAn(t−s)‖ ds

≤ ‖x̃(t0)‖
n−1∑
k=0

‖Ak
n‖

(t − t0)k

k!
+ (2n

√
nLϕR + ν

√
nθ + δw + δε)

∫ t

t0

n∑
k=1

‖Ak−1
n ‖ (t − s)k−1

(k − 1)! ds

≤ 2
√
nR

n−1∑
k=0

(t − t0)k

k!
+ (2n

√
nLϕR + ν

√
nθ + δw + δε)

n∑
k=1

(t − t0)k

k!
≤ 2

√
nR + (

2
√
n(nLϕ + 1)R

+ν
√
nθ + δw + δε

)
n∑

k=1

(t (1)−1,0 − t0)
k �= α

(1)
−1,0,θ . (65)

Using the fact that limθ→∞
(
t (1)−1,0 − t0

)
= 0, one

can deduce from the expression ofα(1)
−1,0,θ given by (65)

that limθ→∞
(
α

(1)
−1,0,θ /θ

)
= 0. This ends the proof of

Proposition 3.1. �

B Proof of Proposition 3.2

One shall prove the Proposition by induction on k.
Indeed, for k = 0, the result is provided by Propo-
sition 3.1. Now, let k be fixed in {1, . . . , n − 1} and
assume that items (i) and (ii) of Proposition 3.2 hold
for k − 1, i.e.

(i) t (1)k−2,k−1 > 0 exists with

lim
θ→∞

(
t (1)k−2,k−1 − t0

)
= 0,

(ii) ∃α
(1)
k−2,k−1,θ > 0; ∀t ≤ t (1)k−2,k−1,

‖x̃(t)‖ ≤ α
(1)
k−2,k−1,θ with

lim
θ→∞

(
α

(1)
k−2,k−1,θ /θ

)
= 0. (66)

Let t > t (1)k−2,k−1 such that ∀s ∈ [t (1)k−2,k−1, t], |x̃1(s)| ∈
Sk−1. Recall that since |x̃1(s)| ∈ Sk−1, then according
to (35) and (34), the components of H(x̃1(s)) can be
expressed as follows for all s ∈ [t (1)k−2,k−1, t],{

Hj (x̃1(s)) = γ jθ
j−1 x̃1(s) for j = 1, . . . , k,

Hj (x̃1(s)) = ν sign(x̃1(s)) for j = k + 1, . . . , n.

(67)

Using the comparison lemma, the solution of the ODE
(55) can be expressed as follows

x̃(t) = eAn(t−t (1)k−2,k−1) x̃(t (1)k−2,k−1)

+
∫ t

t (1)k−2,k−1

eAn(t−s)ϕ̃s(u, x̂, x) ds

− θ

∫ t

t (1)k−2,k−1

eAn(t−s)H(x̃1(s)) ds

−
∫ t

t (1)k−2,k−1

eAn(t−s)Bn,nε(s) ds

−
∫ t

t (1)k−2,k−1

eAn(t−s)Bn,iww(s)(s) ds. (68)

Proceeding as in the proof of Proposition 3.1, i.e. sub-
stituting the components of H(x̃1(t)) by their expres-
sions given by (67) and taking into account the fact that
sign(x̃1(t)) = sign(x̃1(s)) for all s ∈ [t (1)k−2,k−1, t], the
output observation error |x̃1(t)| can be bounded as fol-
lows

|x̃1(t)| ≤
n−1∑
j=0

(
(t − t (1)k−2,k−1)

j

j ! |x̃ j+1(t
(1)
k−2,k−1)|

)
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+
n∑
j=1

∫ t

t (1)k−2,k−1

(
(t − s) j−1

( j − 1)! |ϕ̃s
j (u, x̂, x)| ds

)

−θ

⎛
⎝

k∑
j=1

∫ t

t (1)k−2,k−1

θ j−1γ j
(t − s) j−1

( j − 1)! |x̃1(s)| ds

+ ν

n∑
j=k+1

∫ t

t (1)k−2,k−1

(t − s) j−1

( j − 1)! ds

⎞
⎠

+
∫ t

t (1)k−2,k−1

(t − s)n−1

(n − 1)! |ε(s)| ds

+
∫ t

t (1)k−2,k−1

(t − s)iw−1

(iw − 1)! |w(s)| ds. (69)

Note that according to the induction assumption, one
has

‖x̃(t (1)k−2,k−1)‖ ≤ α
(1)
k−2,k−1,θ . (70)

Using (70), the Lipschitz property (18) and the
essential bounds provided by (12) and (13), inequal-
ity (69) leads to

|x̃1(t)| ≤ |x̃1(t (1)k−2,k−1)|

+α
(1)
k−2,k−1,θ

n−1∑
j=1

(t − t (1)k−2,k−1)
j

j !

+ 2nLϕR
n∑
j=1

(t − t (1)k−2,k−1)
j

j !

− θν

n∑
j=k+1

(t − t (1)k−2,k−1)
j

j !

+ δε

(t − t (1)k−2,k−1)
n

n! + δw

(t − t (1)k−2,k−1)
iw

iw!
≤ |x̃1(t (1)k−2,k−1)| + (δ

(1)
k−1,k,θ

+ δw + 2nLϕR)

n∑
j=1

(t − t (1)k−2,k−1)
j

j !

− θν

n∑
j=k+1

(t − t (1)k−2,k−1)
j

j ! , (71)

where δ
(1)
k−1,k,θ = max(α(1)

k−2,k−1,θ , δε). Now, set

δ̄
(1)
k−1,k,θ = δ

(1)
k−1,k,θ + δw + 2nLϕR. (72)

Notice that since limθ→∞
(
α

(1)
k−2,k−1,θ /θ

)
= 0, one

has limθ→∞
(
δ
(1)
k−2,k−1,θ /θ

)
= limθ→∞

(
δ̄
(1)
k−2,k−1,θ

/θ) = 0 and as a result there exists θ
(1)
k−1,k > 0 such

that

∀θ ≥ θ
(1)
k−1,k, δ̄

(1)
k−1,k,θ ≤ νθ

2
. (73)

Combining (71)–(73), one gets

|x̃1(t)| ≤ |x̃1(t (1)k−2,k−1)| + δ̄
(1)
k−1,k,θ

k∑
j=1

(t − t (1)k−2,k−1)
j

j !

− θν

2

n∑
j=k+1

(t − t (1)k−2,k−1)
j

j ! (74)

≤ |x̃1(t (1)k−2,k−1)| + δ̄
(1)
k−1,k,θ

k∑
j=1

(t − t (1)k−2,k−1)
j

j !

− θν

2

(t − t (1)k−2,k−1)
k+1

(k + 1)! (75)

�= P(1)
k−1,k(τ ) + ν

γk+1θk
, (76)

where τ = t − t (1)k−2,k−1 and

P(1)
k−1,k(τ )

�= a(i)
0,k−1,k +

k∑
j=1

a(1)
j,k−1,kτ

j

− θa(1)
k+1,k−1,kτ

k+1, (77)

with

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a(1)
0,k−1,k = (|x̃1(t (1)k−2,k−1)| − ν

γk+1θ
k )

=
(

ν
γkθ

k−1 − ν
γk+1θ

k

)
,

a(1)
j,k−1,k = δ̄

(1)
k−1,k,θ
j ! , j = 1, . . . , k and

a(1)
k+1,k−1,k = ν

2(k+1)! .

(78)

According to inequality (76), it is guaranteed that
|x̃1(t)| is lower than or equal to ν

γk+1θ
k if P

(1)
k−1,k(τ ) ≤ 0.

Otherwise said, if P(1)
k−1,k(τ ) ≤ 0, then it is guaranteed

that |x̃1(t)| has already leftSk−1 and enteredSk . Hence,
one shall focus inwhat follows on the sign of P(1)

k−1,k(τ ).

It is clear from (78) that the a(1)
j,k−1,k’s, j = 0, . . . , n

are positive. Hence, according to Descartes’ rule of
signs [29], the number of positive roots of the polyno-
mial P(1)

k−1,k(τ ) is equal to 1.Thismeans that there exists

a unique real τ �
k−1,k > 0, such that P(1)

k−1,k(τ
�
k−1,k) = 0.

Since P(1)
k−1,k(0) = a(1)

0,k−1,k > 0, one has for all

τ ≥ τ �
k−1,k, P

(1)
k−1,k(τ ) ≤ 0.

Notice that inequality (76) is valid as long as |x̃1(t)|
evolves in the sector Sk−1 and it cannot come back
to Sk−2 before the changing of its sign. Otherwise
said, |x̃1(t)| will evolve in Sk−1 since the time instant
t (1)k−2,k−1 and it will leave it to enter Sk at a some time
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instantwhich is denoted t (1)k−1,k according to the adopted
notation. From (76), the time period of the staying of
|x̃1(t)| in Sk−1 cannot exceed τ �

k−1,k , i.e.

τ
(1)
k−1,k

�= t (1)k−1,k − t (1)k−2,k−1 ≤ τ �
k−1,k . (79)

Let us now calculate the limit of τ (1)
k−1,k when θ goes

to ∞.
Since τ �

k−1,k is a root of P
(1)
k−1,k(τ ) = 0 and accord-

ing to (77), it satisfies the following equality,

a(1)
0,k−1,k,θ

θ
+

k∑
j=1

a(1)
j,k−1,k,θ

θ

(
τ �
k−1,k

) j

− a(1)
k+1,k−1,k

(
τ �
k−1,k

)k+1 = 0. (80)

One clearly has limθ→∞
(
a(1)
j,k−1,k,θ /θ

)
= 0, j =

0, . . . , k. Using this fact, Eq. (80) leads to

lim
θ→∞

(
a(1)
k+1,k−1,k

(
τ �
k−1,k

)k+1
)

= 0.

Sincea(1)
k+1,k−1,k = ν

2(k+1)! , the above equality implies
that limθ→∞ τ �

k−1,k = 0 and according to (79), one gets

limθ→∞ τ
(1)
k−1,k = 0. This leads to

lim
θ→∞

(
t (1)k−1,k − t0

)

= lim
θ→∞

(
t (1)k−1,k − t (1)k−2,k−1 + t (1)k−2,k−1 − t0

)

= lim
θ→∞

(
τ

(1)
k−1,k + t (1)k−2,k−1 − t0

)

= lim
θ→∞ τ

(1)
k−1,k according to (66)

= 0.

Let us now look for the positive real α
(1)
k−1,k,θ of

item (ii) in Proposition 3.2. Indeed, proceeding as in
the proof of Proposition 3.1, one gets for all t (1)k−2,k−1 ≤
t ≤ t (1)k−1,k , [compare with (65)],

‖x̃(t)‖ ≤ ‖x̃(t (1)k−2,k−1)‖(
‖x̃(t (1)k−2,k−1)‖ + 2n

√
nLϕR

+ν
√
nθ + δw + δε

)
n∑
j=1

(
t (1)k−1,k − t (1)k−2,k−1

) j

≤ α
(1)
k−2,k−1,θ +

(
α

(1)
k−2,k−1,θ + 2n

√
nLϕR

+ ν
√
nθ + δw + δε

) n∑
j=1

(
τ

(1)
k−1,k

) j

�= α
(1)
k−1,k,θ . (81)

From the fact that limθ→∞
(
α

(1)
k−2,k−1,θ /θ

)
=

limθ→∞
τ

(1)
k−1,k = 0, one deduces from the expression of

α
(1)
k−1,k,θ given by (81) that limθ→∞

(
α

(1)
k−1,k,θ /θ

)
= 0.

This ends the proof of Proposition 3.2. ��

C Proof of Proposition 3.3

Let t > t (1)n−2,n−1 such that |x̃1(t)| ∈ Sn−1, i.e.
|x̃1(t)| ≤ ν

γnθn−1 . According to (33), H(x̃1(t)) =
�−1

n (θ)�n x̃1(t). Moreover, since the essential bound
δw satisfies (28), then each component of the observa-
tion error satisfies an inequality similar to (29) which
specializes as follows when accounting for (36),

|x̃ i (t)| ≤ σPn

(
θ i−1e−βnθ(t−t (1)n−2,n−1)α

(1)
n−2,n−1,θ

+ δε + δ̄w

θn+1−iβn

)
, i = 1, . . . , n. (82)

In particular,

|x̃1(t)| = |x̃1(t)| ≤ σPn

(
e−θβn(t−t (1)n−2,n−1)α

(1)
n−2,n−1,θ

+δε + δ̄w

θnβn

)
. (83)

If the sequence {t (i)n−1,n−2}i≥1 is non empty, then
|x̃1(t)| leaves Sn−1 and enters Sn−2 at the time instant
t (1)n−1,n−2. Using (83), one gets for t = t (1)n−1,n−2,

|x̃1(t (1)+n−1,n−2)| = ν

γnθn−1

= σPn

(
α

(1)
n−2,n−1,θ e

−θβnτ
(1)
n−1 + δε + δ̄w

θnβn

)
.

One can check that the above equality leads to

τ
(1)
n−1 = 1

θβn
log

(
βnσPnα

(1)
n−2,n−1,θ γnθ

n

θνβn − σPnγn(δε + δ̄w)

)
. (84)

It is clear from (84) that

lim
θ→∞ τ

(1)
n−1 = 0. (85)

Let us now bound ‖x̃(t)‖ for t ≤ t (1)n−1,n−2. Indeed, as
in the proofs of Propositions 3.1 and 3.2 , one can show
that for all t ≤ t (1)n−1,n−2, [compare with (65) and (81)],

‖x̃(t)‖ ≤ ‖x̃(t (1)n−2,n−1)‖ +
(
‖x̃(t (1)n−2,n−1)‖
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+ 2n
√
nLϕR + ν

√
nθ + δw + δε

)
n∑

k=1

(
t (1)n−1,n−2 − t (1)n−2,n−1

)k
.

From the fact that ‖x̃(t (1)n−2,n−1)‖ ≤ α
(1)
n−2,n−1,θ , one

gets

‖x̃(t)‖ ≤ α
(1)
n−2,n−1,θ +

(
α

(1)
n−2,n−1,θ + 2n

√
nLϕR

+ ν
√
nθ + δw + δε

) n∑
k=1

(
τ

(1)
n−1

)k �= α
(1)
n−1,θ .

(86)

Since limθ→∞
(
α

(1)
n−2,n−1,θ /θ

)
= limθ→∞ τ

(1)
n−1 = 0,

one can easily deduce from the expression of α
(1)
n−1,θ

given by (86) that limθ→∞
(
α

(1)
n−1,θ /θ

)
= 0. This ends

the proof of Proposition 3.3. �

D Proof of Proposition 3.4

Let t > t (1)n−1,n−2 such that ∀s ∈]t (1)n−1,n−2, t], |x̃1(s)| ∈
Sn−2. Proceeding as in the proof of Proposition 3.2,
one can show that for θ high enough, one has [compare
with inequality (75)]

|x̃1(t)| ≤ |x̃1(t (1)n−1,n−2)|

+ δ̄
(1)
n−1,θ

n−1∑
j=1

(t − t (1)n−1,n−2)
j

j !

− θν

2

(t − t (1)n−1,n−2)
n

n! ,

where δ̄
(1)
n−1,θ = max(α(1)

n−1,θ , δε) + δw + 2nLϕR.

Set τ = t − t (1)n−1,n−2; the last inequality becomes

|x̃1(t)| ≤ |x̃1(t (1)n−1,n−2)| + δ̄
(1)
n−1,θ

n−1∑
j=1

τ j

j ! − θν

2

τ n

n!

= ν

γnθn−1 + δ̄
(1)
n−1,θ

n−1∑
j=1

τ j

j ! − θν

2

τ n

n! . (87)

According to the definition of δ̄
(1)
n−1,θ and since

limθ→∞(
α

(1)
n−1,θ /θ

)
= 0, one has limθ→∞

(
δ̄
(1)
n−1,θ /θ

)
= 0.

Now, |x̃1(t)| will evolve according to one of two
scenarios. The first scenario corresponds to the case
where |x̃1(t)| leaves Sn−2 and enters Sn−3. The second

one deals with the case where |x̃1(t)| does not leave
the sector Sn−2 and still evolve inside it. In order to
analyze the time evolution of |x̃1(t)| and in particular to
identify the scenario according to which it will evolve,
one introduces the following polynomial in τ

P(1)
n−1,n−2(τ )

�= a(1)
0,n−1,n−2 +

n−1∑
j=1

a(1)
j,n−1,n−2τ

j

− θa(1)
n,n−1,n−2τ

n, (88)

with

a(1)
0,n−1,n−2 = (

ν

γnθn−1 − ν

γn−1θn−2 ),

a(1)
j,n−1,n−2 = δ̄

(1)
n−1,θ

j ! , j = 1, . . . , n − 1, and

a(1)
n,n−1,n−2 = ν

2n! . (89)

Inequality (87) can be rewritten as follows

|x̃1(t)| ≤ P(1)
n−1,n−2(τ ) + ν

γn−1θn−2 . (90)

From the above inequality, one can deduce the follow-
ing property

|x̃1(t)| >
ν

γn−1θn−2 �⇒ P(1)
n−1,n−2(τ ) > 0. (91)

Property (91) means that if there exists a time instant
t at which |x̃1(t)| leaves Sn−2 and enters Sn−3, then
this time instant t is such that P(1)

n−1,n−2(τ ) > 0 where

τ = t−t (1)n−1,n−2.Hence, one shall focus inwhat follows

on the sign of P(1)
n−1,n−2(τ ).

It is clear from (89) that a(1)
0,n−1,n−2 < 0 and

a j,n−1,n−2 > 0, j = 1, . . . , n. Hence, the number
of changes of the coefficient signs in the polynomial
P(1)
n−1,n−2 is equal to 2 and according to Descartes’ rule

of signs, the polynomial P(1)
n−1,n−2 admits either 2 or

zero positive real roots. Let us consider these two cases.
Case 1: P(1)

n−1,n−2(τ ) admits two positive real roots.

Let denote by τ1 and τ2 these roots. Since P
(1)
n−1,n−2(0) =

a(1)
0,n−1,n−2 < 0, one deduces that ∀τ ∈]τ1, τ2[,
P(1)
n−1,n−2(τ ) > 0 and ∀τ /∈ [τ1, τ2], P(1)

n−1,n−2(τ ) ≤ 0.

Hence, if the time instant t (1)n−2,n−3 exists, then one nec-

essarily has τ
(1)
n−2,n−3

�= t (1)n−2,n−3 − t (1)n−1,n−2 ∈]τ1, τ2[.
Moreover, using similar developments as in the proof
of Proposition 3.2, one can show that the two posi-
tive real roots τ1 and τ2 are such that limθ→∞ τi = 0,
i = 1, 2 and this implies that limθ→∞ τ

(1)
n−2,n−3 = 0.
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One can also show that there exists α
(1)
n−2,n−3,θ such

that for all t ≤ t (1)n−2,n−3, ‖x̃(t)‖ ≤ α
(1)
n−2,n−3,θ with

limθ→∞
(
α

(1)
n−2,n−3,θ /θ

)
= 0.

Case 2: P(1)
n−1,n−2(τ ) admits no root. In this case,

P(1)
n−1,n−2(τ ) keeps the same sign for all τ . Since

P(1)
n−1,n−2(0) = a(1)

0,n−1,n−2 < 0, one has ∀τ ≥
0, P(1)

n−1,n−2(τ ) < 0. Combining this fact with inequal-
ity (90) allows to deduce that |x̃1(t)| < ν

γn−1θn−2 . Oth-

erwise said, |x̃1(t)| cannot enter Sn−3 and still evolve
in Sn−2. Let us analyze the behaviour of |x̃1(t)| when
evolving in Sn−2. For this aim, set τ = t − t (1)n−1,n−2
and consider the following polynomial in τ

P(1)
n−2(τ ) =

(
|x̃1(t (1)n−1,n−2)| − ν

γnθn−1

)

+ δ̄
(1)
n−1,θ

n−1∑
j=1

τ j

j ! − θν

2

τ n

n!

= δ̄
(1)
n−1,θ

n−1∑
j=1

τ j

j ! − θν

2

τ n

n!

�=
n−1∑
j=1

a(1)
j,n−1,n−2τ

j − θa(1)
n,n−1,n−2τ

j ,

(92)

where the a(1)
j,n−1,n−2’s, j = 1, . . . , n are defined by

(89).
Now, inequality (87) can be rewritten as follows

|x̃1(t)| ≤ P(1)
n−2(τ ) + ν

γnθn−1 . (93)

From the above inequality, one can deduce the fol-
lowing property

P(1)
n−2(τ ) < 0 �⇒ |x̃1(t)| <

ν

γnθn−1 . (94)

According to inequality (94), |x̃1(t)|will necessarily
enter Sn−1 when P(1)

n−2(τ ) becomes negative and it still

evolve in Sn−1 as long as P(1)
n−2(τ ) < 0. Hence, let us

focus on the sign of P(1)
n−2(τ ).

Again, usingDescartes’ rule of signs, it clear that the
polynomial equation P(1)

n−2(τ ) = 0 has a unique posi-

tive real root denoted by τ �
n−2. Note that τ1

�= 0 is also

a real root of P(1)
n−2. Hence, the polynomial P(1)

n−2(τ )

remains positive when τ lies between the two non neg-
ative real roots, i.e. τ ∈]0, τ �

n−2[ and it becomes neg-
ative as soon as τ > τ�

n−2. This means that |x̃1(t)|

will leave Sn−2 to come back to Sn−1 at the latest
at the time instant t = t (1)n−1,n−2 + τ �

n−2. According
to the adopted definitions and since |x̃1(t)| will enter
Sn−1 for the second time at this time instant, one
deduces that t (2)n−2,n−1 exists and one has t (2)n−2,n−1 ≤
t (1)n−1,n−2 + τ �

n−2 or equivalently τ
(1)
n−2

�= t (2)n−2,n−1 −
t (1)n−1,n−2 ≤ τ �

n−2. Again, by using similar develop-
ments as in the proof of Proposition 3.2, one can show
that limθ→∞ τ

(1)
n−2 = 0 and that there exists α

(1)
n−2,θ

such that for all t ≤ t (1)n−2,n−1, ‖x̃(t)‖ ≤ α
(1)
n−2,θ with

limθ→∞
(
α

(1)
n−2,θ /θ

)
= 0.

To summarize, in the above developments describ-
ing the behaviour of |x̃1(t)| when leaving Sn−1, the
following two exclusive scenarios have been put for-
ward:

1. The first scenario consists in the case where
|x̃1(t)| may leave Sn−2 and enter Sn−3 at a
time instant t (1)n−2,n−3 = t (1)n−1,n−2 + τ

(1)
n−2,n−3

with limθ→∞ τ
(1)
n−2,n−3 = 0. Moreover, there exists

α
(1)
n−2,n−3,θ such that for all t ≤ t (1)n−2,n−3, ‖x̃(t)‖ ≤

α
(1)
n−2,n−3,θ with limθ→∞

(
α

(1)
n−2,n−3/θ

)
= 0.

2. The second scenario corresponds to the case where
|x̃1(t)| still evolve in Sn−2 during a time period
equal to τ

(1)
n−2 and then comes back to Sn−1 at

the time instant t (2)n−2,n−1 with limθ→∞ τ
(1)
n−2 = 0.

Moreover, there exists α
(1)
n−2,θ such that for all t ≤

t (1)n−2,n−1, ‖x̃(t)‖ ≤ α
(1)
n−2,θ with limθ→∞

(
α

(1)
n−2,θ

/θ) = 0.

According to these two possible scenarios, the reals
t (2)k,k+1, τ

(1)
k andα

(1)
k,θ > 0 required by theProposition are

obtainedwhen the second scenario is occurring and one
has k = n−2. In the casewhere the first scenario occurs
but not the second one, the same reasoning can be pur-
sued to analyze the behaviour of |x̃1(t)| from the time
instant when it leaves Sn−2 and enters Sn−3. It is easy
to see that |x̃1(t)| will still evolve according the above
two exclusive scenarios. As soon as the second scenario
occurs inside a sector k, the parameters required by the
Proposition are obtained. Note that k is assumed to be
in {1, . . . , n − 1} in the statement of the Proposition.
Now, one will show that if |x̃1(t)| reaches the sector S0,
only the second scenariowill occur. Indeed, assume that
there exists a time instant ta > t (1)−1,0 such that |x̃1(t)|
leaves S0 and enters S−1 at the time instant ta . Accord-
ing to the adopted notation, one has |x̃1(ta)| = ν

γ1
and
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|x̃1(t+a )| > ν
γ1
. Taking into account the continuity of

|x̃1(t)|, one has ∃t > ta; ∀s ∈]ta, t], |x̃1(s)| ∈ S−1.
This in particular means that

|x̃1(t)| >
ν

γ1
. (95)

Since |x̃1(s)| evolves in S−1 for all s ∈]ta, t], one can
process as in the proof of Proposition 3.1 to derive the
following inequality [compare with (62)]

|x̃1(t)| ≤ |x̃1(ta)| − νθ

2
(t − ta). (96)

Notice that the above inequality (96) is valid under
assumptions similar to those adopted to generate
inequality (62). In particular, the design parameter θ

is assumed to be high enough and satisfies [compare
with (61)]

θ >
2

ν

(
max(‖x̃(ta)‖, δε) + δw + 2nLϕR

)
. (97)

The choice of θ as in (97) is possible since‖x̃(ta)‖ ≤ αθ

with limθ→∞ αθ

θ
= 0 (see (37)).

Combining (96) with the fact that t > ta leads to
|x̃1(t)| ≤ |x̃1(ta)| = ν

γ1
which is in contradiction with

inequality (95). Hence, |x̃1(t)|will evolve according to
the second scenario inside the sectorS0, i.e. it will leave
it to enter S1. This ends the proof of Proposition 3.4. ��

E Proof of Proposition 3.5

Let ik denote the number of terms in the sequence
{t (i)k−1,k}i≥1 when this sequence is finite. The proof
of the Proposition will be achieved by induction on
k. Indeed, for k = 0 one has i0 = 1, i.e. |x̃1(t)
never comes back to S−1 after the time instant t (1)−1,0
as detailed in the end of the proof of Proposition 3.4.

Now, for a fixed k ∈ {1, . . . , n−1}, one shall assume
that ∀ j ∈ {1, . . . , k − 1}, the sequence {t (i)j−1, j }i≥1 is

finite and one has to prove that the sequence {t (i)k−1,k}i≥1

is finite.
According to the induction assumption, {t (i)k−2,k−1}i≥1

is finite and one has

∀t ≥ t (ik−1)

k−2,k−1, |x̃1(t)| ≤ ν

γkθk−1 . (98)

Without loss of generality, assume that iw ≤ k.
According to (34), the first k equations of the obser-
vation error system related to observer (30) can be
written under the following condensed form for all
t ≥ t (ik−1)

k−2,k−1,

˙̃xk = Ak x̃k + ϕ̃s
k
(u, x̂ k, xk)

− θ�−1
k (θ)�kC

T
k x̃1(t) + Bk,k x̃k+1(t)

−Bk,iww(t), (99)

where x̃ k, x̂ k, xk, ϕ
s
k

∈ IRk are the respective sub-
vectors of x̃, x̂, x and ϕs defined as in (7), Ak as in
(1), (Ck) as in (2), �k as in (4), �k as in (6), Bk,k as
in (3) with k0 = k and Bk,iw as in (3) with k0 = iw.
Recall that Āk = Ak − �kCk is Hurwitz and therefore
there exist a SPD Pk and a positive real μk satisfying
inequality (8).

Notice that the error system (99) has the same struc-
ture as the error system (25) and the term x̃k+1(t) in (99)
plays the role of ε(t) in (25). Moreover, one recalls that
according to (37), one has

|x̃ j (t)| ≤ αθ , j = 1, . . . , n, (100)

for any t < T where T > 0 is any fixed arbitrarily
large positive number.

Besides, the essential bound δw is assumed to satisfy
inequality (28). According to these facts, the obser-
vation error x̃ j , j = 1, . . . , k, satisfies an inequality

similar to (29) for all t ≥ t (ik−1)

k−2,k−1. such inequality
specializes as follows

|x̃ j (t)| ≤
(

θk−1e−θβk (t−t
(ik−1)

k−2,k−1)

+ 1

θβk

)
σPk ᾱθ , j = 1, . . . , k, (101)

where βk is defined as in (27) with n substituted by k,
Pk = PT

k and

ᾱθ = αθ + δ̄w. (102)

Let t�k−1 > t (ik−1)

k−2,k−1 be a time instant such that

θk−1e−θβk (t�k−1−t
(ik−1)

k−2,k−1) = 1

θβk
,

i.e. t�k−1 = t (ik−1)

k−2,k−1 + 1

θβk
(k log(θ) + log(βk)) .

(103)

According to the definition of t�k−1 and using (101),
one has

∀t ≥ t�k−1, |x̃ j (t)| ≤ 2
σPk

βk
(ᾱθ /θ) , j = 1, . . . , k.

(104)

Notice that according to the induction assumption,
|x̃1(t)| cannot come back to Sk−2 for all t ≥ t (ik−1)

k−2,k−1.
Hence, according to Remark 3.2, ∀ t ≥ t�k−1, |x̃1(t)|
will evolve throughout the sectors Sk−1, . . . ,Sn−1.
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Assume that there exists t (i)k,k−1 > t�k−1, where i is a
positive integer, at which |x̃1(t)| leaves Sk and enters
Sk−1 for the i’th time. Notice that if such a time instant
does not exist then the induction is proved.

Set

ηk
�= 6

L̄ϕσPk

βk
+ 1 with L̄ϕ = max(Lϕ, 1). (105)

One shall prove the following property which is
needed in the remaining of the proof,

∃θ̄0 > 0; ∀θ > θ̄0; ∃t̄ (i)k,k−1 > t (i)k,k−1;

∀t ≥ t̄ (i)k,k−1,
ηk

θ

k∑
j=1

(t − t (i)k,k−1)
j

j !

≤ 1

2

(t − t (i)k,k−1)
k

k! ,

with lim
θ→∞

(
t̄ (i)k,k−1 − t (i)k,k−1

)
= 0. (106)

To prove property (106), set τ̄ = t − t (i)k,k−1 and
consider the following polynomial in τ̄

P̄(τ̄ ) =
⎛
⎝ηk

θ

k∑
j=1

τ̄ j−1

j !

⎞
⎠ − 1

2

τ̄ k−1

k! . (107)

Using theDescartes’ rule of signs, the equation P̄(τ̄ ) =
0 admits a unique positive real root, say τ̄

(i)
k,k−1. Since

P̄(0) = ηk
θ

> 0, one has: ∀τ̄ > τ̄
(i)
k,k−1, P̄(τ̄ ) < 0

which also implies that τ̄ P̄(τ̄ ) ≤ 0. According to the
definition of τ̄ , the expression of the positive real t̄ (i)k,k−1

involved in (106) is t̄ (i)k,k−1 = t (i)k,k−1+τ̄
(i)
k,k−1.Moreover,

τ̄
(i)
k,k−1 satisfies

ηk

θ

k∑
j=1

(
τ̄

(i)
k,k−1

) j−1

j ! = 1

2

(
τ̄

(i)
k,k−1

)k−1

k! .

The left side of the above equality is a polynomial in
τ̄

(i)
k,k−1 and all its coefficients tend to zero when when θ

goes to infinity. This implies that limθ→∞ τ̄
(i)
k,k−1 = 0

and the property (106) is hence proved.
Now, let t > t (i)k,k−1 such that |x̃1(t)| ∈ Sk−1. Then,

one has [compare with (69)]

|x̃1(t)| ≤
n−1∑
j=0

(t − t (i)k,k−1)
j

j ! |x̃ j+1(t
(i)
k,k−1)|

+
n∑
j=1

∫ t

t (i)k,k−1

(t − s) j−1

( j − 1)! |ϕ̃s
j (u, x̂, x)| ds

+ δε

(t − t (i)k,k−1)
n

n! + δw

(t − t (i)k,k−1)
iw

iw!

− θν

n∑
j=k+1

(t − t (i)k,k−1)
j

j !
Since δw satisfies (28) and from the fact that n−iw ≥

1, the above inequality leads to

|x̃1(t)| ≤
n−1∑
j=0

(t − t (i)k,k−1)
j

j ! |x̃ j+1(t
(i)
k,k−1)|

+
n∑
j=1

∫ t

t (i)k,k−1

(t − s) j−1

( j − 1)! |ϕ̃s
j (u, x̂, x)|ds

+ δε

(t − t (i)k,k−1)
n

n! + δ̄w

θ

(t − t (i)k,k−1)
iw

iw!

− θν

n∑
j=k+1

(t − t (i)k,k−1)
j

j !
�= Q(t) + Q̄(t), (108)

with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(t) = ∑k−1
j=0

(t−t (i)k,k−1)
j

j ! |x̃ j+1(t
(i)
k,k−1)|

+∑k
j=1

∫ t
t (i)k,k−1

(t−s) j−1

( j−1)! |ϕ̃s
j (u, x̂, x)| ds

+ δ̄w

θ

(t−t (i)k,k−1)
iw

iw ! ,

Q̄(t) = ∑n−1
j=k

(t−t (i)k,k−1)
j

j ! |x̃ j+1(t
(i)
k,k−1)|

+∑n
j=k+1

∫ t
t (i)k,k−1

(t−s) j−1

( j−1)! |ϕ̃s
j (u, x̂, x)| ds

+ δε
(t−t (i)k,k−1)

n

n! − θν
∑n

j=k+1
(t−t (i)k,k−1)

j

j ! .

(109)

According to (18) and (37), one has for j = k +
1, . . . , n,

|ϕ̃s
j (u, x̂, x)| ≤ 2nLϕR and |x̃ j (t (i)k,k−1)| ≤ αθ .(110)

Using (104) and (110), Q̄(t) can be bounded as follows

Q̄(t) ≤ ᾱθ

(t − t (i)k,k−1)
k

k! + αθ

n−1∑
j=k+1

(t − t (i)k,k−1)
j

j !

+ 2nLϕR
n∑

j=k+1

(t − t (i)k,k−1)
j

j !

+ δε

(t − t (i)k,k−1)
n

n! − θν

n∑
j=k+1

(t − t (i)k,k−1)
j

j !

≤ ᾱθ

(t − t (i)k,k−1)
k

k! + (δθ + 2nLϕR − θν)
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n∑
j=k+1

(t − t (i)k,k−1)
j

j ! , (111)

where ᾱθ is as given by (102), δθ = max(αθ , δε). Note
that since limθ→∞ (ᾱθ /θ) = 0, onehas limθ→∞ (δθ/θ)

= 0.
Now, choose θ high enough such that δθ +2nLϕR−

νθ ≤ − νθ
2 . Note that such a choice is possible since

limθ→∞ (δθ /θ) = 0. With such a choice, inequality
(111) becomes

Q̄(t) ≤ ᾱθ

(t − t (i)k,k−1)
k

k! − νθ

2

n∑
j=k+1

(t − t (i)k,k−1)
j

j !

≤ ᾱθ

(t − t (i)k,k−1)
k

k! − νθ

2

(t − t (i)k,k−1)
k+1

(k + 1)! .

(112)

Let us now bound Q(t). Indeed, according to (104)

and since t (i)k,k−1 > t�k−1 , one has for j = 1, . . . , k − 1,

|x̃ j+1(t
(i)
k,k−1)| ≤ 2

σPk

βk
(ᾱθ /θ) . (113)

Similarly, ∀s ∈ [t (i)k,k−1, t], one has for j = 1, . . . , k,

|ϕ̃s
j (u, x̂, x)| ≤ 2Lϕ |x̃ j | ≤ 4

LϕσPk

βk
(ᾱθ /θ) . (114)

Using (113) and (114) and from the fact that 1 ≤
iw ≤ k, Q(t) defined by (109) can be bounded as fol-
lows

Q(t) ≤ |x̃1(t (i)k,k−1)| + 2
σPk

βk
(ᾱθ /θ)

k−1∑
j=1

(t − t (i)k,k−1)
j

j !

+
(
4
LϕσPk

βk
(ᾱθ /θ) + δ̄w

θ

) k∑
j=1

(t − t (i)k,k−1)
j

j !

≤ |x̃1(t (i)k,k−1)| +
(
6
L̄ϕσPk

βk
+ 1

) (
ᾱθ

θ

)

k∑
j=1

(t − t (i)k,k−1)
j

j ! since δ̄w ≤ ᾱθ

= |x̃1(t (i)k,k−1)| +
⎛
⎝ηk

θ

k∑
j=1

(t − t (i)k,k−1)
j

j !

⎞
⎠ ᾱθ ,

(115)

where ηk and L̄ϕ are given by (105).

Hence, for t ≥ t̄ (i)k,k−1 and using property (106),
inequality (115) leads to

Q(t) ≤ |x̃1(t (i)k,k−1)| + ᾱθ

2

(t − t (i)k,k−1)
k

k! . (116)

Combining (108), (112) and (116), one gets for all
t ≥ t̄ (i)k−1,k ,

|x̃1(t)| ≤ |x̃1(t (i)k,k−1)| + 3

2
ᾱθ

(t − t (i)k,k−1)
k

k!
− νθ

2

(t − t (i)k,k−1)
k+1

(k + 1)!

≤ |x̃1(t (i)k,k−1)| + 3

2
ᾱθ

(t − t (i)k,k−1)
k

k!
− νθ

2

(t − t (i)k,k−1)
k(t − t̄ (i)k,k−1)

(k + 1)!
= ν

γk+1θk
+ νθ

2(k + 1)! (t − t (i)k,k−1)
k

(
3(k + 1)ᾱθ

νθ
− (t − t̄ (i)k,k−1)

)
, (117)

Now, set

t�k,k−1 = t̄ (i)k,k−1 + 3(k + 1)ᾱθ

νθ
. (118)

Combining (117) and (118), one gets for all t ≥
t�k,k−1, |x̃1(t)| ≤ ν

γk+1θ
k , i.e. t

(ik)
k−1,k = t�k,k−1. This ends

the proof of Proposition 3.5. ��
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