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Abstract Taking two susceptible groups into account,
we formulate a modified subhealthy-healthy-infected-
recovered (SHIR) model with time delay and nonlin-
ear incidence rate in networks with different topolo-
gies. Concretely, two dynamical systems are designed
in homogeneous and heterogeneous networks by utiliz-
ing mean field equations. Based on the next-generation
matrix and the existence of a positive equilibrium
point, we derive the basic reproduction numbers R1

0
and R2

0 which depend on the model parameters and
network structure. In virtue of linearized systems and
Lyapunov functions, the local and global stabilities of
the disease-free equilibrium points are, respectively,
analyzed when R1

0 < 1 in homogeneous networks
and R2

0 < 1 in heterogeneous networks. Besides,
we demonstrate that the endemic equilibrium point
is locally asymptotically stable in homogeneous net-
works in the condition of R1

0 > 1. Finally, numerical
simulations are performed to conduct sensitivity anal-
ysis and confirm theoretical results. Moreover, some
conjectures are proposed to complement dynamical
behavior of two systems.
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1 Introduction

From historical events, infectious diseases, such as
cholera [1], malaria [2], influenza [3] and COVID-19
[4], pose a huge threat to the public health all over the
world. Fortunately, mathematical modeling is regarded
as a powerful method to characterize the spreading
mechanism of the epidemic, whichmakes it convenient
for us to study the dynamics of disease propagation in
epidemiology significantly [5–9].

According to the classical theory of epidemic
dynamics, many scholars progressively apply and
extend compartmental epidemic models to research
transmission dynamics in a diverse range of fields [10–
15]. In recent years, due to the nonuniformity of spread
in a population, the thought of classification for suscep-
tible, infected or other state groups is embedded in the
modeling of propagation phenomena in Refs. [16–28].
Dating back to 1976, amultiple groupsmodel proposed
by Lajmanovich and Yorke [29] characterizes the epi-
demiological features of gonorrhea appropriately. In a
general way, the specific group is further divided into
several disjoint subgroups in the multi-group model,
which enriches epidemiological states of individuals.
As a result, the application of classifying thought in
defining compartmental states can promote the estab-
lished propagation model more practical. Throughout
previous papers, the classification for a certain group
is mostly attributed to genetic variation (e.g., gender).
For instance, Hyman and Li [17], respectively, formu-
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late thresholds for the spread of infectious disease in
the differential susceptibility model, staged progres-
sion model, differential infectivity model and so on.
Besides, they [18] also study SIR epidemic models
with differential susceptibility by classifying the sus-
ceptible into various subgroups. Additionally, Wang et
al. [20,21] divide the infected compartment into two
sub-compartments and discuss the spreading dynam-
ics of a sexually transmitted disease model when low-
risk and high-risk infected individuals coexist. Consid-
ering the heterogeneity of host population, Jin et al.
[23] investigate the disease transmission dynamics by
establishing a general multi-group epidemic model. In
view of the coinfection of two strains, Ruan et al. [25]
calculate the basic reproduction number and study the
threshold dynamics of a diffusive SIS epidemic model
where infected individuals are split into the infected
with strain one and strain two based on Ref. [26].

In Ref. [30], an SIR epidemic model with consider-
ation of birth, death and two susceptibility is proposed
and studied in heterogeneous networks as follows:

dS1k(t)

dt
= b1

(
1−S1k(t)−S2k(t)− Ik(t)−Rk(t)

)

−β1kS1k(t)Θ(t) − μS1k(t),
dS2k(t)

dt
= b2

(
1−S1k(t)−S2k(t)− Ik(t)−Rk(t)

)

−β2kS2k(t)Θ(t) − μS2k(t),
dIk(t)

dt
= β1kS1k(t)Θ(t) + β2kS2k(t)Θ(t)

−γ Ik(t) − μIk(t),
dRk(t)

dt
= γ Ik(t) − μRk(t). (1.1)

The total population is divided into four disjoint com-
partments including the 1st susceptible group, the 2nd
susceptible group, infected individuals and recovered
individuals. Their densities are, respectively, denoted
by S1k(t), S2k(t), Ik(t) and Rk(t) with degree k (k =
1, 2, . . . , n) at time t . Besides, let Tk(t) = S1k(t) +
S2k(t) + Ik(t) + Rk(t) be the overall density of indi-
viduals with degree k at time t . Here, (1 − Tk(t)) rep-
resents the density of empty nodes which can gener-
ate newborns belonging to the 1st or 2nd susceptible
group at the certain rate bi (i = 1, 2). μ is a natural
death probability which is identical for all individuals.
β1 or β2 is the transmission coefficient at which a 1st or
2nd susceptible individual is infected with this disease
by getting in contact with infected individuals. Mean-
while, infected individuals can turn into the recovered

state at a recovery rate γ . Besides, Θ is known as the
probability with which any chosen edge is linked to an
infected individual. To be specific, in the uncorrelated
networks, Θ can be written as

Θ(t) =
n∑

k′=1

k
′
p(k

′
)Ik′ (t)

k
,

where p(k
′
) is the degree distribution and k = ∑

k
kp(k)

is the average degree of the network.
For system (1.1), Yuan et al. [30] obtain the basic

reproduction number, analyze the stability of two equi-
libria and give the effectiveness of control strategies.
Nevertheless, the epidemiologically meaningful time
delay is ignored in the spreading process of contagious
disease in their modeling, which deviates the realis-
tic situation. Strictly speaking, hysteresis involved in
virus production indeed exists because some time is
needed for the maturity of the virion after the cells of
individuals have catched the virus [31]. That is to say,
the infected individuals become infectious and further
transmit the infection after a certain period of time.
Based on this situation, it’s of biological significance
to bring in the time delay in the transition process due
to the existence of latent infection. Recently, lots of
researchers are passionate about adding the time delay
into the epidemic model which consists of a coupled
system of delay differential equations in Refs. [32–38].
Actually, the introduction of time delay may lead to the
change in stability of equilibrium points of a dynamical
system, which puts forward a challenge to the dynam-
ical analysis of the delayed model. For example, the
existence of Hopf bifurcations at various equilibria in
a delayed predator–prey model is explored by Xu in
Ref. [32]. Moreover, Zhu et al. [34] study the local and
global asymptotic stabilities of equilibrium points of a
rumor spreading model with and without time delay,
respectively. Considering both avian population and
human population, Kang et al. [36] employ two dis-
crete time delays τ1 and τ2 to delineate the delayed
process in state transitions. In consequence, it is highly
meaningful for us to incorporate the time delay into the
epidemic model (1.1) additionally.

Similar to Ref. [30], most of the existing results
focusing on epidemic models usually suppose that the
interaction term between the susceptible and infected
individuals satisfies the bilinear form according to the
lawofmass action [39].Once the bilinear incidence rate
is used in the modeling, the number of patients linearly
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increases in the infection process, which isn’t appropri-
ate in the situation of huge numbers of infected indi-
viduals [40]. In fact, if the epidemic is severe enough,
the information about the prevalence of disease will
impel individuals to take prevention measures to avoid
the infection [41]. In consequence, it’s a pity that some
researchers don’t think over the behavioral changes of
individuals due to the psychological effect in disease
transmission process. In 1978, to characterize satura-
tion phenomena for mass infected individuals, Capasso
and Serio [42] generalize the Kermack–McKendrick
deterministic model by employing a saturated inci-
dence rate Sg(I ) where g(I ) = β I

1+aI is a nonlinear
bounded function. As explained in Refs. [43,44], the
incidence function g(I ) gradually reaches a saturation
level with the scale of infected individuals I increasing.
Noticing the insightful effect of nonlinear incidence
on epidemic dynamics, lots of authors [40,45–48] are
devoted to studying the nonlinear dynamics of various
epidemicmodels incorporatedwith saturated incidence
rate. For instance, Zhu et al. [48] perfectly explore
the stability of equilibrium points and the effectiveness
of control schemes in a delayed SIS epidemic model
along with nonlinear incidence rate. Furthermore, Li
and Yousef [49] analytically and numerically research
the bifurcation behavior of a network-based SIR epi-
demic model with saturated treatment function which
is analogous to the nonlinear type of incidence rate [50]
in some sense. To address the mentioned deficit in Ref.
[30], we intend to adopt the nonlinear incidence rate by
introducing a psychological factor a, which avoids the
unbounded contact rate in the epidemic model.

What’s more, the application of complex networks
to epidemic modeling gives rise to a wave of research
in academia for decades. With respect to the consid-
eration of network topology, more and more scholars
are in favor of investigating the dynamics of prop-
agation model in both homogeneous and heteroge-
neous networks [51–55]. In Ref. [51], Xia et al. present
an improved SEIR model with hesitating mechanism
and analyze the spreading threshold in homogeneous
and heterogeneous networks, respectively. As Zhu and
Guan [53] present, the complexity of the network struc-
ture can result in the difference of spreading threshold
of the disease inmagnitude. In addition, the basic repro-
duction number and the rumor-free equilibrium point
of I2S2R rumor propagatingmodelwith two rumors are
explored in homogeneous networks by Zhang and Zhu
[55]. And they are also devoted to proving the stability

of the trivial equilibrium point, discussing the global
attractivity of the positive equilibrium point and inves-
tigating the permanence of system in heterogeneous
networks. As the society developing greatly, the con-
nections among people are increasingly convenient and
frequent. This situation drives us to take advantage of
complex networks to capture the features of social net-
work in reality. According to insights from studying
complex networks, homogeneous and heterogeneous
networks can be selected, respectively, as the under-
lying network to investigate the influence of network
structure on disease transmission.

As far as we know, however, there are few research
results on dynamical analysis of the delayed multi-
group epidemic model with nonlinear incidence rate
and different topological structures of social network.
Motivated by foregoing literature, such as [19,30], in
whichYuan et al. study the stability of the SIR epidemic
model with differential susceptibility or infectivity, and
[48,53], in which Zhu et al. incorporate the saturated
incidence rate with time delay into propagation model,
we establish a delayed epidemic model along with two
susceptible groups and nonlinear incidence rate in com-
plex networks. Emphasizing the influence of network
structure on disease propagation, we make efforts to
investigate threshold dynamics of a two-susceptibility
epidemic model with time delay and nonlinear inci-
dence rate in both homogeneous and heterogeneous
networks. What’s more, to make recommendations for
control measures, we pay attention to the impacts of
time delay, nonlinear incidence rate and network struc-
ture on the transmission of infectious disease.

To make this epidemic model with two suscepti-
ble groups more sensible, assume that personal fitness
level results in differences between susceptible individ-
uals. In other words, the susceptibility of individuals
to infectious disease depends on the personal fitness
level. Taking the health level as the classification cri-
terion of susceptible population, we introduce the sub-
healthy and healthy compartments to characterize the
nonhomogeneous structure for susceptible individuals.
Hence, states of individuals cover the subhealthy (S),
the healthy (H ), the infected (I ) and the recovered (R).
Based on the practical situation, it’s further supposed
that the subhealthy aremore likely to catch the infection
than the healthy herein. As for the modeling of disease
propagation, the network topology and state-transition
rules of nodes need to be considered primarily. Since
the choice of the network topological structure is dis-
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cussed above, the expression of interaction rules in the
spreading process is briefly presented below.

(1) In virtue of empty nodes, newborns with two
levels of health enter the network and all individuals
naturally emigrate the network owing to the death.

(2) Upon contacting infectious vectors that carry the
pathogen, a subhealthy or healthy individual will turn
into an infected individual with a certain probability.
Importantly, a nonlinear incidence rate can reflect the
crowding effect of infected individuals and inhibitory
measures taken by susceptible individualswhen the dif-
fusion of disease is especially serious [56].

(3) As a matter of fact, the time delay plays a major
role in the epidemic model because the incubation
period of disease indeed exists on account of the latency
in a vector. Namely, some time is needed for infectious
agents developing in the vector, after which infected
vectors become infectious and can transmit the infec-
tion to humans.

(4) With the aid of modern treatment, infected indi-
viduals can be cured and become the recovered state
with a certain rate.

Based on the above analysis, we, respectively, estab-
lish the delayed two-susceptibility epidemic model
with nonlinear incidence rate in homogeneous net-
works in Sect. 2 and heterogeneous networks in Sect. 3.
Basic properties of solutions and the threshold of dis-
ease diffusion are analytically derived. Furthermore,
we prove the stability of equilibrium points of two
dynamical systems in detail. In Sect. 4, quantities of
numerical experiments are carried out to verify the
correctness of obtained theoretical results. Finally, the
paper ends with conclusions and discussions in Sect. 5.

2 Disease transmission in homogeneous networks

2.1 Model description

At first, the delayed system about disease diffusion
is considered on the topological structure of homo-
geneous networks where all nodes are regarded as
equivalent statistically. Let S(t), H(t), I (t) and R(t)
represent the average densities of subhealthy, healthy,
infected and recovered nodes at time t , respectively.
The mean field equations of the SHIR epidemic model
in homogeneous networks are composed of a set of
delay differential equations as follows:

dS(t)

dt
= b1

(
1−S(t) −H(t) − I (t) −R(t)

)

−β1kS(t)
I (t − τ)

a + I (t − τ)
− μS(t),

dH(t)

dt
= b2

(
1−S(t) −H(t) − I (t) −R(t)

)

−β2kH(t)
I (t − τ)

a + I (t − τ)
− μH(t),

dI (t)

dt
= β1kS(t)

I (t − τ)

a + I (t − τ)

+β2kH(t)
I (t − τ)

a + I (t − τ)
− γ I (t) − μI (t),

dR(t)

dt
= γ I (t) − μR(t), (2.1)

wherebi
(
1−S(t)−H(t)−I (t)−R(t)

)
denotes the den-

sity of newborn susceptible nodes generated by empty
nodes with the certain constant rate bi (i = 1, 2).
The psychological factor a characterizes the behav-
ioral changes resulted from the crowding effect of
infected individuals during a peak period of epidemic
situation. Latent period is shown by the average time
delay τ of disease propagation in the process of infec-
tion from the subhealthy and healthy to infected indi-
viduals. All parameters in our epidemic model are
assumed to be positive. The initial conditions for sys-
tem (2.1) are given by

(
S(ϑ), H(ϑ), I (ϑ), R(ϑ)

) =(
ϕ1(ϑ), ϕ2(ϑ), ϕ3(ϑ), ϕ4(ϑ)

)
which satisfy

ϕi (ϑ) ≥ 0, 0 <

4∑
i=1

ϕi (ϑ) ≤ 1, ϑ ∈ [−τ, 0],

ϕi (0) > 0 (i = 1, 2, 3, 4).

(2.2)

Besides, (ϕ1, ϕ2, ϕ3, ϕ4) ∈ C([−τ, 0], R4+) which
denotes theBanach space of continuous functionsmap-
ping the interval [−τ, 0] into R4+ = {

(x1, x2, x3, x4) ∈
R4 : xi ≥ 0, i = 1, 2, 3, 4

}
.

As the sum of S(t), H(t), I (t) and R(t), the total
population size at time t can be expressed by T (t).
Add up all equations of system (2.1) and obtain the
following differential equation:

dT (t)

dt
= b1 + b2 − (b1 + b2 + μ)T (t).

Making allowances for the above equation, we trans-
form system (2.1) into the limit system:
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dS(t)

dt
= b1

(
1 − T ∗)

−β1kS(t)
I (t − τ)

a + I (t − τ)
− μS(t),

dH(t)

dt
= b2

(
1 − T ∗)

−β2kH(t)
I (t − τ)

a + I (t − τ)
− μH(t),

dI (t)

dt
= β1kS(t)

I (t − τ)

a + I (t − τ)

+β2kH(t)
I (t − τ)

a + I (t − τ)
− γ I (t) − μI (t),

dR(t)

dt
= γ I (t) − μR(t), (2.3)

where T ∗ = b1+b2
b1+b2+μ

. Now, it suffices to study system
(2.3) detailedly instead of system (2.1) when exploring
the long-time behavior for the solutions of our model.
Moreover, the fourth equation of system (2.3) is decou-
pled from the equations for S(t), H(t) and I (t). Hence,
it’s natural to make the limit system (2.3) be reduced
as the following system:

dS(t)

dt
= b1

(
1 − T ∗)− β1kS(t)

I (t − τ)

a + I (t − τ)
− μS(t),

dH(t)

dt
= b2

(
1 − T ∗)− β2kH(t)

I (t − τ)

a + I (t − τ)
− μH(t),

dI (t)

dt
= β1kS(t)

I (t − τ)

a + I (t − τ)

+β2kH(t)
I (t − τ)

a + I (t − τ)
− γ I (t) − μI (t).

(2.4)

For the sake of simplicity, it’s high time to study sys-
tem (2.4) in place of original system (2.1) sufficiently
for subsequent discussion.

2.2 Basic properties of solutions

Lemma 1 For system (2.3) with the initial conditions
(2.2), there exists a unique solution (S(t), H(t), I (t),
R(t)) globally for t ∈ [0,∞).

Proof Under the initial conditions (2.2), the existence
and uniqueness of solutions of system (2.3) are to be
proved step by step.

For 0 < t ≤ τ , it can be seen that I (t − τ) ≥ 0
from the given initial condition. Then, we have that the
right-hand side of system (2.3) is locally Lipschitz con-
tinuous. Therefore, by the existence, uniqueness and

continuation theorems of differential equation, there is
a unique solution of system (2.3) with the initial con-
ditions (2.2) in the interval (0, τ ].

In what follows, we prove the nonnegativity of this
solution in (0, τ ]. Taking notice of

dS(t)

dt

∣∣∣∣
S(t)=0

=
[
b1
(
1 − T ∗)

−β1kS(t)
I (t − τ)

a + I (t − τ)
− μS(t)

] ∣∣∣∣
S(t)=0

> 0,

and the initial condition S(ϑ) ≥ 0, we can obtain
S(t) ≥ 0 for 0 < t ≤ τ . In the same way, H(t) ≥ 0
for 0 < t ≤ τ . Besides, it’s available that I (t) ≥ 0
for 0 < t ≤ τ . If not, we can find the smallest
t0 ∈ (0, τ ] which makes I (t0) = 0 and I (t) < 0 for
t ∈ (t0, t0 + δ1) where δ1 > 0. In this case, together
with the initial value I (ϑ) ≥ 0, we know I (t0−τ) ≥ 0.
Thus, there exists

dI (t)

dt

∣∣∣∣
I (t0)=0

=
[(

β1S(t) + β2H(t)
)
k

I (t − τ)

a + I (t − τ)

−(γ + μ)I (t)
] ∣∣∣∣

I (t0)=0

≥ 0,

which implies that I (t) ≥ 0 for t ∈ (t0, t0 + δ2) where
δ2 > 0. Apparently, there is a contradiction in the inter-
val (t0, t0+min{δ1, δ2}). Therefore, we draw a conclu-
sion I (t) ≥ 0 for 0 < t ≤ τ . Utilizing the nonnegativ-
ity of I (t), the initial condition R(ϑ) ≥ 0 and

dR(t)

dt

∣∣∣∣
R(t)=0

= [
γ I (t) − μR(t)

] ∣∣∣
R(t)=0

≥ 0,

we derive R(t) ≥ 0 for 0 < t ≤ τ .
For τ < t ≤ 2τ , it can be known that I (t − τ) ≥

0 from the above discussion. Then, the existence and
uniqueness of solutions can also be guaranteed in the
interval (τ, 2τ ]. Utilizing the similar method of proof,
we are able to obtain the nonnegativity of S(t), H(t),
I (t) and R(t) for τ < t ≤ 2τ .

This process can proceed if we adopt the same way
in (2τ, 3τ ], (3τ, 4τ ] and so on. To sum up, it’s proved
that a unique solution (S(t), H(t), I (t), R(t)) of sys-
tem (2.3) can continuously exist in themaximal interval
[0,∞). �	
Lemma 2 For system (2.3) with the initial conditions
(2.2), a invariant set contained in the nonnegative cone
R4+ is as follows

Ω1 =
{(
S, H, I, R

) ∈ R4+
∣∣∣0 ≤ S≤ S0, 0 ≤H ≤ H0,
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0 ≤ S + H + I + R≤ T ∗} .

Proof Based on the proof of Lemma 1, it’s obtained
that S(t), H(t), I (t) and R(t) are nonnegative. As a
result, S(t) + H(t) + I (t) + R(t) ≥ 0 holds for t ≥ 0.
Observe that the sum of all equations of system (2.3)
yields

d
(
S(t)+H(t)+ I (t)+R(t)

)

dt
= (b1 +b2)(1 −T ∗)

−μ
(
S(t)+H(t)+ I (t)+R(t)

)
. (2.5)

Thus, we can obtain

lim sup
t→∞

(
S(t) + H(t) + I (t) + R(t)

)

= lim sup
t→∞

T (t) = T ∗ = b1 + b2
b1 + b2 + μ

.

Moreover, from the first equation of system (2.3), we
gain

dS(t)

dt
= b1

(
1−T ∗)−β1kS(t)

I (t − τ)

a + I (t − τ)
−μS(t)

≤ b1
(
1 − T ∗)− μS(t).

By the comparison principle, we have

lim sup
t→∞

S(t) ≤ S0 = b1
b1 + b2 + μ

.

In this manner, it’s also acquired that

lim sup
t→∞

H(t) ≤ H0 = b2
b1 + b2 + μ

.

�	

2.3 The basic reproduction number and equilibrium
points

By equating the right sides of dS(t)
dt ,

dH(t)
dt and d I (t)

dt
to zero, we can easily verify that system (2.4) has
a disease-free equilibrium point of the form E0 =
( b1
b1+b2+μ

, b2
b1+b2+μ

, 0). This is regarded as an idealiza-
tion where the disease completely disappear in the net-
work. To find the threshold of disease propagation, we
are to figure out the basic reproduction number which
indicates the scale of the new infected resulted from an
infected individual by contact. Based on the method of

next-generation matrix [57], define the new infection
matrix F and the transition matrix V , namely

F =
⎡
⎣∂

[(
β1S(t) + β2H(t)

)
k I (t−τ)
a+I (t−τ)

]

∂ I (t − τ)

∣∣∣∣
E0

⎤
⎦

=
[

b1β1 + b2β2

a(b1 + b2 + μ)
k

]
,

and

V =
[

∂
[
(γ + μ)I (t)

]

∂ I (t)

∣∣∣∣
E0

]
= [

γ + μ
]
.

Hence, we can calculate the spectral radius of FV−1

and define the basic reproduction number of the infec-
tion as

R1
0 = p(FV−1) = (b1β1 + b2β2)k

a(b1 + b2 + μ)(γ + μ)
. (2.6)

Next, the condition for the existence of endemic
equilibrium point E∗ of system (2.4) is determined in
the following conclusion.

Theorem 1 For any feasible parameters, system (2.4)
always has a disease-free equilibrium point E0 =
(S0, H0, I 0) =

(
b1

b1+b2+μ
, b2
b1+b2+μ

, 0
)
. If the basic

reproduction number R1
0 > 1, there exists a unique

endemic equilibrium point E∗ = (S∗, H∗, I ∗) in sys-
tem (2.4).

Proof Let dS(t)
dt = 0, dH(t)

dt = 0, dI (t)
dt = 0 and

suppose E∗ = (S∗, H∗, I ∗) as the endemic equi-
librium point of system (2.4). Hence, we obtain a
quadratic equation about I ∗ which satisfies the form
q0 I ∗2 + q1 I ∗ + q2 = 0 where

q0 = (b1 + b2 + μ)(γ + μ)[
β1β2k

2 + (β1 + β2)kμ + μ2
]

> 0,

q1 = (b1 + b2 + μ)(γ + μ)[
(β1 + β2)kμa + 2μ2a

]
− (b1 + b2)μβ1β2k

2

− (b1β1 + b2β2)μ
2k,

q2 = (b1 + b2 + μ)(γ + μ)μ2a2

− (b1β1 + b2β2)μ
2ka.

Define g(I ∗) = q0 I ∗2 + q1 I ∗ + q2 and note g(0) =
(b1+b2+μ)(γ +μ)μ2a2(1−R1

0) < 0 in the condition
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Stability behavior of a delayed SHIR epidemic model 1089

of R1
0 > 1. Furthermore, we figure out

g(1) = q0 + q1 + q2

> (b1 + b2 + μ)(γ + μ)β1β2k
2

+ (b1 + b2 + μ)(γ + μ)(β1 + β2)kμ(1 + a)

− (b1 + b2)μβ1β2k
2

− (b1β1 + b2β2)μ
2k(1 + a)

> 0.

From the above discussion about g(I ∗), we conclude
that the equation g(I ∗) = 0 has a unique positive root

I ∗ = −q1+
√
q21−4q0q2
2q0

in the interval (0, 1). Correspond-
ingly, the unique endemic equilibrium point of system
(2.4) is

E∗ =
(

b1μ(a + I ∗)
(b1 + b2 + μ)[β1k I ∗ + μ(a + I ∗)] ,

b2μ(a + I ∗)
(b1 + b2 + μ)[β2k I ∗ + μ(a + I ∗)] , I

∗
)

.

�	

2.4 Stability analysis

As a matter of fact, stability behavior is an important
feature of the epidemic model as it reveals the stable
characteristic of dynamical system in the long term. In
this section, an earnest attempt is made to study the
local and global stabilities of two equilibrium points of
our delayed system.

Theorem 2 For any τ ≥ 0, the disease-free equilib-
rium point E0 of system (2.4) is locally asymptotically
stable if R1

0 < 1 and unstable if R1
0 > 1.

Proof To investigate the local stability of the disease-
free equilibrium point, system (2.4) needs to be lin-
earized at E0 and the linear system has the following
form
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= −β1kS0

a
I (t − τ) − μS(t),

dH(t)

dt
= −β2kH0

a
I (t − τ) − μH(t),

dI (t)

dt
= (β1S0 + β2H0)k

a
I (t − τ) − (γ + μ)I (t).

(2.7)

The Jacobian matrix J (E0) of system (2.4) at E0 can
be written as

J (E0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−μ 0 −β1kS
0

a
e−λτ

0 −μ −β2kH
0

a
e−λτ

0 0
(β1S

0 + β2H
0)k

a
e−λτ − (γ + μ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The characteristic equation of J (E0) is given by |λE−
J (E0)| = 0 as follows

(λ + μ)2
(

λ − (β1S0 + β2H0)k

a
e−λτ + γ + μ

)
= 0.

(2.8)

The equation (2.8) has two negative real roots equal
to −μ. Besides, the remaining eigenvalue of matrix
J (E0) is the solution of H(λ) = 0, where

H(λ) = λ − (γ + μ)

(
(β1S0 + β2H0)k

a(γ + μ)
e−λτ − 1

)

= λ − (γ + μ)
(
R1
0e

−λτ − 1
)
. (2.9)

In what follows, we discuss the characteristic roots
of equation (2.8) for τ = 0 and τ > 0 separately.

(I) When τ = 0, all solutions of the characteris-
tic equation (2.8) have negative real part if R1

0 < 1.
In this case, the disease-free equilibrium point E0 of
system (2.4) is locally asymptotically stable. On the
contrary, there exists one eigenvalue with positive real
part, which implies that E0 is unstable in the case of
R1
0 > 1.
(II) For ∀τ > 0, assume that R1

0 < 1 first. When
instability at E0 happens, one eigenvalue of the char-
acteristic equation (2.8) is bound to cross the imag-
inary axis. Next, we wonder whether there is a pair
of complex conjugate roots that passing through the
imaginary axis with the increase of τ . Thus, suppose
that there is a pair of purely imaginary roots. Substi-
tute λ = iξ (ξ > 0) into the equation H(λ) = 0. By
separating the real and imaginary parts, we obtain
{

ξ = −(γ + μ)R1
0 sin(ξτ ),

γ + μ = (γ + μ)R1
0 cos(ξτ ).

(2.10)

Squaring and adding both sides of the two equations
(2.10), we gain the following equation

ξ2 = (γ + μ)2(R1
0
2 − 1). (2.11)

In fact, there are no positive real roots ξ satisfying the
above equation (2.11) when R1

0 < 1.
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Then, under the assumption of R1
0 > 1, we note

H(0) < 0 and figure out

dH(λ)

dλ
= 1 + (γ + μ)R1

0τe
−λτ > 0.

Accordingly, find lim
λ→+∞ H(λ) = +∞. As a result, the

equation H(λ) = 0 has at least one positive real root if
R1
0 > 1, which suggests the instability at E0 of system

(2.4).
To summarize, combining the above two situations

τ = 0 and τ > 0,weprove that the disease-free equilib-
riumpoint E0 is locally asymptotically stable if R1

0 < 1
and unstable if R1

0 > 1 for ∀τ ≥ 0. �	
Theorem 3 For any τ ≥ 0, the disease-free equilib-
rium point E0 of system (2.1) is globally asymptotically
stable when R1

0 ≤ 1.

Proof According to Lemma 2, we find that all solu-
tions of system (2.1) will remain or tend to the invari-
ant regionΩ1. In consequence, construct the following
Lyapunov function L1(t) in the closed set Ω1

L1(t) = L11(t) + L12(t), (2.12)

where

L11(t) = S(t) − S0 − S0 ln
S(t)

S0
+ H(t)

−H0 − H0 ln
H(t)

H0 + I (t),

L12(t) =
t∫

t−τ

(β1b1 + β2b2)k

b1 + b2 + μ

I (x)

a + I (x)
dx . (2.13)

In fact, we are to show that the derivative of L1(t) along
the solutions of system (2.1) isn’t positive for all t ≥ 0.
Now, calculate the derivative of L11(t) with respect to
t as follows:

dL11(t)

dt

∣∣∣∣
(2.1)

=
(
1 − S0

S(t)

)

[
b1
(
1 − S(t) − H(t) − I (t) − R(t)

)

−β1kS(t)
I (t − τ)

a + I (t − τ)
− μS(t)

]

+
(
1 − H0

H(t)

)[
b2
(
1 − S(t) − H(t) − I (t) − R(t)

)

−β2kH(t)
I (t − τ)

a + I (t − τ)
− μH(t)

]

+β1kS(t)
I (t − τ)

a + I (t − τ)
+β2kH(t)

I (t − τ)

a + I (t − τ)

−(γ + μ)I (t)

= −μ

(
S(t) − S0

)2

S(t)
+ b1

(
1 − S0

S(t)

)(
S0 − T (t)

)

+b2S
0

(
1 − S0

S(t)

)
− μ

(
H(t) − H0

)2

H(t)

+b2

(
1 − H0

H(t)

)(
H0 − T (t)

)
+ b1H

0

(
1 − H0

H(t)

)

+β1k

[
−S(t)

(
1 − S0

S(t)

)
+ S(t)

]
I (t − τ)

a + I (t − τ)

+β2k

[
−H(t)

(
1 − H0

H(t)

)
+ H(t)

]
I (t − τ)

a + I (t − τ)

−(γ + μ)I (t)

= −μ

(
S(t) − S0

)2

S(t)
− μ

(
H(t) − H0

)2

H(t)

+b1

(
1 − S0

S(t)

)(
S0 + H0 − T (t)

)

+b2

(
1 − H0

H(t)

)(
H0 + S0 − T (t)

)
− (γ + μ)I (t)

+β1kS
0 I (t − τ)

a + I (t − τ)
+ β2kH

0 I (t − τ)

a + I (t − τ)
.

Then, calculate the derivative of L12(t) with respect to
t as follows:

dL12(t)

dt

∣∣∣∣
(2.1)

=
(
β1S

0 + β2H
0
)
k

(
I (t)

a + I (t)
− I (t − τ)

a + I (t − τ)

)
.

Thus, the derivative of L1(t) along the solutions of sys-
tem (2.1) is given by

dL1(t)

dt

∣∣∣∣
(2.1)

= dL11(t)

dt

∣∣∣∣
(2.1)

+ dL12(t)

dt

∣∣∣∣
(2.1)

= −μ

(
S(t) − S0

)2

S(t)
− μ

(
H(t) − H0

)2

H(t)

+b1

(
1 − S0

S(t)

)(
T ∗ − T (t)

)

+b2

(
1 − H0

H(t)

)(
T ∗ − T (t)

)

+
(
β1S

0 + β2H
0
)
k

I (t)

a + I (t)
− (γ + μ)I (t)
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≤ −μ

⎡
⎢⎣

(
S(t) − S0

)2

S(t)
+
(
H(t) − H0

)2

H(t)

⎤
⎥⎦

+
[
b1

(
1 − S0

S(t)

)
+ b2

(
1 − H0

H(t)

)]

(
T ∗ − T (t)

)
+ (γ + μ)

(
R1
0 − 1

)
I (t).

When the basic reproduction number satisfies R1
0 ≤ 1,

we can obtain dL1(t)
dt ≤ 0 for all I (t) ≥ 0 in Ω1.

Furthermore, the equation dL1(t)
dt = 0 holds if and

only if S(t) = S0, H(t) = H0 and I (t) = I 0.
Namely, singleton {E0} is the largest compact invariant
set which is contained in the set {(S(t), H(t), I (t)) ∈
R3+
∣∣ dL1(t)

dt = 0}. Based on the LaSalle Invariance Prin-
ciple, the disease-free equilibrium point E0 of system
(2.1) is globally asymptotically stable if R1

0 ≤ 1. �	
Theorem 4 For any τ ≥ 0, the endemic equilibrium
point E∗ of system (2.4) is locally asymptotically stable
if R1

0 > 1.

Proof The Jacobian matrix J (E∗) of system (2.4) at
the endemic equilibrium point E∗ is

⎡
⎢⎢⎢⎢⎢⎣

−β1k
I ∗

a + I ∗ − μ 0 −β1kS∗ a

(a + I ∗)2
e−λτ

0 −β2k
I ∗

a + I ∗ − μ −β2kH∗ a

(a + I ∗)2
e−λτ

β1k
I ∗

a + I ∗ β2k
I ∗

a + I ∗ (β1S∗ + β2H∗)k a

(a + I ∗)2
e−λτ −(γ + μ)

⎤
⎥⎥⎥⎥⎥⎦

.

By calculation, the characteristic equation of J (E∗) is
equivalent to

λ3 + n1λ
2 + n2λ + n3

+e−λτ (n4λ
2 + n5λ + n6) = 0, (2.14)

where

n1 = (β1 + β2)k
I ∗

a + I ∗ + 3μ + γ > 0,

n2 =
(
β1k

I ∗

a + I ∗ + μ
)(

β2k
I ∗

a + I ∗ + μ
)

+
(
(β1 + β2)k

I ∗

a + I ∗ + 2μ
)
(γ + μ)>0,

n3 =
(
β1k

I ∗

a + I ∗ + μ
)(

β2k
I ∗

a + I ∗ + μ
)

· (γ + μ) > 0,

n4 = − (β1S
∗ + β2H

∗)k a

(a + I ∗)2
< 0,

n5 = (β2
1 S

∗ + β2
2H

∗)k2 aI ∗

(a + I ∗)3

− (β1S
∗ + β2H

∗)k
a

(a + I ∗)2
(
(β1 + β2)k

I ∗

a + I ∗ + 2μ
)

= − β1β2(S
∗ + H∗)k2 aI ∗

(a + I ∗)3

− 2μ(β1S
∗ + β2H

∗)k a

(a + I ∗)2
< 0,

n6 = k
2 aI ∗

(a + I ∗)3

[
β2
1 S

∗(β2k
I ∗

a + I ∗ + μ
)

+ β2
2H

∗(β1k
I ∗

a + I ∗ + μ
)]

− (β1S
∗ + β2H

∗)k a

(a + I ∗)2(
β1k

I ∗

a + I ∗ + μ
)(

β2k
I ∗

a + I ∗ + μ
)

= − μk
2 aI ∗

(a + I ∗)3
β1β2(S

∗ + H∗)

− μ2(β1S
∗ + β2H

∗)k a

(a + I ∗)2
< 0.

(I) When τ = 0, the characteristic equation (2.14)
at E∗ can be degenerated into the form

λ3 + c1λ
2 + c2λ + c3 = 0, (2.15)
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where

c1 = (β1 + β2)k
I ∗

a + I ∗ + 3μ + γ

− (β1S
∗ + β2H

∗)k a

(a + I ∗)2
,

c2 =
(
β1k

I ∗

a + I ∗ + μ
)(

β2k
I ∗

a + I ∗ + μ
)

+ (β2
1 S

∗ + β2
2H

∗)k2 aI ∗

(a + I ∗)3

+
(

− (β1S
∗ + β2H

∗)k a

(a + I ∗)2
+ γ + μ

)

(
(β1 + β2)k

I ∗

a + I ∗ + 2μ
)
,

c3 =
(
β1k

I ∗

a + I ∗ + μ
)(

β2k
I ∗

a + I ∗ + μ
)

(
−(β1S

∗ + β2H
∗)k a

(a + I ∗)2
+ γ +μ

)

+ k
2 aI ∗

(a + I ∗)3

[
β2
1 S

∗(β2k
I ∗

a + I ∗ + μ
)

+ β2
2H

∗(β1k
I ∗

a + I ∗ + μ
)]

.

Pay attention to the identical equation

γ + μ = (β1S
∗ + β2H

∗)k 1

a + I ∗ . (2.16)

Therefore, we can find that coefficients c1, c2 and c3 of
the equation (2.15) are all positive. Then, make some
calculations in the following

Δ1 = c1 > 0,

Δ2 =
∣∣∣∣
c1 1
c3 c2

∣∣∣∣ = c1c2 − c3

>
(
β1 + β2)k

I ∗

a + I ∗ + 2μ
)

(β2
1 S

∗ + β2
2H

∗)k2 aI ∗

(a + I ∗)3

+
(
μ + γ − (β1S

∗ + β2H
∗)k a

(a + I ∗)2
)

·
(
β1k

I ∗

a + I ∗ + μ
)(

β2k
I ∗

a + I ∗ + μ
)

−
(
β1k

I ∗

a + I ∗ + μ
)(

β2k
I ∗

a + I ∗ + μ
)

·
(

− (β1S
∗ + β2H

∗)k a

(a + I ∗)2
+ γ + μ

)

− k
2 aI ∗

(a + I ∗)3

[
β2
1 S

∗(β2k
I ∗

a + I ∗ + μ
)

+ β2
2H

∗(β1k
I ∗

a + I ∗ + μ
)]

= k
2 aI ∗

(a + I ∗)3
[
β2
1 S

∗(β1k
I ∗

a + I ∗ + μ
)

+ β2
2H

∗(β2k
I ∗

a + I ∗ + μ
)]

> 0,

Δ3 = c3Δ2 > 0.

According to the Hurwitz criterion, it can be proved
that the endemic equilibrium point E∗ of system (2.4)
is locally asymptotically stable in the case of τ = 0
when R1

0 > 1.
(II) When τ > 0, we make efforts to study the influ-

ence of time delay on the stability of system (2.4) at E∗.
Once system (2.4) generates instability for a specific
delay τ , there exists a characteristic root of equation
(2.14) which must cross the imaginary axis. Assume
that λ = iξ (ξ > 0) is a solution of the equation (2.14),
which meets the following form

−iξ3 − n1ξ
2 + in2ξ + n3 +

(
cos(ξτ ) − i sin(ξτ )

)

(−n4ξ
2 + in5ξ + n6) = 0. (2.17)

By separating the real and imaginary parts of the equa-
tion (2.17), we derive

{
n5ξ cos(ξτ ) + (n4ξ2 − n6) sin(ξτ ) = ξ3 − n2ξ,

(n6 − n4ξ2) cos(ξτ ) + n5ξ sin(ξτ ) = n1ξ2 − n3.

(2.18)

After eliminating τ in (2.18), it follows that

ξ6 + (n21 − 2n2 − n24)ξ
4 + (n22 − 2n1n3 − n25

+2n4n6)ξ
2 + n23 − n26 = 0. (2.19)

Letting z = ξ2, we can rewrite (2.19) as an equation
about z in the following

z3 + n21z
2 + n22z + n23 = 0, (2.20)

where n21 = n21 −2n2 −n24, n22 = n22 −2n1n3 −n25 +
2n4n6 and n23 = n23 − n26.

Further, we are devoted to analyzing the property of
coefficients n21, n22 and n23. It’s easy to find n23 =
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(n3 + n6)(n3 − n6) > 0 because

n3 + n6 =
(
β1k

I ∗

a + I ∗ + μ
)(

β2k
I ∗

a + I ∗ + μ
)
(γ + μ)

+ k
2 aI ∗

(a + I ∗)3

[
β2
1 S

∗(β2k
I ∗

a + I ∗ + μ
)

+ β2
2H

∗(β1k
I ∗

a + I ∗ + μ
)]

− (β1S
∗ + β2H

∗)k a

(a + I ∗)2(
β1k

I ∗

a + I ∗ + μ
)(

β2k
I ∗

a + I ∗ + μ
)

=
(
β1k

I ∗

a + I ∗ + μ
)(

β2k
I ∗

a + I ∗ + μ
)

·
[
γ + μ − (β1S

∗ + β2H
∗)k a

(a + I ∗)2

]

+ k
2 aI ∗

(a + I ∗)3

[
β2
1 S

∗(β2k
I ∗

a + I ∗ + μ
)

+ β2
2H

∗(β1k
I ∗

a + I ∗ + μ
)]

> 0.

Together with the identical equation (2.16), it’s avail-
able that

n21 = n21 − 2n2 − n24 = (n1 + n4)(n1 − n4) − 2n2

=
(

(β1 + β2)k
I ∗

a + I ∗ + 2μ + μ + γ

− (β1S
∗ + β2H

∗)k a

(a + I ∗)2

)

·
(

(β1 + β2)k
I ∗

a + I ∗ + 2μ + μ + γ

+ (β1S
∗ + β2H

∗)k a

(a + I ∗)2

)

− 2
(
β1k

I ∗

a + I ∗ + μ
)(

β2k
I ∗

a + I ∗ + μ
)

− 2
(
(β1 + β2)k

I ∗

a + I ∗ + 2μ
)
(γ + μ)

=
(
β1k

I ∗

a + I ∗ + μ
)2 +

(
β2k

I ∗

a + I ∗ + μ
)2

+
(
(β1S

∗ + β2H
∗)k
)2

[( 1

a + I ∗
)2 −

( a

(a + I ∗)2
)2]

> 0.

And

n22 = n22 − 2n1n3 − n25 + 2n4n6

=
[(

β1k
I ∗

a + I ∗ + μ
)(

β2k
I ∗

a + I ∗

+ μ
)

+
(
(β1 + β2)k

I ∗

a + I ∗ + 2μ
)
(γ + μ)

]2

− 2
(
(β1 + β2)k

I ∗

a + I ∗ + 2μ + μ + γ
)

(
β1k

I ∗

a + I ∗ + μ
)

·
(
β2k

I ∗

a + I ∗ + μ
)
(γ + μ)

−
[
β1β2(S

∗ + H∗)k2 aI ∗

(a + I ∗)3

+ 2μ(β1S
∗ + β2H

∗)k a

(a + I ∗)2

]2

+ 2(β1S
∗+ β2H

∗)k a

(a + I ∗)2[
μk

2 aI ∗

(a + I ∗)3
β1β2(S

∗+H∗)

+ μ2(β1S
∗+β2H

∗)k a

(a + I ∗)2

]

=
[(

β1k
I ∗

a + I ∗ + μ
)(

β2k
I ∗

a + I ∗ + μ
)]2

+
[(

β1k
I ∗

a + I ∗ + μ
)2

+
(
β2k

I ∗

a + I ∗ + μ
)2]

(γ + μ)2

− β2
1β

2
2 (S

∗ + H∗)2k4 a2 I ∗2

(a + I ∗)6

− 2μ2(β1S
∗ + β2H

∗)2k2 a2

(a + I ∗)4

− 2μβ1β2(S
∗ + H∗)(β1S

∗ + β2H
∗)k3 a2 I ∗

(a + I ∗)5

=
[(

β1k
I ∗

a + I ∗ + μ
)(

β2k
I ∗

a + I ∗ + μ
)]2

+
[
β2
1k

2 I ∗2

(a + I ∗)2
+ 2μ(β1 + β2)k

I ∗

a + I ∗

+ β2
2k

2 I ∗2

(a + I ∗)2
+ 2μ2

]

· (β1S
∗ + β2H

∗)2k2 1

(a + I ∗)2
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− β2
1β

2
2 (S

∗ + H∗)2k4 a2 I ∗2

(a + I ∗)6

− 2μ2(β1S
∗ + β2H

∗)2k2 a2

(a + I ∗)4

− 2μβ1β2(S
∗ + H∗)(β1S

∗ + β2H
∗)k3 a2 I ∗

(a + I ∗)5

>

[(
β1k

I ∗

a + I ∗ + μ
)(

β2k
I ∗

a + I ∗ + μ
)]2

+ 2μ2(β1S
∗ + β2H

∗)2k2 1

(a + I ∗)2

×
(
1 − a2

(a + I ∗)2

)

+ 2μ(β1S
∗ + β2H

∗)k3 I ∗

(a + I ∗)3
(β2

1 S
∗ + β2

2H
∗)

+
(
2β3

1β2S
∗H∗ + 2β1β

3
2 S

∗H∗)k4 I ∗2

(a + I ∗)4
>0.

Therefore, we prove that n21, n22 and n23 are all
positive. Define h(z) = z3 + n21z2 + n22z + n23 and
note h(z) > 0 for ∀z > 0. The equation (2.20) has no
positive roots z, which implies that there are no real
roots ξ satisfying the equation (2.17). As a result, it
can be concluded that the endemic equilibrium point
E∗ of system (2.4) is locally asymptotically stable for
∀τ > 0 in the condition of R1

0 > 1. �	

3 Disease transmission in heterogeneous networks

In this section, when the network is from homogeneous
to heterogeneous, we propose and analyze the corre-
sponding epidemic model which possesses the same
modeling mechanism as that in the above section.

3.1 Model description

Compared with homogeneous networks, the network
with a heterogeneous topology is closer to social net-
work in the real world accurately, whichmotivates us to
take the heterogeneity of contact between individuals
into account. As a result, we make efforts to study dis-
ease transmission in heterogeneous networks in which
nodes with the same degree are regarded as equiva-
lents. Suppose that the network which we consider is
uncorrelated. Denote the densities of the subhealthy,
healthy, infected and recovered nodes with degree k

(k = 1, 2, . . . , n) at time t as Sk(t), Hk(t), Ik(t) and
Rk(t), respectively. The SHIR epidemic model in het-
erogeneous networks is under the framework of the
following coupled system:

dSk(t)

dt
= b1

(
1 − Sk(t) − Hk(t) − Ik(t) − Rk(t)

)

−β1kSk(t)
Θ(t − τ)

a + Θ(t − τ)
− μSk(t),

dHk(t)

dt
= b2

(
1 − Sk(t) − Hk(t) − Ik(t) − Rk(t)

)

−β2kHk(t)
Θ(t − τ)

a + Θ(t − τ)
− μHk(t),

dIk(t)

dt
= β1kSk(t)

Θ(t − τ)

a + Θ(t − τ)

+β2kHk(t)
Θ(t − τ)

a + Θ(t − τ)
−γ Ik(t)−μIk(t),

dRk(t)

dt
= γ Ik(t) − μRk(t). (3.1)

Here bi (1 − Sk(t) − Hk(t) − Ik(t) − Rk(t)) (i =
1, 2) represents the density of newborn susceptible
individuals coming from empty nodes. The defini-
tions of all parameters in system (3.1) are same
with that in systems (1.1) and (2.1). Most impor-
tant of all, by introducing the psychological fac-
tor a, we significantly adopt a nonlinear incidence
rate β1kSk(t)

Θ(t)
a+Θ(t) or β2kHk(t)

Θ(t)
a+Θ(t) to character-

ize the validity of protective measures taken by the
subhealthy or healthy individuals. Furthermore, two
susceptible groups need some time to be infected
in the spreading process of disease. The considera-
tion of delayed nonlinear incidence rate makes this
epidemic model more reasonable and practical. The
initial conditions

{
(Sk(ϑ), Hk(ϑ), Ik(ϑ), Rk(ϑ))

}
k ={

(ϕk1(ϑ), ϕk2(ϑ), ϕk3(ϑ), ϕk4(ϑ))
}
k for system (3.1)

satisfy

ϕki (ϑ) ≥ 0, 0 <

4∑
i=1

ϕki (ϑ) ≤ 1, ϑ ∈ [−τ, 0],

ϕki (0) > 0 (i = 1, 2, 3, 4),

(3.2)

where
{
(ϕk1, ϕk2, ϕk3, ϕk4)

}
k ∈ C([−τ, 0], R4n+ )

which is the Banach space of continuous functions

mapping the interval [−τ, 0] into R4n+ =
{{

(xk1, xk2,

xk3, xk4)
}
k ∈ R4n : xki ≥ 0, i = 1, 2, 3, 4

}
.

The density of total population with degree k at time
t is expressed by Tk(t) = Sk(t)+Hk(t)+ Ik(t)+Rk(t).
Taking the sum of all 4n equations in system (3.1), we
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get

dTk(t)

dt
= b1 + b2 − (b1 + b2 + μ)Tk(t),

k = 1, 2, . . . , n.

Further, define T ∗
k = lim

t→∞ Tk(t) = b1+b2
b1+b2+μ

. Then,

system (3.1) can be transformed into the limit system
as follows:

dSk(t)

dt
= b1

(
1 − T ∗

k

)

−β1kSk(t)
Θ(t − τ)

a + Θ(t − τ)
− μSk(t),

dHk(t)

dt
= b2

(
1 − T ∗

k

)

−β2kHk(t)
Θ(t − τ)

a + Θ(t − τ)
− μHk(t),

dIk(t)

dt
= β1kSk(t)

Θ(t − τ)

a + Θ(t − τ)

+β2kHk(t)
Θ(t − τ)

a + Θ(t − τ)

−γ Ik(t) − μIk(t),
dRk(t)

dt
= γ Ik(t) − μRk(t). (3.3)

It can be noticed that the variable Rk(t) doesn’t affect
values of Sk(t), Hk(t) and Ik(t) in the above system.
Moreover, the limit system (3.3) is further reduced to
the following form:

dSk(t)

dt
= b1

(
1 − T ∗

k

)

−β1kSk(t)
Θ(t − τ)

a + Θ(t − τ)
− μSk(t),

dHk(t)

dt
= b2

(
1 − T ∗

k

)

−β2kHk(t)
Θ(t − τ)

a + Θ(t − τ)
− μHk(t),

dIk(t)

dt
= β1kSk(t)

Θ(t − τ)

a + Θ(t − τ)

+β2kHk(t)
Θ(t − τ)

a + Θ(t − τ)

−γ Ik(t) − μIk(t). (3.4)

In consequence, the subsystem (3.4) of the limit sys-
tem (3.3) facilitates us to investigate dynamical behav-
ior of system (3.1) sufficiently.

3.2 Basic properties of solutions

Lemma 3 For system (3.3) with the initial conditions
(3.2), there exists a unique solution

{
(Sk(t), Hk(t),

Ik(t), Rk(t))
}
k globally for t ∈ [0,∞).

Proof Here, we intend to omit the specific proof which
is similar to that of Lemma 1. �	
Lemma 4 For system (3.3) with the initial conditions
(3.2), a invariant set contained in the nonnegative cone
R4n+ is as follows

Ω2 =
{{(

Sk , Hk , Ik , Rk
)}

k
∈ R4n+

∣∣∣0 ≤ Sk ≤ S0k , 0 ≤ Hk ≤ H0
k ,

0 ≤ Sk + Hk + Ik + Rk ≤ T ∗
k , k = 1, 2, . . . , n

}
.

Proof The detailed proof is omitted since it has a cer-
tain similarity to that of Lemma 2. �	

3.3 The basic reproduction number and equilibrium
points

Theorem 5 For any feasible parameters, the basic
reproduction number of the infection is R2

0 =
(b1β1 + b2β2)k2

a(b1 + b2 + μ)(γ + μ)k
. System (3.4) always admits

adisease-free equilibriumpoint E0 = {
(S0k , H

0
k , I 0k )

}
k .

There is a unique endemic equilibrium point E∗ ={
(S∗

k , H
∗
k , I ∗

k )
}
k of system (3.4) when the basic repro-

duction number R2
0 > 1.

Proof It’s easily observed that system (3.4) always has
a disease-free equilibrium point

E0 = (S01 , H
0
1 , I 01 , . . . , S0k , H

0
k , I 0k , . . . , S0n , H

0
n , I 0n )

=
(

b1
b1 + b2 + μ

,
b2

b1 + b2 + μ
, 0, . . . ,

b1
b1 + b2 + μ

,
b2

b1 + b2 + μ
, 0, . . . ,

b1
b1 + b2 + μ

,
b2

b1 + b2 + μ
, 0

)
,

which implies all of infected and recovered individuals
finally degenerate into the susceptible state including
the subhealthy and healthy. In addition, the endemic
equilibrium point E∗ satisfies the following equations

123



1096 G. Guan, Z. Guo

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b1
(
1 − T ∗

k

)
− β1kS∗

k
Θ∗

a + Θ∗ − μS∗
k = 0,

b2
(
1 − T ∗

k

)
− β2kH∗

k
Θ∗

a + Θ∗ − μH∗
k = 0,

β1kS∗
k

Θ∗

a + Θ∗ + β2kH∗
k

Θ∗

a + Θ∗ − γ I ∗
k − μI ∗

k = 0,

where Θ∗ =
n∑

k=1

kp(k)I ∗
k

k
. Further, the positive solu-

tion of the above equations is calculated as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗
k = b1μ(a + Θ∗)

(b1 + b2 + μ)
(
β1kΘ∗ + μ(a + Θ∗)

) ,

H∗
k = b2μ(a + Θ∗)

(b1 + b2 + μ)
(
β2kΘ∗ + μ(a + Θ∗)

) ,

I ∗
k =

kΘ∗μ
[
β1b1

(
β2kΘ∗ + μ(a + Θ∗)

)
+ β2b2

(
β1kΘ∗ + μ(a + Θ∗)

)]

(b1 + b2 + μ)(γ + μ)
(
β1kΘ∗ + μ(a + Θ∗)

)(
β2kΘ∗ + μ(a + Θ∗)

) .

(3.5)

Inserting the expression of I ∗
k (t) into Θ∗, we derive a

self-consistent equation about Θ∗, namely

Θ∗ =
∑

k′

k
′
p(k

′
)

k

k
′
Θ∗μ

[
β1b1

(
β2k

′
Θ∗ + μ(a + Θ∗)

)
+ β2b2

(
β1k

′
Θ∗ + μ(a + Θ∗)

)]

(b1 + b2 + μ)(γ + μ)
(
β1k

′
Θ∗ + μ(a + Θ∗)

)(
β2k

′
Θ∗ + μ(a + Θ∗)

)

=
∑

k′

μk
′2 p(k

′
)Θ∗

[
β1b1

(
β2k

′
Θ∗ + μ(a + Θ∗)

)
+ β2b2

(
β1k

′
Θ∗ + μ(a + Θ∗)

)]

(b1 + b2 + μ)(γ + μ)k
(
β1k

′
Θ∗ + μ(a + Θ∗)

)(
β2k

′
Θ∗ + μ(a + Θ∗)

) .

(3.6)

The above equation (3.6) can be transformed into
Θ∗ f (Θ∗) = 0 by defining

f (Θ∗) =
∑

k′

μk
′2 p(k

′
)

(b1 + b2 + μ)(γ + μ)k

v1Θ
∗ + v2

v3Θ∗2 + v4Θ∗ + v5
− 1,

where

v1 = (b1 + b2)β1β2k
′ + (β1b1 + β2b2)μ,

v2 = (β1b1 + β2b2)aμ,

v3 = β1β2k
′2 + (β1 + β2)μk

′ + μ2,

v4 = (β1 + β2)aμk
′ + 2aμ2,

v5 = a2μ2.

Bycalculation,wehave f (0)= (b1β1 + b2β2)k2

a(b1+b2+μ)(γ +μ)k
−1where k2 is defined by

∑n
k=1 k

2 p(k). Besides, there
exists the following inequality

f (1) =
∑

k′

k
′
p(k

′
)

k

μk
′ [

β1
b1

b1+b2+μ

(
β2k

′ + μ(a + 1)
)

+ β2
b2

b1+b2+μ

(
β1k

′ + μ(a + 1)
)]

(γ + μ)
(
β1k

′ + μ(a + 1)
)(

β2k
′ + μ(a + 1)

) − 1

=
∑

k′

k
′
p(k

′
)

k

μ

γ + μ

b1+b2
b1+b2+μ

β1β2k
′2 +

(
b1

b1+b2+μ
β1 + b2

b1+b2+μ
β2

)
k

′
μ(a + 1)

β1β2k
′2 + (β1 + β2)k

′
μ(a + 1) + μ2(a + 1)2

− 1 < 0.

(3.7)
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In addition, we figure out

d f (Θ∗)
dΘ∗ =

∑

k′

μk
′2 p(k

′
)

(b1 + b2 + μ)(γ + μ)k

−v1v3Θ
∗2 − 2v2v3Θ∗ + v1v5 − v2v4

(v3Θ∗2 + v4Θ∗ + v5)2
.

Since system parameters are positive, it’s verified that
v1v5 − v2v4 < 0. As a result, we derive d f (Θ∗)

dΘ∗ < 0
for Θ∗ > 0. To ensure that f (Θ∗) = 0 has a

non-trivial solution Θ∗ ∈ (0, 1) , f (Θ∗) needs to
satisfy the inequation f (0) > 0. Therefore, the basic
reproduction number of the infection is expressed by

R2
0 = (b1β1 + b2β2)k2

a(b1 + b2 + μ)(γ + μ)k
. (3.8)

In conclusion, only if the condition R2
0 > 1 is satisfied,

system (3.4) admits a unique endemic equilibriumpoint
E∗ = {

(S∗
k , H

∗
k , I ∗

k )
}
k in heterogeneous networks. �	

3.4 Stability analysis

Theorem 6 For any τ ≥ 0, the disease-free equilib-
rium point E0 of system (3.4) is locally asymptotically
stable if R2

0 < 1 and unstable if R2
0 > 1.

Proof To study the local stability of system (3.4) at E0,
we are aimed at deriving the linear system which is a
good approximation to the nonlinear system (3.4). The
linear dynamical system is expressed as
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dSk(t)

dt
= −β1kS0k

a
Θ(t − τ) − μSk(t),

dHk(t)

dt
= −β2kH0

k

a
Θ(t − τ) − μHk(t),

dIk(t)

dt
= (β1S0k + β2H0

k )

a
kΘ(t − τ)

−(γ + μ)Ik(t).

(3.9)

Correspondingly, the Jacobian matrix J (E0) is a 3n ×
3n matrix with the form of

J (E0) =
⎡
⎣
J11 0 J13
0 J22 J23
0 0 J33

⎤
⎦ ,

where

J11 = J22 =

⎡
⎢⎢⎢⎣

−μ 0 . . . 0
0 −μ . . . 0
...

...
. . .

...

0 0 . . . −μ

⎤
⎥⎥⎥⎦ ,

and J33 has the following form

⎡
⎢⎢⎢⎢⎢⎢⎣

(β1S01+β2H0
1 )1·1p(1)

ak
e−λτ −(γ +μ)

(β1S01+β2H0
1 )1·2p(2)

ak
e−λτ . . .

(β1S01+β2H0
1 )1·np(n)

ak
e−λτ

(β1S02+β2H0
2 )2·1p(1)

ak
e−λτ (β1S02+β2H0

2 )2·2p(2)
ak

e−λτ −(γ +μ) . . .
(β1S02+β2H0

2 )2·np(n)

ak
e−λτ

...
...

. . .
...

(β1S0n+β2H0
n )n·1p(1)

ak
e−λτ (β1S0n+β2H0

n )n·2p(2)
ak

e−λτ . . .
(β1S0n+β2H0

n )n·np(n)

ak
e−λτ −(γ +μ)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then, we can obtain the characteristic equation of the
above Jacobian matrix J (E0)

(λ + μ)2n(λ + γ + μ)n−1

⎛
⎝λ + γ + μ −

n∑
k=1

(
β1S

0
k + β2H

0
k

)
k2 p(k)

ak
e−λτ

⎞
⎠ = 0.

(3.10)

As mentioned above, the characteristic equation (3.10)
has 2n eigenvalues equal to −μ. In addition, n − 1
negative roots of the equation (3.10) are calculated as
−(γ + μ). The remaining eigenvalue of matrix J (E0)

satisfies the following equation

G(λ) = λ + γ + μ

−
n∑

k=1

(
β1S0k + β2H0

k

)
k2 p(k)

ak
e−λτ

= λ − (γ + μ)(R2
0e

−λτ − 1) = 0. (3.11)

(I) In the case of R2
0 < 1, we wonder whether the

eigenvalue λ can get to the imaginary axis in the plane
or not. Suppose first that Reλ ≥ 0. From the equation
(3.11), we take advantage of Euler’s formula and derive
the following result

Reλ = (γ + μ)
(
R2
0e

−Reλτ cos(Imλτ) − 1
)

< (γ + μ)(R2
0 − 1) < 0,

which contradicts the assumption apparently. Now, it’s
evidenced that all roots of the characteristic equa-
tion (3.10) have negative real part. For any τ ≥ 0,
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we demonstrate that the disease-free equilibrium point
E0 of system (3.4) is locally asymptotically stable if
R2
0 < 1.
(II) In the case of R2

0 > 1, it’s easy to make a calcu-
lation
dG(λ)

dλ
= 1 + (γ + μ)R2

0τe
−λτ > 0.

Taking notice of G(0) = −(γ + μ)(R2
0 − 1) < 0 and

lim
λ→+∞G(λ) = +∞, we can infer that there is at least

one positive real root of the equation G(λ) = 0.
From the above discussion, it can be concluded that

the disease-free equilibrium point E0 is locally asymp-
totically stable for ∀τ ≥ 0 if R2

0 < 1 and unstable if
R2
0 > 1. �	

Theorem 7 For any τ ≥ 0, the disease-free equilib-
rium point E0 of system (3.1) is globally asymptotically
stable when R2

0 ≤ 1.

Proof In the invariant set Ω2, the Lyapunov function
L2(t) is constructed as

L2(t) = L21(t) + L22(t), (3.12)

where

L21(t) =
n∑

k=1

kp(k)

ak

[(
Sk(t) − S0k − S0k ln

Sk(t)

S0k

)

+
(
Hk(t) − H0

k − H0
k ln

Hk(t)

H0
k

)
+ Ik(t)

]
,

L22(t) =
t∫

t−τ

(γ + μ)
Θ(x)

a + Θ(x)
dx .

(3.13)

Figure out the derivative of L21(t) along the trajectories
of system (3.1)

dL21(t)

dt

∣∣∣∣
(3.1)

=
n∑

k=1

kp(k)

ak

[(
1 − S0

Sk(t)

)
dSk(t)

dt

+
(
1 − H0

Hk(t)

)
dHk(t)

dt
+ dIk(t)

dt

]

=
n∑

k=1

kp(k)

ak

(
1 − S0

Sk(t)

)[
b1
(
1 − Tk(t)

)

−β1kSk(t)
Θ(t − τ)

a + Θ(t − τ)
− μSk(t)

]

+
n∑

k=1

kp(k)

ak

(
1 − H0

Hk(t)

)[
b2
(
1 − Tk(t)

)

−β2kHk(t)
Θ(t − τ)

a + Θ(t − τ)
−μHk(t)

]

+
n∑

k=1

kp(k)

ak

[
β1kSk(t)

Θ(t − τ)

a + Θ(t − τ)

+β2kHk(t)
Θ(t − τ)

a + Θ(t − τ)
−(γ + μ)Ik(t)

]

= −μ

n∑
k=1

kp(k)

ak

(
Sk(t) − S0k

)2

Sk(t)

+ b1

n∑
k=1

kp(k)

ak

(
1 − S0k

Sk(t)

)(
S0k − Tk(t)

)

− μ

n∑
k=1

kp(k)

ak

(
Hk(t) − H0

k

)2

Hk(t)

+ b2

n∑
k=1

kp(k)

ak

(
1 − H0

k

Hk(t)

)(
H0
k − Tk(t)

)

+ b2

n∑
k=1

kp(k)

ak
S0k

(
1 − S0k

Sk(t)

)

+ b1

n∑
k=1

kp(k)

ak
H0
k

(
1 − H0

k

Hk(t)

)

+
n∑

k=1

kp(k)

ak

[
−Sk(t)

(
1 − S0k

Sk(t)

)
+ Sk(t)

]

β1k
Θ(t − τ)

a + Θ(t − τ)

+
n∑

k=1

kp(k)

ak

[
−Hk(t)

(
1 − H0

k

Hk(t)

)
+ Hk(t)

]

β2k
Θ(t − τ)

a + Θ(t − τ)
−

n∑
k=1

kp(k)

ak
(γ + μ)Ik(t)

= −μ

n∑
k=1

kp(k)

ak

(
Sk(t) − S0k

)2

Sk(t)

− μ

n∑
k=1

kp(k)

ak

(
Hk(t) − H0

k

)2

Hk(t)

+ b1

n∑
k=1

kp(k)

ak

(
1 − S0k

Sk(t)

)(
S0k + H0

k − Tk(t)
)
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+ b2

n∑
k=1

kp(k)

ak

(
1 − H0

k

Hk(t)

)(
H0
k + S0k − Tk(t)

)

+
n∑

k=1

kp(k)

ak

(
β1S

0
k + β2H

0
k

)
k

Θ(t − τ)

a + Θ(t − τ)
− (γ + μ)

Θ(t)

a
.

Similarly, we have

dL22(t)

dt

∣∣∣∣
(3.1)

= (γ + μ)
Θ(t)

a + Θ(t)
− (γ + μ)

Θ(t − τ)

a + Θ(t − τ)
.

Hence, the derivative of L2(t) along the trajectories of
system (3.1) is as follows

dL2(t)

dt

∣∣∣∣
(3.1)

= dL21(t)

dt

∣∣∣∣
(3.1)

+ dL22(t)

dt

∣∣∣∣
(3.1)

≤ −μ

n∑
k=1

kp(k)

ak

(
Sk(t) − S0k

)2

Sk(t)

− μ

n∑
k=1

kp(k)

ak

(
Hk(t) − H0

k

)2

Hk(t)

+ b1

n∑
k=1

kp(k)

ak

(
1 − S0k

Sk(t)

)(
T ∗
k − Tk(t)

)

+ b2

n∑
k=1

kp(k)

ak

(
1 − H0

k

Hk(t)

)(
T ∗
k − Tk(t)

)

+
n∑

k=1

kp(k)

ak

(
β1S

0
k +β2H

0
k

)

k
Θ(t − τ)

a + Θ(t − τ)
−(γ +μ)

Θ(t − τ)

a + Θ(t − τ)

= −μ

n∑
k=1

kp(k)

ak

⎡
⎢⎣

(
Sk(t) − S0k

)2

Sk(t)

+
(
Hk(t) − H0

k

)2

Hk(t)

⎤
⎥⎦

+
n∑

k=1

kp(k)

ak

[
b1

(
1 − S0k

Sk(t)

)

+b2
(
1 − H0

k

Hk(t)

)](
T ∗
k −Tk(t)

)

+ (γ + μ)
(
R2
0 − 1

) Θ(t − τ)

a + Θ(t − τ)
.

Obviously, it’s available that dL2(t)
dt ≤ 0 in Ω2 in the

condition of R2
0 ≤ 1 . And the equation dL2(t)

dt = 0
holds if and only if Sk = S0k , Hk = H0

k and Ik = I 0k . In
otherwords, the largest compact invariant set contained

in the set
{{(

Sk(t), Hk(t), Ik(t)
)} ∈ R3n+

∣∣ dL2(t)
dt = 0

}

is the singleton {E0}. When R2
0 ≤ 1, the global asymp-

totic stability of disease-free equilibrium point E0 of
system (3.1) is proved according to the LaSalle Invari-
ance Principle. That is to say, all solution trajectories
initiating from different initial conditions arrive at the
disease-free equilibrium point E0 in the end, which
implies that the infectious disease ultimately dies out
regardless of the initial density of infected individuals
in heterogeneous networks. �	
Remark 1 From (2.6) and (3.8), it’s observed that the
basic reproduction numbers R1

0 and R2
0 depend on the

birth (death) rates, transmission coefficients, recovery
rate, psychological factor and network structure. Com-
paring the conditions for the global stability of disease-
free equilibrium points E0 and E0, we find that R2

0 ≤ 1
is harder to be satisfied than R1

0 ≤ 1 under the same
parameters.

4 Numerical simulations

In this section, numerical simulations are carried out to
illustrate analytical results obtained above. Besides, we
also attempt to complement dynamics of the SHIR epi-
demic model with time delay. More precisely, system
(2.4) is used as the object for simulations in homo-
geneous networks. For system (3.4), the scale-free
network with p(k) ∝ 2m2k−3 is considered as the
underlying network. Here, theminimumandmaximum
degrees of nodes are, respectively, assumed to bem = 1
and n = 200.Moreover, the average degree of all nodes
is computed as k = 1.9802 in the network.
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4.1 The effect of model parameters on the basic
reproduction number

As a crucial threshold, the basic reproduction number
can determine the existence and stability of equilibrium
points of dynamical systems. Hence, we are to observe
the influence of model parameters on the basic repro-
duction number. Firstly, we focus on presenting the
influence of average degree k and psychological fac-
tor a on R1

0 in homogeneous networks together. Model
parameters are chosen as b1 = 0.06, b2 = 0.09, β1 =
0.35, β2 = 0.28, γ = 0.8, μ = 0.5, a ∈ [0.1, 1] and
k ∈ [0.1, 60]. As Fig. 1 displays, different color cod-
ings characterize different values of basic reproduction
number R1

0 vividly. It can be observed that R
1
0 increases

as k increases or a decreases. This result suggests that
the epidemic situation becomes more severe when an
individual has the greater average number of neighbors
in the social network. Nevertheless, good psycholog-
ical quality of the public facing the epidemic can be
beneficial to reduce the transmission of infectious dis-
ease. In addition, when the transmission rate β1 or β2

gets larger, the basic reproduction number R2
0 becomes

larger, which implies reducing the transmission rate
from the subhealthy or healthy to infected individuals
can weaken the spread of disease. With the increase of
psychological factor, recovery or death rate, the basic
reproduction number R2

0 decreases gradually. Besides,
the heterogeneity of underlying network expressed by
k2/k contributes to R2

0, which reveals the decline of
heterogeneity is conductive to eradicating the disease
propagation. The influence of network heterogeneity
on R2

0 can also be observed by replacing k with k2/k
in the abscissa of Fig. 1. In Fig. 2a, set the follow-
ing parameters β1 = 0.5, β2 = 0.05, a = 0.86, γ =
0.77, μ = 0.55, b1 ∈ [0, 1] and b2 ∈ [0, 1]. Under the
given parameters, the larger b2 is, the smaller R2

0 is.
Similarly, the larger β1 or b1 can result in the growth of
R2
0, as shown in Fig. 2b, which implies a higher birth

rate of subhealthy individuals makes the disease easier
to spread.

4.2 Dynamical behavior of system (2.4) in
homogeneous networks

Consider system (2.4) with parameters b1 = 0.5, b2 =
0.53, β1 = 0.6, β2 = 0.3, a = 0.9, γ = 0.72, μ =
0.8, τ = 2 and the initial conditions S(0) = 0.1, H(0) =

Fig. 1 The value of R1
0 as a function of k and a in homogeneous

networks

0.22, I (0) = 0.08. By calculation, the basic reproduc-
tion number is R1

0 = 0.3631 < 1. Figure 3 depicts
the changing trend of mean densities of subhealthy
and infected nodes with the elapse of time. Likewise,
take parameters b1 = 0.5, b2 = 0.53, β1 = 0.6, β2 =
0.3, a = 0.9, γ = 0.32, μ = 0.42, τ = 2 and same
initial conditions. The basic reproduction number is
given by R1

0 = 0.9412 < 1. Figure 3 shows that the
mean density of subhealthy nodes stabilizes to a con-
stant state and that of infected nodes reduces to zero
gradually when R1

0 < 1, which implies the disease
wipes out at last. From Theorem 2, the disease-free
equilibrium point E0 is locally asymptotically stable,
which is in line with the observed result in Fig. 3 to
some extent.

To verify the global asymptotic stability of the
disease-free equilibrium point E0, we would like to
observe the influence of initial conditions on the spread
of disease by choosing 13 sets of different initial den-
sities of subhealthy, healthy and infected individu-
als. Besides, model parameters are taken as b1 =
0.4, b2 = 0.5, β1 = 0.82, β2 = 0.5, a = 0.6, γ =
0.92, μ = 0.55, τ = 3.5. Under this condition, the
basic reproduction number is R1

0 = 0.8950 < 1 and
the disease-free equilibrium point of system (2.4) is
E0 = (0.276, 0.345, 0). What’s more, it can be seen in
Fig. 4 that all trajectories of system (2.4) in homoge-
neous networks ultimately converge toward E0, which
is consistent with Theorem 3.

For system (2.4), choose tested parameters b1 =
0.3, b2 = 0.43, β1 = 0.5, β2 = 0.35, a = 0.32, γ =
0.8, μ = 0.2, τ = 3.3 and the initial conditions
S(0) = 0.12, H(0) = 0.16, I (0) = 0.08, for which
R1
0 = 1.9995 > 1. Then, take the following parame-
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Fig. 2 The relationship of R2
0 among b1, b2 and β1 in heterogeneous networks
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Fig. 3 Densities of S(t) and I (t) over time with R1
0 < 1 in homogeneous networks

ters b1 = 0.13, b2 = 0.22, β1 = 0.45, β2 = 0.38, a =
0.28, γ = 0.5, μ = 0.2, τ = 3.3 and figure out R1

0 =
2.2332 > 1. Furthermore, parameters b1 = 0.3, b2 =
0.42, β1 = 0.65, β2 = 0.4, a = 0.12, γ = 0.8, μ =
0.2, τ = 3.3 and the same initial conditions are again
selected. Correspondingly, R1

0 = 6.5110 > 1. Accord-
ing to Theorem 4, the endemic equilibrium point E∗ of
system (2.4) is locally asymptotically stable. As Fig.
5 displays, mean densities of subhealthy and infected

nodes are to keep on the respective positive levels when
R1
0 > 1, which illustrates the disease is persistent in

homogeneous networks. In addition, we discover the
mean density of S(t) becomes smaller while that of
I (t) gets bigger with R1

0 increasing. In other words,
the larger R1

0 gives rise to the higher level of disease
propagation, which suggests we can control the spread
of disease effectively by decreasing the basic reproduc-
tion number.
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Fig. 4 Trajectories of system (2.4) with R1
0 = 0.8950 in homo-

geneous networks

Next, numerical method is resorted to explore
dynamical behavior at the endemic equilibrium point
E∗. Set parameters as b1 = 0.32, b2 = 0.36, β1 =
0.48, β2 = 0.36, a = 0.2, γ = 0.44, μ = 0.3, τ =
1.8 in our delayed model (2.4). Accordingly, the basic
reproduction number is calculated as R1

0 = 3.8665 >

1. By choosing quantities of different initial conditions
for system (2.4), we plot curves of solutions of sys-
tem (2.4) which consist of the triplet (S(t), H(t), I (t))
over time in Fig. 6. Importantly, it can be observed that
trajectories of system (2.4) converge at the endemic
equilibrium point E0 = (0.1379, 0.1814, 0.1519) in
the end. Based on the simulation result shown in Fig.
6, we can make a conjecture with respect to the global

Fig. 6 Trajectories of system (2.4) with R1
0 = 3.8665 in homo-

geneous networks

asymptotic stability of the endemic equilibrium point
E∗ in homogeneous networks.

4.3 Dynamical behavior of system (3.4) in
heterogeneous networks

Parameters b1 = 0.24, b2 = 0.36, β1 = 0.3, β2 =
0.2, a = 0.98, γ = 0.6, μ = 0.72, τ = 3 are cho-
sen in system (3.4) to guarantee the basic reproduction
number R2

0 = 0.6632 < 1. Besides, consider system
(3.4) with the following parameters b1 = 0.24, b2 =
0.36, β1 = 0.3, β2 = 0.2, a = 0.93, γ = 0.6, μ =
0.52, τ = 3, for which R2

0 = 0.9707 < 1. Together
with the initial conditions Sk(0) = 0.12, Hk(0) =
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Fig. 5 Densities of S(t) and I (t) over time with R1
0 > 1 in homogeneous networks
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Fig. 7 Densities of H(t) and I (t) over time with R2
0 < 1 in heterogeneous networks

0.25, Ik(0) = 0.18, Fig. 7 describes the time series
of densities of healthy and infected nodes with degree
k = 80 as an example. It can be exemplified that densi-
ties of healthy and infected nodes get to the respective
steady states, specifically H80 = 0.273, I80 = 0 and
H80 = 0.321, I80 = 0. Namely, infected individuals
are no longer in existence and the disease will fade
out the social network in the end, which reflects the
observed result from Fig. 7 and agrees with Theorem
6 to some extent.

With the aim of confirming the global asymptotic
stability of E0, take parameters b1 = 0.24, b2 =
0.36, β1 = 0.3, β2 = 0.2, a = 0.7, γ = 0.8, μ =
0.6, τ = 1.5 and 11 sets of different initial condi-
tions in system (3.4). By calculation, the basic repro-
duction number is R2

0 = 0.9629 < 1 and the
disease-free equilibrium point is E0 = (S0k , H

0
k , I 0k ) =

(0.2, 0.3, 0). From Fig. 8, regardless of various initial
conditions, all solution curves composed of the triplet
(S80(t), H80(t), I80(t)) finally gather at (S080, H

0
80, I

0
80)

over time in heterogeneous networks. It’s worth noting
that we only take nodes with degree k = 80 as an
example in the network. From Fig. 8, the disease will
gradually disappear nomatter howmany initial infected
individuals there are in the social network if R2

0 < 1,
which confirms the validity of Theorem 7.

For system (3.4), consider model parameters b1 =
0.24, b2 = 0.36, β1 = 0.3, β2 = 0.1, a = 0.43, γ =

Fig. 8 Trajectories of system (3.4) with R2
0 = 0.9629 in hetero-

geneous networks

0.66, μ = 0.64, τ = 1.5 and the initial conditions
Sk(0) = 0.1, Hk(0) = 0.25, Ik(0) = 0.18 in Fig.
9a. Correspondingly, we derive the basic reproduction
number R2

0 = 1.2252 > 1. Moreover, Fig. 9b dis-
plays how densities of subhealthy, healthy and infected
nodes with k = 80 vary over time in the case of
b1 = 0.24, b2 = 0.36, β1 = 0.3, β2 = 0.2, a =
0.36, γ = 0.65, μ = 0.5, τ = 1.3, for which R2

0 =
2.4865 > 1. And the initial conditions are given by
Sk(0) = 0.2, Hk(0) = 0.1, Ik(0) = 0.12. As shown
in Fig. 9, the density of infected individuals origi-
nally increases at a rapid speed, then approaches the
peak, ultimately descends to a positive constant and
achieve stability. Meanwhile, densities of subhealthy
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Fig. 9 Evolutions of S80(t), H80(t) and I80(t) with R2
0 > 1 in heterogeneous networks

and healthy individuals have the opposite variation
trend roughly. Therefore, it’s evidential that densities
of subhealthy, healthy and infected nodes of system
(3.4) will not oscillate and keep stable when R2

0 > 1 in
heterogeneous networks.

To further replenish dynamicity of system (3.4) at
the endemic equilibrium point E∗, choose the follow-
ing set of parameters b1 = 0.2, b2 = 0.3, β1 =
0.42, β2 = 0.33, a = 0.26, γ = 0.48, μ =
0.52, τ = 2.5 and calculate the basic reproduction
number R2

0 = 5.4263 > 1. In addition, diverse ini-
tial conditions for system (3.4) are chosen at ran-
dom. Through multiple simulation experiments, taking
nodes with degree k = 80 for example, we see that Fig.
10 presents all trajectories of solutions finally set down
to (S80(t), H80(t), I80(t)). This visual result inspires
us to conjecture that the endemic equilibrium point E∗
of system (3.4) is of local or global asymptotic stability
if R2

0 > 1 in heterogeneous networks.

4.4 The effect of node degree k on disease
propagation

By changing the value of k, we try to analyze the effect
of degree k on disease propagation with fixed parame-
ters b1 = 0.24, b2 = 0.36, β1 = 0.31, β2 = 0.25, a =
0.36, γ = 0.43, μ = 0.5, τ = 3.8 and the initial con-

Fig. 10 Trajectories of system (3.4) with R2
0 = 5.4263 in het-

erogeneous networks

ditions Sk(0) = 0.2, Hk(0) = 0.1, Ik(0) = 0.2 in
system (3.4). The basic reproduction number is calcu-
lated as R2

0 = 3.5103 > 1. Figure 11 portrays evo-
lutions of healthy and infected nodes with different
k = 20, 60, 100, 140 and 180, respectively. With the
rise of k, the density of healthy individuals decreases
whereas the density of infected individuals increases.
In reality, this phenomenon shown in Fig. 11 is actually
understandable since nodes with more neighbors have
easier accesses to be infected with the disease by con-
tacting with the infected. In heterogeneous networks,
regarded as hot spots, nodes connected with quantities
of edges have major roles in propagating the disease.
This result provides us with the idea to focus on this
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Fig. 11 Evolutions of Hk(t) and Ik(t) with different k in heterogeneous networks

kind of nodes for the purpose of controlling the spread
of disease quickly and effectively.

4.5 The effect of time delay τ on disease propagation

To study the impact of time delay τ on disease propa-
gation, take the following parameters b1 = 0.13, b2 =
0.2, β1 = 0.8, β2 = 0.5, a = 0.15, γ = 0.7, μ =
0.15 and the initial conditions S(0) = 0.15, H(0) =
0.2, I (0) = 0.08 in system (2.4). Then, the basic repro-
duction number is R1

0 = 6.6007 > 1 correspondingly.
By choosing τ = 0 and 10, Fig. 12 presents the dif-
ference between the evolutions of individuals without
and with time delay. It can be observed that time delay
τ has a remarkable influence on the convergence rates
of S(t), H(t) and I (t). To be specific, once hystere-
sis exists in the infection process, more time is needed
for system (2.4) to approach the endemic steady state.
As also shown in Fig. 12, the peak of the density of
infected individuals I (t) with delay is lower than that
without delay, which implies that infection delayweak-
ens the maximum prevalence of disease. Besides, set
b1 = 0.24, b2 = 0.36, β1 = 0.31, β2 = 0.25, a =
0.9, γ = 0.86, μ = 0.5 and Sk(0) = 0.15, Hk(0) =
0.1, Ik(0) = 0.2 in system (3.4). Under this condition,
the basic reproduction number is R2

0 = 0.9602 < 1.
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Fig. 12 Trajectories of system (2.4) without and with time delay
in homogeneous networks

For different τ = 0.5, 1.5, 2.5, 3.5 and 4.5, densities of
healthy and infected individuals, respectively, converge
to the steady state H0

k = 0.327 and I 0k = 0 at last in Fig.
13. Nevertheless, system needs more time to gather to
the disease-free equilibrium point E0 with the increase
of τ . As a result, diminishing the time delay in the
process of disease propagation can make the epidemic
enter a stable situation at a faster speed. Through the
simulation, it’s shown that systems (2.4) and (3.4) pro-
duce only stable steady-state dynamics, which implies
that the time delay incorporated in nonlinear incidence
rate is harmless in our model essentially.
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Fig. 13 Evolutions of H80(t) and I80(t) with different τ in heterogeneous networks

4.6 The effect of psychological factor a on disease
propagation

As one of features of our epidemic model, psychologi-
cal factor a is introduced to constitute a nonlinear inci-
dence rate. Consider system (2.4)with parameters b1 =
0.15, b2 = 0.18, β1 = 0.52, β2 = 0.48, γ = 0.2, μ =
0.1, τ = 1.3.When the nonlinear incidence rate is con-
sidered, we take the psychological factor a = 1.3. The
initial conditions are given by S(0) = 0.15, H(0) =
0.12, I (0) = 0.1. For system (2.4) with bilinear and
nonlinear incidence rates, Fig. 14 shows the evolutions
of subhealthy, healthy and infected individuals. From
Fig. 14, the nonlinear incidence rate makes a differ-
ence to both convergence rates and steady-state val-
ues of S(t), H(t) and I (t). Moreover, the density of
infected individuals in system (2.4) with bilinear inci-
dence rate is always higher than that in system (2.4)
with nonlinear incidence rate. In addition,parameters
b1 = 0.24, b2 = 0.36, β1 = 0.31, β2 = 0.25, γ =
0.83, μ = 0.5, τ = 5 and the initial conditions
Sk(0) = 0.25, Hk(0) = 0.2, Ik(0) = 0.18 are taken
in system (3.4). Let a be 0.3, 0.5, 0.7, respectively,
and compute R2

0 = 2.8805, 1.7283, 1.2345 > 1. Note
that the basic reproduction number R2

0 decreases with
the increase of psychological factor a. From Fig. 15,
it takes longer for healthy and infected nodes with the
larger a to converge toward the respective steady states.
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Fig. 14 Trajectories of system (2.4) with bilinear and nonlinear
incidence rates in homogeneous networks

Furthermore, the positive steady level of infected indi-
viduals becomes lower when increasing a. This result
indicates that strengthening the psychological quality
of individuals in the face of serious epidemic can sup-
press the disease propagation.

4.7 The effect of network structure on disease
propagation

From the standpoint of modeling, the epidemic model
in heterogeneous networks can be regarded as the
more complex version of that in homogeneous net-
works. In other words, we are able to derive sys-
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Fig. 15 Evolutions of H80(t) and I80(t) with different a in heterogeneous networks

tem (3.1) by applying system (2.1) to heterogeneous
networks. To investigate the effect of network struc-
ture on disease propagation, we make a comparison
between homogeneous and heterogeneous networks
by selecting the same system parameters. Specifically,
b1 = 0.13, b2 = 0.11, β1 = 0.45, β2 = 0.36, a =
3, γ = 0.2, μ = 0.1, τ = 1.1. Besides, the ini-
tial conditions are given, respectively, by S(0) =
0.15, H(0) = 0.1, I (0) = 0.2 in homogeneous net-
works and Sk(0) = 0.15, Hk(0) = 0.1, Ik(0) = 0.2
in heterogeneous networks. By calculation, obtain the
basic reproduction numbers R1

0 = 0.6348 < 1 and
R2
0 = 2.5210 > 1. With the same parameters, there

exists an obvious difference in the value of basic repro-
duction number, which can be attributed to the com-
plexity of network structure. In heterogeneous net-
works, the total density of subhealthy nodes at time
t is defined as S(t) = ∑n

k=1 p(k)Sk(t). Similarly,
H(t) = ∑n

k=1 p(k)Hk(t) and I (t) = ∑n
k=1 p(k)Ik(t)

denote the total densities of healthy and infected nodes
at time t . As displayed in Fig. 16, S(t), H(t) and
I (t) converge more slowly in homogeneous networks
than that in heterogeneous networks due to R1

0 < R2
0.

Furthermore, the density of infected nodes tends to
zero in homogeneous networks while that approaches
the endemic steady state in heterogeneous networks.
Namely, even if system parameters and initial condi-
tions are same, the disease disappears eventually in
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Fig. 16 Evolutions of subhealthy, healthy and infected nodes in
both homogeneous and heterogeneous networks

homogeneous networks, whereas it still prevails in het-
erogeneous networks. This reveals that the heterogene-
ity of network is capable to exacerbate the propagation
of disease. If the heterogeneous network is divided into
several homogeneous networks, the prevalence of dis-
ease will be reduced to some extent.

5 Conclusions and discussions

Based on an SIR model with two susceptible groups
in Ref. [30], in this paper we come up with a modi-
fied SHIR epidemic model with time delay and non-
linear incidence rate in complex networks. In virtue

123



1108 G. Guan, Z. Guo

of the compartment approach, two susceptible groups
are interpreted as subhealthy and healthy individuals
in view of the difference in fitness levels which indi-
rectly affects the susceptibility of individuals to infec-
tious disease. By introducing the psychological factor
a, we adopt the nonlinear incidence rate to reflect the
behavioral changes of susceptible individuals due to the
psychological effect during the progression of disease
diffusion. Besides, time delay τ is taken into account in
the transformation process from the susceptible to the
infected, which poses a challenge to the stability analy-
sis of our network-based epidemic model. Specifically,
it’s logical for us to think about two scenarios incorpo-
rating τ = 0 and τ > 0 in studying the local asymptotic
stability of equilibrium points. Meanwhile, the con-
struction of Lyapunov function is also closely related
to the time delay when analyzing the global asymptotic
stability of equilibrium points. In addition, the topolog-
ical structure of network is considered in homogeneous
and heterogeneous networks, respectively. Some main
results of the delayedSHIRepidemicmodel in complex
networks are presented as follows.

(1) In homogeneous networks, we obtain equilib-
rium points and a positive invariant set of system based
on the mean field equations. The basic reproduction
number R1

0 of the infection is defined according to the
method of next-generation matrix. In the condition of
R1
0 < 1, we prove that the disease-free equilibrium

point E0 is both locally and globally asymptotically
stable. Furthermore, the proof of the local asymptotic
stability of E∗ is given in detail when R1

0 > 1.
(2) In heterogeneous networks, for the subsystem of

the limit system, we investigate the disease-free equi-

librium point E0 =
{(

b1
b1+b2+μ

, b2
b1+b2+μ

, 0
)}

k
and

the endemic equilibrium point E∗ =
{(
S∗
k , H

∗
k , I ∗

k

)}
k
.

The basic reproduction number R2
0 is derived on the

basis of the existence of a positive equilibrium point.
By means of linearization, we demonstrate the local
asymptotic stability of E0 if R2

0 < 1 and instability of
E0 if R2

0 > 1. Additionally, by constructing suitable
Lyapunov function, the global asymptotic stability of
E0 is also studied when R2

0 ≤ 1.
(3) To examine and complement analytical results,

quantities of numerical simulations are executedorderly.
We conduct the sensitivity analysis of model parame-
ters on the basic reproduction number. In particular,
the heterogeneity of network structure makes signifi-

cant difference in disease propagation. Then, stability
of equilibrium points in complex networks is verified
intuitively. Further, we devise several numerical exper-
iments to explore the potential dynamical behavior at
the endemic equilibrium points in both homogeneous
and heterogeneous networks. Moreover, the influence
of key parameters on disease diffusion mainly reflects
in the speed of propagation and steady-state densities
of individuals.

In fact, the study of our two-susceptibility epidemic
model with time delay and nonlinear incidence rate
lays the foundation for studying the more complicated
dynamical systemwithmultiple groups later. Driven by
the practical significance of epidemic models, we hope
to access actual data to carry out statistical research in
the future.
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