
Nonlinear Dyn (2022) 107:1611–1622
https://doi.org/10.1007/s11071-021-06812-6

ORIGINAL PAPER

Delay-induced bifurcations in collocated position control
of an elastic arm

Bence Szaksz · Gabor Stepan

Received: 28 October 2020 / Accepted: 9 August 2021 / Published online: 28 August 2021
© The Author(s) 2021

Abstract The interference of the elasticity of a single
robotic arm and the unavoidable time delay of its posi-
tion control is analysed fromnonlinear vibrations view-
point. The simplified mechanical model of two blocks
and a connecting spring considers the first vibration
mode of the arm, while the collocated proportional-
derivative (PD) control uses the state of the first block
only and actuates also there. It is assumed that the rele-
vant nonlinearity is the saturation of the delayed control
force. The linear stability analysis proves that stabi-
lizable and non-stabilizable parameter regions follow
each other periodically even for large spring stiffnesses
and for tiny time delays. Hopf bifurcation calculation
is carried out after an infinite-dimensional centre man-
ifold reduction, and closed-form algebraic expressions
are given for the amplitudes of the emerging oscilla-
tions. These results support the experimental tuning of
the control gains since the parameters of the arising and
often unexpected self-excited vibrations can serve as a
guide for this practical procedure.
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1 Introduction

The position and trajectory control of mechanical sys-
tems have been investigated extensively in the literature
[27]. There are two basic approaches: the feed forward
and the feedback methods. In the feed forward case,
the effect of a command is estimated by means of a
mechanical model, and the actuation is chosen in a way
that the dynamic system performs the desired motion.
Input shaping is a widely used feed forward control
strategy that was first published in the 50s by Smith
[29], and is still a research topic of control strategies
[2,6,19,20]. In contrast, the feedback control approach
measures the actual states of the system and acts based
on themeasured states. However, using a feedback loop
can be time- and resource-consuming; therefore, the
feed forward and feedback approaches are occasion-
ally combined [3].

The control strategies are often designedwithout the
inclusion of time delay [4,14,25,34]. However, due to
the finite time of data processing, data transmission and
the delayed response of the actuators, a certain amount
of time delay always occurs, which may influence the
stability properties. This is even more relevant in case
of human operated machines with human sensing and
actuation [22].

Mathematicalmodellingof delayed control ofmechan-
ical systems has two essential ways. In case of digital
control, the states of the system are measured with a
given sampling frequency, and the correspondingmath-
ematical model leads to a discrete time system [9,13].
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However, when the sampling time is small compared
to the data processing and transmission time, continu-
ous time delay description can be applied, which leads
to delay differential equations (DDE) [21,32]. Simi-
lar DDE models are used in case of human-controlled
machines [12].

Inmany robotic applications, the effectors (like cam-
eras, electrode holders of welding machines or pol-
ishers) are located at the end of an arm, the position
of which is prescribed by the given technological pro-
cess. If the corresponding robotic arm is not perfectly
rigid, the end effector may oscillate before it reaches
its desired position in space since the arm is actuated
at its other end as shown in Fig. 1.

There are several solutions for this vibration prob-
lem. It is possible to use feedback control in a way that
the applied actuator force is determined by the actual
state of the end effector. This is called non-collocated
control since the sensor of the state of the end effector
is at a different location where the actuator is. There are
a couple of practical problems with this solution: apart
from the increased costs of sensing the position and
velocity of the end effector in space, the non-collocated
control may be sensitive for stability issues even if the
time delays are negligible in the control loop.

The current practical solution is to use collocated
position control, where the state of the arm at the actu-
ator is sensed and used in the feedback loop. This way,
the position of the end effector is only estimated but
the stability of the system can easily be guaranteed for
delay-free systems. However, if the delay of the actu-
ation is not negligible, the collocated position control
may also become unstable even for quite rigid arms
and relatively small time delays. The present study dis-
cusses the corresponding conditions of stability and the
possibly arising nonlinear vibrations.

Although the delayed PD control and the destabiliz-
ing effect of the so-called unmodelled high-frequency
dynamics is well-known in the theory of robot con-
trol [3], the resolution of the corresponding stability
issues and vibration problems is usually left for the
experimental gain tuning procedure in practice. An
essential nonlinear vibration issue is whether the bifur-
cations at the stability boundaries are super- or subcrit-
ical. In case of delayed control, these boundaries are
often subcritical [15,16,18,33], while the saturation of
the control force tends to cause stable vibrations around
unstable equilibria [8]. The exploration of these phe-

Fig. 1 Alternative position sensor configurations of an elastic
robotic arm

nomena can actually guide the above mentioned gain-
tuning procedure.

In the present case, the delay-induced self-excited
vibrations are investigated in collocated position con-
trol of an elastic arm with an aim to support, for exam-
ple, the design of controlled worktables of machine
tools carrying elastic workpieces [26] or elastic robotic
arms subjected to heavy end effectors [17].

The outline of this paper is as follows. In Sect. 2, the
simplifiedmechanical model is constructed in the pres-
ence of collocated feedback control with delay and sat-
uration. The stability of the linearized system is exam-
ined and stability charts are constructed in Sect. 3. This
is followed by the Hopf bifurcation calculation to char-
acterize the emerging self-excited vibrations at loss of
stability. The conclusions are summarized in Sect. 5.

2 Mechanical model

The mechanical model presented in Fig. 2 is a low
degree of freedomapproximation of the collocated con-
trol of the elastic arm in Fig. 1. Two blocks slide along
a smooth horizontal straight path, which are connected
with a linear spring of stiffness k that represents the
elasticity of the arm in Fig. 1. The displacements of the
blocks ofmassesm1 andm2 are x1 and x2, respectively.
The generalized coordinates are chosen in a way that
the spring is relaxed when x1 = x2. Between the block
m1 and the ground, dry friction is considered, which
models the friction that always occurs in the drive chain
of the actuator.

In accordance with the collocated control strategy,
the position and velocity of mass m1 are measured and
fed back with a proportional-derivative controller. The

123
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Fig. 2 Collocated position control model

control force F acting on the mass m1 is subjected to
constant time delay τ and saturates at ±Q, where Q is
the maximal force which can be applied by the actuator
in case of large input signals.

Denoting the time derivative by dot, the governing
equation of the above described system assumes the
form[
m1 0
0 m2

] [
ẍ1
ẍ2

]
+

[
k −k

−k k

] [
x1
x2

]
=

[
F − FC

0

]
, (1)

where

FC

{= Csgn(ẋ1) if ẋ1 �= 0
∈ [−C,C] if ẋ1 = 0

(2)

is the simplest model of Coulomb friction force, the
maximal absolute value of which is C .

Considering also the saturation as a nonlinearity, the
expression of the delayed control force takes the form

F(t) = Q tanh

(−Kpx1(t − τ) − Kd ẋ1(t − τ)

Q

)
, (3)

with the proportional and derivative control gains Kp

and Kd, respectively.
In the close neighbourhood of the desired zero posi-

tion, the control force is assumed to be linear, which
leads to an upper estimate of the static position error

δ = C

Kp
. (4)

This error occurs when the system stops at x2 ≈ x1 ∈
[−δ, δ], and consequently, the absolute value of the
control force |F | becomes less than the Coulomb fric-
tion C and the block m1 sticks to the ground there.
This means that the final position error δ is inversely
proportional to the gain Kp after the control task is
completed. Accordingly, the proportional gain should
be maximized while keeping the system stable. This is
challenging because the presence of time delay always
leads to dynamic loss of stability as the proportional
gain is increased.

Since the dry friction has a negative power, it has
a stabilizing effect on the system [1]. Consequently,
when the dry friction is neglected in the following sta-
bility and bifurcation analysis, a conservative estimate
is applied from engineering viewpoint, while the maxi-
mization of the proportional gain still remains an essen-
tial goal.

To reduce the number of parameters, let us introduce
the dimensionless time t̃ = t/τ and the newdimension-
less parameters:

μ = m2

m1
, kp = Kpτ

2

m1
, kd= Kdτ

m1
, α=τ

√
k

m2
,

(5)

which are the mass ratio μ, the dimensionless propor-
tional gain kp, the dimensionless differential gain kd.
The parameter α can be considered either as a dimen-
sionless delay or as a dimensionless natural frequency
of the uncontrolled mechanical system when the block
of massm1 is fixed. We also introduce a new saturation
parameter

q = Qτ 2

m1
. (6)

Let us calculate the Taylor series of the governing
equation up to third order around the equilibrium posi-
tion x1 = x2 = 0, where both blocks are at rest, the
spring is relaxed, and the control force is zero. Drop-
ping the tilde, the nonlinear DDE assumes the form:

ẏ(t) = Ly(t) + Ry(t − 1) + F(y(t − 1)) , (7)

with y = col[x1 ẋ1 x2 ẋ2], dot referring to derivative
with respect to the dimensionless time,

L =

⎡
⎢⎢⎣

0 1 0 0
−μα2 0 μα2 0

0 0 0 1
α2 0 −α2 0

⎤
⎥⎥⎦ , R =

⎡
⎢⎢⎣

0 0 0 0
−kp −kd 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

(8)

and

F(y(t − 1)) =

⎡
⎢⎢⎣

0
1
q2

f (y(t − 1))

0
0

⎤
⎥⎥⎦ , (9)
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where

f (y(t − 1)) = 1

3
k3p y

3
1(t − 1)

+ k2pkdy
2
1 (t − 1)y2(t − 1)

+ kpk
2
d y1(t − 1)y22 (t − 1)

+ 1

3
k3d y

3
2(t − 1).

(10)

3 Linear stability analysis

First, let us examine the linear part of the governing
equations.With respect to the dimensionless character-
istic exponent λ, the corresponding characteristic func-
tion

D(λ) = det(λI − L − Re−λ) (11)

yields the quasi-polynomial characteristic equation:

λ4 + α2(1 + μ)λ2

+(kdλ
3 + kpλ

2 + α2kdλ + α2kp)e
−λ = 0, (12)

which has got infinitely many roots. These character-
istic roots determine the stability of the system: it is
exponentially stable if and only if all the roots have
negative real parts.

For the construction of the stability chart, the char-
acteristic roots are checked whether a root crosses the
imaginary axis through the origin or a pair of complex
conjugate roots enters the right-hand side of the com-
plex plane.

The substitution of λ = 0 into the characteris-
tic equation yields the static section of the D-curves
(called static D-curve), where saddle-node bifurcation
may occur; this is at kp = 0, along the kd axis in the
(kp, kd) parameter plane (see Fig. 3).

The so-called dynamic D-curves related to possi-
ble Hopf bifurcations can be determined by substi-
tuting λ = iω into Eq. (12) where ω �= 0 is the
dimensionless angular frequency of the emerging self-
excited vibrations. Following the steps of the so-called
D-subdivision method [11], the separation of the real
and imaginary parts of the complex characteristic equa-
tion can be rearranged with respect to the critical con-
trol gains as a function of the parameter ω:

kp(ω) =
(
1 − μα2

ω2 − α2

)
ω2 cosω, (13)

kd(ω) =
(
1 − μα2

ω2 − α2

)
ω sinω. (14)

Fig. 3 Stability chart for position controlwhenα = 0.5 andμ =
1. The numbers represent the number of unstable characteristic
roots in the disjunct parameter regions

Such D-curves are also shown in Fig. 3. Expressions
(13) and (14) are singular at ω = α, and for α < π/2,
the left-hand side and right-hand side limits are plus
and minus infinity, respectively.

The dynamic D-curve shown in Fig. 3 starts from
the origin of the (kp, kd) parameter plane, crosses the
origin again at ω = α

√
1 + μ, and spirals outwards

counter clockwise.
The next important property of the system is the

so-called root tendency, that is, in which direction the
characteristic roots cross the imaginary axis as param-
eters vary. This can be determined with the help of
implicit differentiation of the characteristic Eq. (12)
with respect to the gain kp where the characteristic
exponent is considered as a function λ(kp) of this
parameter:

Re
dλ

dkp
= Reλ′ = b(ω) sinω − a(ω) cosω

2ω(a2(ω) + b2(ω))
, (15)

where prime denotes the derivative with respect to kp,
and

a(ω) = 1

2

(
1 − μα2

ω2 − α2

) (
1

2
sin(2ω) − ω

)
, (16)

b(ω) = 1 + μα4

(
ω2 − α2

)2 − 1

2

(
1 − μα2

ω2 − α2

)
sin2 ω .

(17)

The denominator of Eq. (15) is positive for ω > 0
and ω �= α. Thus, the numerator of (15) specifies the
sign, and so the direction of the root tendency as the
dimensionless control gain kp increases. With the help
of this, the number of the unstable characteristic roots
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Delay-induced bifurcations in collocated position 1615

Fig. 4 Stability charts for different values of α whenμ = 1. Sta-
ble regions are shaded. The saddle-node and Hopf bifurcations
of the system are plotted with black and blue lines, respectively.

The red dashed lines refer to the Hopf bifurcation boundary of
the PD position control in case of a single degree of freedom (1
DoF) system with mass m = m1 + m2

can be determined in the disjunct parameter domains
of the stability chart (see Fig. 3), which are defined by
the stability boundaries.

Figure 3 presents a D-shaped stable region. The sys-
tem may loss its stability in a static way through the
saddle-node bifurcation or in a dynamic way through
the Hopf bifurcation where the emerging self-excited
vibration has the dimensionless angular frequency ω ∈
[α√

1 + μ, π/2]. The stable area shrinks as the dimen-
sionless delay α increases, and it disappears at:

αcr,1 = π

2
√
1 + μ

; (18)

it is a critical value for α, that is, for the time delay
of the system. However, it is not an absolute maxi-
mal delay where the system is still stabilizable. If we
increase α further, there will be further intervals for α

where the system can be stabilized again (see Fig. 4)
with appropriate control parameters. In this context, the
linear system with fixed parameters will be called not
stabilizable if no proportional and derivative control
gains exist to stabilize it.

The existence of the stable region is related to the
slope of the dynamic D-curve at the origin. The initial

slope of this boundary at ω = 0 is independent of the
dimensionless delay α:

k′
d

∣∣
ω=0 = tanω

ω

∣∣∣∣
ω=0

= 1. (19)

However, when this boundary curve crosses the origin
again at ω = α

√
1 + μ, the same derivative is

k′
d

∣∣
ω=α

√
1+μ

= tan
(
α
√
1 + μ

)
α
√
1 + μ

, (20)

which already depends on α. Clearly, a critical value
of α occurs when this derivative changes sign, while it
tends to ±∞. The first such critical value is at αcr,1 as
given in (18).

As the delay increases further, that is, α > αcr,1, the
first branch of the dynamic D-curve for ω ∈ [0, α)

bends to the left, and in the same time, the second
branch for ω ∈ (α,∞) has a tangent line at ω =
α
√
1 + μ that rotates counter clockwise according to

Eq. (20). Thus, the second branch of the dynamic
D-curve intersects the D-shaped region defined by
the first branch for ω ∈ [0, π/2] as a “windscreen
wiper” turning it again and again to stable and unsta-
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Fig. 5 Stable domains of the system when μ = 1. The upper
figure shows the slope of the Hopf bifurcation curve as a function
ofα, when it goes through the origin atω = α

√
1 + μ. The green

and red line segments correspond to α values at which there are

parameter combinations which can stabilize the system, or there
are not, respectively. The bottom figure shows the stable regions
of the (α, kd) parameter plane at different values of the control
parameter kp

ble as the dimensionless delay α increases through
αcr,2, αcr,3, . . . (see Fig. 4, also Fig. 5).

It is interesting to compare these stability charts to
the ones of the PD-controlled single degree of freedom
(DoF) system, where k → ∞ and m = m1 + m2. The
corresponding dynamic D-curves are presented with
the red dashed lines in Fig. 4. As α increases, the first
branch of the dynamic D-curve of the original system
tends to this Hopf-type stability boundary of the sin-
gle DoF system, which yields that the reappearing D-
shaped stable region approximates the stable domain
of the single DoF system (see for example the panel
of Fig. 4 with α = 6). This agrees with our intuition,
since, by definition, α2 is directly proportional to the
stiffness of the spring, thus, the connection between
the blocks becomes rigid as α → ∞. Note that while
these curves practically coincide forα > 6, they are not
necessarily stability boundaries of the two DoF system
due to the above described periodic “windscreen wiper
effect” caused by the rotating tail of the second branch
of the dynamic D-curve for ω ∈ (α,∞).

The lower panel of Fig. 5 presents the stabil-
ity boundaries in the dimensionless parameter plane

(α, kd) at fixed values of the dimensionless control gain
kp. One can observe that increasing α from 0, the stable
domain shrinks, disappears and when it appears again,
it is even larger than in the case of α = 0. Note, how-
ever, that this phenomenon occurs only in the plane of
the dimensionless control parameters. If one transforms
them back to Kp and Kd, then at α = 0, that is at τ = 0,
the whole positive quadrant of the (Kp, Kd) parame-
ter plane is stable, while above αcr,2, the reappearing
stable domain is bounded and its size is smaller.

A practically relevant consequence of the dynamic
analysis is related to the calculation of the possible
maximal proportional control gains Kp,max that ensures
the smallest possible static position error δmin =
C/Kp,max in (4). Panel (a) of Fig. 6 presents the max-
imal dimensionless proportional gains kp,max against
the dimensionless delay α, which are determined by
means of the rightmost parameter points of the stable
domains (if exist) in the stability charts of Fig. 4. It
can be observed that kp,max is even larger in the sec-
ond domain of stability than in the first. However, the
dimensional proportional gain Kp,max = kp,maxm1/τ

2

may have very large values in the first stable domain
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Fig. 6 Panel (a) presents the maximal dimensionless propor-
tional gain kp,max against the dimensionless delay α when m1 =
m2. Panel (b) shows the maximal proportional gain Kp,max as a
function of the delay τ at the fixed parameter values:m1 = 1 kg,
m2 = 1 kg, k = 10 kN/m. Panel (c) presents Kp,max against the
spring stiffness k for m1 = 1 kg, m2 = 1 kg, τ = 0.01 s. The
stabilizable regions are shaded

as a function of the delay τ (see panel (b) of Fig. 6)
because τ → 0 yields Kp,max → ∞.

In the meantime, since the dimensionless parameter
α also includes the spring stiffness k (see (5)), one can
calculate Kp,max also as a function of the spring stiff-
ness [see the parameter point P in panel (c) of Fig. 6].
This results in the overall smallest static position error
in the second stable domain at

k = 12.4
m2

τ 2
, Kp = 1.16

m1

τ 2
⇒ δmin = 0.86

C

m1
τ 2.

(21)

It clearly shows that decreasing the timedelay improves
the positional accuracy substantially.

4 Hopf bifurcation calculation

As a parameter point leaves the stable region of the
(kp, kd) plane at the stability boundary presented by
the dynamic D-curves, a limit cycle may emerge, the
amplitude of which can be approximated with the help
of the Hopf bifurcation analysis. Its first step is to carry
out the so-called centre manifold reduction, that is, to
project the system from the infinite-dimensional state

space of the DDE onto the two-dimensional invariant
subspace that is tangent to the plane spanned by the
critical eigenvectors [11,24].

Introduce the function xt : R → XR4 with the
shift xt (ϑ) = x(t + ϑ), with ϑ ∈ [−1, 0], where
the minimum of ϑ corresponds to the length of the
delay, which is 1 in the dimensionless form, andXR4 is
the space of continuous functions mapping the inter-
val [−1, 0] into R

4. Furthermore, one can formu-
late the delay-differential equation (7) as an operator-
differential equation (OpDE) [10]:

ẋt = Axt + F(xt ), (22)

where the operators are defined as

Aφ(ϑ) =
{

d
dϑ φ(ϑ) if − 1 ≤ ϑ < 0

Lφ(0) + Rφ(−1) if ϑ = 0,

(23)

F(φ)(ϑ) =
{
0 if − 1 ≤ ϑ < 0
F(φ(−1)) if ϑ = 0.

(24)

Here,L andR are the coefficientmatrices of the non-
delayed and delayed state vectors in Eq. (7), respec-
tively. The characteristic exponents of the linear part
of (7) are the same as those of the linear operator A
[11].

For the centre manifold reduction, we need the
right eigenvectors of A corresponding to the critical
eigenvalues λcr = ±iω. Then, the real eigenvectors
s1,2 ∈ XR4 satisfy (see [30]):

As1 = −ωs2, As2 = ωs1, (25)

which is a boundary value problem for s1,2(ϑ) accord-
ing to the definition of the linear operatorA in Eq. (23).
The solution assumes the form

s1(ϑ) = S1 cos(ωϑ) − S2 sin(ωϑ),

s2(ϑ) = S2 cos(ωϑ) + S1 sin(ωϑ),
(26)

where S1,2 ∈ R
4 satisfy the linear homogeneous alge-

braic equation

[
L + R cosω ωI + R sinω

− (ωI + R sinω) L + R cosω

] [
S1
S2

]
=

[
0
0

]
(27)
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as it follows from the corresponding boundary condi-
tions. Let us choose the first components of S1 and S2
to be 1 and 0, respectively; then, (27) yields

S1 =

⎡
⎢⎢⎢⎣

1
0
α2

α2−ω2

0

⎤
⎥⎥⎥⎦ , S2 =

⎡
⎢⎢⎢⎣

0
ω

0
ωα2

α2−ω2

⎤
⎥⎥⎥⎦ . (28)

In order to project the system onto the plane spanned
by the eigenvectors s1 and s2, one needs the left eigen-
vectors n1,2 of the linear operator A associated with
the critical eigenvalues ∓iω.

Introduce the adjoint operator of A by

A
ψ(σ ) =
{− d

dσ ψ(σ) if 0 < σ ≤ 1
L
ψ(0) + R
ψ(1) if σ = 0,

(29)

where 
 denotes the transposed conjugate matrix and
also the adjoint operator.

The real eigenvectors n1,2 ∈ X


R4 satisfy

A
n1 = ωn2, A
n2 = −ωn1. (30)

From which

n1(σ ) = N1 cos(ωσ) − N2 sin(ωσ),

n2(σ ) = N2 cos(ωσ) + N1 sin(ωσ),
(31)

with N1,2 ∈ R
4 satisfying[

L
 + R
 cosω − (ωI + R
 sinω)

ωI + R
 sinω L
 + R
 cosω

] [
N1

N2

]
=

[
0
0

]
.

(32)

The solutions

N1

=

⎡
⎢⎢⎢⎢⎣

ω
(
1 + μα2

α2−ω2

)
(N12

sin(2ω)
2 − N22 sin2 ω) + N22ω

N12
μωα2

α2−ω2 N22
μα2

α2−ω2 N12

⎤
⎥⎥⎥⎥⎦ ,

(33)

N2

=

⎡
⎢⎢⎢⎢⎣

ω
(
1 + μα2

α2−ω2

)
(N22

sin(2ω)
2 + N12 sin2 ω) − N12ω

N22

− μωα2

α2−ω2 N12
μα2

α2−ω2 N22

⎤
⎥⎥⎥⎥⎦

(34)

include the two free parameters N12 and N22 that are
determined by means of the orthonormality conditions

〈n1, s1〉 = 1, 〈n1, s2〉 = 0, (35)

where 〈., .〉 denotes the inner product. With the defini-
tion of the inner product (see “Appendix A”), (35) can
be expanded as

〈n1, s1〉 = N

1S1 +

∫ 0

ξ=−1
n

1(ξ + 1)Rs1(ξ)dξ = 1,

(36)

〈n1, s2〉 = N

1S2 +

∫ 0

ξ=−1
n

1(ξ + 1)Rs2(ξ)dξ = 0,

(37)

which yields

N12 = a

a2 + b2
, N22 = b

a2 + b2
. (38)

Here, a and b are expressed in (16) and (17), respec-
tively, which also appear in the root tendency Eq. (15).

In order to restrict the dynamics to the invariant cen-
tre manifold, the infinite-dimensional state xt is pro-
jected to the right eigenvectors s1 and s2 by means of
the corresponding inner product between the left eigen-
vectors n1,2 and xt . The infinite-dimensional part w of
the state xt is calculated by simple subtraction. Accord-
ingly, the new scalar coordinates z1,2 on the centreman-
ifold are introduced by

z1 = 〈n1, xt 〉, (39)

z2 = 〈n2, xt 〉, (40)

and

w = xt − z1s1 − z2s2. (41)

With these new variables, the operator differential
Eq. (22) can be reformulated as

⎡
⎣z′1
z′2
w′

⎤
⎦ =

⎡
⎣ 0 ω O

−ω 0 O
o o A

⎤
⎦

⎡
⎣z1
z2
w

⎤
⎦

+
⎡
⎣ N


1F(xt )(0)
N

2F(xt )(0)

F(xt ) − N

1F(xt )(0)s1 − N


2F(xt )(0)s2

⎤
⎦ ,

(42)

where o : R → XR4 is a zero operator, O : XR4 → R

is a zero functional; for details, see “Appendix B”.
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In order to get the first Fourier term of the oscillation
in the centre manifold, the first two rows of Eq. (42)
should be calculated up to third order:

ż1 = ωz2 +
∑

k+l=3

fkl z
k
1z

l
2 + O(z51,2),

ż2 = −ωz1 +
∑

k+l=3

gkl z
k
1z

l
2 + O(z51,2),

(43)

where the indices k and l are nonnegative integers. Due
to the symmetry of the nonlinearity, the nonlinear oper-
atorF does not have second-order terms,which implies
thatw is at leastO(y31,2), and so it effects only the fifth-
and higher-order terms in (43).

The so-called Poincaré–Lyapunov coefficientΔ can
be calculated with the help of the Bautin formula (see
“Appendix C”). Since one obtains f12 = g21 = g03 =
0,

Δ = 3

8
f30 = ω5 (sin(2ω) − 2ω)

32q2(a2 + b2)

(
1 − μα2

ω2 − α2

)4

.

(44)

This is always negative, that is, the Hopf bifurcation
is always supercritical along the dynamic D-curves of
Fig. 4.

In the centre manifold, the oscillation close to the
Hopf bifurcation boundary can be approximated as

[
z1(t)
z2(t)

]
= A

[
cos(ωt)

− sin(ωt)

]
, (45)

where the amplitude A can be expressed as

A =
√

−Reλ′
Δ

(kp − kp,cr). (46)

This yields that for proportional gain kp close enough
to its critical value kp,cr, the self-excited vibration can
be approximated as

x(t) = xt (0) ≈ z1(t)s1(0) + z2(t)s2(0)

= A(S1 cos(ωt) − S2 sin(ωt)),
(47)

where S1,2 are given in (28). This way, the substitu-
tion of (15) and (44) into (46) leads to the closed-form
expressions of the vibration amplitudes A1 and A2 of
the blocks m1 and m2, respectively:

Fig. 7 Comparison of the analytical bifurcation diagram to the
one created with DDE-BIFTOOL (μ = 1, α = 0.5, kd = 1 and
q = 0.2). Green and red lines refer to the stable and unstable
branches, respectively

A1 = 2q(ω2 − α2)2

ω3(ω2 − (1 + μ)α2)2

√
kp − kp,cr

×

√√√√ sinω
(
1 + μ ω2α2+α4

(ω2−α2)2

)
+ ω cosω

(
1 − μ α2

ω2−α2

)
ω − 1

2 sin(2ω)

(48)

and

A2 = α2

α2 − ω2 A1. (49)

These algebraic expressions fit well to the ampli-
tudes created with DDE-BIFTOOL [5,28] for the orig-
inal nonlinear system given in (7)–(10) (see Fig. 7).
Clearly, the higher-order nonlinear terms result in an
increasing deviation between the analytical and numer-
ical results for kp > 1.1 kp,cr.

5 Conclusion

The delayed position control of two blocks connected
through a linear spring was investigated as a simpli-
fiedmodel of an elastic arm. A collocated proportional-
derivative control force was considered with saturation
nonlinearity. The linear stability analysis shows that the
stable region in the plane of the dimensionless control
parameters (kp, kd) shrinks and disappears as the time
delay increases. Further increase in the delay results in
the reappearance of the stable parameter domain,which
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then disappears and reappears periodically. Note that
these stable regions become negligible for the original
control gains Kp, Kd as it follows from the definitions
of the dimensionless parameters in (5) for large delays.

However, the interpretation of the same dimension-
less stability charts is different from the viewpoint
of the stiffness of the linear spring. The increase in
this stiffness also increases the dimensionless param-
eter α [see (5)], which means that in case of a fixed
time delay τ , the phenomenon of the periodic appear-
ance/disappearance of the stable control parameter
regions is also present as the stiffness parameter varies.
These stable domains have about the same size for the
original control parameters Kp, Kd when the delay τ is
fixed, and they get close to the D-shaped stable domain
of the PD-controlled singleDoF system,where k → ∞
and m = m1 + m2.

Also in case of fixed delay τ , the static positional
accuracy can be optimized with the help of (21) by
tuning the system and control parameters accordingly.

If the stability chart of only the single DoF model is
used in the tuning procedure of the control parameters,
unexpected instabilities may occur even for relatively
large spring stiffness values [see also panel (c) of Fig. 6]
where a corresponding robotic arm might be assumed
to be practically rigid (see Fig. 1).

The Hopf bifurcation calculation was executed after
an infinite-dimensional centre manifold reduction. The
Hopf bifurcation is supercritical all along the dynamic
stability boundaries. The closed form algebraic expres-
sions for the amplitudes of the arising self-excited oscil-
lations are also checked by the freely available MAT-
LAB software DDE-BIFTOOL. The comparison of
the calculated and measured vibration amplitudes may
help to estimate how far the stability boundaries are, in
which direction the control parameter tuning procedure
should be continued.

At the boundary of the stable area, the dynamic
D-curve can intersect itself, which may correspond
to codimension-2 Hopf bifurcation, where two pairs
of complex-conjugate characteristic exponents cross
the imaginary axis. At this parameter setting, the self-
excited vibrations of the systemmay becomequasiperi-
odic oscillations containing two distinct frequencies.
See, for example, the lower left panel of Fig. 4 with
α = 3.5; here, the Hopf-Hopf point is denoted with
H2, and the two independent dimensionless angular
frequencies are ω1 = 1.029 and ω2 = 4.578. The
codimension-2 Hopf bifurcations can be analysed with

the algorithm presented in [23,31]. The existence of
quasiperiodic oscillations is expected from the topo-
logical structure of the H2 bifurcations [7], while its
rigorous proof needs further work similarly to the anal-
ysis of higher DoF models. Note that the occurrence of
quasiperiodic oscillations during the experimental tun-
ing of the control parameters may provide an essential
validation of the time-delayed mechanical model used
in this study.

The methodology presented here can be general-
ized for multi-degree of freedom robotic arms, but due
to the mathematical complexity, no analytical results
are expected. In the meantime, the arising nonlinear
vibrations will be qualitatively analogous to the ones
observed in the low-dimensional case; its justification
is part of a future research.
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Appendix A

For the current operator-differential Eq. (22), the inner
product between two vector-valued functions �,� :
R → XR4 is defined as [10]:

〈�,�〉 = �
� +
∫ 0

ξ=−1
�
(ξ + 1)R�(ξ)dξ.

(50)

Appendix B

The operator-differential equation can be transformed
into the new variables z1, z2 and w according to the
following derivation (see [30]):

ż1 = 〈n1, ẋt 〉 = 〈n1,Axt + F(xt )〉
= 〈A
n1, xt 〉+〈n1,F(xt )〉=ωz2 + N


1F(xt )(0),

ż2 = −ωz1 + N

2F(xt )(0),

ẇ = ẋt − ż1s1 − ż2s2 = Axt + F(xt )

− ωz2s1 + ωz1s2
− N


1F(xt )(0)s1 − N

2F(xt )(0)s2.

(51)

Appendix C

In case of the nonlinear system

ż1 = ωz2 +
∑

2≤k+l≤3

fkl z
k
1z

l
2 + O(z41,2),

ż2 = −ωz1 +
∑

2≤k+l≤3

gkl z
k
1z

l
2 + O(z41,2),

(52)

the Poincaré–Lyapunov coefficient can be determined
with the help of the Bautin formula (see [30]):

Δ = 1

8

(
1

ω

(
( f20 + f02)(− f11 + g20 − g02) + (g20 + g02)

× ( f20 − f02 + g11)
)

+ (3 f30 + f12 + g21 + 3g03)

)
.

(53)

This determineswhether the bifurcation is supercritical
(Δ < 0) or subcritical (Δ > 0).
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