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Abstract Described is a closed-loop control

scheme capable of stabilizing a parametrically excited

nonlinear structure in several vibration modes. By

setting the relative phase between the spatially filtered

response and the excitation, the open-loop unstable so-

lution branches are stabilized under a 2:1 parametric

excitation of a chosen mode of vibration. For a given

phase, the closed-loop automatically locks on a limit

cycle, through an Autoresonance scheme, at any

desired point on the solution branches. Axially driven

slender beams and nanowires develop large transverse

vibration under suitable amplitudes and frequency

base-excitation that are sensitive to small potential

coupled field. To utilize such a structure as a sensor,

stable and robust operation are made possible by the

control scheme. In addition, an optimal operating

point with large sensitivity to the sensed potential field

can be set using phase as a tunable parameter. Detailed

analysis of the dynamical behavior, experimental

verifications, and demonstrations sheds light on some

features of the system dynamics.

Keywords Principal parametric resonance �
Automatic resonance control � Nanowires sensors

Abbreviations

EOM Equation of motion

AFM Atomic force microscope

MS Multiple scales

PLL Phase locked loop

t Time

s Arc length coordinate

v s; tð Þ Deflection of the beam

xn n’Th linear natural frequency

/n n’Th linear mode

wn Non-dimensional n’th modal coordinate

cv Dimensionless damping coefficient

ai Coefficients in beam ODE

j3 Normalized cubic stiffness

y Rescaling of wn

e A small parameter for bookkeeping

f Scaled non-dimensional damping coefficient

r Scaled perturbation of excitation frequency

c Scaled excitation power

X Non-dimensional excitation frequency

s Dimensionless time

ak Analytically computed amplitude
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wk Analytically computed phase

K Closed-loop gain

F High-pass filter

G Phase shift

h Signum

u Control signal

z Measurement vector

C Output matrix of sensors measurements

bi Coefficients of G operator

f Defining function of u

DE Change in energy

A Amplitude of input signal in G
/ Phase of output signal from G
u;Ki Parameters of G

1 Introduction and motivation

This paper is the preliminary result of an effort to

produce an ultrasensitive sensor for measuring Nano-

scale interaction forces in high-aspect ratio scenarios.

Vibrating sensors are often employed to sense small

interaction forces [1, 2] and thereby to measure

topographic height related to the intermolecular forces

between a vibrating sensor’s tip and the nearest

molecules on the measured specimen [3]. In the

emerging world of 3D-shaped electronic devices,

there is a need to measure the actual geometry of

deep trenches and steep walls. The motivation behind

this paper is the idea of employing a transversely

vibrating nanowire so that its interaction forces with

side walls can be accurately measured. To achieve this

goal, it is necessary to excite vibrations in a stable and

predictable manner and choose an operating point for

this slender structure so that it is sensitive to small,

nano-scale interaction forces. By connecting a nano-

wire to a vibrating base, typically this is done with a

piezoelectric element (e.g., a quartz tuning fork [4]),

one can produce axial motion along the structure that

would cause transverse motion orthogonal to the axial

excitation [4]. The transverse motion takes place at a

narrow frequency range and under a suitable excitation

amplitude. In the context of the proposed work, a

control method to automatically generate transverse

vibrations of a nanowire in a desired mode of vibration

is developed here. Presented is the physical and

mathematical model of a base excited structure, its

dynamic behavior in open-loop and the proposed

closed-loop realizing automatic resonance of principle

parametric resonance. Asymptotic Galerkin and mul-

tiple scales (MS) analysis are compared with large-

scale experiments.

1.1 Background and literature review

The utilization of parametric resonance to generate

large amplitude vibrations under a small excitation

levels is a well-known phenomenon, occurring in

numerous physical systems [5]. One of its character-

istics is a non-unique solution that leads to the jump

phenomenon [6] at some frequencies, which makes the

prediction and control of the response amplitude at

some frequencies, hard. In this paper, an automatic

feedback scheme able to realize a resonance-based

control loop is put forward. This scheme can track the

stable or the open-loop unstable solutions of a

nonlinear systems with principal parametric reso-

nance. The latter relies on the control of the relative

phase between excitation and response in a similar

manner to Sokolov and V. I. Babitsky [7] that

numerically demonstrated similar results for single

degree of freedom (DOF) linear and nonlinear

systems, and a two DOF linear system. Miller et al.

[8] experimentally demonstrated the ability to stabi-

lize the open-loop unstable branch of a single DOF

parametric oscillator using PID-based phase control

scheme, which they termed parametric PLL. Vil-

lanueva et al. [9] produced a similar scheme using

analogue feedback of a MEMS resonator. Here, we

analyze and experimentally demonstrate the ability to

control the open-loop unstable branches of a 2:1

parametrically excited continuous system, with a

different scheme employing Autoresonance [7] com-

bined with modal filtering [10]. We demonstrate the

ability to stabilize the open-loop unstable branches of

the first and second vibration modes of a continuous

system using digital feedback, without the need to tune

the PID control parameters as done in [8, 11].

Another approach to find and track unstable solu-

tions is control-based continuation [12–15]. This

approach requires a repetitive experiment (or simula-

tion) where a small step to a neighboring point on the

nonlinear frequency response needs to be first esti-

mated. Whereas the proposed scheme can reach any

point of the response curve without the need for

scanning the curve. Another advantage of the pro-

posed scheme is that unlike control-based
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continuation the response and the control signal

frequencies are automatically tuned by the dynamics

of the scheme, and the control tracks frequency

changes upon drifts in the physical model parameters.

In addition, in the proposed approach there is no need

for tuning a controller as in control-based continua-

tion. Another alternative approach that was previously

reported [11, 16] employs a PLL to stabilize unsta-

ble solution branches, as demonstrated in both exper-

iments and simulations. But the PLL-based methods

demand a monotonous evolution of the phase and an

initial guess for the desired frequency. However, as

mentioned before, the proposed scheme neither

requires prior knowledge of the frequency nor a

monotonous evolution of the phase.

A case study of a nonlinear vibrating beam is

developed throughout this paper to demonstrate the

proposed scheme and to point toward possible sensing

applications. The analysis is carried out via analytical,

numerical, and experimental realizations. An expla-

nation and a proof for the obtained response stability

under the proposed close-loop scheme are provided.

The paper is structured as following: Sect. 2 briefly

outlines the mathematical model of a base-excited

beam, its asymptotic solution leading to some analysis

of this system special features, and the inter-relations

between the amplitude, phase, and frequency, unique

to this construct. In Sect. 3, an automatic, a nonlinear

closed-loop control scheme capable of exciting the

vibrating beam in parametric resonance in several

regions is described, modeled, and analyzed for

stability. The same section demonstrates and verifies

the mathematical derivations with numerical simula-

tions and provides digital signal processing details

required for the implementation. The extensive exper-

imental campaign described in Sects. 3.4 and 3.5

verifies the assumptions regarding the stability of the

closed-loop control and demonstrates an application

of a device as a sensor capable of sensing magnetic

forces.

2 Dynamic model

Before describing the control scheme, a model of the

system under consideration is outlined. The model

expands slightly the published description of an

inextensional nonlinear beam under base excitation.

2.1 Introducing the model

The full nonlinear equation of motion (EOM) of a

beam is well known and was first derived by Silva and

Glynn[17] back in 1978. Later, Nayfeh and Perngjin

[18] used this model to investigate the behavior of a

clamped beam with internal resonance (two degrees of

freedom system). A simpler model for a clamped

beam carrying lumped mass under base excitation

(single degree of freedom) was investigated by

Zavodney and Nayfeh [19] among others.

In the present paper, the model is an extension of

the combined results of the above-mentioned papers

and is described by Eq. (1).

qAvtt þ cvt þ EIvssss

¼ �EI v3ss þ 4vsvssvsss þ v2s vssss
� �

� qA vs

Z s

L

xtt þ
1

2

Z s

0

v2s
� �

tt
ds

� �
ds

� �

s

ð1Þ

with the associated boundary conditions (clamped-

free beam):

vð0Þ ¼ vsð0Þ ¼ 0; vssðLÞ ¼ vsssðLÞ ¼ 0 ð2Þ

where v is the deflection of the beam, x is the base

displacement, s is the arc length coordinate along the

beam, q is the density, A is the cross-sectional area, E

is Young’s modulus, c is the damping coefficient and

the sub-indexing �t;s denotes derivatives with respect to
time and s, respectively.

The LHS of Eq. (1) is the ordinary damped linear

EOM of a vibrating beam. The RHS of Eq. (1) is

related to the nonlinear terms up to a third order. The

first term in the RHS is related to the cubic stiffness of

the beam due to curvature. The second term is related

to the coupling force between the base axial acceler-

ation, the beam bending motion and to nonlinear

inertial terms.

Normalizing v; s and x by L, and scaling the time byffiffiffiffiffiffiffiffi
qAL4

EI

q
, we arrive at the normalized equation, where �̂

denotes normalized parameters:

v̂t̂t̂þ ĉv̂t̂þ v̂ŝŝŝŝ

¼� v̂3ŝŝþ4v̂ŝv̂ŝŝv̂ŝŝŝþ v̂2ŝ v̂ŝŝŝŝ
� �

�1

2
v̂ŝ

Z ŝ

1

Z ŝ

0

v̂2ŝ
� �

t̂t̂
dŝ

� �
dŝ

� �

ŝ

� ŝ�1ð Þv̂ŝŝþ v̂ŝð Þx̂t̂t̂

ð3Þ
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In order to reduce the partial differential equation to an

ordinary differential equation, the Galerkin method

[20] is employed.

First, the linear conservative homogeneous model

describing small vibrations is considered, from which

the natural frequencies and the normal modes can be

found:

v̂t̂t̂ þ v̂ŝŝŝŝ ¼ 0: ð4Þ

The normalized natural frequencies, xn, are the roots

of the following transcendental equation:

1þ cos
ffiffiffiffiffiffi
xn

pð Þ cosh ffiffiffiffiffiffi
xn

pð Þ ¼ 0; ð5Þ

and the normal modes, serving as basis for the

Galerkin method, are:

/n¼cosh
ffiffiffiffiffiffi
xn

p
ŝð Þ�cos

ffiffiffiffiffiffi
xn

p
ŝð Þ

�
cos

ffiffiffiffiffiffi
xn

p� �
þcosh

ffiffiffiffiffiffi
xn

p� �

sin
ffiffiffiffiffiffi
xn

p� �
þsinh

ffiffiffiffiffiffi
xn

p� � sinh
ffiffiffiffiffiffi
xn

p
ŝð Þ�sin

ffiffiffiffiffiffi
xn

p
ŝð Þ½ �

ð6Þ

Now, by approximating the response of the beam

using a single mode, i.e.

v̂ ŝ; t̂ð Þ � /n ŝð Þwn t̂ð Þ; ð7Þ

and integrating over the beam’s length, one can obtain

the weak formulation of the equation:

€wn þ ĉ _wn þ a2wn þ a3w
3
n þ a4wn _w2

n þ wn €wn

� �

þ a5wn €̂x
¼ 0: ð8Þ

The numerical values of the constants ai are

detailed in Appendix A.

Normalizing the time again by the natural fre-

quency s ¼ ffiffiffiffiffi
a2

p
t̂ and substituting1wn ¼ ey, where e is

a small parameter added for bookkeeping, and choos-

ing the damping coefficient to be of order e
(i.e.,ĉ ¼ 2efxn s), we arrive at:

y00 þ 2efy0 þ 1þ a5x̂
00½ �yþ e2j3y

3 þ e2a4y y02 þ yy00
� �

¼ 0;

ð9Þ

where �0 denotes derivative with respect to s.
The physical realization described by the former

equation is depicted in Fig. 1.

It should be stressed that Eq. (9) describes the

dimensionless EOM of a beam vibrating in a specific,

single mode under base excitation with nonlinear

inertia and stiffness terms, linear damping, scaled to

the chosen order of e.

2.2 Asymptotic solution

Substituting the following acceleration into Eq. (9):

X ¼ 2þ er
x̂00 ¼ 4eca�1

5 cos Xsð Þ ð10Þ

the solution can be analytically approximated for the

case of principle parametric resonance using the

method of MS [21], and the full solution is outlined

in Appendix B. There are three possible steady-state

solutions as detailed in Eqs. (11)–(14).

wn ¼ ake cos
X
2
s� wk

2

� �
þ O e2

� �
ð11Þ

where ak, k = 1,2,3 can obtain these values:

a1;2¼
ffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e 3c2�2f2
� �

�2rþ2 2�erð Þccos w1;2

� �

e 6a4�9j3ð Þ ;

s

a3¼0

ð12Þ

and the matching phase wk is the solution of

sin wkð Þ ¼ � 2f
2� erð Þc ; ð13Þ

that are given by

w1;2 ¼ 2pn� p
2
� D ; n 2 Z;

D ¼ p
2
� arcsin

2f
2� erð Þc

� �
:

ð14Þ

Notice that the phasew3 is omitted, as it is meaningless

and may attain any value.

The solution is used for analyzing the dynamical

response below.

x
s

v(s,t) x̂

Fig. 1 Vibrating beam whose shape v(s,t) is proportional to a

single mode /n sð Þ via Eq. (7), with non-normalized parameters

1 Throughout the paper e ¼ 10�3.

123

1846 N. Ben Shaya et al.



2.2.1 On the phase unique role and use in the dynamic

response

Examining Eq. (12), one can notice that there are two

possible solutions for the amplitude as function of the

response frequency, emanating from two solutions of

the phase, which will be addressed as the response

curve. One of the solutions can be shown to be stable,

while the other is unstable (Appendix B). It is

customary to plot the response curve as the amplitude

versus frequency, a = f(x), but in fact, the full

response curve is contained in R3 and should be

presented as such, with the phase a wð ÞT¼ g xð Þ.
Sokolv and Babitsky have already produced this kind

of curve in their paper [7] for a linear system with

weak nonlinearity. The same representation was also

used by the authors of [11] for controlling a nonlinear

system. The present paper expands this perspective for

a system subjected to parametric resonance, in a

manner that is useful for devising an automatic,

closed-loop control, as shown later.

In linear systems, the importance of plotting both

phase and amplitude versus frequency is well known,

and the Bode diagram shows both. Moreover, in linear

system analysis the Nichols diagram shows the

amplitude as a function of the phase, which is just

another projection of the 3D response curve onto the

phase-amplitude plane. The same can be done with the

response curve in the case of parametric excitation,

which has an extended meaning, particularly for

nonlinear systems.

When changing the excitation amplitude, unlike

linear system, the present system being nonlinear

undergoes a transformation other than pure scaling,

resulting in a 2D manifold contained in a 4D space

a wð ÞT¼ g x; cð Þ, where c is related to the response

amplitude [see Eq. (10)]. This fact is significant in

understanding the behavior of the system when

applying a closed-loop control scheme.

It is possible to graphically present Eqs. (12)–(14)

for several amplitude levels of the parametric excita-

tion. These are provided in Fig. 2, considering the first

normal mode, /1.

While the first mode exhibits a single, continuous

curve, the second mode curve, shown in Fig. 3, is split

into two divergent response curves.

It is worth emphasizing that the multiple solutions

are uniquely determined for a given triplet of

amplitude, frequency, and phase. E.g., in Fig. 3a one

can clearly distinguish the two response curves defined

for different values of the phase. The same applies to

Fig. 2a where for a given frequency there could

theoretically be two different amplitudes, one

stable and the other unstable. Adding the phase

information would distinguish these points.

2.3 Sensitivity

One of the characteristics of the principal parametric

resonance phenomenon is the high sensitivity of the

amplitude to small changes of parameters in the EOM.

This feature candidates the phenomenon to be a

felicitous base for nanowire sensors. Such sensors can

be used for measuring accurately small interaction

forces (namely Van Der Wall’s forces) acting between

the nanowire and the desired sample, similar to AFM

devices. These interaction forces are nonlinear forces

and can be treated as linear spring whose stiffness

depends on the distance between the sensor and the

measured sample. Thus, as we analyze the sensitivity

of the system, we will regard the small changes in the

EOM to appear in the linear natural frequency, i.e., the

coefficient a2 in Eq. (8) will be replaced with a2new:

a2 ! a2new ¼ a2þj €wnþ ĉ _wnþa2newwn

þa3w
3
nþa4wn _w2

nþwn €wn

� �
þa5wn €̂x¼ 0;

ð15Þ

and we define the change in the natural frequency in

percentage as:

Dxn %½ � ¼
ffiffiffiffiffiffiffiffiffiffi
a2new

p � ffiffiffiffiffi
a2

p
ffiffiffiffiffi
a2

p � 100: ð16Þ

In Fig. 4a, the response curve projection on the

amplitude-frequency plane can be seen for two

realizations, the original EOM and a modified EOM

with change of Dxn = 0.5%. Due to the shape of this

curve which behave as
ffiffiffi
r

p
, under a constant excitation

frequency, r ¼ r0, a drastic change in the steady state
amplitude takes place, which amplifies the ability to

detect it. Figure 4b demonstrates the amplitude

changes due to a shift in the potential coupling the

beam to an external element, (e.g., magnet in this

case). The latter shifts the natural frequency and

therefore, alters the response curves. The simulated

curves represent slightly different coupling potentials
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that alter the small amplitude natural frequency. It is

convenient to show the amplitude sensitivity, shown in

Fig. 4c. The sensitivity to a parameter, j representing

a change in the stiffness, is said to be S ¼ da
dj and as can

be seen (Fig. 4c) it become infinity large at lower

amplitudes. The amplitude and its derivative were

calculated using Eqs. (12)–(16).

Since the system is very sensitive and parametric

resonance occurs at a narrow frequency band, a small

deviation would make it lose stability, thus causing the

vibrations to decay. The latter leads to the conclusion

that open-loop operation could be impractical when

excitation the frequency and force amplitude are set.

Thus, a method to automatically excite the system in

Fig. 2 a Response curve of mode /1, c = 1.03f and its

projections. Note that theMS analysis predicts a closed response

curve. The curve is continuous in all 3 projections shown here.

Continuous (dashed) lines indicate a stable (unstable) solution

branch. b Several response curves of mode /1 and the backbone

curve. The discrete curves are embedded in the surface of the

response manifold. Damping coefficient is ef = 0.01

Fig. 3 a Response curve of mode /2, c = 1.03f and its

projections. Note that the MS analysis predicts an open response

curve. Continuous (dashed) lines indicate a stable (unstable)

solution branch. b Several response curves of mode /2. The

discrete curves are embedded in the surface of the response

manifold. Damping coefficient is ef = 0.01
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principal parametric resonance is needed, and this is

the motivation for the automatic control presented

below.

3 Automatic excitation of principal parametric

resonance

3.1 Closed-loop architecture

While the control scheme proposed in this paper is

implemented on an axially driven clamped-free beam,

its architecture, as described below, can be applied to a

wider range of nonlinear systems with parametric

resonance having 2:1 frequency ratio.

The injected control signal, u, is equivalent (in

theory) to the acceleration xtt and can be written as:

u ¼ xtt ¼ K � h G F w2
n

� �� �� �
ð17Þ

where K is the gain of the closed loop, and F ; G, and h
are the following operators:

F -HighPassFilter; G- PhaseShift; h- Sign, ð18Þ

and wn is the modal coordinate [see Eq. (7)] filtered

out from the measured deflection of the beam using a

modal filter [19] (further details are provided in

Sect. 3.1.1).

When the control loop was implemented during

experiments (Sects. 3.4, 3.5), the control signal u was

treated as the voltage sent to the voice coil (actuator).

The base acceleration was the response (of a linear

system) to the voltage, same frequency, different phase,

and amplitude proportional to the voltage amplitude.

In principal parametric resonance, the control

signal needs to be twice the response signal frequency.

When the squaring operation shown in Fig. 5 acts on a

sinusoidal signal, it gives rise to an average (DC) value

and a sinusoid signal with a doubled frequency. The

unwanted DC is removed with a high-pass filter. A

phase shifter is added to control the relative phase

between excitation and response. The signum function

implements the automatic excitation part, capable of

locking onto a single frequency, while limiting the

amplitude, in the spirit of Autoresonance [10, 22]. The

post-multiplying gain is added to set the control signal

level to a desired constant amplitude, regardless of the

measured response signal amplitude—wn.

3.1.1 Modal filter for multiple degrees of freedom

system

When dealing with parametric resonance of a

clamped-free beam, the continuous system exhibits

vibrations comprising several vibration modes and it is

unclear which one will be excited by the scheme in

Fig. 5 under the 2:1 frequency ratio. Normally, the

mode most visible by the sensors, i.e., the first mode

prevails. By adding a combination of a spatial modal-

(a) (b) (c)

Fig. 4 a Response of mode /1 for 2 cases, original coefficients,

and a change in the linear natural frequency by 0.5 [%]. The

black arrow emphasizes the drastic change in amplitude under

constant frequency of excitation. b Four curves of amplitude as

function of Dxn, under different constant frequencies of

excitation. c The sensitivity of the system to small changes in

xn, namely the derivative of the four curves displayed in b
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filter and a bandpass filter, it is possible to automat-

ically excite selected modes.

Let xs 2 Rm�1 be all points along the beam where

the response is measured, and N denotes the number of

participating modes. It is possible to express the

measurements vector, z as:

z ¼ v xs; tð Þ ¼
XN

n¼1

/n xsð Þwn tð Þ: ð19Þ

Recasting using matrix notations

z ¼ Cw

¼

/1 x1ð Þ /2 x1ð Þ � � �

/1 x2ð Þ . .
.

/1 x3ð Þ
..
.

/N xmð Þ

0

BBBB@

1

CCCCA

w1 tð Þ
w2 tð Þ
..
.

wN tð Þ

0

BBB@

1

CCCA
:

ð20Þ

Since normally not all of the modes are being excited,

and assuming that there are more sensors than

participating modes (m[N), Eq. (20) is overdeter-

mined. A least-squares solution for the contribution of

each mode can be found using the pseudo-inverse of C

[23]. Where C can be obtained experimentally by

measuring the normal modes at the sensor locations,

thus realizing a modal filter:

w ¼ Cyz: ð21Þ

Having found the required modal coordinates, wn(t),

the scheme in Fig. 5 is used to make the corresponding

mode dominant as described below.

3.2 Stability analysis of the closed-loop system

Having described the schematics of the closed-loop

parametric excitation realization, ensuring a 2:1

excitation for a single mode, there is no guarantee

that the structure will exhibit a stable limit cycle. In

addition, it is desirable to understand the system’s

dynamical behavior under the proposed scheme. In the

following sections, the behavior of the closed-loop

scheme is analyzed for stability.

3.2.1 Stability and automatic excitation

As exemplified later through numerical simulation

(Sect. 3.3), the closed-loop scheme stabilizes the

otherwise unstable solution branch. Thus, the purpose

of this section is to show that the closed-loop system

converges to the nontrivial solution even though it is

unstable in the open loop.

We start by assuming that a steady-state solution of

the closed-loop system exists, and that the dynamical

system response (i.e., output) is a periodic signal with

a dominating component, having an amplitude A and

frequency x:

wn tð Þ ¼ A cos xtð Þ þ eF tð Þ; F tð Þ ¼ F t þ 2p
x

� �
:

ð22Þ

Then, the control signal is [using a truncated Fourier

series, [24], Eq. (17)]:

Non Linear Time 
Invariant 
Dynamics

XHigh Pass 
FilterPhase Shifter

Gain
Output signalsControl 

Signal

Signum

Modal Filter

Additional 
Filters

v(s,t)

wn

wn
2

u

Fig. 5 Closed-loop Architecture. Shown are the key blocks, the

modal filter isolates a desired mode using spatial filtering, the

squaring element produces a double frequency, a high-pass filter

removes the DC part, the phase shifter controls the relative

phase of the response with respect to the excitation, and the

signum function realizes the required automatic switching of the

control signal that produces the locking on the correct frequency
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u tð Þ � K Sign cos 2xt þ wð Þð Þ � 4K

p
cos 2xt þ wð Þ:

ð23Þ

Due to the recursive nature of the closed loop, one can

now calculate the response of the dynamical system to

the input u Eq. (23) and check if it is identical to the

one assumed in Eq. (22). The result as calculated in the

open-loop system shows this assumption holds. Com-

paring Eqs. (10), (11) to Eqs. (22), (23), respectively,

reveals that the inputs and outputs in both cases are

identical provided that the closed-loop gain is

K ¼ epa2a�1
5 c.This shows that the steady state solu-

tions of both open and closed-loop system are

identical.

As discussed in Sect. 2.2.1, the full response of the

nonlinear system for a given excitation amplitude can

be described as a curve in a 3D space. While in the

open-loop, one should determine the control signal

frequency, in proposed closed-loop scheme, it is

automatically determined by the chosen signal’s phase

lag with respect to the response. Moreover, the

automatically generated control signal’s frequency

ensures that it is twice the response frequency.

When tuning the frequency to a certain value (open-

loop situation), there are two possible solutions based

on the MS analysis (see Eq. (14), and Fig. 6). In

addition, a trivial solution can exist, for which the

amplitude nullifies and the phase is not well-defined.

Therefore, tuning the frequency in the open-loop

system results in multiple solutions and gives rise to

stable and unstable stationery points in the (a, w)
plane. In practice, the system locks on the trivial

solution stable nontrivial solution, depending on the

initial state.

In contrast, the closed-loop system sets w to a

certain dictated value. Thus, according to Eq. (14) the

solution is unique, and there is only one nontrivial

solution corresponding to the specific values of r and

w (see Fig. 6). Setting w[ � p=2 or w\� p=2
determines the system response (i.e., on which branch,

stable or unstable, the solution resides). It should be

emphasized that for the first mode, w ¼ �p=2 corre-

sponds to the point of maximum amplitude, as can be

deduced from Eqs. (12)–(14).

Since the trivial solution is mathematically possi-

ble, it is shown later that under the closed-loop control,

the focal point (i.e., the trivial solution, a = 0)

becomes unstable. Consequently, the nontrivial and

originally unstable solution becomes stable.

The original EOM and control law are given by

Eqs. (8), (17) and (18), respectively. By choosing a

control law as follows:

F xð Þ ¼ x
�
; G xð Þ ¼ b1xþ b2 x

� ð24Þ

the operators F and G realize Eq. (18) requirements.

Taking the derivative of a signal eliminates any

constant values (DC). By further taking the linear

combination of the periodic signal and its derivative,

using the constants bi, it is possible to set w to any

desired value.

By substituting Eq. (24) into Eq. (17), the control

signal becomes:

F w2
� �

¼2w _w; G F w2
� �� �

¼2 b1w _wþb2 _w2þw €w
� �� �

u¼K �sign b1w _wþb2 _w2þw €w
� �� �

ð25Þ

Substituting the control signal, Eq. (25), to Eq. (8), one

obtains:

€wþ cv _wþ a2wþ a3w
3 þ a4w _w2 þ w €w

� �

þ Ka5w � sign b1w _wwþ b2 _w2 þ w €w
� �� �

¼ 0
ð26Þ

This representation is useful since now the system is

autonomous and in contrast to the open-loop system,

the phase-space is a 2D space instead of 3D. More-

over, using Eq. (26) one can find the full response

Fig. 6 Difference between closed- and open-loop. When

choosing a specific frequency, there are two nontrivial solutions

to the phase (and amplitude), alternatively for a specified phase

there is only one nontrivial solution for a given frequency (and

amplitude). Same response curve as Fig. 2
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curve using numerical simulations without need of

tuning frequency selective filters at all. Still, Eqs. (25),

(26) represent a recursive relationship between u and

€w which is non-standard for the subsequent analysis

2D phase-space. Furthermore, the acceleration in

Eq. (26) appears as a nonlinear term and there is no

guarantee for a unique or any solution. To remedy this

difficulty, we set u ¼ �K and solve for the acceler-

ation which leads to:

€w� ¼ � cv _wþ a2wþ a3w
3 þ a4w _w2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
C1

�Ka5w

1þ a4w
2

� �

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
C0

ð27Þ

Now, we can substitute Eq. (27) into Eq. (25) to recast

u as a function of w; _w:

u ¼ þK f w; _wð Þ[Kb2
�K f w; _wð Þ\� Kb2



ð28Þ

where

f w; _wð Þ ¼ C2C0 � C3C1

a5w2
; C2,b1w _w

þ b2 _w2 ; C3,b2w ð29Þ

The controlled parameter b2 can be both positive or

negative, this creates a problem in Eq. (28) since in the

region �K b2j j\f w; _wð Þ\K b2j j there may be two or

zero solutions for the control signal. In order to avoid

this problem, we will define the control signal in this

region to be u ¼ 0. Since K is a small parameter, the

uncertain region appears to be negligibly small and

hence, the latter has no visible effect on the dynamic

behavior.

Under closed-loop control, the governing equation

is 2D instead of 3D, and there are four possibilities for

the behavior in phase-space, where we use our prior

knowledge that there is a periodic solution and a focal

point as illustrated in Fig. 7.

The illustrated behaviors in panels C and D are not

possible at low gains since a semi-stable limit cycle is

a bifurcation point of two limit cycles—stable and

unstable [25] meeting each other. Such bifurcation

point can occur if a line of constant phase is tangential

to the response curve, then a small change in the

parameters of the system (or in the control system) can

change the tangent point to zero or into two

intersection points, two nontrivial solution, i.e., two

limit cycles. This is not the case as can deduced from

Fig. 6.

It is now shown that for some gain values K, the

trivial solution becomes unstable, while under closed-

loop, for both the stable or unstable branches. The

analysis being used is based on energy balance.

Multiplying Eq. (26) by _w and integrating over the

time and transferring all the non-conservative and

control related terms to the RHS, the latter becomes2:

DE¼�cv

Z t

0

_w2dt�Ka5b1

Z t

0

w _wð Þ2

b1w _wþb2 _w2þw €wð Þj jdt

�Ka5b2

Z t

0

w _w d
dt w _wð Þ

b1w _wþb2 _w2þw €wð Þj jdt

ð30Þ

leading to

(a) (b)

(c) (d)

Fig. 7 Possible behavior in phase-space under the closed-loop

system. The vector field represents the phase portrait of the

system. There are two known solutions in steady-state—one is

trivial represented by the markers in the origins, and the other is

nontrivial (limit cycle), represent by the circles. A full (hollow)

marker represents stable (unstable) focal point, and a continuous

line represent a stable, while dashed line indicates an unstable,

the occurrence of both is a semi-stable limit cycle

2 Following Eq. (7), the integration variable should be t̂, but for
convenience the hat was removed.
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DE ¼ 1

2
_w2 þ 1

2
a2w

2 þ 1

4
a3w

4 þ 1

2
a4 w _wð Þ2

����

t

0

: ð31Þ

Now, we examine the case where:

b1 � �1; b2 � e; ð32Þ

whose meaning is that we focus on solution regions

where the phase is aroundw ¼ � p=2 (becauseF adds

p/2 for these values). Substituting Eq. (32) to Eq. (30)

and neglecting small terms yields:

DE ¼ �cv

Z t

0

_w2dt � Ka5sign b1ð Þ
Z t

0

w _wð Þ2

w _wj j dt ð33Þ

Denoting that both integrals are positive, the sign of

DE depends on the controlled coefficients K and b1.
When considering small linear vibrations around

the origin, the trivial solution is unstable if DE[ 0,

and vice versa [followed from Eq. (31)]. Hence, b1
needs to be negative to lose stability and the phase

should be in the vicinity of w ¼ �p=2. In regions

where the phase is around p/2, the system dissipates

energy, and this can be used to design an active

damping system (see Appendix D).

When setting the phase to be around w ¼ �p=2,
and slowly increasing the gain, a Hopf bifurcation

occurs (i.e., the origin loses its stability, and a limit

cycle takes place). Thus, we are left with the solution

shown in panel A in Fig. 7 as the one in panel B is

proven impossible, i.e., an unstable node and a

stable limit cycle. It does not matter whether the

phase is larger or smaller than w ¼ �p=2, in both

cases the sign and value of b1 is the same. Thus,

whether the closed-loop system response follows the

originally stable or unstable branches, the control loop

destabilizes the trivial solution and stabilizes the

nontrivial solution.

The bifurcation point can be found using the

averaging method of [26]. By considering small linear

vibrations with slowly changing amplitude:

t ¼ s0 þ es1
w tð Þ ¼ A s1ð Þ cos ffiffiffiffiffi

a2
p

s0ð Þ
ð34Þ

the change in amplitude:

A0A ¼ DEjT0
2p

ffiffiffiffiffi
a2

p ¼ �1

2p
ffiffiffiffiffi
a2

p cv

ZT

0

dw

ds0

2

ds0 þ Ka5sign b1ð Þ
ZT

0

w dw
ds0

� 
2

w dw
ds0

���
���
ds0

0

B@

1

CA

A0 ¼ � A

2p
ffiffiffiffiffi
a2

p pcv
ffiffiffiffiffi
a2

p þ 2Ka5sign b1ð Þð Þ

ð35Þ

where T is a unit period,3 so the bifurcation point is:

K[ � pcv
ffiffiffiffiffi
a2

p

2a5sign b1ð Þ [ 0: ð36Þ

Now, assuming that:

b1 � e; b2 � �1 ð37Þ

substituting Eq. (36) to Eq. (30) and neglecting small

terms, we are left with:

DE ¼ �cv

Z t

0

_w2dt

� Ka5sign b2ð Þ
Z t

0

w _w sign
d

dt
w _wð Þ

� �
dt ð38Þ

Using the averaging theory once more and assuming

small linear vibrations [namely using Eq. (34)], the

second term in Eq. (38) becomes:

ZT

0

w
dw

ds0
sign

d

ds0
w
dw

ds0

� �� �
ds0 ¼ 0: ð39Þ

Now, one can conclude that around w ¼ 0; p=2 the

control loop has little effect on the dynamics of the

system. The change in energy in one period is

DE � �cv

ZT

0

_w2dt ð40Þ

Now, we examine what happens in some comparable

values of b1 and b2

b1 � b2 �O 1ð Þ ð41Þ

As we change b1 and b2 continuously (thus changing

the phase), the energy fed to the system due to the

closed-loop controller also changes smoothly. By

3 The bifurcation point can also be found from the MS analysis.

Combining Eqs. (49), (53) and setting the phase rs1 � 2/ ¼
�p=2 results in the condition c[ f which is equivalent to

Eq. (36).
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controlling the phase, it is possible to cause a transition

between injecting energy, having negligible effect,

dissipating energy, and having negligible effect again.

It should be noted that although we started this

section from the assumption that there are two

solutions when setting the phase: trivial and not

trivial, we cannot know that from the MS analysis

applied to the second mode, which predicts that there

is no solution at w ¼ �p=2. Nevertheless, the trivial

solution does loose its stability as concluded from the

energy balance analysis, regardless of the mode.

Now, the following question arises: is the system

globally unstable in the second mode around this

point? As deduced from Figs. 9, 10 and 11 and

elaborated below, the answer is no. A limit cycle exists

due to the cubic stiffness and the damping far from 2xn

with some finite amplitude. Moreover, while the MS

analysis does not predict that the system’s response

curve is closed, as can be concluded from the energy

balance, once we find that there is a solution at

w ¼ �p=2.

3.3 Numerical simulations and comparison

with an open-loop system

Using the MatlabTM function ode45 and Simulink, we

simulated the open- and closed-loop systems. In the

open-loop, the control parameter was the frequency,

and in the closed-loop, the control parameter was the

relative phase. Figure 8 shows the simulation results

for the first mode where the cubic stiffness was

increased so that the results from the MS analysis

agree with the simulation (otherwise it agrees only

qualitatively). From Fig. 8, we can see that the closed

and open-loops dynamics resemble, but the closed-

loop system can stabilize the unstable branch. The MS

analysis assumes small deviations around r ¼ 0 and

small vibration amplitudes. Hence, in the region of

low frequencies and amplitudes, the MS solution

agrees with both the open and closed-loop simulations

as can be seen in Fig. 8, while in the region of high

amplitudes and frequencies it differs.

When we explored the closed-loop system dynam-

ics for the second mode (shown in Fig. 9), two

response regions were obtained: a low amplitude

region with frequency close to 2xn and a high

amplitude region with frequencies far from 2xn and

between the two, a jump. We can note that in both

regions the frequency ratio between the control signal

and the response signal is 2:1. In the low amplitude

region, when looking at the amplitude–frequency

plane (Fig. 10b), the closed-loop, open-loop, and MS

analysis resemble, and the closed-loop is able to

stabilize the unstable branch. But, when we look at the

Fig. 8 Response curve a
and its projections b–d for

mode/1. The cubic stiffness

was increased

toa3 ¼ 10a3;mode1, �c ¼
10:5�f ; �f ¼ 0:01. As can
be seen, the MS, open-loop,

and closed-loop are the

same, in relatively small

amplitudes. The closed-loop

can stabilize the

unstable branch. The

response is symmetric

around w ¼ � p
2
rad½ �
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other planes (Fig. 10), there are deviations in the

relative phase between the numerical simulations and

the analytical solution. Somehow, the MS analysis

predicts the amplitude as function of frequency

accurately, but not the phase. The second region

seems to behave in an unusual manner since a

principal parametric resonance was achieved at a

frequency far from the linear natural frequency. As

discussed before, if the response is globally stable, it

should have a maximum amplitude at w ¼ � p
2
; be

symmetric in a small region around this phase, and the

response curve should be continuous and closed

Fig. 9 Response curve a
and its projections (b-d) for

mode /2.

�c ¼ 10:5�f; �f ¼ 0:01.
There are two regions of the

response, far and close to

2xn(with high or low

amplitude). The high

amplitude region contains

only the closed-loop

response. Between the two

region- a jump

Fig. 10 Zoom on Fig. 9

onto a region of frequencies

close to 2xn. In b, the
closed-loop, open-loop. And

MS all agree perfectly with

each other. In c, d, the open-
loop and closed-loop match

while there are small errors

relative to the MS solution
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despite that the MS analysis does not predict it. From

the simulation shown in Fig. 9, it appears that the

closed-loop system did not stabilize the whole

response curve, and hence the jump. By modifying

the closed-loop system as discussed in Appendix C,

we succeeded to stabilize the unstable parts, and to

eliminate the discontinuous jump, additionally the

second mode’s response curve is continuous (Fig. 11).

Examination of Fig. 11 shows that for the second

mode, there are two possible amplitudes for some

phase values, which explains the jump. In this case, the

phase shifter can be constrained to avoid ambiguity as

detailed in Appendix C.

Last note regarding the numerical simulation, when

the system was simulated, it was noticed that the phase

was relatively sensitive to the time steps and conver-

gence criteria, while the amplitude and frequency

converged quickly. The latter should be considered

when simulating the response curve.

3.4 The experimental system

The experimental system comprises a voice coil which

was used for the base excitation. It is connected to a

mass resting on a spring that can move in the

longitudinal direction. A steel beam of length

273 mm and rectangular cross section of

6 9 0.5 mm was clamped to the mass. An accelerom-

eter was connected to the mass measuring the axial

motion. Up to four KeyenceTM, optical sensors were

connected externally to the mechanical system to

measure the bending deflections of the beam at several

points (Fig. 12). The control algorithm was imple-

mented using Simulink and dSPACE, with a sampling

rate of 5 kHz. The natural frequencies of the beam

were first estimated by applying a Fourier transform to

the beam’s response to transverse impact. The first

four frequencies were found to be: 5.167, 32.11, 90.22,

176.3 Hz, which are sufficiently smaller than 5 kHz.

3.4.1 Numerical estimation of the experimental

system characteristics

For verification, the beam’s normal modes were

numerically estimated using finite elements analysis,

using the commercial software ANSYSTM. The com-

puted normal modes are shown in Fig. 13. As can be

seen, there is no linear coupling between the base

movement and the beam’s deflection (i.e., bending and

axial motion occur separately).

Fig. 11 Simulation for the

closed-loop for mode /2. A

modification to the closed-

loop enabled us to stabilize

the whole curve and remove

the jump. The closed loop at

first behave as the MS

predicts, the two solutions at

first are getting further apart

from each other, but as it

turns out, the response curve

is closed, and symmetric

around w ¼ � p
2
rad½ �: Note

that for certain phases there

are two possible solutions.

Experimental Verification
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3.5 Comparison, analysis of the results and their

significance

3.5.1 Automatic excitation

The automatic parametric excitation is a useful and

significant characteristic of the closed-loop. While the

first mode was parametrically excited effortlessly in

both open-loop and close-loop configurations, bring-

ing the system to parametrically resonate at the second

mode was more challenging. In open-loop, to achieve

parametric excitation at the second mode, the control

signal had to be set initially with high precision to the

correct frequency, and then the appropriate initial

conditions had to be applied to the beam. Even though

in theory, for some frequencies, the zero-amplitude

solution should be unstable, in practice it remained

stable. Since we could not control the initial state in

practice, we applied random impacts to the system

until it got the right initial state and started vibrating in

parametric resonance. However, using the closed-loop

control, the system was automatically excited in

parametric resonance.

For the implementation of the closed-loop, we

employed a modal filter and several digital and analog

filters to reduce noisy sensor signals and high-

frequency-related components. Since the first mode

exhibited high amplitudes, it was easily and automat-

ically excited and did not require any significant

changes from the architecture described in Fig. 5. The

results can be seen in Fig. 14a. In contrast, to excite

the second mode we had to take a more complex route.

First, the second mode was excited in an open-loop

choosing a fundamental parametric resonance with

frequency ratio of 1:1, and then, the system switched

to the closed-loop operation. Without this procedure,

the first mode prevailed and overcome the second

mode, thus preventing the closed-loop from locking on

it. The results can be seen in Fig. 14b. Once the

closed-loop was able to automatically excite the

second mode in parametric resonance, the second

mode excitation in parametric resonance in an open-

loop became easier. First, the closed-loop was

switched on, then a signal with same frequency phase

and amplitude was synchronized to the control signal

and replaced it. This procedure ensured that the initial

Fig. 12 Design (left) and implementation (right) of the

experimental system in the laboratory. Left: CADmodel. Right:

photograph. One can observe these main components: Voice-

coil actuator driving the based on the right which is connected

by 2 parallel flexures to ground, several optical laser sensors.

Accelerometer measuring the base axial motion and the

vibrating beam under investigation

Fig. 13 Simulated modes of the experimental system using

ANSYSTM. The first mode a enabled us to accelerate the system

in the longitude direction of the beam. As can be seen, the

bending related modes of the beam b, c are decoupled from the

mode exhibiting axial motion of the base
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state in the open-loop configuration was close enough

to the steady state response.

3.5.2 Stabilizing unstable branches

In these experiments, the response manifolds of both

modes were measured by controlling the excitation

amplitude and phase using the closed-loop. During the

open-loop experiments, the excitation frequency and

the excitation amplitude were controlled.

Figure 15 shows the measured response manifold

and their projections on each of the planes, as

measured in both open- and closed-loop systems for

the first mode. As can be seen, while in the open-loop

system, the response curve is cut off in the left branch

before it gets to zero smoothly (Fig. 15b, a jump to

zero occurred in the experiment when the frequency

decreased), the closed-loop is able to measure this

branch. This demonstrates that the closed-loop system

works as expected. Moreover, the open- and closed-

loop response of the system are on the same manifold,

meaning that the closed-loop is indeed non-intrusive

and keeps the dynamics of the system unchanged.

In addition, the arch-shaped amplitude versus phase

graph is formed as can be seen in Fig. 15d and it is

symmetric around w ¼ � p
2
. In contrast, the frequency

is not an arch-shaped graph (Fig. 15c), which is also

reflected in the steep slope of the unstable branch in

Fig. 15b. A possible cause for this phenomenon may

be due to the additional dynamics that is not included

in the model, such as square-law damping f ¼
�c _wn _wnj j [27].

Several final notes regarding this experiment seem

appropriate. When the first mode is excited, the system

exhibits a softening behavior instead of hardening as

predicted by the model and the set of parameters

chosen in the simulation (Sects. 2.2, 3.3). It is

suspected that it is due to the initial curvature of the

beam that is not included in the model and the fact that

the clamping at the base was not completely rigid. This

disagreement has no effect on the closed-loop archi-

tecture that overcomes this discrepancy by setting the

reference phase. The scheme is suitable for controlling

parametrically excited nonlinear systems, as

described, making this system more robust and

controllable and less sensitive to modeling fine details.

Additionally, the closed-loop adds robustness to the

system which results in smooth measured curves, as

can be seen in Fig. 15, while in the open-loop exhibits

somewhat noisier curves stemming from additional

dynamics. The closed-loop operation seems to reduce

these additional effects.

For the second mode, the results of the measure-

ments in both open- and closed-loop system can be

Fig. 14 a, b First mode Automatic Excitation and zoom to the

transient part of the excitation and response, at steady-state the

response approached a pure sinusoid. Even though higher modes

were present, the closed-loop was able to lock on the first mode.

As the amplitude is developed, the higher modes decayed. c,

d Show the second mode behavior under automatic excitation.

Until t\ 5.98[s], an open loop 1:1 excitation was applied to the

system, then switching to closed-loop parametric resonance the

parametric excitation kicks in and full locking takes place
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seen in Fig. 16. Again, we observe that the closed-loop

was able to stabilize the unstable branch of the

response, and that it is indeed non-intrusive and keeps

the dynamics of the system the same. Here, we can

clearly see the arch-shaped amplitude versus phase

and frequency versus phase graphs. Like the first

mode, they exhibit a symmetry around w ¼ � p
2
.

Moreover, while the open-loop experienced a noisy

behavior, the closed-loop added robustness to the

system, resulting in smoother curves.

In conclusions, it should be mentioned that the

measured and theoretical response manifolds are

somewhat different (Sects. 2.2, 3.3) in both in the

first and second mode as discussed above. These could

be explained by the unknown initial curvature of the

vibrating beam, non-ideal clamping, and additional

forces such as square-law damping. Nevertheless, the

closed-loop seems to work properly and the observed

behavior is generally as expected according to

Sects. 3.2, 3.3 and in fact assists in overcoming model

uncertainties.

3.5.3 Sensing—maintaining resonance

while changing system parameters

One of the great advantages of the autoresonance

controller is that if the system parameters changed

(e.g., the natural frequency shifts), it automatically

tracks and remains locked to the resonance, although

at a different frequency and amplitude. In the follow-

ing experiments, we examined the closed-loop behav-

ior when some changes are introduced to the system,

imitating the change in Van der Waals (VdW) forces

under gap change. Changes in the system were

achieved using a small magnet that was moved closer

and further away from the vibrating ferromagnetic

beam. We measured the first and second mode

response curves for three fixed gaps of the magnet

from the beam, and results are shown in Figs. 17, 18.

The curve is mostly moving parallel to the frequency

axis (due to change in natural frequency). This result

can be useful for maintaining resonance under varying

parameters, which is an important characteristic for

Fig. 15 The first mode response manifold as measured in both closed- and open-loop. It can be seen that the unstable branch become

stable under the closed-loop
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sensors based on parametric resonance such as AFM

based nanowires [2].

Moreover, the sensitivity exhibited by the system

was evaluated in this experiment. The sensitivity to

small changes in the gap between a constant magnet

and the vibrating beam was evaluated by placing it at a

gap of 20 [mm]. The curve indicated by 0 [mm] and 3

[mm] (blue and yellow) in Fig. 17b illustrates the

small change in frequency required to keep the

vibration level of a = 0.2 and the large change in

vibration amplitude when the oscillation frequency is

kept constant. The points of intersection are marked in

black and yellow squares, respectively. From the point

of intersection on the 3 [mm] response curve, a vertical

line of constant frequency (f = 10.19 [Hz]) was drawn

and the intersection with the 0 [mm] response curve is

once again marked in black square. Under the constant

frequency of excitation, the change in natural fre-

quency represented by Dx in Fig. 17(b), which is

relatively small, would cause the amplitude to

drastically drop by amount of DA Using Eq. (16), the

numerical values of DA, and Dx1 were obtained:

DA ¼ 0:2� 0:549

0:549
� 100 ¼ �60:38%

Dx1 ¼
10:190� 10:230

10:230
� 100 ¼ �0:392% ð42Þ

Despite the fact that this calculation is rough and

simple, it demonstrates the large sensitivity of the

amplitude to small interaction forces. The sensitivity

of course depends on the specific point along the

response curve, and it is much higher on the

unstable branch since its slope is higher.

Similar results are shown for the second mode

where the change in natural frequency was Dx2 =

- 0.15%, while the change in amplitude is

DA = - 45.88% under frequency of excitation

f = 63.85 [Hz]. (Fig. 18b).

Fig. 16 Second mode response manifold as measured in both closed- and open-loop. The unstable branch becomes stable under the

closed-loop
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Fig. 17 First mode, system

response measured in

closed-loop for different

magnet-beam distances. The

result of varying the distance

cause the system response to

move mostly parallel along

the frequency axis. The

phase at which maximum

amplitude is achieved

remains the same, and that

fact can be used for

maintaining parametric

resonance during changes in

the system parameters

Fig. 18 Second mode,

system response measured

in closed-loop for different

magnet-beam distances. The

response is mainly moving

parallel along the frequency

axis, while the amplitude

seems to exhibit the most

sensitivity
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This experiment verifies the stated elevated sensi-

tivity shown in the analytical analysis in Sect. 2.3,

even though the measured response manifolds are not

those exactly what is expected from theory, but is in

general agreement, as discussed in the previous

section.

Figure 18 demonstrates that under a fixed excita-

tion frequency (i.e., Figure 18b), the response ampli-

tude changes by more than 40% for a fractional

percent change in the response frequency upon small

movement of the magnet. This fact illustrates the

sensitivity of the parametrically excited system to

small changes in the external potential field of the

parametrically excited system.

4 Conclusions

The paper presents a method to automatically excite

principal parametric resonance with a frequency ratio

of 2:1 in a closed-loop using phase control and modal

filtering. It has been shown that the proposed closed-

loop control scheme can stabilize the open-loop

unstable solution branches by three steps. First, it

was explained why there is only one steady-state

solution (a limit cycle) when setting the phase in the

closed-loop rather than setting the frequency in the

open-loop, as usually done. Then, it is shown that the

closed-loop system can be expressed in a reduced

number of state variable (2 instead of 3). Lastly, it is

proven that the origin of the state-space becomes

unstable under the chosen control law using energy

balance therefore a limit cycle must arise. From these

three steps, it can be concluded that the existing limit

cycle is stable. The latter explains why the system is

automatically excited while maintaining resonance

even under drifts in parameters of the system.

Numerical simulation and experiments were con-

ducted to support the analytical proof given in the

paper. All three methods demonstrated the closed-loop

behavior on a clamped-free cantilever, both in first and

second mode, and the results can be possibly applied

to similar systems with driven in resonance under

parametric excitation with frequency ratio of 2:1. A

comparison between the three methods, asymptotic,

numerical and experimental, was done. In the first

mode, the MS solution was able to predict accurately

the numerically simulated response curve simulated

numerically. In the second mode, the amplitude–

frequency prediction was accurate, the phase predic-

tion less, and additional segments of the response

curve that are not predicted by the MS were revealed

using the closed-loop. The experimental system

demonstrated the different characteristics and robust-

ness of the closed-loop that can possibly aid in

conducting such experiments with refined operating

point control. Measurements of the same response

manifold were carried out both by the open- and

closed-loops, while in the closed-loop the otherwise

unstable branch is stabilized. The latter is done both in

the first and second mode, using an appropriate modal

and frequency filters for each case. The observed

dynamics did not match the theory (softening instead

of hardening), yet the closed-loop seems to work well,

thus supporting the need for the proposed control

scheme.

The ability of the closed-loop to track the resonance

under drift in parameters of the system can be

exploited to construct a sensor based on parametric

excitation, such as an Atomic force microscope

(AFM) where the change in potential intermolecular

forces depends on the gap from the vibrating sensor.

The method shows greater robustness and stability

than an open-loop driven parametric excitation and

can be used to study the nonlinear dynamics of

systems, as well as for automatic actuation in large

vibration amplitudes. The principle parametric reso-

nance exhibits large amplitude sensitivity as shown

both analytically and experimentally to changes in the

potential which make it a good candidate for measur-

ing potential changes. A change of Dx 1 = -0.39% in

the first natural frequency caused the amplitude to

change of DA = 60.38%.
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Appendix A

Calculating the constants appearing in Eq. (8). Using

/n from Eq. (6), we can evaluate (Table 1):

a1¼
Z 1

0

/2
nds¼1 a2¼

Z 1

0

/n/
4ð Þ
n ds

a3¼
Z 1

0

/n /003
n þ4/0

n/
00
n/

3ð Þ
n þ/02

n /
4ð Þ
n

� 

ds

a4¼
Z 1

0

/n /0
n

Z s

1

Z s

0

/02
n

� �
ds

� �
ds


 �

s

ds a5¼
Z 1

0

/n s�1ð Þ/00
nþ/0

n

� �
ds

ð43Þ

Appendix B

The multiple-scales analysis described in (9) can be

solved by expanding y and s:

s¼s0þes1þe2s2

y e;sð Þ¼y0 s0;s1;s2ð Þþey1 s0;s1;s2ð Þþe2y2 s0;s1;s2ð Þ;
ð44Þ

By substituting Eq. (44) back to Eq. (9) and separating

orders of e, one obtains:

e0 : D2
0y0 þ y0 ¼ 0 ð45Þ

e1 : D2
0y1 þ y1

¼ �2D0D1y0 � 2fD0y0 � 4c cos Xsð Þy0 ð46Þ

e2 :D2
0y2þy2¼�D2

1y0�2D0D2y0�2D0D1y1

�a4 y0 D0y0ð Þ2þy20D
2
0y0

h i

�2f D1y0þD0y1ð Þ�j3y
3
0�4ccos Xsð Þy1

ð47Þ

The zero-order solution, expressed in complex form, is

(cc stands for complex conjugate):

y0 ¼ A s1; s2ð Þeis0 þ cc; ð48Þ

The secular equation from Eq. (46) is:

�2iD1A� 2ifA� 2cAeirs1 ¼ 0; ð49Þ

and the particular solution of Eq. (46) is:

y1 ¼
2cA

X 2þ Xð Þ e
i 1þXð Þs0 þ cc: ð50Þ

Using Eqs. (49, 50), the secular equation from Eq. (47)

can be found:

f2 � c2 � 4c2

X 2þ Xð Þ

� �
Aþ 2a4 � 3j3ð ÞA2A

� crAeirs1 � 2iD2A
¼ 0: ð51Þ

By combining the two secular equations, we arrive at:

�2iA0 þ f2 � c2 � 4c2

X 2þ Xð Þ

� �
e� 2if

� �
eA

þ 2a4 � 3j3ð Þe2A2A� 2� erð ÞcAeirs1
¼ 0 ð52Þ

where A0 ¼ eD1 þ e2D2ð ÞA ¼ d
dt A.

Substituting the polar form:

A sð Þ ¼ 1

2
a sð Þei/ sð Þ; ð53Þ

and separating to real and imaginary parts, yields:

< : /0a

¼ � 1

24
ae

e �18c2 þ 12f2 þ a2 6a4 � 9j3ð Þ
� �

� 12c 2� erð Þ cos es1 � 2/ð Þ

 !

ð54Þ

Table 1 The values for mode 1 and 2 when using Eq. (43) are:

Mode 1 – /1 Mode 2 – /2

a1 1 1

a2 12.3624 485.5192

a3 40.4407 1.3418*104

a4 4.5968 144.7256

a5 1.5709 8.6417
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= : a0 ¼ � 1

2
ae 2fþ c 2� erð Þ sin es1 � 2/ð Þð Þ ð55Þ

In order to transform Eqs. (54), (55) into an

autonomous system, the following function is defined:

w ¼ ers� 2/ ) w0 ¼ er� 2/0 ) 2/0 ¼ er
� w0

ð56Þ

Substituting Eq. (56) into Eqs. (54), (55) simplifies

into:

< :w0a

¼ 1

12
ae

a2e 6a4�9j3ð Þþ6 �3c2eþ2ef2þ2r
� �

�12c 2�erð Þcos wð Þ

 !

¼af1 a;wð Þ
ð57Þ

= : a0 ¼ � 1

2
ae 2fþ c 2� erð Þ sin wð Þð Þ ¼ f2 a;wð Þ

ð58Þ

Seeking the steady-state solution, a0 ¼ w0 ¼ 0, the

equations reduce into:

< : 0

¼ 1

12
ae

a2e 6a4 � 9j3ð Þ þ 6 �3c2eþ 2ef2 þ 2r
� �

� 12c 2� erð Þ cos wð Þ

 !

ð59Þ

= : 0 ¼ � 1

2
ae 2fþ c 2� erð Þ sin wð Þð Þ ð60Þ

and the solution of Eqs. (59), (60) is outlined in

Eqs. (11)–(14).

The stability of the nontrivial solutions can be

found using linearization of Eqs. (57), (58), around the

solution Eqs. (11)–(14):

d

dt

w
a

� �
¼ M

Dw
Da

� �

¼

of1
ow

of1
oa

of2
ow

of2
oa

0

BB@

1

CCA

�������� a
w

� �
¼

ak
wk

� �
Dw
Da

� �

ð61Þ

and finding the numeric values of the eigenvalues of

the matrix M.

Appendix C

It is described in this appendix how to avoid multiple

solution in closed-loop, when following a solution

curve. As will was shown above, when setting the

phase, mode 2 may have multiple solutions, but we are

still able to stabilize the whole curve by exploiting the

architecture of the phase shifter. A common frequency

shifter (the one that we used throughout this paper) is

described in Fig. 19.

A simplified (steady-state) description of the adap-

tive AGC (Automatic gain control) function [28],

effectively employed in the experiment, can be

described as:

AGC A0 sin xt þ /0ð Þð Þ

¼
MA 0 sin xt þ /0ð Þ MA0\Aset

Aset sin xt þ /0ð Þ MA0 [ Aset


 ð62Þ

The desired output amplitude of the signal is Aset, and

the maximal gain applied to the signal is M—both

constants are pre-chosen in the AGC.

If the input signal to the phase shifter is

yin ¼ A sin xtð Þ ð63Þ

the output from the phase shifter will be:

yout ¼ AGC AK1x cos xtð Þ½ � sin uð Þ
þ AGC AK2 sin xtð Þ½ � cos uð Þ ð64Þ

Assuming that:

Aset\MAK1x

Aset [MAK2 ¼ bAset

ð65Þ

then the output will be:

yout ¼Aset

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin uð Þ2þb2 cos uð Þ2

q

sin xt þ arctan
sin uð Þ
b cos uð Þ

� �� � ð66Þ

/ ¼ arctan
sin uð Þ
b cos uð Þ

� �
; tan /ð ÞA ¼ Aset tan uð Þ

MK2

¼ Const:

ð67Þ

The relation described in Eq. (67) is the actual

condition in steady-state that the closed-loop must

obey, therefore, instead of forcing the phase in system

to be set on a certain value, we forcing the system to
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obey a relation between the phase and the amplitude.

Then, instead of looking on vertical lines and theirs

intersection with the response curve in the Amplitude-

Phase plane as shown in Fig. 6, one should look on

curves described by Eq. (67) and theirs intersection

with the response curve. The intersection point will be

the response in steady state. And this is why we could

have tracked the whole curve of mode 2 displayed in

Fig. 9, despite the multiple possibilities for a certain

phase (K2 reduced from value of 1 to 1/10).

Figures 20, 21 describe the theory of enforcing a

unique solution, demonstrated for a linear system in

simulation. While on a linear system finding the

curves related to the constrained made by the closed

loop is easy, in the nonlinear system, the response

consists of multiple frequencies, and the description of

the AGC function becomes more complicated, making

it hard to visualize in a figure.

sum

AGC
+

+AGC

Derivative
d
dt

K2

K1 sin(ϕ)

Signal in
Signal out

Phase shifted
by φ

cos(ϕ)

Fig. 19 Architecture of the phase shifter. Part of the automatic parametric resonance excitation that effectively controls the response

along a possible response curve

Fig. 20 Simulated system

for this section using

Simulink. Chosen

parameters were xn = 40

[rad/s], f = 0.01, K2 = 1/30,

and the phase was

/ = {10,15,…,170}[deg]

Fig. 21 Simulations results. Each of the blue lines represents a

different constrain as / changes between simulations. The

results of the simulations are indeed on the intersection points

between the constrain curves and the response curve
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Appendix D

As mentioned in Sect. 3.2.1, the control system can

not only inject energy in to the system, but also

dissipate energy from the system by setting the phase

to be w ¼ p
2
. Figure 22a describes an experiment

where the beam vibrates freely due to an impact, and

once under the closed-loop system which was set to

dissipate energy. The time taking to the free system to

settle is much longer relative to the controlled system.

A function f tð Þ ¼ A sin xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
t þ /

� 

e�fxnt was

fitted to the result (Fig. 22b), and the damping

coefficient was calculated. The results depend on the

control effort and can be set to higher or lower values

and the increase in damping is found to be
fcontrolles
ffree

¼ 0:0089
0:0032 ¼ 2:78.
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