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Abstract The paper considers the problem of con-
trolling multistability in a general class of circuits
composed of a linear time-invariant two-terminal (one
port) element, containing linear R, L , C components
and ideal operational amplifiers, coupled with one of
the mem-elements (memory elements) introduced by
Prof. L.O. Chua, i.e., memristors, memcapacitors, and
meminductors. First, explicit expressions of the invari-
antmanifolds of the circuit are directly given in terms of
the state variables of the two-terminal element and the
mem-element. Then, the problem of steering the circuit
dynamics from an initial invariant manifold to a final
one, and hence to potentially switch among different
attractors of the circuit, is addressed by designing pulse
shaped control inputs. The control inputs ensure that
the transition between the initial and final manifolds is
accomplished within a given finite time interval. More-
over, it is shown how the designed control inputs can be
implemented by introducing independent voltage and
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current sources in the two-terminal element. Notably,
it turns out that it is always possible to solve the con-
sidered control problem by using a unique independent
source. Several examples are provided to illustrate how
the proposed approach can be applied to different cir-
cuits with mem-elements and to highlight the influence
of the features of the designed sources on the behavior
of the controlled dynamics.

Keywords Mem-element circuits · Multistable
dynamics · Multistability control · Pulse programmed
sources

1 Introduction

The need of an ever growing computing power to han-
dle data-intensive applications is becoming a serious
challenge for conventional digital von Neumann com-
puting architectures [1–3]. It is indeed well known that
the performance of these architectures is influenced by
the physical separation between the central processing
unit and the memory chips, which inevitably leads to
long latency and energy consumption when address-
ing data-intensive tasks. In the last years, emerging
nanoscale analog devices asmemristors and,more gen-
erally, mem-elements, have gained a prominent role for
overcoming some of the limitations of digital computer
architectures by introducing new computing paradigms
based on the in-memory and analog computation prin-
ciples [4–6].
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The memristor (memory resistor) has been intro-
duced by Prof. Leon Chua in 1971 as the fourth fun-
damental passive circuit element, while memcapaci-
tors andmeminductors are themem-elements proposed
more recently to model memory effects for capacitors
and inductors, respectively [7]. The fundamental fea-
tures of memristors and the other mem-elements are
non-volatility, i.e., the capability to hold data in mem-
ory without the need of a power supply, and nonlinear-
ity, which makes mem-elements circuits able to gen-
erate oscillatory and more complex dynamics [8,9].
The combination of these two features makes it pos-
sible to devise in-memory computing schemes where
the analog dynamics of the mem-element is effectively
used for computational purposes and the computa-
tion output is stored in the same device [10]. Such a
co-location of computation and memory enables low
energy consumption and latency reduction. Moreover,
in-memory computing allows for high density of the
memory arrays, excellent scalability and the capability
of 3D integration, thus making itself as quite a promis-
ing novel approach for intensive computing in the area
of artificial intelligence and big data [11–16].

This strong interest in mem-elements has stimulated
a thorough investigation of the dynamical properties of
circuits containing these memory elements. Some of
the first investigations of memristor circuits based on
analytical and graphical methods can be found in [17–
21]. Later, it became clear that the state space of cir-
cuits containing ideal memristors can be decomposed
into a continuumof invariantmanifolds (foliation prop-
erty of the state space), which are indexed by some
constant parameter whose value depends on the ini-
tial conditions of the circuit. Specifically, in [22,23]
a third-order memristor circuit is investigated in the
voltage–current domain, while quite general classes
of memristor circuits are analyzed in the flux–charge
domain (see [24–27] and references therein). In partic-
ular, the flux–charge analysis method (FCAM), intro-
duced in [24,25], makes it clear that the rich dynamics
displayed by memristor circuits is due to the fact that
the state space contains infinitely many invariant man-
ifolds. On each invariant manifold either convergent,
or oscillatory, or even more complex behaviors can be
displayed, thus implying the coexistence of many dif-
ferent dynamics for a given set of circuit parameters,
a property which is referred to as multistability (see,
e.g., [9,28–35] and references therein). Also, structural
changes in the asymptotic behavior of solutions are

observed when varying the initial conditions even for a
fixed set of circuit parameters, a peculiar phenomenon
referred to as bifurcation without parameters (see, e.g.,
[16,25]). More recently, the flux–charge approach has
been extended to much broader classes of circuits con-
taining more than one memristor as well as memca-
pacitors and meminductors (see, e.g., [8,9,36–41] and
references therein). Finally, [42] provides a systematic
input–output approach to characterize the dynamical
properties of a class of circuits composed of a linear
time-invariant two-terminal element coupled with one
of the ideal mem-elements. Such an approach can be
fruitfully used to predict limit cycles and their bifur-
cations via the Harmonic balance method (HBM) [43–
45], as shown in [46,47].

The coexistence of many different attractors makes
circuitswithmem-elements natural candidates formul-
tistability control, a field of general growing interest
(see, e.g., [48] and references therein). Multistability
control is indeed considered a fundamental step toward
the development of new computational paradigms,
such as reservoir computing [49,50]. Some contribu-
tions to such a problem have been recently given, show-
ing that it is possible to target the memristor circuit
dynamics toward the attractor contained in one of the
invariant manifolds. In [26], it is shown that multi-
stability can be physically controlled by first obtain-
ing an incremental flux–charge model, which depends
on the initial conditions of the dynamic elements of
the memristor circuit, and then designing an equiva-
lent circuit realization of the model and tuning the ini-
tial conditions via suitable instrumentation. A pulse-
programmed feedforward control law based on FCAM
to drive the state on pre-assigned invariant manifolds
is proposed in [36] and extended to memristor circuits
with nonlinear capacitors and inductors in [51]. Both
feedforward and feedback control laws are considered
in [52] to drive the state of the memristor Murali–
Lakshmanan–Chua circuit (see, e.g., [53]) onto a spe-
cific invariant manifold within a given time interval.
However, the basic issue of how these feedforward and
feedback control laws should be implemented in the
circuit to physically control multistability remains to
be investigated.

This paper aims to address this important practi-
cal issue for a fairly general class of circuits with an
ideal mem-element. The objective is to investigate if
it is possible to steer the circuit dynamics onto a pre-
assigned invariant manifold, within a given time inter-
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Fig. 1 Class of circuits

val, by designing suitable pulse programmed feedfor-
ward control laws whose circuit implementation can
be realized via the introduction of a unique indepen-
dent source. Preliminary results in this direction have
been given in [54,55] for a third-order memristor cir-
cuit. In Sect. 2, it is first presented the considered class
of circuits which is composed of the interconnection
of a linear time-invariant two-terminal (one port) ele-
ment and a single ideal mem-element. Specifically, the
linear two-terminal element can contain linear R, L ,
C components and ideal operational amplifiers, while
the mem-element can be a flux- or charge-controlled
memristor, a flux- or σ -controlled capacitor, a ρ- or
charge-controlled inductor. Then, on the basis of the
approach developed in [42], it is shown that each circuit
of the class admits a suitable feedback system repre-
sentation. Exploiting the structural properties of such
a representation, Sect. 3 provides a novel characteri-
zation of the invariant manifolds of the circuit with-
out resorting to the flux–charge approach. Specifically,
the invariant manifolds are directly expressed in terms
of the state variables of the two-terminal element and
the mem-element. Section 4 is devoted to the consid-
ered control problem of steering the circuit dynamics
onto a pre-assigned invariant manifold by introducing
in the circuit suitable feedforward pulse shaped control
inputs. The issue of how the designed control inputs can
be implemented by means of independent voltage and
current sources is addressed in Sect. 5. Finally, sev-
eral examples are presented in Sect. 6 for illustration
purposes.

2 Preliminaries and problem formulation

Consider the class of circuits depicted in Fig. 1 which
is composed of a finite-dimensional causal linear time-
invariant two-terminal (one port) L, with voltage vL
and current iL, and an ideal mem-element ME, with
voltage vM and current iM , and it does not contain any
independent voltage and current sources. Clearly, we
have vL = vM and iL = −iM .

The two-terminal element L, which can be either
a passive or an active circuit, is modeled by a finite-
dimensional causal linear time-invariant dynamical
system ΣL with input u, output y and state x , as
depicted in Fig. 2a. Specifically,L admits two different
models according to the choice of the input u and the
output y: the current–voltage model Σ

(i)
L , where it is

assumed that u = iL and y = vL, and the voltage–
current model Σ(v)

L , where it is assumed that u = −vL
and y = −iL.1 In both cases, the dynamics is assumed
to be described by the following state space represen-
tation:

ΣL :
{Dx(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t),

(1)

where x ∈ R
n , u ∈ R, y ∈ R, A ∈ R

n×n , B ∈ R
n×1,

C ∈ R
1×n , D ∈ R

1×1 and D denotes the differential
operator (i.e., D f (t) = ḟ (t), D2 f (t) = f̈ (t), and so
on). Clearly, it follows that u = iM and y = vM in
the current–voltage model Σ

(i)
L , while u = −vM and

y = iM in the voltage–current Σ
(v)
L . We remark that

1 The choice of the minus sign for vL and iL in the latter model
is useful for putting the circuit of Fig. 1 in the negative feedback
representation of Fig. 3a.
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(a) (b)

Fig. 2 a Two-terminal element model ΣL; b mem-element model ΣME

L can be equivalently represented by the input–output
relation

y(t) = L(D)u(t), (2)

where L(D) is the following real proper rational func-
tion2

L(D) = C(DIn − A)−1B + D. (3)

Consequently, y(t) and u(t) obey the following linear
time-invariant ordinary differential equation

P(D)y(t) − R(D)u(t) = 0, (4)

where P(D) and R(D) are the numerator and denom-
inator polynomials of L(D), i.e.,

L(D) = R(D)

P(D)
. (5)

Note that if s is the complex variable, then L(s) is the
equivalent impedance of L in the case of the current–
voltagemodelΣ(i)

L and the equivalent admittance in the

case of the voltage–current model Σ
(v)
L . This implies

that if the scalar matrix D is zero (i.e., L(D) is strictly
proper), then L can be uniquely described by either the
current–voltage model or the voltage–current model,
while if D �= 0 (i.e., L(D) is proper but not strictly
proper), then both Σ

(i)
L and Σ

(v)
L can be equivalently

used to model L.
Throughout the paper, the following conditions are

enforced on L.

2 In denotes the identity matrix of order n.

Assumption 1 The controllability matrix

R =
(
B, AB, . . . , An−1B

)
∈ R

n×n (6)

and the observability matrix

O =

⎛
⎜⎜⎜⎝

C
CA
...

CAn−1

⎞
⎟⎟⎟⎠ ∈ R

n×n (7)

are non-singular.

Remark 1 Assumption 1 ensures that the two-terminal
element L is completely controllable from input u and
completely observable from output y. Note that the
assumption implies that the polynomials R(D) and
P(D) in (5) are coprime. Also, under this assumption
L has no loop formed by capacitors only, and no cut-set
formed by inductors only.

The mem-element ME in Fig. 1 can be any of
the six mem-elements introduced in [40,56], i.e., a
flux-controlled memristor (MRϕ), a charge-controlled
memristor (MRq ), a flux-controlled memcapacitor
(MCϕ), aσ -controlledmemcapacitor (MCσ ), a charge-
controlled meminductor (MLq ) and a ρ-controlled
meminductor (MLρ). Each mem-element can be seen
as afinite-dimensional time-invariant nonlinear dynam-
ical system ΣME with input uM , output yM and state
ξ as depicted in Fig. 2b. It turns out that MRϕ and
MRq are modeled by the first-order causal representa-
tion

Σ
(I)
ME :

{Dξ1(t) = uM (t)
yM (t) = DN (ξ1(t)) = N ′(ξ1(t))uM (t),

(8)
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Table 1 System ΣME: state variables, input, output and nonlinear characteristic

ME MRϕ MRq MCϕ MLq MLρ MCσ

ΣME Σ
(I)
ME Σ

(I)
ME Σ

(II)
ME Σ

(II)
ME Σ

(III)
ME Σ

(III)
ME

ξ1 ϕM qM ϕM qM ρM σM

ξ2 ϕM qM

uM vM iM vM iM vM iM

yM iM vM iM vM iM vM

N (·) qM = N (ϕM ) ϕM = N (qM ) σM = N (ϕM ) ρM = N (qM ) qM = N (ρM ) ϕM = N (σM )

MCϕ andMLq by the first-order non-causal represen-
tation

Σ
(II)
ME :

⎧⎨
⎩
Dξ1(t) = uM (t)
yM (t) = D2N (ξ1(t)) = N ′′(ξ1(t))u2M (t)

+N ′(ξ1(t))DM (t),
(9)

MLρ andMCσ by the second-order causal representa-
tion

Σ
(III)
ME :

⎧⎨
⎩
Dξ1(t) = ξ1(t)
Dξ2(t) = uM (t)
yM (t) = DN (ξ2(t)) = N ′(ξ2(t))uM (t),

(10)

where ξ1(t), ξ2(t) are the state variables, N (·) repre-
sents theME nonlinear characteristic and N ′(·), N ′′(·)
its first- and second-order derivatives. The specific state
variables ξ1, ξ2, the input uM , the output yM , and the
nonlinear characteristic N (·) pertaining to each ME
are reported in Table 1 in terms of vM , iM , the flux ϕM ,
the charge qM , the flux momentum ρM , and the charge
momentum σM , whose definitions are recalled next:

ϕM (t) =
∫ t

−∞
vM (τ )dτ = D−1vM (t)

(vM (t) =DϕM (t)), (11)

qM (t) =
∫ t

−∞
iM (τ )dτ = D−1iM (t)

(iM (t) =DqM (t)), (12)

ρM (t) =
∫ t

−∞
ϕM (τ )dτ = D−1ϕM (t)

(ϕM (t) =DρM (t)), (13)

σM (t) =
∫ t

−∞
qM (τ )dτ = D−1qM (t)

(qM (t) =DσM (t)). (14)

Throughout the paper, it is assumed that the nonlin-
ear characteristic N (·) vanishes as the argument is
equal to zero. It is also required that it is as smooth as
needed to ensure existence and uniqueness of the solu-
tions of the system modeling the class of circuits of
Fig. 1.

From the above characterization of L and ME, it
follows that the class of circuits of Fig. 1 can be rep-
resented via the feedback system of Fig. 3a. Table 1
shows that for eachME the input uM is either the volt-
age vM or the current iM . As a consequence, a unique
modelΣL is admissible for eachME, i.e., the one such
that uM = y. The first row of Table 2 identifies such a
relation between ME and L.

When dealing with feedback systems, an important
issue to be considered is its well-posedness, which is
strictly related to causality of the interconnected sys-
tem. It can be shown that well-posedness of the feed-
back system of Fig. 3a) is ensured once the following
additional assumption on L is enforced.

Assumption 2 Let ∂P and ∂R denote the degree of
the denominator and numerator polynomials of L(D).
Then, the relative degree of L(D), i.e., ∂P − ∂R, is
assumed to satisfy:

∂P − ∂R > 0 if ΣME = Σ
(I)
ME (15)

∂P − ∂R > 1 if ΣME = Σ
(II)
ME. (16)

Remark 2 From the expression (3) of L(D), it can be
verified that condition (15) holds if and only if D = 0,
while condition (16) is satisfied if and only if also
CB = 0. Indeed, this follows by recalling that the
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Table 2 Conditions on ΣL for the feedback system of Fig. 3a

ME MRϕ MRq MCϕ MLq MLρ MCσ

ΣME Σ
(I)
ME Σ

(I)
ME Σ

(II)
ME Σ

(II)
ME Σ

(III)
ME Σ

(III)
ME

ΣL Σ
(i)
L Σ

(v)
L Σ

(i)
L Σ

(v)
L Σ

(i)
L Σ

(v)
L

u iL −vL iL −vL iL −vL

y vL −iL vL −iL vL −iL

Matrix
condition

D = 0 D = 0 D = 0 & CB = 0 D = 0 & CB = 0

expression of L(D) in (3) admits the following equiv-
alent representation in series expansion

L(D) = D + 1

DCB + 1

D2CAB + · · · . (17)

Hence, the additional conditions on the matrices ofΣL

to ensure well-posedness are exactly those reported in
the last row of Table 2. Note that no conditions are
needed when ΣME = Σ

(III)
ME , i.e., in the case of a

σ -controlled memcapacitor MCσ and a ρ-controlled
meminductor MLρ .

2.1 Problem formulation

It is known that the state space of circuits containing
one ideal mem-element can be decomposed into a con-
tinuum of invariant manifolds (see, e.g., [24–26]). As
a consequence, the circuit dynamics can be obtained
by collecting the dynamics displayed by a family of
reduced-order systems indexed by a constant parame-
ter, whose value determines the specific invariant man-
ifold where the dynamics is confined to lie. Such a
constant parameter, which uniquely identifies the cor-
responding invariant manifold, is hereafter referred to
as the manifold index.

Controlling multistability of circuits with mem-
elements, i.e., making the circuit dynamics capable
of switching among different attractors, is becoming
an issue of increasing interest. In [26], it is shown
that multistability can be physically controlled by tun-
ing the initial voltages of the capacitors of the mem-
ristor circuit via suitable hardware instrumentation.
Some feedforward and feedback control laws have
been also proposed for multistability control purposes
[36,51,52]. However, a systematic procedure for the
circuit realization of these control laws has not been
given yet.

Figure 4a provides a qualitative illustration of the
problem here addressed for circuits of the class of
Fig. 1 admitting the feedback system representation
of Fig. 3a. Specifically, let M1 and M2 denote the
invariant manifolds corresponding to the values I1 and
I2 of the manifold index I ∈ R. Any trajectory starting
on either M1 or M2 remains confined onto the same
invariant manifold, eventually converging toward an
attractor. Hence, it turns out that a basic issue of mul-
tistability control is to design control laws which are
capable of steering the circuit dynamics from an invari-
ant manifold to another one in a finite time interval, as
qualitatively illustrated in Fig. 4b. Clearly, during this
time interval the control lawsmust change themanifold
index from I1 to I2.

We address this problem by looking at pulse pro-
grammed feedforward control laws which can be
implemented by introducing independent voltage and
current sources in the two-terminal element, as depicted
in Fig. 5. To this end, in Sect. 3, we first provide a
novel characterization of the invariant manifolds of the
feedback system representation of Fig. 3a, which is
instrumental for the successive developments. Then, in
Sect. 4 we consider the feedback system representation
of Fig. 3b where Σ

(c)
L is the controlled version of ΣL,

i.e.,

Σ
(c)
L :

{Dx(t) = Ax(t) + Bu(t) + Fw(t)
y(t) = Cx(t) + Du(t),

(18)

with w ∈ R being the feedforward control input and
F ∈ R

1×n the vector defining how the control input
affects the two-terminal element L.

The problem under investigation can be formally
stated as follows. Let I ∈ R denote the manifold index
andM1,M2 be the invariant manifolds corresponding
to I = I1, I = I2, respectively. Suppose that for all t ∈
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(a) (b)

Fig. 3 a Feedback system representation of the class of circuits of Fig. 1; b controlled version of the feedback system representation
of the class of circuits of Fig. 1

[t0, t1], t0 < t1, the dynamics lies onto M1. Then, the
objective is to design F in order to steer the dynamics
from M1 to M2 within the time interval [t1, t2], t1 <

t2 < +∞, for any input w with the following pulse
shape:

w(t) =
⎧⎨
⎩
0 if t ∈ [t0, t1]
w̄(t) if t ∈ (t1, t2)
0 if t ∈ [t2,+∞)

(19)

where w̄(t) is any piecewise-continuous signal in
[t1, t2] satisfying the following area constraint:

∫ t2

t1
w̄(t)dt = I2 − I1. (20)

It is worth noting that the shape of the pulses satisfying
(20) is expected to affect the transient behavior when
the circuit dynamics moves from M1 toward M2 and
hence between the corresponding attractors.

The final step concerns the implementation of the
obtained F and w within the two-terminal element,
i.e., to determine where the sources V (s)

1 , . . . , V (s)
i , . . .

and/or current I (s)
1 , . . . , I (s)

i , . . . should be located
inside L (see Fig. 5). This issue is addressed in Sect. 5.

3 Invariant manifolds characterization

In this section, a novel analytical characterization of
the invariant manifolds of any circuit of the class of
Fig. 1 is provided in terms of the state variable x and ξ

of ΣL and ΣME, respectively. In particular, the invari-
ant manifolds are parameterized via a scalar quantity
I ∈ R, which is referred to as the manifold index.
Such a parameterization is developed by exploiting the
structural properties of the feedback representation in
Fig. 3a of the circuit of Fig. 1. The next result plays a
key role in the sought characterization.

Lemma 1 Let Assumption 1 hold and consider the sys-
tem of n + 1 linear equations

{
vA + λC = 0
vB − μ = 0,

(21)

where v� ∈ R
n, λ ∈ R, μ ∈ R. Then, the solution set

of (21), i.e.,

S={(v, λ, μ)� ∈R
n+2 : vA + λC=0, vB − μ=0

}
(22)
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(a) (b)

Fig. 4 a The invariant manifolds M1 of index I = I1 and M2
of index I = I2 are depicted in blue and red, respectively. The
trajectories lying on M1 and M2 converge toward an equilib-
rium point and a limit cycle, respectively. The initial conditions
are marked with ◦. b The trajectory starts from the initial con-
ditions on M1 marked with ◦ at t = t0 and it remains on M1
for t ∈ [t0, t1], t1 > t0 (blue trajectory). At t = t1 the control

law is activated and the trajectory moves away from M1 (green
trajectory) reachingM2 at t = t2, t2 > t1, when the control law
is turned off. Then, for t > t2 the trajectory remains on M2 and
converges to the limit cycle (red trajectory). The control law is
designed in order to make the manifold index I varying from I1
to I2 in the time interval [t1, t2]. (Color figure online)

Fig. 5 Controlled class of circuits: independent voltage V (s)
1 , . . . , V (s)

i , . . . and/or current I (s)
1 , . . . , I (s)

i , . . . sources are introduced in
the two-terminal element L

is a one-dimensional linear subspace ofRn+2 such that

S = span

{(
−CA−1, 1,−CA−1B

)�}
(23)

if A is non-singular, and by

S = span
{
(v̄, 0, v̄B)�

}
(24)

with v̄� ∈ R
n+2, v̄ �= 01×n, such that v̄A = 0, if A is

singular.

Proof See the appendix. �	
Remark 3 Note that A is non-singular whenever L is
passive. In fact, if L is passive, then its impedance/
admittance L(s) must be positive real and hence the
denominator P(s) of L(s) must be a Hurwitz poly-
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nomial, which in turn implies that P(0) �= 0. Since
P(s) = det (s In − A), this last condition is indeed
equivalent to det (A) �= 0.

Let us first consider the system of Fig. 3a with ΣME =
Σ

(I)
ME, i.e., the case ofMRϕ andMRq . By exploiting (1),

(8) and Assumption 2, it can be verified that in this case
the system of Fig. 3a obeys the following equations:

Σ :
(Dx(t)
Dη(t)

)
=
(
A 0n×1

C 0

)(
x(t)
η(t)

)
−
(
B
0

)
Dr(t),

(25)

once η(t)
.= ξ1(t) and r(t)

.= N (ξ1(t)). Note that Σ is
a linear time-invariant systemwith (x�, η)� ∈ R

n+1 as
state vector and Dr(t) as input. Exploiting this special
structure, the following result is derived:

Proposition 1 Let Assumptions 1 and 2 hold. Then, the
invariant manifoldsMI , I ∈ R, of the feedback system
of Fig. 3a in the case ΣME = Σ

(I)
ME are given by

MI = {x ∈ Rn, ξ1 ∈ R :
ξ1 − CA−1x − CA−1BN (ξ1) = I

}
, (26)

if A is non-singular, and by

MI = {x ∈ Rn, ξ1 ∈ R : v̄x + v̄BN (ξ1) = I } (27)

with v̄ �= 0, such that v̄A �= 0, if A is singular. In both
cases, the following set equivalence

{
x ∈ R

n, ξ1 ∈ R : (x�, ξ1)
� ∈

⋃
I∈R

MI

}
≡ R

n+1

(28)

holds, i.e., the state space of the feedback system is
decomposed in a continuum of invariant manifolds.

Proof We first observe that if

LI = {x ∈ Rn, η ∈ R : vx + λη + μr = I } (29)

is an invariant linear manifold of Σ then, since η = ξ1
and r = N (ξ1),

MI = {x ∈ Rn, ξ1 ∈ R : vx + λξ1 + μN (ξ1) = I }
(30)

is an invariant manifold of the feedback system of
Fig. 3a. Now, (29) is an invariant manifold for each
I ∈ R if and only if

vDx(t) + λDη(t) + μDr(t) = 0 (31)

and hence, taking into account the expressions ofDx(t)
and Dη(t) in (25), if and only if

(vA + λ)x(t) + (μ − vB)Dr(t) = 0 (32)

for all x(t) ∈ R
n , r(t) ∈ R. According to Lemma 1,

condition (32) is satisfied if and only if (v, λ, μ)� ∈ S.
Hence, the proof of (26)–(27) readily follows from (30)
and Lemma 1. Finally, to prove (28), it is enough to
observe that{
x ∈ R

n, η ∈ R : (x�, η)� ∈
⋃
I∈R

LI

}
≡ R

n+1 (33)

and

⋃
I∈R

LI ≡
⋃
I∈R

MI , (34)

once η and r are replaced by ξ1 and N (ξ1), respectively.
�	

Remark 4 The expression of MI implies that, in the
case ΣME = Σ

(I)
ME, each trajectory of the feedback

system of Fig. 3a with initial conditions x(t0), ξ1(t0)
satisfying either

ξ1(t0) − CA−1x(t0) − CA−1BN (ξ1(t0)) = I, (35)

if A is non-singular, or

v̄x(t0) + v̄BN (ξ1(t0)) = I, (36)

if A is singular, lies onMI for all t ≥ t0. This implies
that the value of the index manifold I depends on the
initial conditions of the circuit.

Remark 5 From the proof of Proposition 1, it follows
that system Σ admits linear invariant subspaces of the
form vx + λη + μr = I (see (29)). This implies that
Σ cannot be completely controllable from the input r .
Indeed, by introducing the new state vector x̄ = x−Br ,
Σ can be rewritten equivalently as
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Σeq :
(Dx̄(t)
Dη(t)

)
=
(
A 0n×1
C 0

)(
x̄(t)
η(t)

)
−
(
AB
CB

)
r(t).

(37)

Now, applying the PBH test (see, e.g., [57]) to the zero
eigenvalue of the state matrix, we get

rank

(
A 0n×1 −AB
C 0 −CB

)
= rank

(
A
C

)
= n < n + 1,

(38)

which shows that Σeq , and hence Σ , is not completely
controllable from the input r .

We now consider the case when ΣME = Σ
(II)
ME, i.e.,

the case ofMCϕ andMLq . From (1), (9) and Assump-
tion 2, it follows that the system of Fig. 3a is described
by system Σ in (25) once η(t)

.= ξ1(t) and r(t)
.=

DN (ξ1(t)). Hence, the next result holds true.

Proposition 2 Let Assumptions 1 and 2 hold. Then, the
invariant manifoldsMI , I ∈ R, of the feedback system
of Fig. 3a in the case ΣME = Σ

(II)
ME are given by

MI = {x ∈ Rn, ξ1 ∈ R :
ξ1 − CA−1x − CA−1BN ′(ξ1) = I

}
, (39)

if A is non-singular, and by

MI = {x ∈ Rn, ξ1 ∈ R : v̄x + v̄BN ′(ξ1) = I },
(40)

with v̄ �= 0, such that v̄A �= 0, if A is singular. In both
cases, the following set equivalence

{
x ∈ R

n, ξ1 ∈ R : (x�, ξ1)
� ∈

⋃
I∈R

MI

}
≡ R

n+1

(41)

holds.

Proof The proof parallels that of Proposition 1 with
the unique difference that now r = DN (ξ1). �	
Let us finally consider the system of Fig. 3a with
ΣME = Σ

(III)
ME , i.e., the case of MCσ and MLρ . In

this case, we need to extend the system Σ in (25) as
follows:

Σ(e) :
⎛
⎝Dx(t)
Dη(t)
Dζ(t)

⎞
⎠ =

⎛
⎝ A 0n×1 0n×1

C 0 0
0 1 0

⎞
⎠
⎛
⎝ x(t)

η(t)
ζ(t)

⎞
⎠

−
⎛
⎝ B
0
0

⎞
⎠Dr(t), (42)

where the additional state variable ζ is the time-integral
of η. By exploiting (1), (10) and Assumption 2, it can
be readily verified that Σ(e) describes the dynamics
of the system of Fig. 3a in the case ΣME = Σ

(III)
ME

once ζ(t)
.= ξ1(t), η(t)

.= ξ2(t) and r(t)
.= N (ξ2(t)).

Note that Σ(e) is a linear time-invariant system with
(x�, η, ζ )� ∈ R

n+2 as state vector andDr(t) as input.
The next result holds true.

Proposition 3 Let Assumptions 1 and 2 hold. Then, the
invariant manifoldsMI , I ∈ R, of the feedback system
of Fig. 3a in the case ΣME = Σ

(III)
ME are given by

MI = {x ∈ Rn, ξ1 ∈ R, ξ2 ∈ R :
ξ1 − CA−1x − CA−1BN (ξ2) = I

}
, (43)

if A is non-singular, and by

MI = {x ∈ Rn, ξ1 ∈ R, ξ2 ∈ R : v̄x + v̄BN (ξ2) = I },
(44)

with v̄ �= 0, such that v̄A �= 0, if A is singular. In both
cases, the following set equivalence

{
x ∈ R

n, ξ1 ∈ R : (x�, ξ1, ξ2)
� ∈

⋃
I∈R

MI

}
≡ R

n+2

(45)

holds.

Proof The proof parallels that of Proposition 1. First,
observe that

L(e)
I = {x ∈ Rn, η ∈ R, ζ ∈ R :

vx + λη + νζ + μr = I
}

(46)

123



Circuits with a mem-element: invariant manifolds control 2587

Table 3 Explicit expressions of the invariant manifolds MI for each ME: I ∈ R is the manifold index; v̄ �= 01×n is a fixed vector
such that v̄A = 0; N (·) is theME nonlinear characteristic and N ′(·) its derivative (see Table 1)
ME MI - A non-singular MI - A singular

MRϕ ϕM − CA−1x − CA−1BN (ϕM ) = I v̄x + v̄BN (ϕM ) = I

MRq qM − CA−1x − CA−1BN (qM ) = I v̄x + v̄BN (qM ) = I

MCϕ ϕM − CA−1x − CA−1BN ′(ϕM )Cx = I v̄x + v̄BN (ϕM )′(ϕM )Cx = I

MLq qM − CA−1x − CA−1BN ′(qM )Cx = I v̄x + v̄BN ′(qM )Cx = I

MLρ ϕM − CA−1x − CA−1BN (ρM ) = I v̄x + v̄BN (ρM ) = I

MCσ qM − CA−1x − CA−1BN (σM ) = I v̄x + v̄BN (σM ) = I

is an invariant manifold of Σ(e) for each I ∈ R if and
only if

vDx(t) + λDη(t) + νDζ(t) + μDr(t) = 0 (47)

and hence if and only if

(vA + λ)x(t) + νη(t) + (μ − vB)Dr(t) = 0 (48)

for all x(t) ∈ R
n , η(t) ∈ R, r(t) ∈ R. Then, L(e)

I is an
invariantmanifold ofΣ(e) if and only if (v, λ, μ)� ∈ S
and ν = 0 and hence the proof is completed by replac-
ing, η, ζ and r with ξ1, ξ2 and N (ξ2), respectively. �	
Remark 6 It is worth noting that Remark 4 also applies
to the cases when ΣME = Σ

(II)
ME and ΣME = Σ

(II)
ME.

Moreover, we note that also Σ(e) is not completely
controllable from the input r , since it contains Σ as a
subsystem.

The explicit expressions of the invariant manifolds per-
taining to each ME when A is either singular or non-
singular are readily obtained exploiting Table 1 and
they are summarized in Table 3. Note that the invari-
ant manifolds are directly expressed in terms of the
state vector x of the two-terminal element L and the
state vector ξ of the mem-element ME (the specific
expressions of ξ1, ξ2 and the nonlinear characteristic
pertaining to eachME are reported in the second, third
and last rows of Table 1).

4 Design of pulse shaped feedforward control
inputs

In this section, we consider the controlled system of
Fig. 3b where Σ

(c)
L is given in (18). We are interested

in characterizing the control vectors F capable to solve
the problem described in Subsection 2.1, i.e., to steer
the circuit dynamics from one manifold to another one
within a given time interval, withw(t) having the pulse
shape (19) and satisfying the area constraint (20).

Clearly, for any time t ∈ [t0, t1) and t ∈ [t2,+∞),
the controlled system of Fig. 3b displays the same
dynamics of the uncontrolled one of Fig. 3a. Hence, the
state vectors x(t) and ξ(t) are confined to lie onto some
initial manifoldM1 for t ∈ [t0, t1) and onto some final
manifoldM2 for t ∈ [t2,+∞). Let us denote by I1 and
I2 the values of the index I corresponding to the initial
and final manifolds, respectively. Hence, according to
Proposition 1, in the case of either MRϕ or MRq as
ME we have M1 ≡ MI1 , M2 ≡ MI2 and the state
vector (x�, ξ1)

� ∈ R
n+1 satisfies either

⎧⎪⎪⎨
⎪⎪⎩

ξ1(t) − CA−1x(t) − CA−1BN (ξ1(t)) = I1
∀t ∈ [t0, t1]
ξ1(t) − CA−1x(t) − CA−1BN (ξ1(t)) = I2
∀t ∈ [t2,+∞)

, (49)

if A is non-singular, or

{
v̄x(t) + v̄BN (ξ1(t)) = I1 ∀t ∈ [t0, t1]
v̄x(t) + v̄BN (ξ1(t)) = I2 ∀t ∈ [t2,+∞)

,

(50)

if A is singular. Clearly, according to Propositions 2
and 3, analogous expressions can be readily derived in
case of MCϕ , MLq , MLρ and MCσ . The following
characterization of the feedforward control laws ensur-
ing to steer the dynamics fromM1 toM2 is obtained.

Proposition 4 LetM1 andM2 be the initial and final
invariant manifolds, let I1 and I2 be the corresponding
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values of the manifold index I , respectively, and let w

be any control input having the pulse shape (19) and
satisfying condition (20). Then, the system dynamics is
driven fromM1 toM2 within the time interval [t1, t2]
if and only if F ∈ R

n satisfies either

C A−1F = −1, (51)

if A is non-singular, or

v̄F = −1, (52)

if A is singular.

Proof Let us consider the case of ΣME = Σ
(I)
ME, i.e.,

ME is either MRϕ or MRq and suppose first that A

is non-singular. Since in this case M1 ≡ M(I)
I1

and

M2 ≡ M(I)
I2
, by introducing the scalar variable

z
.= ξ1 − CA−1x − CA−1BN (ξ1), (53)

and according to (26), M1 and M2 can be expressed
as

M1 = {x ∈ R
n, ξ1 ∈ R : z = I1

}
, (54)

and

M2 = {x ∈ R
n, ξ1 ∈ R : z = I2

}
, (55)

respectively. Clearly, from (49) and (53) it follows that
(x�(t), ξ1(t))� ∈ M1 if and only if z(t) = I1 and
(x�(t), ξ1(t))� ∈ M2 if and only if z(t) = I2. More-
over, exploiting (8) and (18), the time-derivative of z(t)
can be computed as

Dz(t) = Dξ1 − CA−1Dx(t) − CA−1BDN (ξ1(t))

= uM (t) − CA−1(Ax(t) + BDr(t) + Fw(t))

− CA−1BDN (ξ1(t))

= uM (t) − Cx(t) − CA−1BD(r(t) − N (ξ1(t)))

− CA−1Fw(t)

= − CA−1Fw(t), (56)

where the equalities uM = y = Cx and r = N (ξ1)

have been used. This implies that z(t) = I1 for all

t ∈ [t0, t1], z(t) = I2 for all t ∈ [t2,+∞), and

I2 − I1 = z(t2) − z(t1) = −CA−1F
∫ t2

t1
w(t)dt

= −CA−1F
∫ t2

t1
w̄(t)dt (57)

and hence (20) holds if and only if condition (51) is
satisfied. If A is singular, the same conclusion is readily
obtained once z is defined as

z
.= v̄x + v̄BN (ξ1) (58)

and proceeding as above. In particular, it turns out that

Dz(t) = −v̄Fw(t), (59)

which leads to conclude that (20) holds if and only if
condition (52) is satisfied. In the other two cases, i.e.,
ΣME = Σ

(II)
ME and ΣME = Σ

(III)
ME , the proof follows

along the same lines and is omitted. �	
Remark 7 From the proof of Proposition 4 it fol-
lows that if the control vector F is chosen such that
CA−1F = 0 (or v̄F = 0 in the singular case), then
the system dynamics does not leave the initial mani-
foldM1 but it remains confined ontoM1 for whatever
input w. Hence, Ker (CA−1) (or Ker (v̄)) contains all
the control vectors F which cannot be used to steer
the system dynamics from one invariant manifold to
another.

Proposition 4 shows that for n > 1 there exists a one-
dimensional affine subspace of control vectors F ∈ R

n

able tomove the system dynamics from the initial man-
ifold M1 to the final manifold M2 according to rela-
tion (20). Such a degree of freedom can be exploited
to design F in order to satisfy some additional control
specifications. In particular, we are interested in inves-
tigating how F can be designed to make its implemen-
tation easier. As shown in Sect. 5, each nonzero compo-
nent of F would require to insert an independent source
into the two-terminal element L. Hence, to minimize
the number of sources needed to implement F , it can
be chosen to have only one component different from
zero, i.e.,

F ∈ span {ei }, (60)
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where ei ∈ R
n denotes the i-th versor of R

n . Let
[CA−1]i , i ∈ J ⊆ {1, . . . , n}, denote the components
of the vectorCA−1 which are different fromzero.Then,
condition (51) is satisfied if and only if F is such that

F ∈
{

1

[CA−1]i ei , i ∈ J

}
. (61)

Similarly, if we denote by [v̄]i , i ∈ J ⊆ {1, . . . , n}, the
components of v̄ different from zero, then condition
(52) is satisfied if and only if F is such that

F ∈
{

1

[v̄]i ei , i ∈ J

}
. (62)

Note that since both CA−1 and v̄ are nonzero vectors,
the set J is not empty and hence it is always possible
to select F enjoying the simplest structure in (60).

Another important issue in designing F is how
the piecewise-continuous control input w(t) affects
smoothness of the dynamics of the controlled system of
Fig. 3b with respect to the uncontrolled one of Fig. 3a.
The following result pertaining to systemΣ

(c)
L provides

useful insights on this issue.

Proposition 5 Consider system Σ
(c)
L and let w(t) be

as in (19). Then, for any input signal u(t) the output
signal y(t) and its time-derivativesDy(t),D2y(t), . . .,
Dn−1y(t) do not explicitly depend on the control input
w(t) if and only if F satisfies the following n − 1 con-
ditions:

⎧⎪⎪⎨
⎪⎪⎩

CF = 0
CAF = 0
· · · = 0
CAn−2F = 0.

(63)

Proof It can be verified that Dy(t), D2y(t), . . .,
Dn−1y(t) can be expressed in terms of x(t), u(t) and
w(t) as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(t) = Cx(t) + Du(t)
Dy(t) = CAx(t) + CBu(t) + DDu(t) + CFw(t)
D2y(t) = CA2x(t) + CABu(t) + CBDu(t)

+DD2u(t) + CAFw(t) + CFDw(t)
· · · = · · ·
Dn−1y(t) = CAn−1x(t) +∑n−2

k=0 CAn−2−k BDku(t)
+DDn−1u(t)
+∑n−2

k=0 CAn−2−k BDkw(t).
(64)

Hence, while y(t) does not explicitly depend on w(t),
its time-derivatives Dy(t), D2y(t), . . ., Dn−1y(t) do
not directly depend on the control input w(t) if and
only if conditions (63) hold. �	
Remark 8 It is important to note that if F satisfies
conditions (63), then smoothness properties of y(t),
Dy(t), D2y(t), . . ., Dn−1y(t) do not depend on the
piecewise-continuous control input w(t). Said another
way, the smoothness properties of y(t),Dy(t),D2y(t),
. . ., Dn−1y(t) are the same pertaining to the uncon-
trolled system ΣL . For instance, if u(t) and its time-
derivatives Du(t), D2u(t), . . ., Dn−1u(t) are continu-
ous, then the output of ΣL and its time-derivatives of
order up to n−1 are continuous, while the output Σ(c)

L
and its time-derivatives of order up to n−1 are contin-
uous for any piecewise-continuous control input w(t)
if and only if F satisfies conditions (63).

Remark 9 It is worth noting that conditions (63) are
connected to a specific structural property of system
Σ

(c)
L , i.e., strong observability [58]. Indeed, if condi-

tions (63) hold then the state x(t) is observable from
the knowledge of the output y(t) and the input u(t)
and their time-derivatives, even if w(t) is unknown.
This can be readily seen from equations (64) which,
if conditions (63) hold, can be compactly rewritten as
Ox(t) = V (t), whereO is the observability matrix (7)
and V (t) is a known vector since it depends on y(t),
u(t) and their time-derivatives. Thus, Assumption 1
together with conditions (63) ensure that x(t) can be
observed even if w(t) is unknown.

Proposition 5 andRemark8 suggest that the choice of F
influences the smoothness of theoutput y(t)ofΣ(c)

L and
hence smoothness of the input uM (t) of ΣME. Indeed,
it can be shown that if theME nonlinear characteristic
N (·) and its derivatives of order up to k are continuous,
then F solving conditions (63) ensures that y(t) and
its time-derivatives of order up to min{k, n − 1} are
continuous.Conversely, if F does not satisfy conditions
(63), then Proposition 5 and Remark 8 make it clear
that smoothness of y(t) and its time-derivatives can
be fulfilled only if w(t) is allowed to be more smooth
than piecewise-continuous. Hence, we are interested
to investigate if there exists F solving conditions (63)
together with either (51) if A is non-singular or (52) if
A is singular. The next result holds true.

Proposition 6 Let Assumption 1 hold. Then,
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– the unique control vector solving (63) and (51) is
given by

F = −AO−1e1
.= Fns, (65)

where e1 = (1, 0, . . . , 0)� ∈ R
n and O is the

observability matrix (7);
– the unique control vector solving (63) and (52) is
given by

F = −Q−1e1
.= Fs, (66)

where

Q =

⎛
⎜⎜⎜⎜⎝

v̄

C
CA
· · ·

CAn−2

⎞
⎟⎟⎟⎟⎠ ∈ R

n . (67)

Proof In the case of A non-singular it is enough to
observe that (63) can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩

CAA−1F = 0
CA2A−1F = 0
· · · = 0
CAn−1A−1F = 0

(68)

and hence (63) and (51) are satisfied if and only if

OA−1F = −e1. (69)

If A is singular, it turns out that (63) and (52) are satis-
fied if and only if

QF = −e1 (70)

and hence to complete the proofwe need to show that Q
is non-singular. Proceeding by contradiction, suppose
that det Q = 0. This implies that there exist αk ∈ R,
k = 0, . . . , n − 2, such that

v̄ =
n−2∑
k=0

αkC Ak . (71)

Now, since v̄A = 0, it turns out that the following
relationships

0 =
n−2∑
k=0

αkC Ak+1 (72)

should hold. However, this would require that CA, . . .,
CAn−1 are linearly dependent, which is a contradiction
since O is non-singular. �	

5 Control vector implementation in the
two-terminal element L

In this section, we investigate how the control vector
F can be implemented by suitably introducing volt-
age and current sources into the two-terminal element
L (see Fig. 5). The results of Sects. 3 and 4 are valid
for any state space representation of Σ and Σ

(c)
L . In

this section, we consider a specific state space repre-
sentation, i.e., the one where the state vector is com-
posed by the voltages vCi of all the capacitors and
the currents iLi of all the inductors contained in L.
Specifically, if L has nC capacitors and nL inductors,
then we assume that the state vector has the struc-
ture x = (vC1 , . . . , vCnC

, iL1 , . . . , iLnL
) ∈ R

n with
n = nC + nL . The basic step to implement F consists
in introducing an independent current source I (s)

i in
parallel to each capacitor with voltage vCi and an inde-

pendent voltage source V (s)
i in series to each inductor

with current iLi . Said another way, each capacitor is
replaced with its forced version, as shown in Fig. 6a,
and each inductor is replaced with its forced version,
as shown in Fig. 6b. It can be verified that, by apply-
ing the Kirchhoff’s law to the loops and nodes of the
two-terminal element, a state equation of the following
structure can be derived

Σ
(S)
L :

{Dx(t) = Ax(t) + Bu(t) + Λ−1S
y(t) = Cx(t) + Du(t),

(73)

where S ∈ R
n is the vector of the voltage and current

independent sources, i.e.,

S = (I (s)
1 , . . . , I (s)

nC , V (s)
1 , . . . , V (s)

nL )�, (74)
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Fig. 6 a Each capacitor is
replaced by its forced
version (i.e., the parallel
connection of the same
capacitor with the current
source I (s); b Each inductor
is replaced by its forced
version (i.e., the series
connection of the same
inductor with the voltage
source V (s))

(a) (b)

and Λ ∈ R
n×n is the following non-singular diagonal

matrix

Λ = diag (C1, . . . ,CnC , L1, . . . , LnL ), (75)

with Ci , i = 1, . . . , nC , and Li , i = 1, . . . , nL , being
the capacitances of the capacitors and the inductances
of the inductors, respectively. The last step for the con-
troller implementation consists in making Σ

(S)
L equal

to Σ
(c)
L via the relation

S = ΛFw. (76)

Hence, for any control vector F satisfying either (51)
or (52), relation (76) provides the corresponding imple-
mentationwith a certain number of sources. It is impor-
tant to underline that since Λ is a diagonal matrix,
only one source is needed when the control vector F
is selected as in either (61) or (62). This implies that
the considered problem of steering the dynamics from
an initial manifold to a final one within a given time
interval can be always solved via the introduction of a
unique source in the circuit.

6 Application examples

In this section, we consider some circuits of the class
of Fig. 1 to illustrate the controller design and the
implementation procedure discussed in Sects. 4 and 5,
respectively. In the first two examples, the two-terminal
element L is a second-order passive RLC circuit and
the mem-element ME is a memristor (specifically,
MRϕ in the first one andMRq in the second one). The
third example considers the celebrated Chua’s circuit
with the nonlinear resistor (Chua’s diode) replaced by

Fig. 7 Circuit of Example 1: a passive RLC impedance con-
nected to a flux-controlled memristor

a flux-controlled memristorMRϕ . In the fourth exam-
ple, the two-terminal elementL is a second-order active
circuit, whose impedance has a relative degree equal to
2, while the mem-element is a flux-controlled memca-
pacitorMCϕ . We also use this example to illustrate the
procedure in the casewhen thematrix A ofΣL is singu-
lar. Finally, in the last example we consider the circuit
introduced in [31] which has been shown to be physi-
cally controllable in the flux–charge domain [26]. The
circuit consists of an active linear two-terminal element
containing three capacitors and anoperational amplifier
interconnected with an ideal active voltage-controlled
memristor.

Example 1 Consider the unforced version of the well-
knownMurali–Lakshmanan–Chuaoscillatorymemris-
tor circuit (see, e.g., [53]) depicted in Fig. 7. The two-
terminal element L consists in the parallel connection
of a capacitor C with an inductor L plus a resistor R,
while theME is a nonlinear flux-controlled memristor
MRϕ . It can be readily verified that L is described by
the state equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

DvC (t) = 1

C
iL(t) + 1

C
iL(t)

DiL(t) = − 1

L
vC (t) − R

L
iL(t)

vL(t) = vC (t),

(77)
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where vC is the capacitor voltage and iL is the inductor
current. Hence, by assuming x = (vC , iL)�, u = iL
and y = vL, L admits the (current–voltage) represen-
tation ΣL in (1) with the following matrices

A =
⎛
⎜⎝ 0

1

C

− 1

L
− R

L

⎞
⎟⎠ , B =

⎛
⎝ 1

C
0

⎞
⎠ ,

C = (1 0
)
, D = 0. (78)

Since the controllability and observability matrices in
(6) and (7) boil down to

R =
⎛
⎜⎝

1

C
0

0 − 1

LC

⎞
⎟⎠ O =

⎛
⎝ 1 0

0
1

C

⎞
⎠ , (79)

it turns out that Assumption 1 holds. The real proper
rational function L(D) of the equivalent input–output
description (2) of L is derived according to (3) as

L(D) =
1

C
D + R

LC

D2 + R

L
D + 1

LC

. (80)

Note that the relative degree of L(D) is equal to 1,
which implies that Assumption 2 holds. Hence, accord-
ing to Tables 1 and 2, the circuit of Fig. 7 admits the
feedback representation of Fig. 3a, whereΣME is given
byΣ

(I)
ME in (8) with ξ1 = ϕM , uM = vM , yM = iM and

N (·) being the memristor flux–charge characteristic,
i.e., qM = N (ϕM ). Since A is non-singular, according
to Table 3 the invariant manifolds of the circuit of Fig. 7
are given by

MI = {(vC , iL)� ∈ R
2, ϕM ∈ R :

ϕM + RCvC + LiL + RN (ϕM ) = I
}
, (81)

where I ∈ R is the manifold index. As an example of
the dynamics displayed on the manifolds, we refer to
the case considered in [52]where the circuit parameters
have the following normalized values:

R = 0.5; L = 1; C = 1 (82)

Fig. 8 Stable equilibriumpoints (markedwith �) and limit cycles
(solid curves) for I ∈ [−2.1, 2.1]. The limit cycle and the equi-
librium point corresponding to I = 0.1 and I = 1.5 are drawn
in red and green, respectively. (Color figure online)

and the flux–charge characteristic is given by

qM = N (ϕM ) = −ϕM + 0.1ϕ3
M . (83)

It turns out that eachmanifoldMI has a unique equilib-
rium point at (vC , iL , ϕM ) = (0, 0, ϕ̄M ) with ϕ̄M such
that I = 0.5ϕ̄M (1+0.1ϕ̄2

M )Moreover, the equilibrium
point is the unique attractor ofMI if |I | > 0.755,while
for |I | < 0.755 eachMI displays a stable limit cycle.
Hence, the circuit has infinite stable limit cycles and
equilibrium points and it undergoes to a Hopf bifurca-
tion at I = ±0.755, which is referred to as a “bifurca-
tion without parameters” since it is generated by vary-
ing the manifold index I , and hence by varying the ini-
tial conditions (vC (t0), IL(t0), ϕM (t0)), for fixed val-
ues of the circuit parameters. This dynamical scenario
is reported in Fig. 8 where the specific attractors per-
taining to I = 0.1 (a limit cycle) and I = 1.5 (an
equilibrium point) are highlighted.
Consider now the controlled feedback systemof Fig. 3b
where the matrices A, B, C , D of Σ

(c)
L are as in (78)

and the control input w has the pulse shape in (19).
According to Proposition 4, the control vectors F =
( f1, f2)� ∈ R

2 able to move from the initial invariant
manifoldM1 pertaining to I = I1, i.e.,M1 = MI1 , to
the final invariant manifold M2 pertaining to I = I2,
i.e.,M2 = MI2 , must satisfy condition (51), i.e.,

RC f1 + L f2 = 1. (84)
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Fig. 9 Controlled circuit of Example 1 for F = F1: the capaci-

tor is replaced by its forced version in Fig. 6a with I (s) = 1
Rw.

In the case of F = F2 = Fns the controlled circuit is obtained by
introducing, according to Fig. 6b, the voltage source V (s) = w

in series to the inductor in the input-less circuit of Fig. 7

Hence, the vectors F solving the considered control
problem for the circuit of Fig. 7 are given by a straight
line in the ( f1, f2)-plane. Among them, the vectors F
in (61) are given by the intersections of this straight
line with the coordinate axes, i.e.,

F ∈
⎧⎨
⎩
⎛
⎝ 1

RC
0

⎞
⎠ ,

(
0
1

L

)⎫⎬
⎭

.= {F1, F2} . (85)

Moreover, the smooth control vector Fns ∈ R
2 defined

in (65) of Proposition 6 satisfying conditions (63) of
Proposition 5 is given by

Fns =
⎛
⎜⎝ 0

1

C

− 1

L
− R

L

⎞
⎟⎠
(
1 0
0 C

)(
1
0

)
=
(

0
1

L

)
≡ F2.

(86)

To implement F1 and F2 = Fns we proceed via the
procedure described in Sect. 5. First, we note that the
state vector x = (vC , iL)� has already the right struc-
ture and that the source vector S in (74) and the matrix
Λ in (75) boil down to

S =
(

I (s)

V (s)

)
(87)

and

Λ = diag (C, L). (88)

Hence, the control vectors F in (85) can be imple-
mented exploiting relation (76). For F = F1 we get

V (s) = 0 and

I (s) = 1

R
w, (89)

which implies that the controlled circuit contains a
unique current source, as depicted in Fig. 9. For F =
F2 = Fns we get I (s) = 0 and

V (s) = w, (90)

and hence the input-less circuit is controlled by replac-
ing the inductor with its forced version, according to
Fig. 6b. In both cases w(t) is as in (19) and satisfies
(20).

To illustrate the behavior of the controlled circuit
with R, L , C and N (·) as in (82) and (83), we con-
sider the problem of first steering the circuit dynamics
from the initial manifold M1 = MI1 with I1 = 1.5,
which contains the stable equilibrium point marked in
green in Fig. 8, to the final manifoldM2 = MI2 with
I2 = 0.1, which contains the stable limit cycle drawn
in red in Fig. 8, within a given time interval [t1, t2],
t2 > t1 > t0 and then coming back to M1 within a
time interval [t3, t4], t4 > t3 > t2. According to (20),
we need to employ a control inputwwith a pulse of area
equal to I2 − I1 = −1.4 in [t1, t2] and to I1 − I2 = 1.4
in [t3, t4]. The problem is first addressed by employ-
ing only the voltage source and then only the current
source. Figure 10a and Fig. 10b report the pulse timing
of the voltage and current source, respectively, together
with the corresponding time behaviors of the manifold
index I and the controlled output y = vC . Note that
the output has a smoother behavior when the voltage
source is used, as predicted by Proposition 6.

Example 2 Consider the circuit of Fig. 11whereL con-
sists in a series connection of a resistor R, an inductor
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(a) (b)

Fig. 10 a Circuit of Fig. 7 controlled as in Fig. 9. Lower plot:
pulse timing of I (s); upper plot: time behaviors of the manifold
index I (red) and the controlled output vC (dark). b Circuit of
Fig. 7 controlled by replacing the inductorwith its forced version.
Lower plot: pulse timing of V (s); upper plot: time behaviors of

I (red) and vC (dark). The width of all the rectangular pulses is
equal to 5 arbitrary time units, while the area is equal to±1.4 for
V (s) and ±2.8 for I (s). The initial conditions are vC (0) = 0.01,
iL (0) = 0.62, ϕM (0) = 1.45

Fig. 11 Circuit of
Example 2: a passive RLC
admittance connected to a
charge-controlled memristor

L , a capacitor C and the ME is a nonlinear charge-
controlled memristorMRq . The two-terminal element
is governed by the state equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

DvC (t) = − 1

C
iL(t)

DiL(t) = 1

L
vC (t) − R

L
iL(t) − 1

L
vL(t)

iL(t) = −iL(t),

(91)

where vC is the capacitor voltage and iL is the inductor
current. Hence, by assuming x = (vC , iL)�, u = −vL
and y = −iL, it turns out that L admits the (voltage–
current) representation ΣL in (1) with

A =
⎛
⎜⎝

0 − 1

C
1

L
− R

L

⎞
⎟⎠ B =

(
0
1

L

)
C = (0 1

)
D = 0.

(92)

Since

R =
⎛
⎝ 0 − 1

LC
1
L − R

L2

⎞
⎠ O =

(
0 1
1
L − R

L

)
, (93)

it turns out that Assumption 1 holds. Moreover, from
(3) we get

L(D) =
1

L
D

D2 + R

L
D + 1

LC

, (94)

which implies that Assumption 2 holds. Hence, the
circuit of Fig. 11 admits the feedback representation
of Fig. 3a where ΣME is given by Σ

(I)
ME in (8) with

ξ1 = qM , uM = iM , yM = vM and N (·) being
the memristor charge-flux, i.e., ϕM = N (qM ). Con-
sequently, according to Table 3, the circuit invariant
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Fig. 12 Stable equilibrium points (marked with �) and limit
cycles (solid curves) for I ∈ [−2, 2]. The limit cycle and the
equilibrium point corresponding to I = −0.4 and I = 1.4, and
their associated manifolds, are drawn in red and green, respec-
tively

manifolds are given by

MI =
{
(vC , iL)� ∈R

2, qM ∈R : qM + CvC = I
}

.

(95)

Note that in this case the invariant manifolds are linear,
as highlighted in Fig. (12).

As an example of the dynamics displayed on the mani-
folds, we refer to the specific circuit considered in [54]
where the circuit parameters have the following nor-
malized values

R = 0.4; L = 1.5; C = 0.1 (96)

and the charge-flux characteristic is given by

ϕM = N (qM ) = −0.7qM + 0.3q3M . (97)

It turns out that the scenario is quite similar to that of
Example 1. Indeed, each manifold MI has a unique
equilibrium point at (vC , iL , qM ) = (0, 0, I ), which
is the unique attractor if |I | > 1. If |I | < 1, then
the equilibrium point becomes unstable and the MI

displays a stable limit cycle, i.e., a Hopf bifurcation
“without parameters” is likely to occur at I = ±1.
Figure 12 depicts this dynamical scenario where the
attractors pertaining to I = −0.4 (a limit cycle) and
I = 1.4 (an equilibriumpoint) and the relative invariant
manifolds are highlighted.

In this case, condition (51) boils down to

C f1 = 1, (98)

and hence

F1 =
⎛
⎝ 1

C
0

⎞
⎠ (99)

is the unique control vector F which can be imple-
mented with only one source. In fact, any control vec-
tor

F2 ∈ span

{(
0
1

)}
(100)

is such that CA−1F2 = 0 and hence, it cannot be used
to move the dynamics from one invariant manifold to
another (see Remark 7). From (65) we get the smooth
control vector

Fns = −
⎛
⎜⎝ 0 − 1

C
1

L
− R

L

⎞
⎟⎠
(
R L
1 C

)(
1
0

)
=
⎛
⎝ 1

C
0

⎞
⎠ ≡ F1.

(101)

Taking into account that x = (vC , iL)� and that
S = (I (s), V (s))� and Λ = diag (C, L), relation (76)
reduces to V (s) = 0 and

I (s) = w. (102)

Hence, F1 = Fns is implemented by replacing the
capacitor with its forced version. Finally, we note that
any control vector F2 satisfying (100) can be imple-
mented by replacing the inductor with its forced ver-
sion.
Let us now consider the same control problem of
Example 1, i.e., steering the circuit dynamics from
M1 = MI1 with I1 = 1.4, which contains the sta-
ble equilibrium point drawn in green in Fig. 12, to
M2 = MI2 with I2 = −0.4, which contains the sta-
ble limit cycle drawn in red in Fig. 12, and then coming
back toM1.

This problem can be solved by using the current
source (102) in parallel to the capacitor. As an exam-
ple, we employ the control input w with a rectangular
pulse and a triangular pulse of area equal to −1.8 and
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(a) (b)

Fig. 13 aCircuit of Fig. 11 controlled by replacing the capacitor
with its forced version: pulse timing of I (s) (lower plot). bCircuit
of Fig. 11 is controlled by replacing the inductor with its forced
version: pulse timing of V (s) (lower plot). The width of all the
pulses is equal to 5 arbitrary time units, while the area is equal to

±1.8 for I (s) and ±3 for V (s). Upper plots: corresponding time
behaviors of the manifold index I (red) and the controlled output
iL (dark). The initial conditions are vC (0) = 0.10, iL (0) = 0.10,
qM (0) = 1.39

Fig. 14 Circuit of
Example 3: Chua’s
memristor circuit

1.8, respectively. The corresponding behaviors of the
manifold index I and the controlled output y = iL are
depicted in Fig. 13a. Figure 13b reports the case when
the input-less circuit is controlled via a voltage source
in series to the inductor. Note that the index manifold I
does not change, i.e., as expected the dynamics remains
onto MI1 .

Example 3 Consider the celebrated Chua’s circuit
reported in Fig. 14 with the nonlinear resistor (Chua’s
diode) replaced by a flux-controlled memristor MRϕ .
The two-terminal element L, which contains two
capacitors C1 and C2, one inductor L and a resistor
R, obeys the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

DvC1(t) = − 1

RC1
vC1 + 1

RC1
vC2 + 1

C1
iL(t)

DvC2(t) = 1

RC2
vC1−

1

RC2
vC2 +

1

C2
iL(t)

DiL(t) = − 1

L
vC2(t)

vL(t) = vC1(t),
(103)

where vC1 and vC2 are the capacitor voltages and
iL is the inductor current. Hence, by assuming x =
(vC1 , vC2 , iL)�, u = iL and y = vL, the two-terminal
element L admits the (current–voltage) representation
ΣL in (1) with

A =

⎛
⎜⎜⎜⎜⎜⎝

− 1

RC1

1

RC1
0

1

RC2
− 1

RC2

1

C2

0 − 1

L
0

⎞
⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎝

1

C1
0
0

⎞
⎟⎟⎠ ,

C = (1 0 0
)
, D = 0. (104)

It can be readily verified that Assumption 1 holds and
that the observability matrix becomes

O =

⎛
⎜⎜⎜⎝

1 0 0

− 1

RC1

1

RC1
0

1

R2C1

(
1

C1
+ 1

C2

)
− 1

R2C1

(
1

C1
+ 1

C2

)
1

RC1C2

⎞
⎟⎟⎟⎠ .

(105)
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Also, Assumption 2 is satisfied since

L(D) =
1

C1

(
D2 + 1

RC2
D + 1

LC2

)

D3 + C1 + C2

RC1C2
D2 + 1

LC2
D + 1

RLC1C2

.

(106)

Note that Chua’s memristor circuit admits the feed-
back representation of Fig. 3a, where ΣME is given by
Σ

(I)
ME in (8) with ξ1 = ϕM , uM = iM , yM = vM and

N (·) being the memristor charge-flux characteristics,
i.e., qM = N (ϕM ). Hence, from Table 3 it follows that
the circuit invariant manifolds are given by

MI = {(vC1 , vC2 , iL)� ∈ R
3, ϕM ∈ R :

ϕM + RC1vC1 + LiL + RN (ϕM ) = I
}
. (107)

Let us consider the same circuit parameters and flux–
charge characteristic of [46]:

R = 1; L = 1/15; C1 = 1/10; C2 = 1, (108)

qM = N (ϕM ) = −8

7
ϕM + 4

63
ϕ3
M . (109)

The invariant manifolds MI , I ∈ R, display quite a
rich variety of attractors. For instance, the manifold
MI has a stable periodic solution for I = −0.13,while
for I2 = −0.03 it has a more complex attractor which
is generated via a classical period-doubling sequence
by varying the index I [46]. Both the attractors are
depicted in Fig. 15.

According to Proposition 4, for the Chua’s memristor
circuit condition (51) becomes

RC f1 + L f3 = 1. (110)

Hence, the vectors F in (61) which can be implemented
via a unique source are

F ∈

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

1

RC1
0
0

⎞
⎟⎟⎠ ,

⎛
⎜⎝

0
0
1

L

⎞
⎟⎠
⎫⎪⎪⎬
⎪⎪⎭

.= {F1, F2} . (111)

Fig. 15 Stable limit cycle (red) and complex attractor (green) in
the (vC1 , iL , ϕM )-space for I = −0.13 and I = −0.2, respec-
tively. (Color figure online)

Moreover, the smooth control vector Fns ∈ R
2 in (65)

is given by

Fns =
⎛
⎜⎝

0
0
1

L

⎞
⎟⎠ ≡ F2. (112)

Since x = (vC1 , vC2 , iL)�, S = (I (s)
1 , I (s)

2 , V (s))� and

Λ = diag (C1,C2, L), from (76) we get I (s)
2 = V (s) =

0 and

I (s)
1 = 1

R
w, (113)

for F = F1. Hence, F1 is implemented via a unique
current source. Conversely, for F = F2 = Fns , we get
I (s)
2 = V (s) = 0 and

V (s) = w, (114)

which implies that a unique voltage source is needed
in this case. Finally, from Remark 7 it follows that the
current source I (s)

2 in parallel to the capacitorC2 cannot
be used to move the dynamics from one manifold to
another.
Let us now consider the problem of steering the circuit
dynamics from M1 = MI1 with I1 = −0.13, which
contains the stable limit cycle of Fig. 15, toM2 = MI2
with I = −0.03, which contains the complex attractor
of Fig. 15. The problem can be solved by using either
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Fig. 16 Chua’s memristor circuit controlled by replacing the
inductor with its forced version. Lower plot: pulse timing V (s).
The trapezoidal shaped pulses have an area of ±0.1. Upper plot:
time behaviors of the manifold index I (red) and the controlled
output vC1 (dark). The initial conditions are vC1 (0) = −1.3,
vC2 (0) = 0, iL (0) = 0, ϕM (0) = 0

the current source (113) in parallel to the capacitor C1

or the voltage source (114) in series to the inductor. As
an example, we consider the case of the voltage source
with trapezoidal shaped pulses. The pulse timing and
the corresponding behaviors of the manifold index I
and the controlled output vC1 are depicted in Fig. 16.

Example 4 Consider the circuit of Fig. 17 where the
two-terminal element contains two capacitors, five
resistors and one operational amplifier, while the mem-
element ME is a flux-controlled memcapacitor MCϕ .
The structure of L has been chosen according to [59],
in order to ensure that its impedance can be any second
order filter with relative degree equal to 2 (see below).
The two-terminal element obeys the following equa-
tions:

⎧⎪⎪⎨
⎪⎪⎩
DvC1 (t) = R2 − R1

R1R2C1
vC1 − 1

R2C1
vC2

DvC2 (t) = 2R2 − R1
R1R2C2

vC1 − R1 + R2
R1R2C2

vC2 − 1
C2

iL(t)

vL(t) = 2vC1(t),
(115)

where vC1 and vC2 are the capacitor voltages. Hence,
by assuming x = (vC1 , vC2)

�, u = iL and y = vL, L
admits the (current–voltage) representation ΣL in (1)
with

A =
⎛
⎝ R2 − R1

R1R2C1
− 1
R2C1

2R2 − R1
R1R2C2

− R1 + R2
R1R2C2

⎞
⎠ , B =

(
0

− 1
C2

)
,

C = (2 0
)
, D = 0. (116)

Assumption 1 and Assumption 2 hold since

R =
⎛
⎝ 0 1

2R1C1C2

− 1
C2

R1 + R2
R1R2C

2
2

⎞
⎠ O =

(
2 0

2 R2 − R1
R1R2C1

−2 1
R2C1

)

(117)

and

L(D) =
2

R2C1C2

D2 + (R1 + R2)C1 + (R1 − R2)C2

R1R2C1C2
D + 2R1 − R2

R2
1R2C1C2

.

(118)

As expected, the impedance of L has a constant at
the numerator and a second-order polynomial at the
denominator. Moreover, the coefficients of the numer-
ator and denominator can be chosen arbitrarily by suit-
ably selecting C1, C2, R1, R2.

It can be readily verified that the circuit of Fig. 17
admits the feedback representation of Fig. 3a with
uM = vM , yM = iM , u = iL and y = vL, while ΣME

is given by Σ
(II)
ME in (9) with ξ1 = ϕM , uM = vM ,

yM = iM and N (·) being the memcapacitor flux–
charge momentum characteristic, i.e., σM = N (ϕM ).

We observe that the matrix A is not always non-
singular. In fact, it can be readily checked that its deter-
minant vanishes when R2 = 2R1. Hence, we proceed
by separately considering the cases A non-singular and
A singular.
Case I: A non-singular, i.e., R2 �= 2R1. From Table 3
it follows that the circuit invariant manifolds are given
by

MI =
{
(vC1 , vC2)

� ∈ R
2, ϕM ∈ R :

ϕM + 2(R1 + R2)R1C1

2R1 − R2
vC1 − 2R2

1C2

2R1 − R2
vC2

+ 4R2
1

2R1 − R2
N ′(ϕM )vC1 = I

}
. (119)

Let us assume that the circuit parameters have the fol-
lowing normalized values:

R1 = 0.05; R2 = 0.05; C1 = 0.4;C2 = 150, (120)
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Fig. 17 Circuit of Example 4: L is an active two/terminal element;ME is a flux-controlled memcapacitorMCϕ

(a) (b)

Fig. 18 a Stable limit cycle (red) on MI for I = 0.5. The ini-
tial conditions (marked with ◦) are vC1 (0) = 0, vC2 (0) = −0.1,
ϕM (0) = −1; b stable equilibrium point (green) on MI for

I = 1.5. The initial conditions (marked with ◦) are vC1 (0) = 0,
vC2 (0) = −0.17, ϕM (0) = −1

and the nonlinear characteristic of the flux-controlled
memcapacitor is given by:

σM = N (ϕM ) = −0.7ϕM + 0.1ϕ3
M . (121)

The corresponding invariant manifolds (119) exhibit
either stable equilibrium points or stable limit cycles
depending on the value of the index I . For instance, a
stable periodic solution and a stable equilibrium point

are displayed for I1 = 0.5 and I2 = 1.5, respectively,
as depicted in Fig. 18.

Now, condition (52) of Proposition 4 boils down to

2(R1 + R2)R1C1

2R1 − R2
f1 − 2R2

1C2

2R1 − R2
f2 = 1. (122)

Hence, the control vectors F able to steer the circuit
dynamics from one invariant manifold to another via a
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unique source are

F ∈
{(

2R1−R2
2(R1+R2)R1C1

0

)
,

(
0

− 2R1−R2
2R2

1C2

)}
.= {F1, F2} .

(123)

Moreover, from (65) we get the smooth control vector
as

Fns =
(

0
− 2R1−R2

2R2
1C2

)
≡ F2. (124)

Since x = (vC1 , vC2)
�, while S = (I (s)

1 , I (s)
2 )� and

Λ = diag (C1,C2), for F = F1 we get I
(s)
2 = 0 and

I (s)
1 = 2R1 − R2

2(R1 + R2)R1
w, (125)

while for F = F2 = Fns we have I (s)
1 = 0 and

I (s)
2 = −2R1 − R2

2R2
1

w. (126)

Hence, both F1 and F2 = Fns are implement via a
unique current source.Consider the problemof steering
the circuit dynamics from M1 = MI1 with I1 = 1.5,
which contains the stable equilibrium point of Fig. 18,
to M2 = MI2 with I2 = 0.5, which contains the sta-
ble limit cycle of Fig. 18. The problem can be solved
by replacing any capacitor of the input-less circuit in
Fig. 17 with its forced version. As an example, we
consider the case when the current source (126) is
employed with w having rectangular shaped pulses.
Figure 19 reports the behaviors of the manifold index
I and the controlled output of (115).

Case II: A singular, i.e., R2 = 2R1. In this case the
matrix A boils down to

A =
⎛
⎝ 1

2R1C1
− 1
2R1C1

3
2R1C2

− 3
2R1C2

⎞
⎠ . (127)

According to Proposition 2, to obtain the invariantman-
ifolds we first need to compute v̄ such that v̄A = 0. We
get

v̄ = (−3C1 C2), (128)

Fig. 19 Circuit of Fig. 17 controlled by replacing the capacitor
C2 with its forced version. Lower plot: pulse timing I (s)

2 . The
rectangular shaped pulses have a width equal to 10 arbitrary time
units and an amplitude of ±1. Upper plot: time behaviors of the
manifold index I (red) and the controlled output of (115) (dark).
The initial conditions are vC1 (0) = −0.1, vC2 (0) = −0.09,
ϕM (0) = 0.1

which leads to the following expression of the invariant
manifolds

MI = {(vC1 , vC2)
� ∈ R

2, ϕM ∈ R :
− 3C1vC1 + C2vC2 − 2N ′(ϕM )vC1 = I

}
.

(129)

According to Proposition 4, the control vectors F =
( f1, f2)� ∈ R

2 able to steer the circuits dynamics from
one manifold to another, are such that

3C1 f1 − C2 f2 = 1. (130)

Hence, the vectors F in (62) requiring a unique
source are

F ∈
⎧⎨
⎩
⎛
⎝ 1

3RC1
0

⎞
⎠ ,

⎛
⎝ 0

− 1

C2

⎞
⎠
⎫⎬
⎭

.= {F1, F2} , (131)

while from (66) we obtain the smooth control vector

Fs = − Q−1e1 =
(−3C1 C2

−2 0

)−1 (
1
0

)

=
⎛
⎝ 0

− 1

C2

⎞
⎠ ≡ F2. (132)
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Fig. 20 Circuit of
Example 5: L is an active
two-terminal element;ME
is an ideal active
voltage-controlled (or
flux-controlled) memristor
with state variable V0

To implement both F1 and F2 = Fs , we proceed as in
Case I. For F = F1 we get

(
I (s)
1

I (s)
2

)
=
( 1

3
0

)
w, (133)

while for F = F2 = Fs

(
I (s)
1

I (s)
2

)
=
(

0
−1

)
w. (134)

Example 5 Consider the circuit of Fig. 20 introduced
in [31] which is given by the interconnection via an
RC element of a single amplifier biquad-based active
band-pass filter and an ideal active voltage-controlled
(or flux-controlled) memristor. In [26], multistability is
analyzed in the flux–charge domain by showing that it
can be controlled by tuning the initial conditions of the
voltages V0, V1, V2, and V3. The equations governing
the circuit dynamics are [26]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DV0(t) = − 1
RaC0

V1

DV1(t) = − 1
RC1

V1 + 1
RC1

V2 − 1
C1

iM (t)

DV2(t) = − k
RC V1 + k

R′C V2 − 2k + 1
(k + 1)R2C

V3

DV3(t) = −k + 1
RC V1 + k + 1

RC V2 − 2
R2C

V3

iM = W (V0)V1 = 1
Rb

(−1 + gV 2
0 )V1

(135)

where k
.= R4/R3, R′ .= RR1/(R + R1), g is the total

gain of the multipliers Ma and Mb and C2 = C3 = C .

Here, we want to show how the procedure devel-
oped in Sects. 4 and 5 can be applied to this cir-
cuit. To proceed, the matrices of the (current–voltage)
state space representation ΣL of L in (1) with x =
(vC1 , vC2 , vC3)

�, u = iL and y = vL are first derived

A =

⎛
⎜⎜⎜⎝

− 1
RC1

1 + k
RC1

− k
RC1

0 − 1
R2C2

1
R2C2

f
R′C3

h − 1 − k
R′C3

k − h
R′C3

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎝

1
C1
0
0

⎞
⎟⎠ ,

C = (1 0 0
)
, D = 0.

(136)
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(a) (b)

Fig. 21 a) Time behaviors of V1; b) time behaviors of the man-
ifold index I . The dark curves are generated by the initial con-
ditions V0(0) = −1, V1(0) = 0.15, V2(0) = 0, V3(0) = 0,
while the red ones by the initial conditions V0(0) = −1.5,

V1(0) = −0.325, V2(0) = −0.02, V3(0) = −0.3062. Both
the initial conditions belong to the invariant manifold in (141)
with I = 4.0381 · 10−6

where f = R′/R and h = R′/R2. It can be readily
verified that A is non-singular and that Assumptions 1
and 2 hold. Also, we note that vC1 , vC2 , vC3 are related
to V1, V2, V3 as follows:

⎧⎪⎨
⎪⎩

vC1 = V1
vC2 = V2 − k

k + 1V3
vC3 = V2 − V3

. (137)

Then, we observe that the ideal active voltage-
controlled memristor in Fig. 20 can be represented via
Σ

(I)
ME in (8). Indeed, it is enough to define the flux ϕM

as follows

ϕM
.= −RaC0V0 (138)

and to assume the following flux–charge characteristics

qM = N (ϕM ) = − RaC0

Rb

(
ϕM

RaC0
− g

3

(
ϕM

RaC0

)3
)

.

(139)

It turns that the circuit of Fig. 20 admits the feedback
representation of Fig. 3a with ΣL in (1) described by
the matrices in (136) and u = iL, y = vL, and ΣME

given by Σ
(I)
ME in (8) with uM = vM , yM = iM , ξ

equal to ϕM in (138) and N (·) as in (139). Hence, from
Table 3 it follows that the circuit invariant manifolds
MI are described by the following equation

ϕM − [CA−1]1vC1 − [CA−1]2vC2 − [CA−1]3vC3

+ CA−1B
RaC0

Rb

(
ϕM

RaC0
− g

3

(
ϕM

RaC0

)3
)

= I,

(140)

where [CA−1]i , i = 1, 2, 3, are the components of
CA−1. By exploiting the equations (137) and (138),
the invariant manifolds can be equivalently expressed
in terms of the original voltages V0, V1, V2, V3. Specif-
ically, if we assume for the circuit parameters the val-
ues used in [26,31], i.e., Ra = 10 kΩ , Rb = 1.4 kΩ ,
R = 1.5 kΩ , R1 = 100 Ω , R2 = 10 kΩ , R3 = 1 kΩ ,
R4 = 50 Ω C0 = C1 = 5 nF, C2 = C3 = 100 nF,
g = 0.1, we get

MI = {(V0, V1, V2, V3)� ∈ R
4 :

α0V0 + α1V1 + α2V2 + α3V3 + βV 3
0 = I

}
,

(141)

with α0 = 7.1429 × 10−6, α1 = 8 × 10−6, α2 = 2 ×
10−5, α3 = −1.0476×10−5×, β = −1.9048×10−6.
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Fig. 22 Trajectories on the (V1, V2) plane. The dark curves are
generated by the initial conditions V0(0) = −1, V1(0) = 0.15,
V2(0) = 0, V3(0) = 0, while the red ones by the initial con-
ditions V0(0) = −1.5, V1(0) = −0.325, V2(0) = −0.02,
V3(0) = −0.3062. Both the initial conditions belong to the
invariant manifold in (141) with I = 4.0381 · 10−6

In [26] a thorough dynamical analysis has been per-
formed in the flux–charge domain making it clear the
strong multistable nature of the circuit, i.e., the coexis-
tence of infinitely many different attractors.

Clearly, each attractor belongs to one of the infinite
invariant manifolds in (141). As an example, if we con-
sider the initial conditions V0(0) = −1, V1(0) = 0.15,
V2(0) = 0, V3(0) = 0, which are those of Fig. 3.b in
[26] with δ = −1, we obtain the behaviors of the volt-
ageV1 and the index I reported (dark curves) in Fig. 21a
andb, respectively.As expected, the index remains con-
stant at the value I = 4.0381 · 10−6. The correspond-
ing trajectory in the (V1, V2)-plane converges toward a
periodic solution (see Fig. 22). The three figures also
report the behaviors (in red) generated by starting from
different initial conditions which still belong to the
same invariant manifold. Note that the index remains
constant to the same value of I = 4.0381 · 10−6, as
expected.

Finally, since condition (51) boils down to

0.8 f1 + f2 + f3 = 105, (142)

it follows that it is possible to steer the dynamics from
an initial manifold to a final one within a given time
interval by substituting any capacitor with its forced
version. For instance, exploiting the implementation
procedure of Sect. 5, it turns out that the following

pulse-programmed current source

I (s)
1 = 6.25 × 10−4w, (143)

with the pulse w chosen such that (20) holds, should
be introduced in parallel to the capacitor C1.

7 Conclusions

In this paper, the multistability control problem is con-
sidered for a class of circuits composed of the inter-
connection of a linear two-terminal (one-port) element
and an ideal mem-element. Specifically, the problem
of designing pulse programmed independent sources
in order to steer the circuit dynamics onto one of the
infinitelymany invariantmanifolds constituting the cir-
cuit state space is addressed. The linear two-terminal
element can be either passive or active, while the mem-
element can be a flux- or charge-controlled memris-
tor, a flux- or σ -controlled capacitor, a ρ- or charge-
controlled inductor.

It is first shown that each circuit of the considered
class admits a suitable feedback system representation,
which permits to obtain an analytic expression of the
infinitelymany invariantmanifolds constituting the cir-
cuit state space. Notably, the invariant manifolds are
directly expressed in terms of the state variables of the
two-terminal element and the mem-element, i.e., with-
out resorting to the flux–charge approach. Moreover,
the invariant manifolds are parameterized via a scalar
parameter, which is referred to as the manifold index
and is related to the circuit initial conditions. Then, the
pulse shaped control inputs capable of steering the cir-
cuit dynamics from one initial manifold to a final one,
within a given finite time interval and without modify-
ing the attractors on the manifolds, are characterized.
These pulse control inputs, which are programmed to
have in the time interval an area equal to the differ-
ence between the final and the initial manifold indexes,
can be implemented by means of independent voltage
and current sources. In particular, it is shown that it is
always possible to solve the considered control problem
by introducing a unique source in the two-terminal ele-
ment. Several examples are employed to show how the
approach applies to different circuits and to illustrate
how the dynamical properties of the controlled dynam-
ics depend on the features of the designed voltage and
current sources.
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Several future research issues can be foreseen, such
as the extension to more general classes of circuits, the
design of the pulse shape in order to reduce the transient
toward the attractor contained into the final manifold,
the practical issues concerning the circuital realization
of the feedforward pulse programmed control inputs.
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8 Appendix

Proof of Lemma 1 In the case of A non-singular, it is
enough to observe that (21) can be equivalently rewrit-
ten as

{
v = −λCA−1

μ = −λCA−1B.
(144)

If A is singular, then A has at least one eigenvalue
equal to zero. Moreover, exploiting Assumption 1, it
can be shown that while the algebraic multiplicity of
the zero eigenvalue can be greater than one, the geo-

metric multiplicity is exactly equal to one. This implies
that the set of vectors v� ∈ R

n such that vA = 0
is a one-dimensional linear subspace. Exploiting the
observability PBH test (see, e.g., [57]), it can be also
shown that the following relation:

rank
(
A� C�) = n (145)

holds. Hence, the proof follows by rewriting (21) in the
equivalent form

{
A�v� = −λC�
μ = vB,

(146)

and observing that

rank
(
A�) < rank

(
A� λC�) (147)

for all λ �= 0. �	
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