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Abstract Despite the huge relevance of vaccines for
preventing COVID-19, physical isolation and quaran-
tine of infected individuals are still the key strate-
gies to fight against the COVID-19 pandemic. Based
on a COVID-19 transmission epidemiological model
governed by ordinary differential equations, here we
propose an intermittent non-pharmacological protocol
to control the fraction of infected individuals. In our
approach, unlike what generically happens for numeri-
cal simulation models, we provide a global analysis of
the model, giving qualitative information about every
initial condition. Under some simple hypothesis and
variations of parameters, we present some bifurcations
and we are able to predict the minimum social distanc-
ing effort that do not collapse the health system.

T. Carvalho (B)
Department of Computing and Mathematics, Faculty of
Philosophy, Sciences and Letters of Ribeirão Preto, Univ.
of São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
e-mail: tiagocarvalho@usp.br

R. Cristiano · D. J. Tonon
Institute of Mathematics and Statistics, Federal University
of Goiás, Avenida Esperança s/n, Campus Samambaia,
74690-900 Goiânia, Goiás, Brazil
e-mail: rony.cristiano@ufg.br

D. J. Tonon
e-mail: djtonon@ufg.br

D. S. Rodrigues
School of Technology, University of Campinas,
R. Paschoal Marmo, 1888, 13484-332 Limeira, SP, Brazil
e-mail: diego.rodrigues@ft.unicamp.br

Keywords Piecewise smooth vector fields · Bifurca-
tions · COVID-19 · Asymptotic stability

Mathematics Subject Classification 34A36 · 34C60

1 Introduction

Shortly after the raising of atypical pneumonia cases in
Wuhan in the end of 2019, World Health Organization
(WHO) has declared the novel coronavirus (COVID-
19) outbreak a global pandemic on March 11, 2020
[1]. Since then, many different public health actions
have been taken as attempts to fight against the disease
worldwide. For now, though, in spite of the huge efforts
that have been made, no medication or drug can be
considered as a reasonable solution capable of stopping
or treating COVID-19.

Still in the pharmacological interventions, but in the
field of prevention, it is unquestionable that vaccines
certainly are great value and impact on avoiding new
infections by SARS-CoV-2, and not only on the vacci-
nated people, but possibly on wider populations, due to
the herd immunity effect [2]. However, the high levels
of requests for vaccines and their limited production
and distribution are still barriers to stopping COVID-
19 worldwide. Besides, it is not clear how long the
immunization of a given vaccine can last. Meanwhile,
non-pharmacological interventions like physical isola-
tion and quarantine of infected individuals are the best
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current alternatives to locally control COVID-19 epi-
demic outbreaks.

Given the circumstances discussed in the preceding
paragraphs, and since physical isolation and quarantine
of infected individuals are still key strategies to fight
againstCOVID-19, herewe analyse the valuable SIR-X
model setting developed by Maier and Brockmann [3]
in the light of piecewise smooth dynamical systems the-
ory. For the sake of completeness, one could say that the
starting point of referred work is the classical SIR ordi-
nary differential equation system, where the compart-
ments S, I and R stands for susceptible, infected and
removed individuals,1 respectively. In such a dynam-
ics, the respective variables S, I and R usually denote
the number of individuals in each one of these com-
partments as continuous-time functions of time t [4].

The classical SIR ordinary differential equation sys-
tem can be view as a particular case of the SIR-X
dynamics given by Eqs. (1), (2), (3) and (4) with
κ = κ0 = 0 (i.e., with no isolation or quarantine).
Given such SIR dynamics, the threshold that defines
whether an epidemic will occur is the basic reproduc-
tive ratio R0 = α/β. If both R0 > 1 and the fraction of
susceptibles is greater than 1/R0, then there is an epi-
demic. This last condition generates a key threshold
for vaccination strategies because vaccination trans-
fers susceptibles to the removed compartment. Under
the hypotheses of the SIR dynamics, but even though
R0 > 1, if the coverage of vaccination is greater than
1− (1/R0) in a certain population, then there is no sus-
tained transmission in it [2,4]. Regarding COVID-19
epidemiological models, given social relevance on this
subject, a large amount of peer-reviewed articles and
preprints have been published, but sometimeswithmis-
use of mathematical modeling [5]. The subject is quite
wide and complex such that a review on this theme is
beyond the scope of the paper [6,7]. Our key point here
is to analyze, in the light of piecewise smooth dynami-
cal systems theory, the new effective way proposed by
Maier and Brockmann [3,8] of modeling containment
and quarantine.

In the relevant context of modeling the non-pharma-
cological interventions for COVID-19, the novelty pro-
posed by Maier and Brockmann [3] regards two new

1 In this model, every infected individual is also infectious and
vice versa. Here in the paper, the compartments of removed indi-
viduals comprises both recovered and death individuals, i.e., the
ones that do not take part in the disease transmission process.

processes: (1), general public containment efforts or
individual behavioral changes in response to the epi-
demic effectively, which removes individuals from the
interaction dynamics and (2), a quarantine procedure,
inwhich symptomatic infected individuals are removed
to quarantine. To model these processes, they intro-
duce a new compartment for symptomatic, quarantined
infecteds, denoted by X. Their model reads [3]

dS

dt
= − αSI − κ0S, (1)

d I

dt
= + αSI − β I − κ0 I − κ I, (2)

dR

dt
= + β I + κ0S, (3)

dX

dt
= + κ I + κ0 I, (4)

where, for the convenience of our analysis we set
S + I + R + X = 1, since the sum of Eqs. (1), (2), (3)
and (4) is zero for any time t . In this model, the param-
eters α and β are respectively the transmission rate and
the recovery rate of the standard SIRmodel. In addition
to that, and referring to the processes introduced by by
Maier and Brockmann [3]: (1), the impact of contain-
ment efforts is captured by the terms proportional to
the containment rate κ0 that is effective in both I and
S compartments, because non-pharmacological inter-
ventions such as social distancing and lock down affect
the whole population alike; and (2), (symptomatic)
infected individuals are removed at rate κ correspond-
ing to quarantine measures. By introducing this model,
besides valuable insights on containment strategies to
fight against COVID-19 and other possible similar
infectious diseases outbreaks, Maier and Brockmann
[3] were able to explain the subexponential growth in
the number of confirmed COVID-19 cases in China.
Their analysis and fittings reproduce empirical case
counts in all provinces for plausible parameter values,
suggesting that quarantine and containment shielded
the susceptible population from the transmission pro-
cess. By further analyzing their model, our objective
here is different, though.

Since the adoption of non-pharmacological inter-
ventions previously described as (1) containment and
(2) quarantine have a huge impact on many aspects
in daily life, the use of such health public strategies is
quite complex. To properlymanage them, it is crucial to
have at least one decision criterion to define when (and
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how) to start and stop these interventions. In order to
address this issue, first we suppose that the health sys-
tem has the capacity of attending IM infected individ-
uals (being just a part of them WITH severe disease).
When I (t) > IM , then we say that there is a collapse in
the health system. Based on that, we define our thresh-
old criterion for switching between both containment
and quarantine application and the “do nothing” strat-
egy. Given a certain fraction threshold of infecteds Im ,
with Im < IM , our control protocol is defined as:

• If I (t) > Im , containment and quarantine are
switched on (i.e., SIR-X dynamics);

• If I (t) < Im , containment and quarantine are
switched off (i.e., SIR dynamics).

Since R and X do not affect equations (1)–(2), we
reduce the dynamic analysis to the plane (S, I ). But
before this discussion, let us present how this paper is
organized. In Sect. 2, we present some concise remarks
on piecewise smooth dynamical systems. In Sect. 3,
we define our piecewise smooth non-pharmacological
intervention protocol for COVID-19. In Sect. 4, we
establish the results of our main analysis, and in Sect. 5
some criteria about the best rate of containment effort
are given. Finally, Sect. 6 closes the paper with some
concluding remarks.

2 Remarks on piecewise smooth dynamical
systems

Consider the smooth scalar function h : D ⊂ R
2 →

R. The switching manifold of this system is defined
by � = {(S, I ) ∈ D : h−1(0)}. Clearly, � is the
separating boundary of the regions R− = {x ∈ D :
h(x) < 0} and R+ = {x ∈ D : h(x) > 0}.

Let be Xr the space of Cr -vector fields on D
endowed with the Cr -topology with r = ∞ or r ≥ 1
large enough for our purposes and call �r the space of
vector fields F : D → R

2 such that

F(x) =
{
F+(x), for x ∈ R+,

F−(x), for x ∈ R−,
(5)

where x ∈ D,F± ∈ Xr . We may consider �r = Xr ×
Xr endowed with the product topology and denote any
element in �r by F = (F+,F−), which we will accept
to be multivalued in points of �.

The contact of smooth vector fields F± ∈ Xr with
� are provided by the directional Lie derivatives:

LF±h = 〈∇h,F±〉, where ∇h and 〈· , ·〉 denote the
gradient of smooth function h and the canonical inner
product, respectively. The higher order Lie derivatives
are given by Lm

F±h = 〈∇Lm−1
F± h,F±〉.

On �, we distinguish the following regions: (i)
attractive sliding, (ii) repulsive sliding (or escape) and
(iii) crossing, given by (i) �as = {x ∈ � : LF+h(x) <

0 < LF−h(x)}, (ii) �rs = {x ∈ � : LF−h(x) <

0 < LF+h(x)} and (iii) �−
c = {x ∈ � : LF−h(x) <

0 and LF+h(x) < 0}, �+
c = {x ∈ � : LF−h(x) >

0 and LF+h(x) > 0}. As we will see later, Figure 2
presents regions �as , �−

c and �+
c .

In this paper, we suppose that the sliding dynamics
in�as ∪�rs is described by the Filippov sliding vector
field [9,10] defined as

Fs(x) = (1 − λ)F−(x) + λF+(x),

where for each x ∈ �as ∪�rs , the value of λ is chosen
such that LFs h(x) = 0, i.e.,

λ = λ(x) = LF−h(x)
LF−h(x) − LF+h(x)

,

provided that the denominator of the previous expres-
sion does not vanish. Therefore, λ ∈ (0, 1) for all
x ∈ �as ∪�rs , while λ = 0 implies that LF−h(x) = 0,
i.e., x is a tangency point of the vector field F− with
the boundary �, and λ = 1 implies that LF+h(x) = 0,
i.e., x is a tangency point of the vector field F+ with
the boundary �.

The orbits of the system (5) can be constructed by
concatenating standard solutions in R± and sliding
solutions on� following the sliding system ẋ = Fs(x).
For more details, the reader is referred to the reference
[9]. The forward orbit of (5) that crosses � goes from
R− to R+ through x0 ∈ �+

c and goes from R+ to R−
through x0 ∈ �−

c . The forward orbit of (5) that inter-
sects � at a point x0 ∈ �as continues from this point
x0 on a contained sliding motion in �.

Sliding regions are bound by points where the vector
fields F± are tangent to �. Then, we define two sets of
tangential singularities:

T+ = {x ∈ � : LF+h(x) = 0}
and T− = {x ∈ � : LF−h(x) = 0};

one for each vector field. In the following, we provide
the definitions of tangential singularities [10,11].

Definition 1 One says that x ∈ � is a fold point of F+
(respectively, F−) if LF+h(x) = 0 and L2

F+h(x) �= 0
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(respectively, LF−h(x) = 0 and L2
F−h(x) �= 0). More-

over, we say that this fold point is visible if L2
F+h(x) >

0 or invisible if L2
F+h(x) < 0 (respectively, L2

F−h(x) <

0 or invisible if L2
F−h(x) > 0).

Observe that system (5) can have equilibria for each
vector fieldF± and also equilibria for the sliding vector
field Fs .

3 A piecewise smooth non-pharmacological
protocol for COVID-19

Note that, in order to study the dynamic of the SIR-
X model, it is sufficient to consider equations (1)–(2).
This is possible because such equations arewritten only
in terms of the state variables S and I . Moreover, to
ensure that the health systemwill not collapse, we con-
trol the fraction of infected individuals such that I (t)
cannot be over IM . In what follows, we consider the
two-dimensional dynamical system (1)–(2) defined in
the set

D = {(S, I ) ∈ R
2 : 0 ≤ S ≤ 1 − I, 0 ≤ I ≤ IM } (6)

and h given by h(S, I ) = I − Im .
As we mentioned before, we set κ = κ0 = 0 for

I < Im and κ0 > 0 and κ > 0 as constants for I > Im ,
where Im is a design parameter such that 0 < Im < IM ;
in fact, Im is the fraction of infected individuals below
which containment and quarantine actions are null and
above which such actions are applied at rates κ0 > 0
and κ > 0. In addition to that, we use the Filippov’s
convention to determine what happens when I = Im .

In the piecewise smooth vector field framework, we
rewrite the system (1)–(2) as⎡
⎢⎢⎢⎣
dS

dt

d I

dt

⎤
⎥⎥⎥⎦ =

⎧⎨
⎩
F−(S, I ), if I < Im,

F+(S, I ), if I > Im,

(7)

composed by the vector fields

F−(S, I ) =
[ −α I S

α
(
S − 1

R0,free

)
I

]

and F+(S, I ) =
[ −(α I + κ0)S

α
(
S − 1

R0,eff

)
I

]
,

where (S, I ) ∈ D and

R0,free = α

β
> R0,eff = α

β + κ + κ0
. (8)

The vector field F− has a line of equilibria points at
I = 0 and 0 ≤ S ≤ 1, being attractive in the part
where S < 1

R0,free
, while F+ has a virtual stable node

equilibrium at (0, 0), i.e., it is placed in R− where F+
is not defined. See Fig. 1. From the first Lie deriva-
tives, given by LF−h(S, Im) = α(S − 1

R0,free
)Im and

LF+h(S, Im) = α(S − 1
R0,eff

)Im , it is easy to see that
there are two tangency points in �, namely

q− =
(

1

R0,free
, Im

)
and q+ =

(
1

R0,eff
, Im

)
.

Specifically, q− is a visible fold for F− and q+ is an
invisible fold for F+, since L2

F−h(q−) = − α2

R0,free
I 2m <

0 and L2
F+h(q+) = − α Im

R0,eff
(α Im + κ0) < 0. Complet-

ing �, we have an attractive sliding segment defined
by

�as =
{
(S, I )∈� : I = Im,

1

R0,free
< S<

1

R0,eff

}
,

with extremes at the fold points. The crossing regions
are given by two half straight lines:

�+
c =

{
(S, I ) ∈ � : I = Im, S >

1

R0,eff

}

and �−
c =

{
(S, I )∈� : I = Im, S<

1

R0,free

}
.

The sliding dynamics in�as is governed by the sliding
vector field Fs(S, I ) = ( fs(S, I ), 0), where

fs(S, I ) = α

(
κ0

κ0 + κ

1

R0,free
− I

)
S − κ0

κ0 + κ
S2.

(9)

4 Main analysis

In this section, we present our main analysis of this
paper about the non-pharmacological strategies of con-
trol of the COVID-19. We emphasize that the analysis
presented here is global, i.e.,

we establish the dynamic for all initial conditions
on model domain.

In practice, it is almost impossible to determine the
real initial condition in order to apply some evaluation
process. This being, we eliminate the dependence on
the initial condition and we describe the dynamic for
all (S0, I0) ∈ D, defined in (6).
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4.1 Global analysis and asymptotic stability

Proposition 1 Consider the system (7) defined in D.
The following statements hold.

(a) If R0,free < 1
1−Im

then on the switching manifold

� coincides with the crossing mode �−
c . Besides,

if R0,free = 1
1−Im

then the visible fold q− = (1 −
Im, Im) ∈ �, see Fig. 2a.

(b) If R0,eff ≤ 1
1−Im

< R0,free then on the switching

manifold there are the �−
c crossing mode and the

�as sliding mode, separated by the visible fold q−.
Besides, if R0,eff = 1

1−Im
then the invisible fold

q+ = (1 − Im, Im) ∈ �, see Fig. 2b.
(c) If R0,eff > 1

1−Im
then the switching manifold

presents the crossing modes �−
c and �+

c , the slid-
ing mode �as , the visible fold q− and the invisible
fold q+, see Fig. 2c–f.

Proof It follows by direct calculations of Lie’s deriva-
tives of the system (7). 
�

The next results provide the global stability of the
model. Moreover, it establishes when it is possible to
have trajectories leaving the setD, collapsing the health
system.

Theorem 1 Consider the systems (7) defined inD. The
following statements hold:

(a) The straight line segment � = {(S, 0) ∈ D : 0 ≤
S < 1

R0,free

}
is globally asymptotically stable.More-

over, it is composed by (non-hyperbolic) equilibria.
(b) When �as �= ∅, every trajectory that colides to

�as leaves this set after a finite time and enters in
the region

A = {(S, I ) ∈ D : 0 ≤ S <
1

R0,free

and 0 ≤ I < Im}.
(c) If R0,eff ≤ 1

1−IM
then (S(t), I (t)) ∈ D for all

t > t0 and (S0, I0) ∈ D.

Proof (a) Putting I = 0 in (7), we conclude that the
S-axis is composed by equilibria. Moreover, fol-
lowing the analysis done in Proposition 1, all tra-
jectories starting in a point in D enter A and then
converge to �.

(b) By (9), we get that

fs(S, Im) =
(

κ0

κ0 + κ

1

R0,free
− Im

)
S

− κ0

κ0 + κ
S2 < 0,

because S > 1
R0,free

> 1
R0,free

− κ0
κ0+κ

Im . Then, the
Fs is negative for all (S, I ) ∈ �as . This means that
the system trajectory that touches � at a point of
�as , remains sliding in �as tending to the visible
fold point q− in finite time. When the trajectory
reaches q−, it leaves� and enters the region below
� whose dynamics is governed by F−.

(c) Note the vector fields F± on the border of D; see
Figs. 1 and 2. On the boundaries (i) S = 0, (ii)
I = 0, (iii) g(S, I ) = S + I = 1 and (iv) I = IM ,
0 < S ≤ 1 − IM , we have: (i) dS

dt = 0 and d I
dt < 0

for both vector fields; (ii) dS
dt = d I

dt = 0 forF−; (iii)
dg
dt < 0 for both vector fields; and (iv) for F+, d Idt =
α
(
S − 1

R0,eff

)
I < 0 whenever R0,eff < 1

1−IM
, and

d I
dt = 0, d2 I

dt2
< 0 when R0,eff = 1

1−IM
.


�

4.2 Global bifurcation analysis

In Fig. 1a we present the
(
R0,free, R0,eff

)
-plane of

parameters, from where we get four main configura-
tions of the vector fields F±, shown in Fig. 1b.

In summary:

(a) � =
{
(S, 0) ∈ D : 0 ≤ S < 1

R0,free

}
is the global

attractor.
(b) For R0,free ≤ 1

1−Im
(region 1), every trajectory

started below � remains below � tending to �.
(c) For R0,eff ≤ 1

1−Im
< R0,free (region 2), every tra-

jectory started below� remains below� or reaches
� at the �as part, and from there it slides on � and
returns to below � after a finite time. Moreover,
there is a trajectory that tangentially touches � at
q−.

(d) The situation described in (c) also happens for
1

1−Im
< R0,eff ≤ 1

1−IM
(region 3). In addition,

though, there are also trajectories starting below �

that cross � passing to the region above �. How-
ever, the invisible characteristic of the tangent fold
point of the vector field F+ ensures that this trajec-
tory returns to � at a point of �−

c or �as , or still
at q−. Again, every trajectory with initial condition
(S(t0), I (t0)) ∈ D remains in D for all t > t0 and
still tends to � as t → ∞.

(e) For R0,eff > 1
1−IM

(region 4), there is a subset of
D in which the system trajectories leave D after a
positive time.
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(a)

(b)

Fig. 1 Transition of the dynamics of the system (7) in D, from the variation of parameters R0,free and R0,eff

At the transition points between scenarios 1 and 2
(red line), 2 and 3 (gray line), predicted by the bifur-
cation set of Fig. 1(a), the phase portrait of the system
(7) undergoes a bifurcation associated with appearance
(or disappearance) of tangency points and also sliding
and crossed segments in the domain D.

The critical phase portrait at the transition between
the scenarios 1 to 2 and from 2 to 3, are given in Fig. 2a
and b. A third bifurcation occurs at the transition from
3 to 4 (blue line), having the critical phase portrait like

the one in Fig. 2c. From there, the domain D is no
longer positively invariant to the flow of the system
(7), leading to three sub-scenarios:

(a) Trajectories starting from � ⊂ D, or below it,
remain within D (Fig. 2d).

(b) The same as the previous one, but the trajectory
starting at (1− Im, Im) ∈ � is tangent to the upper
threshold I = IM (Fig. 2e).

(c) The trajectory starting at (1 − Im, Im) ∈ � is
transversal to the upper threshold I = IM , and

123



Global Analysis of a piecewise smooth epidemiological model 3769

therefore one cannot guarantee that the system will
not collapse for any initial condition below � (Fig.
2f).

5 The best rate of containment effort

By using the results presented in Sect. 4, we can predict
that the systemwill not collapse for any choice of Im <

IM whenever R0,eff ≤ 1
1−IM

, which is in accordance
with statement (c) of Theorem 1. However, this may
require high rates of confinement κ0 and quarantine
κ . To obtain lower rates without causing the system
to collapse for any initial condition below the control
threshold Im , we must choose the value of Im properly.
For this case, we have R0,free > R0,eff ≥ 1

1−IM
, as it is

shown in region 4 of Fig. 1a.
In what follows, we consider R0,eff ≥ 1

1−IM
and

under this assumption we determine the condition on
the system parameters, in particular Im and κ0, which
ensures that any trajectory starting atD below I = Im ,
follows within D for time forward. In this way,

we provide necessary and sufficient conditions for
the control of COVID-19 ensuring the non-collapse of
the health system but also minimizing the containment
efforts.

Consider that I0 ≤ Im ≤ IM . In this context, two
natural questions are:

Question 1: For a fixed Im , what is the minimum
containment rate κ0 that ensures I (t) ≤ IM?

Question 2: For a fixed κ0, what is the maximum
value of infecteds Im that ensures I (t) ≤ IM?

Both questions are in fact equivalent and their
answers correspond to the limit case illustrated in Fig.
2e. The condition required for this is that the trajectory
of the system (7) started at point (1 − Im, Im) passes
through point (1/R0,eff, 1 − IM ). We assume that the
parameters Im and κ0 vary and the others parameters
are fixed such that R0,free > R0,eff ≥ 1

1−IM
.

In the next proposition we explicitly exhibit the
expression of the value of κ0 that answer the Ques-
tion 1 (or, equivalently, we present implicitly the value
of Im that responds to the Question 2). More precisely,
fixing Im and all the others parameters of the system
(7) we present the minimum containment rate κ0 that
satisfies I (t) ≤ IM .

We define the set:

B = {(Im, κ0) ∈ R
2 : 0 < Im ≤ IM and 0 ≤ κ0

≤ α(1 − IM ) − κ − α
R0,free

.}

Proposition 2 We suppose that (Im, κ0) ∈ B. Then
the minimum containment rate κ0 that guaranties that
I (t) ≤ IM is given by

κ0 = κmin0 (Im ) = −κ − α

R0,free

−
α
(
1− IM +

(
1

R0,free
+ κ

α

)
Log

[
IM
Im

])

ProductLog
[
−1,

(
1− IM +

(
1

R0,free
+ κ

α

)
Log

[
IM
Im

])
	

] ,

(10)

where

	 = − 1

1 − Im

⎛
⎝ Im

IMe
1−Im

(
1+Log

[
IM
Im

])
⎞
⎠

1
1−Im

.

Proof Let (S0, I0) ∈ D be the initial condition for the
system (7). Assuming I0 ≥ Im , in the (S, I )-plane, a
first integral for the system F+ is given by

σ(S, S0, I, I0) = S − S0 + I − I0

− 1

R0,eff
Log

[
S

S0

]
+ κ0

α
Log

[
I

I0

]
.

To obtain the condition under the parameter κ0, such
that the orbit started at point (1−Im, Im) passes through
the point (1/R0,eff, 1 − IM ) it is sufficient to consider

σ(Im, κ0)

= σ(1/R0,eff, 1 − Im, IM , Im)

= κ0

α
log

(
IM
Im

)

+ 1

R0,eff(κ0)
log

(
(1 − Im)R0,eff(κ0)

)

+ 1

R0,eff(κ0)
+ IM − 1 = 0. (11)

Note that the parameters κ0 and R0,eff satisfy the rela-
tions:

If κ0 < α(1 − IM ) − κ − α
R0,free

then R0,eff

>
1

1 − IM
.

If κ0 = α(1 − IM ) − κ − α
R0,free

then R0,eff

= 1

1 − IM
.
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Fig. 2 Phase portraits of
the system (7). In a we see
the dynamics of the
transition scenario from
region 1 to 2 of the
bifurcation set shown in Fig.
1. In b we see the dynamics
of the transition scenario
from region 2 to 3. And in c,
the transition scenario from
region 3 to 4. In d–f are
shown the dynamics for
(R0,free, R0,eff) in the region
4, in which the system
trajectory starting at
(1 − Im , Im) is tangent to
the upper threshold I = IM
when σ(Im , κ0) = 0, as
shown in e

(a) (b)

(c) (d)

(e) (f)

Besides then, remembering that 1
R0,eff

= 1
R0,free

+ κ+κ0
α

,
we get that

∇σ(Im, κ0)

=
(
− κ0

α Im
− 1

(1−Im )R0,eff
, 1

α
log

(
IM
Im

)

+ 1
α
log

(
(1 − Im)R0,eff

)) �= (0, 0).

In this way, by the Implicit Function Theorem, it is
possible solve the equation σ(Im, κ0) = 0 in terms of
κ0 or Im . Therefore, solving this equation in terms of
κ0, we obtain the expression given in (10). 
�

Thecurve in the (Im, κ0)-planegivenbyσ(Im, κ0) =
0, see Fig. 3, contains all the solutions for Ques-
tions 1 and 2. In this case, if ( Îm, κ̂0) is a solution of
σ(Im, κ0) = 0 in domain B, then, for κ0 = κ̂0 fixed the
maximum Im is Îm and for Im = Îm fixed theminimum
κ0 is κ̂0.

The solution branch of σ(Im, κ0) = 0 is represented
numerically in a (Im, κ0)-parameter plane, as shown in
Fig. 3, for three different κ values and from which we
observe twodifferent situations separated by the critical
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Fig. 3 Graphs of σ(Im , κ0) = 0 for the parameters α = 0.7,
R0,free = 4.6667, IM = 0.1, κ = 0.2 (blue), κ = κ∗ = 0.2613
(red) and κ = 0.315 (green)

value

κ = κ∗ = αe1+ProductLog
[−1,(IM−1)e−1

]
− α

R0,free
,

as described in the sequel.

(a) If κ > κ∗, then the solution branch of σ(Im, κ0) =
0 cuts the Im-axis at Im > 0. In this case, for any
Im such that

Im ≤ I ∗
m(κ) = 1 −

(
1

R0,free
+ κ

α

)

e
−1+ (1−IM )αR0,free

α+κR0,free ,

the minimum containment rate is κmin
0 (Im) = 0.

Naturally, for κ0 = 0 the maximum of Im is
Imax
m (0) = I ∗

m . This means that, considering a quar-
antine rate greater than κ∗, the containment effort
could be even zero if the quarantine strategies are
implemented before the fraction of infected indi-
viduals attains the value I ∗

m . In this case, the strategy
could reach just the infected individuals and none
restriction is applied to the general population.

(b) If κ ≤ κ∗, then the solution branch of σ(Im, κ0) =
0 does not cut the Im-axis at Im > 0 and

lim
Im→0

κmin
0 (Im) = 0.

This means that even not considering a large quar-
antine rate, the minimum containment effort con-
verges to zero only if the containment strategies are
implemented very soon.

In order to exemplify our theoretical results, let us
consider an example for selected parameter values.

Example 1 Let α = 0.7, R0,free = 4.6667, IM = 0.1
and κ ∈ [0.2, 0.315].

(a) If κ0 = 0.07, what is the maximum value for Im
that ensures I (t) ≤ IM? In Fig. 3 observe that for
κ = 0.2 we have Imax

m = 0.069, and for κ = 0.315
we have Imax

m = 0.094 (these points are marked
with black circles). In addition, for κ = 0.315 >

κ∗ = 0.2613 we can take κ0 = 0 if control actions
are used earlier. This is possible if we choose some
Im ≤ I ∗

m = 0.053.
(b) Taking Im = 0.053 and κ = 0.2, then the min-

imum value of κ0 that ensures I (t) ≤ IM is
κmin
0 = 0.04667 (the red circle marks this point in
Fig. 3). However, for κ ≥ 0.315 we have κmin

0 = 0.

Figure 4 shows two simulation results of the system
(1)–(4) under the assumed control protocol. We take
Im = 0.05 < I ∗

m = 0.053 and the other parameters
as in the previous example. For the first case, which is
shown in Fig. 4a–4b, we use κ0 = 0.07 and κ = 0.2.
Thus, the containment measures are maintained for a
period of about 15 days (from day 15 to day 30). For
the second case, which is shown in 4c–d, we use κ0 = 0
and κ = 0.315. For this choice, the period of the con-
tainment action is longer than the previous one, being
about 35 days (from day 15 to day 50). In these simula-
tions, we consider a hysteresis band, defined by δ > 0
and below I = Im , in order to limit the switching fre-
quency and to avoid the chattering phenomenon at the
switching boundary I = Im . By adjusting the parame-
ter δ, we can reduce the maximum switching frequency
of the slidingmotion, in addition to decreasing the aver-
age fraction of infected during the period of application
of the containment. The global dynamics results under
the constraint I (t) < IM are preserved regardless of
the choice of δ. In both cases reported in Fig. 4, and
also in general, the fraction of individuals R(t) and
X (t) depends solely on S(t) and on I (t). Moreover,
from the epidemiological point of view, susceptibles
and infected are the essential relevant compartments.
Based on these reasons, we present our analysis only
in terms of S(t) and I (t). As a last comment, though,
Fig. 4 shows the evolution of all variables. In both cases,
after stopping the control measures, the system evolves
according to the SIR dynamics and then X (t) does not
change anymore.
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(a) (b)

(c) (d)

Fig. 4 System response time for the initial condition
(S(0), I (0), R(0), X (0)) = (1−10−5, 10−5, 0, 0). We consider
Im = 0.05, α = 0.7, β = 0.15 and: (i) κ = 0.2 and κ0 = 0.07,

see a–b; (ii) κ = 0.315 and κ0 = 0, see c–d. Hysteresis control
parameter: δ = 0.008

6 Concluding remarks

We provide a dynamic analysis of the model [3] by
introducing piecewise smooth vector fields in it. An
intermittent protocol is installed according to the num-
ber of infected individuals and taking into account the
capacity of the health system.As a result, some interest-
ing bifurcations were reported. By answering Question
1, given a maximum number of infected, we determine
the minimum effort of quarantine or both containment
and quarantine needed for not collapsing the health sys-
tem above this number. By answeringQuestion 2, given
an effort of containment and isolation,wedetermine the
threshold number of infected individuals above which
these measures must be implemented to not collapse
the health system.
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